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Abstract

Background: The use of wearables and mobile phone apps in medicine is gaining attention. Biofeedback has the potential to
exploit the recent advances in mobile health (mHealth) for the treatment of headaches.

Objectives: The aim of this study was to assess the validity of selected wireless wearable health monitoring sensors (WHMS)
for measuring surface electromyography (SEMG) and peripheral skin temperature in combination with a mobile phone app. This
proof of concept will form the basis for developing innovative mHealth delivery of biofeedback treatment among young persons
with primary headache.

Methods: Sensors fulfilling the following predefined criteria were identified: wireless, small size, low weight, low cost, and
simple to use. These sensors were connected to an app and used by 20 healthy volunteers. Validity was assessed through the
agreement with simultaneous control measurements made with stationary neurophysiological equipment. The main variables
were (1) trapezius muscle tension during different degrees of voluntary contraction and (2) voluntary increase in finger temperature.
Data were statistically analyzed using Bland-Altman plots, intraclass correlation coefficient (ICC), and concordance correlation
coefficient (CCC).

Results: The app was programmed to receive data from the wireless sensors, process them, and feed them back to the user
through a simple interface. Excellent agreement was found for the temperature sensor regarding increase in temperature (CCC
.90; 95% CI 0.83-0.97). Excellent to fair agreement was found for the SEMG sensor. The ICC for the average of 3 repetitions
during 4 different target levels ranged from .58 to .81. The wireless sensor showed consistency in muscle tension change during
moderate muscle activity. Electrocardiography artifacts were avoided through right-sided use of the SEMG sensors. Participants
evaluated the setup as usable and tolerable.

Conclusions: This study confirmed the validity of wireless WHMS connected to a mobile phone for monitoring neurophysiological
parameters of relevance for biofeedback therapy.

(JMIR Biomed Eng 2018;3(1):e1) doi: 10.2196/biomedeng.9062
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Introduction

In the emerging era of mobile health (mHealth) and technology,
the use of wearable sensors and mobile phone health apps has
recently gained attention. This has led to a subcategory of health
informatics, labeled mHealth, encompassing the use of mobile
phones for medical purposes [1]. In addition to these apps, there
is also a wide array of wearable health monitoring sensors
(WHMS) [2],which represent a means for patients to access
real-time data from a broad range of physiological parameters
at home [3-5], thus enabling extensive data acquisition [6].
mHealth is of special interest to the younger generation, which
is constantly exposed to and familiarized with such technology.
It is also increasing in popularity within the field of headache
care and research. In particular, mobile phone–based headache
diaries are frequently used [7]. However, there is a potential for
extending this mobile technology into the preventive treatment
of headache disorders, such as migraine. The bulk of current
mHealth research focuses on chronic conditions and delivery
of self-educational treatment [8], fitting the description of
behavioral headache treatments. Biofeedback, one of the several
behavioral headache treatments, is well established and
empirically supported [9]. Systematic reviews with
meta-analyses demonstrated that biofeedback is effective as a
migraine prophylaxis in both the adult and pediatric populations
[10,11]. However, the treatment is both time-consuming and
costly and therefore not readily available for those in need.
Thus, a more optimal approach for behavioral headache
treatment has long been sought [12,13]. Biofeedback has the
potential to exploit the recent advances in mHealth technology
[14,15]. All the while, biofeedback mHealth solutions for other
purposes, such as exercise and postcancer swallowing exercises,
are being developed [16,17].

Modalities proven effective in biofeedback treatment for
headache disorders include surface electromyography (SEMG)
and peripheral skin temperature. Both modalities are common
in the current development of WHMS [2] and may serve as
natural elements in the implementation of biofeedback solutions.
Nevertheless, such WHMS sensors have not been validated for
use in neurophysiological monitoring for the purpose of
biofeedback therapy.

The aim of this study was to assess the validity of WHMS for
measuring SEMG and peripheral skin temperature in
combination with a mobile phone app. This proof of concept
would form the basis for the development of a novel, innovative
mHealth system for biofeedback therapy for young persons with
primary headache.

Methods

Study Design
In the first phase of the study, we identified suitable WHMS
and developed the preliminary software. In the second phase of
the study, we recruited healthy volunteers to establish the
validity of the chosen WHMS. The study was exploratory in
nature, with the main aim to evaluate the validity of the chosen
WHMS by assessing the agreement compared with stationary

neurophysiological equipment following recommended
guidelines for agreement studies [18].

Identification of Sensors
The inclusion criteria and requirements for suitable sensors were
(1) wireless setup, (2) small size, (3) low weight, (4) simple to
use compared with standard clinical equipment, and (5) low
cost.

Software Development
The first version of the app was created as a minimal viable
product (MVP). This preliminary version was programmed to
serve as the starting point of iterative and incremental rounds
of testing [19], allowing subsequent development and
fine-tuning of the user interface and software components in an
upcoming usability study.

Participants
We considered a sample size of 18 to be sufficient, based on
the model for sample size determination in reliability studies
presented by Bonett [20] (Multimedia Appendix 1). We set out
to recruit 20 healthy volunteers to account for potential dropouts.
Participants were recruited as a convenience sample by actively
seeking out young individuals from the local research and
student community. Exclusion criteria were reduced hearing,
vision, or sensibility, and severe neurologic or psychiatric
disease.

Equipment
TheNeckSensor (EXPAIN, Oslo, Norway) was selected as the
wireless WHMS to measure muscle tension. This is a small,
compact bipolar SEMG sensor, with a single SR-R adhesive

gel patch containing both electrodes (total patch area, 19.8 cm2),
and no patient ground electrode. For wireless measurement of
temperature, we selected the PASPORT Skin/Surface
Temperature Probe, PS-2131, combined with PASPORT
Temperature sensor, PS-2125, and AirLink, PS-3200 (Pasco,
Roseville, CA, USA). Both the sensors transmitted signals via
Bluetooth Smart/4.0.

As the stationary equipment, the following AD Instruments
(Dunedin, New Zealand) setup was used: (1) SMEG signals
recorded with 5-Lead Shielded Lead Wires (MLA2505) and
5-Lead Shielded BioAmp cable (MLA2540) attached to Red

Dot 2560 electrodes with a silver/silver-chloride 3.48 cm2 sensor
area (3M Health Care, Germany) fed through a Dual BioAmp,
FE135, and PowerLab 8/35; (2) equivalent lead wires, cables,
and electrodes for registration of an electrocardiogram (ECG)
through a separate Dual BioAmp; and (3) temperature registered
through Skin Temperature Pod and Probe, ML309 + MLT422/A
fed through PowerLab. The recordings were visualized and
analyzed using the LabChart 8 software (AD Instruments,
Dunedin New Zealand) installed on a Dell Latitude E4310
laptop.

Experimental Procedure
Participants were seated in a recliner at a 90 degree angle in the
neurophysiological laboratory. The 2 electrodes from the
NeckSensor were placed over the upper fibers of the right
trapezius muscle midway along the line between the spinous
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process C7 and the acromion [21,22]. Since simultaneous
registrations of SEMG signals from the same location with
different sets of surface electrodes are not possible, one set of
electrodes from the stationary equipment was placed 2 cm
cranially of the NeckSensor, and the other set was placed 2 cm
caudally. The interelectrode distance was 4 cm. The “patient
ground” electrode for the stationary equipment was placed over
the spinous process C7 (Figure 1). The skin beneath the
stationary electrodes was washed with alcohol swabs. The 2
skin temperature sensors were attached, without touching each
other, to the volar pad of the distal phalange on the second finger
with sticky tape, with the stationary sensor placed radially of
the 2 sensor electrodes.

Figure 1 shows the scheme of the electrode placements over
the upper trapezius fibers. The wireless sensor electrode pair
was placed first, midway in the line between the acromion and
the spinous process C7. One of the two pairs of stationary sensor
electrodes was placed cranially, whereas the other was placed
caudally of the wireless sensor electrode pair. The interelectrode
distance for each pair was 4 cm.

Initially, each participant was asked to relax for 5 min to allow
the skin temperature to increase during relaxation. Relaxation
was achieved by asking the participant to do nothing and sit
still on the recliner. This served to give a baseline (relaxed)

muscle tension measurement. Relaxed trapezius muscle tension
(baseline) was recorded in the last 30 s of relaxation. Thereafter,
the temperature sensors were detached to allow the measurement
of room temperature for the remainder of the procedure.
Subsequently, the participant was instructed to complete a series
of exercises to activate the upper fibers of the trapezius muscle.
Arbitrary angle isometric maximal voluntary contraction (MVC),
through shoulder elevation, was completed in 3 repetitions, each
lasting for 6 s [22-25]. The SEMG and force were
simultaneously registered. The force was recorded by a
dynamometer (Manual Muscle Tester, Lafayette Instruments,
USA) attached to a fixed sling placed over the acromion.
Subsequently, the participant was asked to complete similar
sets of contractions at 50% (VC50) and 25% (VC25) of maximal
contraction guided by a sound signal from the dynamometer
elicited at a corresponding set force. Finally, the participant was
asked to complete 4 repetitions of static contractions (15 s each)
performed by abducting both shoulders to a 90 degree angle
and holding them against gravity [22].

After completing the exercises, the participant was asked to
answer a 5‐item user evaluation questionnaire. Of these, 3
questions had reply options on a 5‐point Likert scale, ranging
from “Very dissatisfied” to “Very satisfied,” while the remaining
2 questions were open for free comments (Table 1).

Figure 1. Electrode placement.
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Table 1. Evaluation questionnaire.

QuestionItem

Did you perceive the wireless sensors as practical to use?1

To what degree did you feel that the use of shoulder-musculature reflected the feedback in the app?2

Do you recognize the wireless sensors as safe to use?3

Did you experience any undesirable harmful effects (if yes, please explain)?4

Do you have any further comments (if yes, please explain)?5

Data Management
The NeckSensor uses a 12‐bit ADC resolution sampled at
1024 Hz with a third order 10‐480 Hz active bandpass filter.
The sensor was programmed to calculate and transmit mean
square values internally, with a window width of 40 ms, with
no overlap, and a frequency of 25 Hz in order not to overload
the Bluetooth capacity. The PowerLab sampled the SEMG
signals at 2000 Hz with a fourth order Bessel lowpass filter at
500 Hz and a first order high pass filter at 10 Hz. In addition,
a 50 Hz notch analog filter was applied [26]. All stationary
recordings were evaluated visually for the presence of ECG
artifacts. If found, these were to be corrected by removing the
spike-correlated area in the SEMG signal and subsequently
replacing the gap with surrounding SEMG activity.

First, the stationary readings were root mean square (RMS)
rectified and then averaged over the two sets of electrodes to
avoid phase-cancellations. The RMS value was calculated from
the mean square values of the wireless sensors. The RMS values
for each muscle contraction exercise to be used in the analyses
were calculated as the mean of the repetitions for both
equipment sets. For the temperature measurements, we
calculated the difference in temperature from the start to the
end of relaxation and the difference between the temperature
at the end of relaxation and room temperature.

Statistics
The means and SD for the RMS values during trapezius muscle
exercises and the chosen data temperature points were
calculated. Systematic differences between stationary and
wireless equipment were assessed with the Wilcoxon
signed-rank test.

Mean difference (MD) and limits of agreement (LOA), together
with Bland-Altman plots were used as descriptive tools [27].We
calculated the intraclass correlation coefficient (ICC) with a
two-way, mixed-effects consistency of agreement model.
Coefficients for both individual and average agreement were
presented. In addition, we calculated the Lin concordance
correlation coefficient (CCC) [28-30]. For the ICC and CCC
analyses, the data was first transformed to meet assumptions
for a two-way analysis of variance model. Then the data was
transformed by calculating the natural logarithm after adding
0.1 as a constant to adjust for values being close to zero. The
ICC values were interpreted as suggested by Cicchetti et al [31],
that is, unacceptable or poor (.00‐.40), fair (.41‐.60), good

(.61‐.75), and excellent (.75‐1.00). All data were analyzed
by using the statistical package Stata version 14 (StataCorp,
College Station, TX, USA).

Results

Sensors and Software
The WHMS fulfilling the predefined requirements were
identified through pragmatic Internet-searches. The MVP
version of the app used in the experimental procedure was
programmed to receive data from the wireless sensors and feed
raw data back to the user. The raw data were presented as two
columns increasing in height with increase in muscle tension
and temperature, respectively. The app was programmed to
allow connection of any WHMS using Bluetooth.

Participants
A total of 20 healthy participants were recruited and completed
the experimental procedure. Of these, 12 were male participants,
and their mean age was 24.7 years (SD 2.7, range 18‐29 years).

Surface Electromyography Sensor Agreement
We observed no ECG artifacts in the SEMG recordings (Figure
2). Hence, the ECG-related elements were not removed from
the SEMG recordings.

Figure 2 shows the raw data of the SEMG activity for the
wireless sensor (red), anterior stationary sensor (blue), and
posterior stationary sensor (green) from a 24-year-old male
participant. The marked areas indicate where the different
exercises are performed. The figure exemplifies the absence of
ECG artifacts and the similarity of the signals.

Means and standard deviations of the RMS values for the
trapezius muscle exercises are presented in Table 2. The wireless
sensor showed a lower voltage during trapezius muscle exercises
than during all contraction periods and at baseline.

Table 3 summarizes the MD in millivolts (mV) between
stationary and wireless equipment with corresponding LOA,
for each of the exercises. Compared with the wireless equipment,
the stationary equipment indicated a systematically higher
voltage during MVC (0.25 mV), VC50 (0.11 mV), VC25 (0.06
mV), static hold (0.07 mV), and baseline (0.04 mV). A
Bland-Altman plot, visually presenting the MD and LOA for
VC25, is shown in Figure 3. Table 3 also summarizes the ICC
and CCC values for the SEMG equipment comparisons.
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Figure 2. Raw surface electromyography (SEMG) data. ECG: electrocardiogram; MVC: maximal voluntary contraction; RMS: root mean square;
VC50: voluntary contraction at 50% force; VC25: voluntary contraction at 25% force.

Table 2. Comparison of the means for stationary and wireless equipment.

Z-value (P value)aWireless equipment (SD)Stationary equipment (SD)Exercise

3.73 (<.001)0.37 (0.15)0.62c (0.25)MVCb

3.92 (<.001)0.15 (0.06)0.26 (0.11)VC50d

3.73 (<.001)0.09 (0.05)0.15 (0.05)VC25e

3.85 (<.001)0.08 (0.03)0.16 (0.06)Static hold

3.92 (<.001)0.01 (0.002)0.045 (0.004)Baseline

0.75 (=.46)28.8 (3.3)28.8f (3.4)Start temperature

3.4 (<.001)31.5 (4.0)30.7 (3.6)End temperature

3.9 (<.001)23.6 (0.4)23.0 (0.3)Room temperature

aZ-value from Wilcoxon signed-rank test.
bMVC: maximal voluntary contraction.
cMean voltage in millivolts RMS.
dVC50: voluntary contraction at 50% force.
eVC25: voluntary contraction at 25% force.
fMean temperature in degrees Celsius.
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Table 3. Indices of agreement between stationary and wireless equipment.

CCCb (95% CI)ICC (95% CI) averageICCa (95% CI) individualLimits of agreementMean differenceExercise

.52 (0.30‐0.73).89 (0.73‐0.96).81 (0.57‐0.92)−0.12 to 0.610.25fMVCc

.44 (0.23‐0.64).89 (0.73‐0.96).81 (0.57‐0.92)−0.04 to 0.270.11VC50d

.37 (0.14‐0.60).79 (0.47‐0.92).66 (0.31‐0.85)−0.03 to 0.150.06VC25e

.26 (0.06‐0.45).73 (0.32‐0.89).58 (0.19‐0.81)−0.02 to 0.160.07Static hold

.01 (0.00‐0.01).67 (0.16‐0.87).50 (0.09‐0.77)0.03-0.040.04Baseline

.90 (0.83‐0.97).98 (0.95‐0.99).96 (0.91‐0.99)−1.90 to 0.35−0.77gStart to end temperature

.98 (0.96‐1.0).99 (0.97‐1.0).98 (0.95‐0.99)−1.74 to 1.28−0.23End to room temperature

aICC: intraclass correlation coefficient.
bCCC: concordance correlation coefficient.
cMVC: maximal voluntary contraction.
dVC50: voluntary contraction at 50% force.
eVC25: voluntary contraction at 25% force.
fMean voltage in millivolts RMS.
gMean temperature in degrees Celsius.

Figure 3. Surface electromyography (SEMG) sensor agreement. mV: millivolts; RMS: root mean square.

Excellent agreement was found for MVC (ICC .81, 95% CI
0.57‐0.92) and VC50 (ICC .81, 95% CI 0.57‐0.92). Good
agreement was found for VC25 (ICC .66, 95% CI 0.31‐0.85).
Fair agreement was found for static hold (ICC .58, 95% CI
0.19‐0.81) and baseline (ICC .50, 95% CI 0.09‐0.77). All
participants displayed a decrease in voltage from MVC to VC50,

from VC50 to VC25, and from static hold to baseline for both
sets of equipment, with the exception of one participant who
had a small increase (0.03 mV) in voltage from VC50 to VC25
registered on the stationary equipment (Figure 4).
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Figure 3 shows Bland-Altman plot assessing the agreement
between stationary and wireless SEMG sensors during voluntary
contraction at 25% force. The x-axis represents the average of
the two parallel measurements. The y-axis represents the
corresponding difference between the 2 measurements. The
values are indicated in millivolt RMS.

Figure 4 is a line graph showing the SEMG readings for each
participant during MVC, VC50, VC25, static hold, and baseline.
The top panel indicates readings with the stationary equipment.
The bottom panel indicates readings with the wireless
equipment. The values are indicated in millivolt RMS.

Peripheral Skin Temperature Sensor Agreement
Means and standard deviations of the temperature measurements
at the 3 selected time points are shown in Table 2. The start
temperature between the 2 sets of equipment did not differ
significantly (P=.46), but the wireless sensor indicated a higher
temperature at the end of relaxation (P<.001) and at room
temperature (P<.001; Table 2).

The between-equipment MDs for changes in the temperature
are presented in Table 3, along with the LOA and agreement
indices. A Bland-Altman plot visually representing the MD and
LOA for temperature change during relaxation is depicted in
Figure 5. Excellent agreement was found for the change in
temperature during relaxation (CCC .90, 95% CI 0.83‐0.97)
and from end of relaxation to room temperature (CCC .98, 95%
CI 0.96‐1.0). A rise in temperature was detected among 17

participants on the stationary equipment, and among 18
participants on the wireless equipment. Moreover, a rise in
temperature of more than 1°C was detected among 15
participants on both equipment sets (Figure 6).

Figure 5 is a Bland-Altman plot showing the agreement between
stationary and wireless equipment for the change in temperature
from start to end of relaxation. The x-axis represents the average
of the 2 parallel measurements. The y-axis represents the
corresponding difference in measurements. The values are in
degrees Celsius.

Figure 6 is a line graph showing temperature readings for each
participant at the start and end of relaxation and at room
temperature. The upper panel represents readings with the
stationary equipment. The lower panel represents readings with
the wireless equipment. The values are in degrees Celsius.

Evaluation Questionnaire
In total, 19 of the 20 participants perceived the use of wireless
sensors as practical (n=14) or very practical (n=5). Likewise,
the absolute majority of participants reported that the app
feedback reflected the use of shoulder musculature to a large
(n=9) or a very large (n=9) degree. All participants regarded
the use of wireless sensors as safe (n=2) or very safe (n=18). In
contrast, 2 of the 20 participants reported undesirable, harmful
effects, with both stating that the removal of the electrodes
attached to the stationary equipment was unpleasant.
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Figure 4. Surface electromyography (SEMG) sensor line graphs. mV: millivolts; MVC: maximal voluntary contraction; RMS: root mean square; VC50:
voluntary contraction at 50% force; VC25: voluntary contraction at 25% force.
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Figure 5. Temperature sensor agreement. mV: millivolts; RMS: root mean square.
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Figure 6. Temperature sensor line graphs.
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Discussion

Principal Findings
This study aimed to provide a proof of concept for using a
mobile phone and WHMS for biofeedback purposes, in a fashion
similar to phase I-II development of new drug treatments [32].
We chose to investigate temperature and SMEG because they
are the most commonly used biofeedback modalities [11] and
are shown to be especially effective in adolescents [33]. We
identified sensors fulfilling a set of predefined criteria that were
considered necessary for the sensors to gain acceptance among
patients, and thus these sensors were used [34]. The choice of
sensors was arbitrary, as long as the predefined criteria were
met. Even though the use of other temperature and SEMG
sensors would not yield identical results, we argue that our
approach has provided a proof of concept.

We found that the use of a wireless temperature sensor had
almost perfect agreement regarding the change in finger
temperature during relaxation. Furthermore, the use of a wireless
SEMG sensor had a fair to excellent agreement for measuring
tension in the trapezius muscle. We noted that the wireless
SEMG consistently showed a lower voltage than the stationary
equipment. The SEMG sensors showed excellent agreement
during MVC and VC50, good agreement during VC25, and fair
agreement during static hold and baseline. However, under the
assumption that the stationary equipment was the most sensitive,
it is not surprising that the calculated agreement decreased
slightly at lower activity levels since random and
equipment-generated noise constituted a larger part of the signal
at low EMG-levels. Nonetheless, the wireless SEMG sensor
registered consistent changes in muscle tension. We observed
no ECG artifacts in the SEMG recordings. Therefore, it can be
assumed that the ECG artifacts do not have a relevant influence
on the SEMG recorded from closely placed bipolar electrodes
on the right shoulder. Moreover, the safety and usability of the
setup were highly satisfactory. In conclusion, the wireless
sensors are well suited for biofeedback purposes.

Strengths and Limitations
The proper sample size for the study was assessed before
recruiting participants (Multimedia Appendix 1). Traditionally,
a sample of 15 to 20 participants is deemed sufficient for
reliability studies [35]. However, the use of more precise
calculations of sample sizes has been previously suggested [36].
Therefore, we used a CI estimation model suggested by Bonett
[20] to determine the minimum sample size required. Due to
the interindividual variation in our findings, the analyses would
possibly have benefited from having a larger sample size
because we did not obtain a predefined CI for all analyses.

There is a large degree of variability in individual human
anatomical properties that may influence SEMG readings. This
includes the thickness of fatty tissues, resting muscle length,
velocity of contraction, muscle cross-sectional area, fiber type,
posture change, interelectrode distance, skin impedance, age,
and sex [22]. We chose to combine the recordings for the 2 pairs
of stationary sensor electrodes to approximate the muscle
activity of the wireless sensor placed in between. The relative
spread of the electrode pairs may have led to EMG crosstalk,

and muscle contraction exercises performed by untrained
participants may have additionally resulted in movement
artifacts, and suboptimal and varying performances [37]. The
abovementioned factors may all have limited the precision of
our measurements and contributed to a larger degree of
interindividual differences, thus lowering individual ICC and
CCC values for SEMG agreement. Likewise, the placement of
the 2 temperature sensors beside each other on the finger might
have led to differences in measurements. Figure 5 shows 1
outlier that displayed a larger increase in temperature by 1°C
with the stationary equipment than with the wireless equipment.
This differs from the majority that displayed the largest
temperature increase with the wireless equipment. Nevertheless,
LOA of ±1.5°C is still acceptable [38].

The SEMG signals usually have a frequency distribution with
significant energy up to 400 to 500 Hz, requiring a sampling
frequency of at least 1000 Hz (preferably 2000 Hz) to meet the
Nyquist rate (2 times higher signal frequency) and avoid the
so-called aliasing [39]. However, it is known that oversampling
above this critical Nyquist rate does not significantly improve
the signal quality [40] but will likely lead to higher cost and
size of the sensor. The SEMG signals are usually bandpass
filtered at 10 to 500 Hz [41], which we consequently chose to
do for both setups. Furthermore, we observed that the notch
filter, at 50 Hz, for the stationary equipment seemed to be
saturated during recordings. After analog filtering, sine waves
of 20 ms duration were still present. This may be explained by
power-line noise, despite the use of a notch filter [42]. The
wireless sensor also applies a notch filter at 50 Hz, which
increases the signal-to-noise ratio. In total, we concluded that
the wireless SEMG sensor applies appropriate signal processing
settings.

We chose different statistical methods for assessing agreement
to evaluate different properties of the wireless sensors. The
Wilcoxon signed-ranks tests, together with the Bland-Altman
plot and LOA, assess the degree of systematic differences and
expected variance between measurements. A two-way,
mixed-effect ICC model [43] ignores the element of rater
variance (raters fixed as the 2 equipment sets), and the estimate
can thus serve as an index of consistency [28,30,44,45]. This
is useful to assess agreement when having mean differences
between 2 measurement methods. We reported both individual
and average ICC values, as the average value becomes useful
when a large degree of interindividual variance exists or if
individual readings are considered unreliable [30]. On the other
hand, we also calculated the CCC to evaluate the degree of
absolute agreement, that is, the 2 measurement methods showing
identical values.

Interpretation
We have compared the WHMS with a gold standard; however,
this does not imply that the gold standard is without
measurement error. Thus, some lack of agreement is inevitable
[46]. As pointed out by Bland and Altman [47], one should keep
in mind that correlation coefficients alone do not assess
interchangeability of measurement methods. The acceptable
level of agreement in order to claim validity is a clinical
decision. Considering the intended use of the chosen sensors,
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a high degree of absolute agreement is not a necessity, but
consistency of agreement is important. We certainly observed
that there exists variance in the data, leading to a low degree of
absolute agreement. On the other hand, SEMG readings changed
similarly and as expected through the experimental procedure
for each participant, despite dissimilarities between the 2
equipment sets. This consistency is indeed supported by
excellent to fair agreement of ICC values. Furthermore, the
wireless SEMG sensor was less reliable at lower voltage, at
least in terms of absolute agreement, when compared with our
gold standard. A well-designed SEMG setup usually produces
a system noise of about 1% of the MVC [48]. Our stationary
equipment baseline showed 7% of MVC, which means that
there was some inherent noise in the gold standard setup. In
contrast, the baseline readings of the wireless sensors amounted
to 3% of MVC, which in part may explain the increasing
deviation at lower voltages.

Although the SEMG sensor did not demonstrate excellent
agreement in all analyses, both SEMG and temperature WHMS
appear to be suited for app-based biofeedback. Interestingly,
15 out of 20 participants (75%) managed to raise their
temperature by more than 1°C during a single naive session
indicating that the setup was simple to master. Moreover, all
participants had similar changes in muscle tension through the
sets of exercises. However, it is unlikely that the users will be
able to decrease their muscle tension throughout the entire
duration of a biofeedback session [49]. This means that detecting
a change in tension is more important than the absolute values.

In line with this, it was recently shown that the feedback itself
is more important than lowering muscle tension in the treatment
of headache [50]. Taken together, these findings imply that
perfect sensor agreement in itself is not a prerequisite for an
app-based biofeedback platform. The main focus of app-based
biofeedback should be directed at the development of
high-quality feedback mechanisms and user interfaces.

Prospects for Future Research
This study confirmed the usability of WHMS in a biofeedback
setting and established partial evidence for an upcoming
biofeedback app. At any rate, the scientific validation of the
sensor is of utmost importance for the value and effectiveness
of a future treatment program. The choice to use an MVP app
to assess agreement enables iterative and incremental
developments. Future research should be carried out to establish
further the basis for the use of WHMS for medical purposes in
the emerging era of health informatics and mHealth. As an
example, similar validation of heart rate variability
measurements, which is of interest in biofeedback treatment,
has been conducted [51,52,53]. We are currently exploring the
user interface and assessing the usability of the app among
adolescents with migraine.

Conclusions
This study confirmed the validity of wireless WHMS connected
to a mobile phone for monitoring neurophysiological parameters
of relevance for biofeedback therapy.
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VC50: voluntary contraction at 50% force
VC25: voluntary contraction at 25% force
WHMS: wearable health monitoring sensors
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