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Abstract

Low- and middle-income countries (LMICs) continue to face major challenges in providing high-quality and universally accessible
health care. Researchers, policy makers, donors, and program implementers consistently strive to develop and provide innovative
approaches to eliminate geographical and financial barriers to health care access. Recently, interest has increased in using mobile
health (mHealth) as a potential solution to overcome barriers to improving health care in LMICs. Moreover, with use increasing
and cost decreasing for mobile phones and Internet, mHealth solutions are becoming considerably more promising and efficient.
As part of mHealth solutions, biomedical signals collection and processing may play a major role in improving global health
care. Information extracted from biomedical signals might increase diagnostic precision while augmenting the robustness of
health care workers’ clinical decision making. This paper presents a high-level framework using biomedical signal processing
(BSP) for tackling diagnosis of noncommunicable diseases, especially in LMICs. Researchers can consider each of these elements
during the research and design of BSP-based devices, enabling them to elevate their work to a level that extends beyond the scope
of a particular application and use. This paper includes technical examples to emphasize the applicability of the proposed
framework, which is relevant to a wide variety of stakeholders, including researchers, policy makers, clinicians, computer scientists,
and engineers.

(JMIR Biomed Eng 2016;1(1):e1)   doi:10.2196/biomedeng.6401
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Introduction

According to 2012 World Health Organization (WHO)
estimates, noncommunicable diseases (NCDs) contributed to

38 million deaths globally, accounting for 68% of 56 million
total deaths. Meanwhile, nearly 80% of NCD deaths (28 million)
occurred in low- and middle-income countries (LMICs) [1].
The leading causes of NCD deaths in 2012 were cardiovascular
diseases (17.5 million deaths, or 46% of all NCD deaths),
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cancers (8.2 million, or 22% of all NCD deaths), and respiratory
diseases, including asthma and chronic obstructive pulmonary
disease (4.0 million) [1]. NCDs also include mental and
neurological disorders, such as Alzheimer’s disease and
dementia. By 2050, the WHO expects that 115 million people
will have Alzheimer’s disease [1].

Biomedical signals always accompany the physiological
processes of the human body altered by NCDs, and these signals
can reflect the nature and degree of the change. Subjects with
NCDs present physiological parameters that differ from those
of healthy subjects. If we can analyze these signals and detect
their morphologies, we may be able to predict, prevent, and
treat NCDs at earlier stages. With recent advances in sensors,
machine learning, and mobile technologies, biomedical signals
offer practical solutions to tackle NCDs, especially in LMICs.

Biomedical signal analysis represents a significant visualization
and interpretation method for detecting, storing, transmitting,
analyzing, and displaying valuable information, thus allowing
scientists and physicians to obtain quantitative measurements
to support scientific hypotheses and medical diagnoses. Various
approaches have been and are being applied across multiple
scientific disciplines as well as in the health care industry.
Interest is increasing in using mobile health (mHealth) to
overcome barriers of access to appropriate health care globally
(especially in LMICs) and to increase diagnostic accuracy [2,3].

Ultimately, researchers seek to extract meaningful data that can
be used to create biomedical signal processing (BSP)-based
point-of-care (POC) technologies and to assist in the prediction
and diagnosis of diseases. In turn, this knowledge would support
health care practitioners and researchers in developing and
instituting therapies earlier in the course of disease when they
may be most effective. However, scalability and affordability
are important factors when it comes to scientific research and
medical diagnoses. Without addressing these two considerations,
valuable learning and applications may become impossible and
impractical.

In the proposed BSP-based framework, we discuss six essential
steps that guide scientists from scientific hypotheses and analysis
to practical application: simplicity, mining, connecting,
reliability, affordability, and scalability (SMCRAS). When
considering each of these elements during the research and
design of BSP-based devices, researchers are able to extend
their work beyond the scope of local application and use.

To our knowledge, this is the first paper of its kind to elucidate
a framework for BSP-based POC devices. In 2014, researchers
recently began to propose and discuss the idea that biomedical
engineering can improve global health [2]. In 2015, researchers
also suggested a framework for POC devices, without BSP,
based only on affordability [3], which is one element of our
framework.

Specific technical examples will be discussed using four recent
BSP-based case studies in order to illustrate real-world
applications for the proposed framework, including how it will
aid in the development of global health care BSP-based
technologies.

Overview

The nature of a biomedical signal is like any other: it is
information bearing. Signals play a major role in our daily
communication whether they be verbal, social, mental, or
physical. Measuring a biomedical signal from a certain body
part reveals the state of that specific part as well as the whole
body. Like any communication system, there is a sender,
receiver, and medium through which the signal is sent. With
current technological advances (science, computers, etc), we
can use algorithms to detect abnormalities and understand the
information from the sender (ie, body part or organ). It is
becoming increasingly common to use mobile phones to log
biomedical signals, thus assisting physicians and health care
practitioners in their decisions related to disease prediction,
diagnosis, and treatment.

Nonetheless, there remain many challenges in collecting data
from mobile devices, such as inconsistent measurement,
unreliable signal quality and training, limited computational
resources, finite power, time constraints for clinical staff,
varying user interface designs, and uncontrolled environments.
The guiding principles proposed in this paper address these
challenges and create a framework for developing BSP
algorithms that can be used for disease classification and
prediction. We propose six main objectives: (1) aim for
simplicity, (2) mine through noise based on information
detection theory, (3) reveal hidden connections, (4) assess
robustness, (5) plan for scalability, and (6) strive for
affordability.

Simplicity
Einstein famously said, “Any intelligent fool can make things
bigger and more complex. It takes a touch of genius and a lot
of courage to move in the opposite direction.” Simplicity is
particularly effective when it comes to mobile computation.
Simple methods that achieve high detection accuracy require
less storage and power while remaining more suitable for
wireless and online processing [4]. For example, Figure 1 shows
two algorithms that both detect QRS complexes in
electrocardiogram (ECG) signals [5,6]. One algorithm is simpler
than the other, and it requires fewer execution steps, thus
lowering the complexity.

BSP-based POC devices collect biomedical signals wirelessly
(or wired) and send them to a central monitoring station using
Global System for Mobile communications (GSM) or Internet
for further analysis [7,8]. In such cases, some analyses are
executed locally on the POC device before transmission;
however, this process is not always recommended as the
transmission can consume more power than the ECG analysis
itself [9].

Undoubtedly, it is essential that any algorithm used for real-time
analysis retain simplicity so long as this simplicity does not
decrease accuracy significantly. The simpler the algorithm, the
faster it will be in processing large-scaled biomedical signals;
it also will consume less power in battery-operated POC devices
[4]. For example, Figure 1 shows that the simple method is more
sensitive and specific while outperforming the complex
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approach. The data reliability are discussed in detail in the
“Reliability” section.

Note that there can be a trade-off between algorithm simplicity
and accuracy. At times, a more complex algorithm can achieve
higher accuracy than a simple algorithm. However, the aim is
to develop a simpler algorithm that can achieve the same or

even higher accuracy than the complex algorithm. There is
currently an unmet need to develop relatively simple but reliable
and accurate algorithms for tackling large data [10]. In terms
of time, application, and long-term use, it will be beneficial to
investigate NCDs, global health care issues, and BSP-based
POC devices using simple but efficient algorithms.

Figure 1. Comparison between simple and complex QRS detectors for ECG signal analysis (SE=sensitivity; +P=positive predicitivity; simple QRS
detector refers to Elgendi’s algorithm [5]; complex QRS detector refers to Pan-Tompkins algorithm [6]). Here, N/A stands for Not Applicable.

Mining
The extraction of the most informative patterns in a given dataset
is commonly referred to using different terms depending on the
study field (eg, data mining is used as information/knowledge
extraction, information/knowledge discovery,
information/knowledge harvesting, or data analysis/processing)
[11]. “Data mining” is typically the term of preference used by
biomedical engineers and computer scientists. In this paper, we
refer to the “mining” step as a combination of filtering and
feature extraction phases.

When mining noisy biomedical signals, it can be tempting to
give up before obtaining an informative waveform. Many studies
in the literature used filters to clean the signal on the waveform’s
account; in other words, we need to filter the signal with
techniques that help us preserve the main waveforms of the
processed signal, which hold valuable data and information.

When it comes to mining data collected from BSP-based POC
devices, the data are very noisy (as mentioned in the Overview
section). The accurate detection of the main waveforms within
the biomedical signal will increase the accuracy of disease
diagnosis and prediction. Figure 2 demonstrates that a mining
algorithm was able to successfully demarcate the first (S1) and
second (S2) heart sounds, outperforming other mining
algorithms (compare [b-e] in Figure 2). For example, if we apply
fixed thresholds to the output of the mining algorithms shown
in Figure 2, the S1 events would not be detected as they have
lower amplitudes compared to S2 events, and therefore, the
overall detection rate will decrease [11].

It is critical to provide health care workers with feedback on
the quality of the data collected in order to allow a real-time
recollection of biomedical signals if needed. Therefore, signal
quality assessment algorithms are necessary to distinguish
between signals that are clinically acceptable and those that are
uninformative. The user can be informed in real time
accordingly.
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Figure 2. Example of mining heart sounds: (a) Original heart sound signal from a subject with mean pulmonary arterial pressure of 20 mmHg, (b)
Mining using second-order Shannon energy of D5 wavelet, (c) Mining using 2nd-order Shannon energy of D6 wavelet, (d) Mining using 3rd-order
Shannon energy, (e) Mining using wavelet approximation A6, (f) Mining using two moving averages, black and purple dotted lines, to generate blocks
of interest. Here, S1 refers to the first heart sound while S2 refers to the second heart sound.
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Connecting
To reveal relationships that would otherwise remain hidden, it
is imperative to extract multiple features from biomedical signals
and find correlations/causalities between these features for
abnormality (disease of interest). For example, Figure 3 shows
the extraction of relative power features (f1, f2, f3) in three
nonoverlapping frequency bands (4-10 Hz, 10-20 Hz, and 20-30
Hz) in healthy and subjects with Alzheimer’s disease (AD)
[12,13]. It is clear that the relative power of the first frequency
band, 4-10 Hz, is associated with AD compared to the 10-20
Hz and 20-30 Hz bands [12,13]. The AD subject had a higher
relative power in the 4-10 Hz, while the healthy subject had a
lower relative power over the same frequency band. Figure 3

uses topoplots of electroencephalography (EEG) signals. These
topoplots are generated using the PyMVPA free software [14].

There are several important features to investigate first when
analyzing the statistical and deterministic properties of
biomedical signals: kurtosis, skewness, energy, entropy, line
length/curve length, minima/maxima, activity (1st Hjorth
parameter), mobility (2nd Hjorth parameter), complexity (3rd
Hjorth parameter), root mean square amplitude, zero crossings,
and relative power.

The features extracted from biomedical signals and correlated
with an NCD are used as biomarkers. Once the biomarkers are
tested rigorously, we can either train practitioners to identify
them, or we can develop machine-learning algorithms to identify
and report them automatically to the user.

Figure 3. Connecting hidden relationship between frequency bands and early diagnosis of patients with Alzheimer's: (a) Topoplot of EEG signals in
a healthy subject, (b) Topoplot of EEG signals in a patient with Alzheimer's (color scale from blue to red represents the relative EEG power value from
0-1 respectively).

Reliability
As said, “Simplicity is a prerequisite for reliability.” Thus, the
simplicity step cannot be achieved unless reliability is also
achieved. Simplicity goes hand-in-hand with reliability and
must be established in conjunction with simplicity.

After applying the simplicity, mining, and connecting steps, the
accuracy of the developed solution needs to be verified. This
assessment is needed to check if the algorithm/device meets
current international standards. Moreover, it is important that
the BSP-based POC solution performs as well as the current
diagnostic tools, if not even better.

The reliability of a BSP-based algorithm is mainly assessed
using four distinct results: true positives, true negatives, false
positives, and false negatives. Based on these four results,
several statistical measures can be used to assess reliability of
simple algorithms, such as sensitivity, specificity, and positive
predictivity.

Quality control needs to be implemented in order to detect and
prevent errors before deployment of the BSP-based POC device.
It is worthy to note that BSP-based sensors typically undergo
quality control and risk management reviews during the
manufacturing process. Beyond this, device quality needs to
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also be assessed by the initial health care professional using the
device to ensure it is appropriate for the intended purpose, before
mass usage. Moreover, the systematic management of the device
quality and reliability needs to be maintained through institution
policies and procedures, user training, evaluation of these
procedures and policies, and an overall evaluation of these
components on a regular basis to ensure and maintain reliability
and quality.

Affordability
The difference in health care quality between high-income and
low-income countries primarily results from the lack of trained
health care professionals, poor infrastructure, limited physical
accessibility to health care, and the relative cost of health care
delivery. As mobile broadband network penetration has reached
89% in LMICs, the use of mobile devices has increased to
collect biomedical signals to address some of the NCD
challenges. This increase allows for the easy conversion of
mobile phones into BSP-based POC devices. Sensors, which
are low-cost items, can be hooked into these mobile devices to
collect the needed biomedical signals.

Affordability also applies to high-income developed countries
because they are increasingly facing shortages of funds and
health care professionals.

Once an affordable BSP-based POC device has been
implemented, it is important to continue exploring alternative
affordable methods to ensure utilization of the most
cost-efficient option. For example, instead of using ECG to
detect heart rate variability, we could use photoplethysmogram
(PPG) signals. We also can create an inexpensive solution, such
as a digital stethoscope.

The use of BSP-based POC devices, including wearable sensors,
as diagnostic tool is a feasible and affordable way to reach larger
populations for improved health care outcomes. In developed
countries, BSP-based POC devices are already being used by
affluent populations (eg, heart rate monitoring using wearable
watches and mobile phones). Most of the current apps focus on
heart rate monitoring and number of steps walked in a day; we
can predict that the same technology can be modified and used
to tackle more serious problems, such as diagnosis of NCDs.
In rural/remote areas and developing countries, there is a
paradigm shift towards using devices related to affordable global
health care for both preventative, diagnostic, and treatment
purposes using smart and mobile technology. The proposed
framework therefore blends well with this paradigm shift and
seeks to help address current needs in rural/remote areas and in
developing and developed countries with vulnerable populations
[3].

Scalability
It is intuitive to think that simplicity ensures scalability for both
algorithm development and BSP-based POC device use (ie,
simpler algorithms require less processing time and simpler
devices are more likely to be used by nonspecialized individuals;
therefore, scalability is a certainty). This assumption is partially
correct and accounts for only part of the meaning of scalability
here. For example, simple algorithms/devices can be
patient-specific or environment-specific (ie, the simplicity of

the algorithm can be applied to a specific patient subset in a
specific environment). Scalability shifts disease diagnosis to
the community level by developing simpler algorithms/devices
that can be used outside a formal clinic setting and on different
patient subsets.

Scalability ties the previous four elements of the framework
together for the purpose of mass implementation of technology
into the real world. Moreover, scalability must include a
user-friendly approach with clear directive instructions. In
developing algorithms/solutions, it is essential that they have
the capacity to be used with different applications and devices.
For instance, we need to provide algorithms that can work with
different sampling frequencies and not require an adjustment
for a particular sampling frequency or parameter and condition.
When reaching this final step of the framework, we begin to
reap the benefits of knowledge sharing, having reached the point
where we can impact global health outcomes meaningfully.

Successful scalability occurs when users with limited
experience/knowledge are able to use the provided BSP-based
mHealth technologies successfully in real time with minimal
complications and in multiple environments (eg, in a clinical
setting, offsite in remote areas, in a patient’s home community,
on-the-go in areas of need).

Four Noncommunicable Disease Case
Studies Related to Biomedical Signal
Processing

Case I: Detection of Pulmonary Arterial Hypertension
Using Heart Sounds
Pulmonary Arterial Hypertension (PAH) is progressive and
fatal [15]. Complicating other conditions, it is estimated to affect
100 million people worldwide [16,17]. PAH is difficult to
diagnose because symptoms appear late in the disease, and signs
in clinical examination are easily missed. Despite the remarkable
advances in cardiac catheterization, which is the gold standard
for measuring pulmonary artery pressure [18], there is a pressing
need for alternative techniques to diagnose pulmonary
hypertension noninvasively. Traditional stethoscope-based
auscultation remains a valuable noninvasive tool for diagnosing
PAH; however, physicians require years of training to become
adept at diagnosing PAH. Auscultation lacks hemodynamic
accuracy and is insufficient for monitoring the effects of therapy
or indicating an abnormality. Although the clinical significance
of heart sounds has been investigated thoroughly, there remains
a lack of research focusing on the automatic detection of PAH
in heart sounds. Prior to developing any automated algorithm,
it is important to investigate the optimal features for detecting
PAH. However, there have been few attempts to extract features
from the heart sound in PAH subjects [19-22]. One complete
normal heart sound cycle primarily consists of the first heart
sound (S1) followed by the second heart sound (S2). The interval
between the S1 and S2 is the systole, and the interval between
the S2 and S1 is the diastole. The components of the S1 are M1
and T1 due to the closure of the mitral and tricuspid valves
[23,24]. The second sound (S2) has two components (A2 and
P2) due to the closure of the aortic and pulmonary valves
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[23,24]. It is well known that the A2-P2 interval increases during
inspiration in PAH; meanwhile, during expiration, this interval
decreases [24,25]. However, measuring the A2-P2 interval is
not easy because of their relatively short duration and their
significant overlap with each other in the time domain [22]. The
relative intensities of A2 and P2 in PAH have been well studied
[19,26]; specifically, Sutton et al [19] found that the A2 was
less than the P2 in all PAH subjects. However, this feature has
not been validated statistically for developing algorithms to
detect PAH.

Simplicity
Catheterization is the gold standard for diagnosing PAH;
however, it is a very complex, risky, and costly operation,
requiring a highly expert clinician. The diagnosis process can
be simplified by using the digital stethoscope (noninvasive
method) instead of catheterization (invasive method).

In the past, clinicians have also used standard stethoscopes to
diagnose PAH; however, this method faces limitations in
detecting PAH. With current advances in science and
technology, we now have digital stethoscopes that can be used
to detect PAH by using machine-learning algorithms that support
clinicians in their decision making.

Mining
It is necessary to filter heart sounds while preserving the
waveforms of the S1 and S2 heart sounds [11]. In the literature,
wavelet-based Shannon energy was the most-used method for
emphasizing the S1 and S2 [11]. This method emphasizes
medium-intensity signals and attenuates the effect of low-energy
signals much more than that of high-intensity signals. Liang et
al [27] first recommended the use of Shannon energy after
comparing its performance to the Shannon entropy, absolute
value, and energy on heart sounds.

Kumar et al [28] tried to improve Method I by introducing
multiple wavelet coefficients and a duration-based threshold.
Wang et al [29] found that Method I was sensitive to noise and
heart murmurs, which easily leads to false segmentation.
Therefore, they investigated different wavelet features and
introduced a higher-order Shannon energy, specifically third
order, to emphasize the S1 and S2 and to suppress the noise and
murmurs.

Another mining method that can be used is based on the
sequential wavelet analysis introduced by Zhong and Scalzo
[30]. They developed algorithms based on the Daubechies db5
wavelet, not the db6 used in Methods I, II, and III.

Connecting
Features extracted from heart sounds, such as relative power
and sinusoids, have been investigated recently, and the literature
has reported on the correlations between them and the detection
of PAH [31,32].

Reliability
The algorithm in [31] used the relative power and achieved an
SE of 79% and SP of 77% over 27 subjects (12 males) with a
median age of 7 years (range 3 months-19 years) undergoing
simultaneous cardiac catheterization. Thirteen subjects had a

mean pulmonary artery pressure (mPAp) <25 mmHg (range
8-24 mmHg). Fourteen subjects had mPAp ≥25 mmHg (range
25-97 mmHg). The results were acceptable.

The algorithm in [32] used the entropy of the first sinusoid
formant and achieved sensitivity of 93% and specificity of 92%
over the same data used in [31]. The results of [32] were more
reliable than the results in [31].

Note, the data in [31,32] were collected in clinical settings and
analyzed offline on a laptop computer, not a mobile phone.
Having said that, these two studies can be considered as
proof-of-concept studies for a BSP-based POC implementation.

Affordability
Digital stethoscopes can be quite expensive, costing at least US
$450 per unit in developed countries, and the cost is even higher
in LMICs. Making it even more costly is the additional expense
of a computer to analyze the heart sounds recorded by the digital
stethoscope.

Locally made digital stethoscopes are an inexpensive alternative
that are manufactured with available parts. Designing an
inexpensive digital stethoscope consists of three components.
The first component is the chest piece, which is placed on the
skin to capture the heart sounds. The second component is the
electret microphone, which records the heart sounds captured
by the chest piece. The third component is the transmitter that
sends the recorded heart sounds to a device where heart sounds
can be visualized and played back for diagnosis. The following
are three examples of inexpensive digital stethoscopes:

1. Hands-free kit, eggcup, and rubber O-ring. In 2010, Kuan
[33] developed an inexpensive digital stethoscope that can be
made for a maximum of US $40 in low volumes. The first
component is a combination of a rubber gasket (US $1), a soup
ladle (US $1), a plastic folder (US $1), and a hand towel (US
$1). The second and third components (the electret microphone
and the transmitter) are a hands-free headset (ranging from US
$20-$35 per device), which captures the heart sounds and then
transmits them via the headset cable to the mobile phone.

2. Mobile stethoscope. Fletcher and Chamberlain [34]
developed a simple mobile stethoscope in 2015 that can be made
for a maximum of US $50 in low volumes. The first component
of this system is the chest piece of the traditional nondigital
stethoscope (US $22). The second and third components (the
electret microphone and the transmitter) are a hands-free headset
(US$27) that captures and transmits heart sounds to a mobile
phone.

3. Microphone with wireless kit. In 2012, Sangasoongsong et
al [35] developed a wireless sensor platform that can be made
for US $13 in large volumes. The first and second components
of this digital stethoscope are the phonocardiography sensor
and its wire (US $4). About 70% of the unit cost comes from
the third component, which consists of a microprocessor (US
$5) and a Zigbee transceiver chip (US $4).

Creating alternatives to the expensive digital stethoscope to
capture heart sounds is a plausible and sustainable solution.
Moreover, the development of these inexpensive digital
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stethoscopes utilizes already-existing parts for the devices,
making them easily accessible and relatively more affordable.

Scalability
The digital stethoscope is widely used by clinicians all over the
globe. One of the main advantages of the digital stethoscope is
that it can be used inside and outside any clinical setting.

In developing a robust algorithm to detect PAH that
accompanies the digital stethoscope, there needs to be a
graphical user interface that allows clinicians with varying
backgrounds and knowledge levels to easily interact with it.

Case II: Detection of Heat Stress in a Changing
Climate
According to the Intergovernmental Panel on Climatic Change,
accelerated global warming will result from increasing
anthropogenic greenhouse gas emissions. Global warming will
manifest itself in higher mean ambient temperatures and an
increased frequency and intensity of heatwaves [36]. Both
factors increase the likelihood of heat stress, defined as the net
heat load to which an individual is exposed. Warmer
environments limit the gradient for body heat dissipation.
Meanwhile, due to the physical nature of their tasks and resultant
body heat production, workers in labor-intensive industries are
a cohort susceptible to heat stress [37] due to the impact of
global warming [38]. Sustained heat stress can result in heat
illness, with potential for permanent harm and even death [39].
In this regard, worker heat illness is approximately 4-7 times
more likely during heatwave periods [40], and worker injury
claims are positively related to ambient temperature [41].

Given the heat-stress risk profile of labor-intensive workers,
screening for heat tolerance [42] and physiological monitoring
during work shifts could be part of the mitigation strategy [37].
The literature identifies two primary physiological heat stress
indices during physical activity: body core temperature (BCT)
and heart rate (HR). The standard site for BCT assessment is
the rectum [43]; however, due to the invasive nature of this
measurement, alternative sites have been assessed as BCT
surrogates. Despite their ease of measurement, forehead,
temporal, oral, aural, and axilla temperature do not provide
accurate indices of BCT during physical activity [44]. Therefore,
BCT assessment remains problematic in most occupational
settings.

Heart rate measurement, on the other hand, is less complex and
provides insight into heat stress due to significantly higher HR
during both seated rest [45,46] and standardized physical activity
in hotter climates [47]. Higher HRs are attributed to the
aforementioned narrow body heat dissipation gradient in hotter
climates, with the resultant increase in BCT and skin
temperature triggering augmented blood flow to the cutaneous
circuit in order to permit greater heat dissipation [48]. In turn,
stroke volume―the amount of blood pumped by the heart per
beat―decreases and requires a compensatory HR increase in
an attempt to maintain cardiac output [49]. Higher HRs in the
heat also may reflect the perfusion of warmer blood on the
sinoatrial node [50]. Part of the HR increase from rest values
is achieved through a significant reduction in parasympathetic
tone, reflected in heart rate variability (HRV) analysis as reduced

root mean square of the differences of successive differences.
Hence, HRV indices have been proposed as objective indicators
of heat stress [46]. Application of BCT-based and HRV-based
heat stress indices can be problematic owing to the invasiveness
of BCT assessment. Meanwhile, calculating HRV typically
requires long, recorded electrocardiogram signals. Therefore,
there remains a need for a simple, noninvasive, in-the-field
method to assess heat stress. Such a method would allow
monitoring of workers during their shifts to prevent heat stress
symptoms and ultimately, heat-related illnesses and deaths.

Simplicity
Diagnostic tests to predict individuals susceptible to heat stress
include assessment of maximal aerobic power and/or heat
tolerance in controlled settings [42,51]. These tests require
specialized equipment and a controlled climate while inducing
high levels of physiological strain. Physiological monitoring of
BCT and HRV also can require specialized equipment; they
may suffer from invasiveness of measurement and complex
analysis, respectively.

Alternatively, PPG signal collection is a simple-to-measure and
noninvasive test that can be conducted on a fingertip during
scheduled breaks at work. Recent improvements in wearable
sensor technology allow for the continuous measurement of
PPG for the purpose of measuring HR. Information derived
from the PPG signal can be analyzed to provide additional
insight into physiological strain, heat stress, and autonomic
arousal. While HRV standards of heat stress have yet to be
developed, heat stress analysis techniques have been determined
[52].

Mining
The bandpass filter is used as an essential mining step that
preserves the saliency of the systolic and diastolic waves as
well as the dicrotic notch. Researchers have recommended a
zero-phase second-order Butterworth filter, with bandpass 0.5-8
Hz, to remove the baseline wander and high frequencies [53].

Recent investigations to detect systolic peaks in PPG signals
measured after exercise reflected challenges due to motion
artifacts, sweat, and nonstationary effects [53]. Studies have
examined several filters and algorithms to analyze the PPG
wave contour; however, they continue to lack accuracy and
reproducibility [54]. As a result of these challenges, researchers
have started to apply the second derivative to emphasize and
easily quantify the delicate changes in the PPG contour [55].
For these reasons, a second derivative is used to improve the
mining and increase accuracy.

Connecting
There has been a recent attempt to connect PPG features to the
effect of heat stress while investigating global warming [52].
We have examined existing PPG features used in the literature
to diagnose different diseases, such as the b/a index, the
amplitude of the a wave, and the amplitude of the b wave in the
acceleration photoplethysmogram (APG). Furthermore, we
tested new features to determine the optimal PPG feature for
heat stress detection, such as the energy of the aa area, the
energy of the ab area, the energy of the ba area, and the slope

JMIR Biomed Eng 2016 | vol. 1 | iss. 1 |e1 | p.8http://biomedeng.jmir.org/2016/1/e1/
(page number not for citation purposes)

Elgendi et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


of the ab segment. In total, we tested 14 time-domain
features—seven features extracted from the PPG signals and
seven features extracted from the APG signals [52].

Reliability
The algorithm in [52] used the combination of entropy and HRV
index and achieved a sensitivity of 95% and positive predictivity
of 90.48% on 40 healthy, heat-acclimatized emergency
responders (30 males and 10 females) with a median age of 34
years. The participants were normotensive (mean systolic blood
pressure of 129.3 mmHg, range 110-165 mmHg) and had no
known cardiovascular, neurological, or respiratory disease. The
range of systolic blood pressure exceeds the usual normotensive
range. The results were considered reliable and more robust
against the existing method.

Note, the data in [52] were collected in the in Australia as part
of the National Critical Care and Trauma Response Centre
project to assess the physiological and perceptual responses of
emergency responders to simulated chemical, biological, and
radiological incidents in tropical environmental conditions to
compare the efficacy of various cooling methods.

The PPG signals were collected in a very noisy setting and were
analyzed offline on a laptop computer, not a mobile phone.
Given the challenging environment, the work is considered
promising for BSP-based POC implementation.

Affordability
Current PPG devices in developing countries are quite costly
at around US $300 per unit [56]. An affordable alternative
solution is converting a mobile phone into a BSP-based POC
device. The comparative cost for a mobile phone in some
developing countries is approximately US $15, and the addition
of the PPG costs approximately only US $3 more. Clearly, the
option of using the mobile phone is very promising in terms of
affordability when compared to stand-alone PPG devices.

Scalability
In the developed world, the use of the PPG signal for anesthesia
monitoring during surgery has been the standard of care for
more than 20 years. The WHO is now leading the Global Pulse
Oximetry Project, which aims to make the PPG component
available in every operating room in the world [57].

A minimum amount of knowledge is needed to use the device
as the PPG probe is very intuitive. The user simply places the
clip on the patient’s finger to collect the PPG signal. The
software will show the PPG signal in real time along with the
automatic diagnosis.

Case III: Predict Adverse Outcomes Related to
Hypertension and Preeclampsia
Preeclampsia (PE) is a disorder of pregnancy characterized by
high blood pressure and proteinuria. It affects approximately
3-8% of all pregnancies worldwide and accounts for 18.5% of
maternal deaths each year [58]. Although PE threatens the lives
of pregnant women around the world, the burden is
disproportionately felt in LMICs, where it is believed that 99%
of the estimated 70,000-80,000 annual maternal and 500,000
annual perinatal PE-related deaths occur [59].

Simplicity
To diagnosis preeclampsia, both hypertension and proteinuria
must be present [60]. Therefore, there is a need for two items.
First, a blood pressure cuff is needed to check if blood pressure
is ≥140 mm Hg (systolic), or ≥90 mm Hg (diastolic) after 20
weeks of gestation in a woman with previously normal blood
pressure. The second component is a urine test to check if
proteinuria is ≥0.3 g of protein in a 24-hour urine collection
[60]. These two tests are usually unavailable in developing
countries; therefore, there is a need to improve (or replace)
current PE diagnosis with a simple method, such as PPG signals.

Oxygen saturation (SpO2) is related to hypertension [61], and
therefore, the use of pulse oximeter can be a simpler way to
improve the diagnosis/detection of PE and its related
complications.

Mining
This mining step is similar to the mining step discussed in Case
II.

Connecting
Oxygen saturation (SpO2) is related to hypertension [61];
therefore, we use it to calculate the risk prediction index. The
light transmitted from the light-emitting diode (LED) in the
PPG probe can be detected on the same side (reflectance mode)
or on the other side (transmittance mode) of the tissue by a
photodetector. The output from the photodetector is converted
into a voltage and then further processed producing PPG [62].
The signal can be divided into a pulsatile (alternating current
[ac]) and a relatively constant (direct current [dc]) PPG
component. The SpO2 then is calculated using the ratios of the
ac and dc components of the red and infrared PPG signals along
with a calibration curve [63]. The SpO2 values then are
calculated every 10 seconds ac, and the dc PPG amplitudes are
determined using the empirically calibrated equation [63,64].

Reliability
Recently, the use of SpO2 has been tested as part of the
miniPIERS prediction model [65] in a proof-of-concept study
including a cohort of 726 women (118 of whom had adverse
pregnancy outcomes) in South Africa and Pakistan. These
women were admitted into hospitals with suspected or confirmed
PE (ie, with any hypertensive disorder of pregnancy).
Interestingly, the preliminary results showed that adding oxygen
saturation derived from the PPG signals improved prediction
accuracy from 81% to 84% [61].

The PPG signals were collected using a mobile phone with a
real-time analysis capability and can be viewed as a real-world
practical implementation for BSP-based POC devices.

Affordability
The affordability step is similar to the affordability step
discussed in Case II.

Scalability
The scalability step is similar to the scalability step discussed
in Case II.
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Case IV: Early Detection of Alzheimer’s Disease
Alzheimer’s disease (AD) is the most common form of
dementia, eventually leading to death. AD is one of the most
costly diseases worldwide; the health care cost associated with
the disease is estimated to have been US $604 billion in 2010
[66,67]. As the world population ages, we truly face a looming
global epidemic with AD. Epidemiological studies indicate that
the number of AD cases will nearly double every 20 years, to
65.7 million in 2030 and 115.4 million in 2050, affecting 1 in
85 people globally [68]. With this in mind, it becomes clear that
AD is a global problem with a dramatic impact on the health
of the population. New approaches need to be considered in
terms of prevention, diagnosis, and treatment.

Simplicity
Researchers have put forward EEG as a potential low-cost
diagnostic tool in the early stages of AD. Compared to other
systems like functional magnetic resonance imaging or positron
emission tomography, EEG systems are simple, easy to use,
and cost efficient.

Until now, most technological solutions addressing AD have
focused on the satisfaction of a specific need, such as position
tracking, memory and skill enhancement, and daily needs
reminders [69,70]. Neural feedback may improve the user’s (or
patient’s) ability to control brain activity, help with the diagnosis
of medical conditions, and assist in the rehabilitation of
neurological or psychiatric disorders. Several psychological
and medical studies have confirmed that neurofeedback activity
is enjoyable, stimulating, and potentially healing. Neurofeedback
is generated from the EEG signals of AD patients and healthy
subjects. The auditory and visual representations of AD EEG
differ substantially from healthy EEGs, potentially yielding
novel diagnostic tools. Moreover, such alternative
representations of AD EEG are natural and intuitive, making
them easily accessible to laypeople (AD patients and family
members) while providing insight into the abnormal brainwaves
associated with AD.

Researchers recently developed a simple neurofeedback
methodology that uses real-time collection of EEG signals with
a wireless EEG headset, specifically the Emotiv EPOC wireless
headset, with a sampling frequency of 128 Hz. The headset has
14 data-collecting electrodes and two reference electrodes. The
electrodes are placed at 10-20 locations, AF3/4, F3/4, FC5/6,
F7/8, T7/8, P7/8, and O1/2. The BCI2000 software package
[71] was used to interface with the Emotiv EPOC wireless
headset. The headset transmits encrypted data wirelessly to a
laptop computer.

Mining
Low-cost EEG headsets, such as Emotiv (14 electrodes) and
OpenBCI (16 electrodes) were originally designed for
entertainment purposes (eg, video games) [72]; however, these
devices seem to be prone to various artifacts, such as eye
blinking, ECG, electromyogram (EMG), body movements, and
power sources. These artifacts easily obscure the EEG signal
and make analysis difficult. Currently, a study has been proposed
to combine the gyroscope with EEG signals to optimally remove

artifacts from EEG signals collected using wireless EEG
headsets [73].

EEG signals are corrupted by noise and artifacts: 50/60 Hz
powerline interference, motion, eye-blinking artifacts, EMG
signals from muscles, and artifacts due to changes in the
electrode-skin interface [74]. The gamma range (30-100 Hz)
has a particularly low signal-to-noise ratio, and researchers
exclude it from further analysis. Therefore, the frequency range
of investigation is 4-30 Hz [75].

Connecting
The literature has reported a strong relationship between the
slowing of EEG and AD. The results presented in [12]
demonstrate that relative power, specifically within the 4-10
Hz band, holds discriminative features to detect AD.

Researchers consistently found and confirmed that AD is
associated with the slowing of EEG (frequency reduction in the
power spectrum density) [12]. There is also a reduced overall
synchrony [76] between EEG leads when compared to healthy
subjects.

Connecting the relative power features with the classification
of AD using sonification is proposed in [13]. The system
computes the relative power features (f1, f2, f3) in three
nonoverlapping frequency bands (4-10 Hz, 10-20 Hz, and 20-30
Hz).

The EEG sonification system then generates melody notes from
the computed values depending on whether the values are above
or below a predetermined threshold. To prove the concept, we
used notes from only one octave (MIDI Octave -1) with the
pentatonic scale (five notes per octave), and the study was
limited to only one instrument (acoustic bass). Obviously, it is
possible to incorporate additional musical instruments and
multiple octaves. However, the extracted sound easily becomes
cacophonic and difficult to parse. In the future, there is a need
to explore alternative schemes to generate music from EEG
relative power and other EEG patterns in the time-frequency
domain.

Reliability
As a proof-of-concept study [77], two databases were used. One
contained mild cognitive impairment (MCI) and healthy subjects
(patient age 71.9, SD 10.2; healthy subject age 71.7, SD 8.3),
and the other contained mild AD and healthy subjects (patient
age 77.6, SD 10.0; healthy subject age 69.4, SD 11.5). The use
of a single feature achieved a detection rate of 78.33% for the
MCI dataset and 97.56% for mild AD. When multiple features
were used, the detection rate improved. More specifically, 11
features achieved 95% in the MCI dataset, and four features
achieved 100% in the mild AD dataset. The results were very
promising and were considered reliable.

The EEG signals were collected in a clinical setting; however,
the data analysis was applied in real-time using a portable laptop,
not a mobile phone. This work is considered promising for
BSP-based POC devices.

JMIR Biomed Eng 2016 | vol. 1 | iss. 1 |e1 | p.10http://biomedeng.jmir.org/2016/1/e1/
(page number not for citation purposes)

Elgendi et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Affordability
EEG systems are relatively inexpensive; with suitable signal
processing, they may become useful for research and clinical
purposes. In developing countries, several EEG headsets are
affordable while the computer/phone accompanying the headset
is relatively costly.

Scalability
EEG systems are easy to use and commonly utilized by
neurologists all over the world. Minimal knowledge is needed
to use the EEG device.

Conclusion

Biomedical signals analysis and processing could play a major
role in early detection of disease. With the current barriers to
accessing health care in LMICs (eg, lack of resources, lack of

funding, and environmental factors), advances in technology
offer promise based on the proposed BSP-based SMCRAS
framework. Moreover, there is a need to find inexpensive
alternative tools that are diagnostic and noninvasive, relying on
signal processing to reduce the occurrence of death, disease,
and disability, particularly in developing countries.

This paper proposes a new framework as a roadmap to
biomedical signal analysis and implementation. The six key
objectives of the proposed SMCRAS framework are simplicity,
mining, connecting, reliability, affordability, and scalability.
We have presented and discussed four case studies relevant to
biomedical signal analysis and the application of the SMCRAS
framework. The proposed framework represents a promising
method when considering these six crucial objectives. It may
increase our capability to develop BSP-based POC technologies
that significantly impact mortality and morbidity rates,
especially for those living in LMICs.
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SpO2: Oxygen saturation
WHO: World Health Organization

Edited by G Eysenbach; submitted 25.07.16; peer-reviewed by M Oszust, E Sejdic, YL Ho; comments to author 07.09.16; revised
version received 08.09.16; accepted 28.09.16; published 17.10.16.

Please cite as:
Elgendi M, Howard N, Lovell N, Cichocki A, Brearley M, Abbott D, Adatia I
A Six-Step Framework on Biomedical Signal Analysis for Tackling Noncommunicable Diseases: Current and Future Perspectives
JMIR Biomed Eng 2016;1(1):e1
URL: http://biomedeng.jmir.org/2016/1/e1/ 
doi:10.2196/biomedeng.6401
PMID:

©Mohamed Elgendi, Newton Howard, Nigel Lovell, Andrzej Cichocki, Matt Brearley, Derek Abbott, Ian Adatia. Originally
published in JMIR Biomedical Engineering (http://biomedeng.jmir.org), 17.10.2016. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0/), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR mhealth and
uhealth, is properly cited. The complete bibliographic information, a link to the original publication on http://mhealth.jmir.org/,
as well as this copyright and license information must be included.

JMIR Biomed Eng 2016 | vol. 1 | iss. 1 |e1 | p.15http://biomedeng.jmir.org/2016/1/e1/
(page number not for citation purposes)

Elgendi et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://biomedeng.jmir.org/2016/1/e1/
http://dx.doi.org/10.2196/biomedeng.6401
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

