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Abstract

Background: Parkinson disease (PD) is a common neurodegenerative disorder that affects between 7 and 10 million people
worldwide. No objective test for PD currently exists, and studies suggest misdiagnosis rates of up to 34%. Machine learning (ML)
presents an opportunity to improve diagnosis; however, the size and nature of data sets make it difficult to generalize the
performance of ML models to real-world applications.

Objective: This study aims to consolidate prior work and introduce new techniques in feature engineering and ML for diagnosis
based on vowel phonation. Additional features and ML techniques were introduced, showing major performance improvements
on the large mPower vocal phonation data set.

Methods: We used 1600 randomly selected /aa/ phonation samples from the entire data set to derive rules for filtering out faulty
samples from the data set. The application of these rules, along with a joint age-gender balancing filter, results in a data set of
511 PD patients and 511 controls. We calculated features on a 1.5-second window of audio, beginning at the 1-second mark, for
a support vector machine. This was evaluated with 10-fold cross-validation (CV), with stratification for balancing the number of
patients and controls for each CV fold.

Results: We showed that the features used in prior literature do not perform well when extrapolated to the much larger mPower
data set. Owing to the natural variation in speech, the separation of patients and controls is not as simple as previously believed.
We presented significant performance improvements using additional novel features (with 88.6% certainty, derived from a
Bayesian correlated t test) in separating patients and controls, with accuracy exceeding 58%.

Conclusions: The results are promising, showing the potential for ML in detecting symptoms imperceptible to a neurologist.

(JMIR Biomed Eng 2020;5(1):e13611) doi: 10.2196/13611
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Introduction

Background
Parkinson disease (PD) affects approximately 1% of the
population by the age of 70 years. It is characterized by the
deterioration of dopamine-producing neurons in the brain,
resulting in symptoms such as abnormal gait, speech, and tremor
[1]. Current treatments can provide temporary relief from
symptoms and slow its progression [2]; however, these
treatments cannot repair damage from the disease. Thus,
obtaining an accurate early diagnosis is of high importance.

PD is currently diagnosed with a standardized but subjective
test administered by a neurologist or a clinician, the Unified
Parkinson’s Disease Rating Scale (UPDRS) [3]. It is not easy
to diagnose, as only a subset of symptoms is present in any one
patient [4] and there are many diseases with similar symptoms
[5]. PD is especially difficult to diagnose in its early stages, as
it is believed that most symptoms only manifest once 20% to
40% of dopamine-producing neurons have deteriorated [6].
Autopsy is one of the only reliable ways to confirm diagnosis,
and studies have shown a misdiagnosis rate ranging between
9% and 34% [3,7].

Therefore, the search for a more objective measure for diagnosis
is a timely topic in the research community. Discovering more
quantifiable biomarkers from sources such as gene expression
[8] and bodily fluids [9] is a promising option; however, it is
likely that costs will be prohibitive for most early-stage patients
uncertain about diagnosis. Machine learning (ML) on data from
more accessible sources is another viable option, potentially
offering an objective and low-cost tool to assist the neurologist
in diagnosis through a smartphone-derived version of the
UPDRS [10].

Objectives
In this study, we consolidated feature engineering techniques
with advances in ML to develop a strong model for PD diagnosis
on a large vocal phonation data set. We explored the challenges
involved in training ML models on noisy, crowdsourced data
and delved into the field of signal processing for audio data.
We also found that the experimental setup for classifying healthy
and diagnosed individuals does not match the diagnosis process
of a neurologist. In addition to merely presenting results as a
performance metric, we provided insights into the behavior of
these models and showed that it is possible for ML to exceed
the performance of clinicians in precise phonation analysis and
potentially uncover new biomarkers for PD.

There is a major interest in using ML to assist in PD diagnosis,
and current results are positive—often the reported accuracy
percentage is in the high 90s using only speech or accelerometer
data [11]. However, these results should not be taken at face
value, as the experimental setup involves differentiating between
(potentially incorrectly) diagnosed PD patients and healthy
controls (HCs). This oversimplifies the complexities involved
in a neurologist’s diagnosis in a clinical situation, where the
clinician must exclude a number of other causes for the
symptoms and handle early-stage patients exhibiting minimal
symptoms. Furthermore, the data sets associated with these

publications generally consist of fewer than 40 subjects. For
such small samples, it is difficult to control for bias and to
prevent the overfitting of ML models.

Considering the issues with current data sets, there is an open
question as to how ML models should be evaluated. One obvious
option is to create a data set by monitoring subjects before any
Parkinsonian symptoms until they pass, where the existence of
PD can be confirmed through autopsy. With such a longitudinal
data set, we could directly compare the performance of ML and
neurologists. However, such a data set would be very costly
and logistically difficult to collect. To advocate for its collection,
there needs to be some evidence of ML effectiveness [10].

Consequently, the question we are most interested in is whether
ML techniques can extract more information than observations
from a trained clinician. As neurological diagnosis relies on
judgment from observation, it is possible that some symptoms
are imperceptible but detectable with ML on high-resolution
sensor data. Specifically, our research question was to examine
whether speech symptoms imperceptible to the human ear can
be detected in microphone data using ML.

A larger data set than those that tend to be used in most studies
is required to ensure that the results are statistically robust and
not influenced by bias. This is not to say that having a larger
data set will ensure that there is less influence of bias, but rather
that from a larger data set, we can take subsets that are less
influenced by biases. We chose the mPower data set [12], which
contains phonations of the vowel /aa/ from 6000 patients as
recorded by an iPhone microphone at 44,100 Hz.

Methods

Features
In this subsection, we describe the methodological background
of our study and its feature engineering and signal processing.
The subsections after this explain the novel features and
materials in our experimental setup. The 2 objectives of these
experiments were (1) to consolidate and replicate prior work
on a much larger scale and (2) to introduce additional features
for dysphonia signal processing to better understand how these
features relate to a clinician’s diagnosis with speech.

Vocal phonation is the prolonged pronunciation of a sound such
as /aa/. It is an interesting task for diagnosing PD, with evidence
symptoms present earlier than other motor symptoms [13]. It
also avoids the complexities involved in modeling speech and
is, therefore, an easier task in the context of ML. Prior works
have shown promising performance, with accuracies of up to
91.4% [14] and 98.6% [11].

Biologically, phonation is produced by 2 components: the vocal
folds and the vocal tract. The vocal folds consist of a flap called
the glottis, which can be opened and closed. During phonation,
air expelled from the lungs causes the glottis to oscillate,
producing sound at a range of frequencies. The lowest of these
frequencies—the fundamental frequency, f0—represents the
duration of 1 oscillation and is often denoted as the pitch period.
The vocal tract comprises components such as the mouth and
nose, and it shapes the sound by amplifying and attenuating
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certain frequencies. The vocal folds and tract can be viewed as
a source-filter model, where the source of vocal folds generates
the sound signal, shaped (or filtered) by the vocal tract. With
PD, the impairment of fine motor control reduces control of the
glottis, causing incomplete vocal fold closure. The turbulent
airflow around the glottis causes a sound described as a breathy
or hoarse voice and results in increased variation over each
glottal cycle. This is termed as dysphonia. A similar
phenomenon occurs when the vocal folds are irritated by
physical causes, such as colds, and it is currently unknown
whether differentiation between neurological and physical
dysphonia is possible. It is also worth noting that airway diseases
as well as muscular diseases and other psychological disorders
can also affect the process of sound generation.

People with PD also experience hesitant speech from reduction
of cognitive ability and slurred or imprecise articulation from

loss of motor control over the vocal tract. This is termed as
dysarthria. Although dysarthria is very noticeable to humans,
it is difficult to quantify it computationally. Spoken language
has a wide variety of accents and styles, and it has been shown
that models trained on English speakers do not generalize well
on German speakers, and vice versa [15].

Dysphonia can be measured using sustained vowel phonations,
which are easier to model with traditional signal processing
approaches and are suitable for small data sets. Dysphonia in
vowel phonation is shown in Figure 1. Optimally, both
dysphonia- and dysarthria-related features would be used to
build models; however, this study focused specifically on
dysphonia because of limitations of the data set under
consideration.

Figure 1. /aa/phonation from an individual with dysphonia. Variations in jitter (variation in glottal cycle periods) and shimmer (variation in glottal
cycle amplitude) are common features for the detection of dysphonia. Algorithms computing each glottal cycle are imperfect, especially for heavy
dysphonia.

Features for Dysphonia
Data from a microphone are represented as a stream of values,
corresponding to the value of the recorded sound wave at each
point in time. A basic microphone samples at approximately

44,100 Hz and quantizes the wave to 216 possible values. The
difference between higher sampling rates or more detailed
quantization (such as 24 bit) is minimally perceptible to human
ears; however, a major problem with low-quality microphones
is additional noise and imprecise wave encoding.

Approaches based on signal processing use features that estimate
the qualities associated with dysphonia. We divided them into
3 groups: general techniques, which are suitable for any time
series signal; dysphonia-specific techniques, which have been
used in prior work specifically to model dysphonia; and novel
features, which we have shortlisted from other applications as
being potentially effective in quantifying dysphonia.

General Signal Processing
Moments are basic statistical descriptors of a signal, with the
first 3 moments representing mean, variance, and skewness.
For speech, the mean is largely uninformative, and variance
corresponds to volume. The zero-crossing rate measures how

quickly the signal oscillates around 0 and is a measure of the
signal frequency.

Entropy describes the amount of information in a piece of data,
if it were modeled by a Bernoulli scheme. It is a simple measure
of the complexity/information content of a signal.

The Fourier transform decomposes a signal into the amplitudes
of frequencies that compose it. This is referred to as mapping
from the time domain to the frequency or spectral domain. For
speech, this enables us to determine the frequency bands with
more energy, corresponding to the fundamental frequency and
harmonics. After performing a Fourier transform, the spectral
entropy [16] can be calculated, which can measure how sharp
the f0 and harmonics of speech are. People with PD are expected
to have a lower spectral entropy because of the less precise
frequency control, causing a more blurred Fourier transform.

Squared energy operators, Teager-Kaiser energy operators, or
other energy operators can obtain the instantaneous frequency
and amplitude of a signal [17]. Statistics such as mean or SD
and other measures can be computed after applying an energy
operator.
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Dysphonia Signal Processing
The major feature present in dysphonic speech is the increased
variation between each glottal cycle (Figure 1). Jitter measures
the variation in the length of each glottal cycle, and shimmer
[18] is the variation in amplitude. These often rely on detecting
each glottal cycle, which is not very accurate with current
algorithms [19]. The harmonics-to-noise ratio (HNR) [20]
measures the amount of noise in a signal, which correlates with
the hoarseness or breathiness of speech. The HNR has been
improved with a more robust glottal-to-noise excitation ratio
[21].

The vocal fold excitation ratio (VFER) is another extension of
the HNR developed in the study by Tsanas et al [22], which
also introduced the Glottal Quotient (GQ), a measure of the SD
duration while the glottis is opened and closed. Both VFER and
GQ are built upon concepts of the fundamental frequency
estimation algorithm [23].

Mel-frequency cepstral coefficients (MFCCs) are one of the
most effective features for speech recognition models, so it is
no surprise that they are shown to be similarly effective for
dysphonia. Speech recognition involves computing the MFCC
at short time intervals and using a Markov model or structured
neural network to model temporal information, whereas
statistical descriptors have been shown to be effective in
detecting dysphonia [11]. There still exists a gap in
understanding the relationships between the coefficients and
dysphonia.

A recent study [24] showed that detrended fluctuation analysis,
originally introduced as a measure of the autocorrelation
(autocorrelation describes the similarity of a signal to itself
when offset by a given interval) of a signal, changes with the
amount of turbulent airflow in speakers with dysphonia. This
study has also proposed the recurrence period density entropy
(RPDE), which characterizes the periodicity of a signal. These
measures are expected to be lower for speakers with dysphonia
because of the noise introduced by turbulent airflow. Another
study [14] has built upon RPDE to develop pitch period entropy
as a better measure of the impaired control of pitch experienced
by PD patients.

Novel Features
Although existing features have achieved good results on their
respective data sets, we have obtained improved performance
with this additional set of features. These novel features may
not directly relate to dysphonia but have been effective in other
signal processing applications, most commonly
electroencephalogram (EEG), which, similar to speech, is
difficult to characterize.

A number of these features relate to chaos theory—a field based
on understanding the behavior of dynamical systems sensitive
to initial conditions [25]. One can imagine the generation of a
speech signal as a system, where parameters involve the state
of components in the vocal tract. Given no change in parameters
such as vocal fold tension, regular /aa/ phonation can be
modeled with much fewer dimensions in phase space [26]—all
possible states of a dynamic system.

The Lyapunov exponents quantify the divergence of 2 systems
with similar initial parameters. The largest Lyapunov exponent

(λ∗) characterizes the chaos in a system and is commonly
estimated with the algorithm described in the study by
Rosenstein et al [26], which reconstructs the system dynamics

using a time delay technique. The inverse of is the Lyapunov
time, which defines how long the behavior of a system can be
predicted.

The fractal dimension is also commonly used in the analysis of
dynamical systems. It represents the ratio of the log change in
detail to the log change in scale of a signal [27]. This is similar
to the coastline paradox, where measuring a coastline with
smaller sticks results in an apparent increase in length. The
fractal dimension correlates to the complexity of a signal. It has
been shown that the fractal dimension of elderly individuals
balancing on a force plate is greater than that of younger
individuals [28] and, more importantly, that distinct patterns
seen in deterministic recurrence quantification analysis of sway
(similar to fractal dimension) distinguish patients with PD from
controls [29].

General entropy will not differentiate 2 sequences where the
frequency of each variable is the same; however, the sequences
0, 0, 0, 0, 1, 1, 1, 1 and 0, 1, 0, 0, 1, 1, 0, 1 are clearly generated
by different stochastic processes. The approximate and sample
entropy aims to quantify this [30]. This is extended with
multiscale sample entropy [31], which is an especially powerful
tool in the analysis of biological signals.

Although signals may appear to have high information content
in the time domain, they may be easier to represent in others.
For example, the JPEG image compression format primarily
relies on human vision, which is less sensitive to high-frequency
image details. Images are compressed by taking a Fourier
transform and downsampling the high-frequency information.
Spectral entropy measures the information content of the signal
in its frequency-domain representation. The singular value
decomposition (SVD) factorizes a matrix into orthogonal
matrices and singular values. SVD entropy [16] measures the
entropy of the singular values obtained when the signal is
embedded with the algorithm described in the study by
Rosenstein et al [26].

Many of these features are not simple to interpret; however, our
testing shows that they provided significant improvements over
prior features used in the literature.

Materials
We chose the mPower data set [12]—a crowdsourced data set
consisting of 65,000 /aa/ phonation samples from 6000
participants, of which 1200 were participants with PD.

The primary issue with mPower is quality. Owing to
crowdsourcing, participants who are dishonest or perform the
task incorrectly can skew results. There are a number of subjects
with young-onset PD in mPower; young-onset PD is very
uncommon in the general population, but this representation
may be possible because of the younger target audience of
smartphone apps. Vowel phonation has been captured with a
single channel iPhone/iPod microphone at 44,100 Hz, with the
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different microphone technology in each generation introducing
another variable to the model. Hesitation and phonation of
vowels other than /aa/ are common, and the distance between
the phone and the user varies: with some speaking directly into
the microphone, creating wind noise, and others at a distance,
introducing significant environmental noise.

We evaluated 1600 randomly selected phonation samples for
performing the task correctly, rejecting approximately 40% by
using the aforementioned wind, distance, and environmental
noise. Using short time energies extracted at 0.1-second intervals
with OpenSMILE [32], simple metrics such as variance, mean,
and ranges were calculated to rank and filter the samples.
Placing a threshold on these gave rise to hand-crafted rules to
filter the remaining samples. After filtering, 4100 users
remained, 900 with PD, each with a single corresponding
sample. We then attempted to balance the joint age and gender
distribution within the PD and control groups. Every PD

participant had a gender and age twin (±2 years; the
age-matching was conducted in a way that the twin was at most
2 years younger or older than the respective participant) selected;
if a twin could not be found, that PD participant was discarded.
This resulted in 1022 participants, 511 with PD. Standard
libraries for computing the features used to build the modeling
included the PyREM package for sleep staging from EEG data
[33], nolds [34], and pypsr [35] (Textbox 1). The average f0 for
males and females was assumed to be 120 Hz and 190 Hz,

respectively. Sound bit depth was binned to  values for
entropy-related calculations. In this feature experiment, we used
6 as the embedding dimension for the time delay embedding
methods and calculated τ following the study by Rosenstein et
al [26]. Ethical aspects of this research have been approved by
the ANU Human Research Ethics Committee with protocol
number 2018/108.

Textbox 1. Summary of the features used to build the model.

Dysphonia features

• Prior dysphonia features from the study by Tsanas et al [11]

• Wavelet transform–based features [36]

Novel features

• Higuchi and Petrosian fractal dimension

• Hurst exponent

• Time delay (τ)

• Lyapunov exponents (up to 6)

• Sample and approximate entropy (with r selected by Lu et al [37]) and Fisher information [38]

• Spectral entropy

• Singular value decomposition entropy

Results

Initial Model Validation: Replicating the Previous
Results
In a previous study, Tsanas et al [11] used the National Crime
Victimization Survey data set, which consists of 263 phonations
from 33 people with PD and 10 HCs. A set of 132 features was
calculated, and 100 times repeated 10-fold cross-validation (CV)
was used to evaluate a support vector machine (SVM). On all
features, they achieved 97.7% accuracy, and on a 10-feature
subset selected by ReliefF, they achieved 98.6% accuracy. They
also released an open-source toolbox to assist in replicating the
results.

Using this toolbox on our data set, we calculated features on a
1.5-second window of audio beginning at the 1-second mark.

An SVM was evaluated with 10 times repeated 10-fold CV over
the full feature set and the 10-feature ReliefF subset (Table 1).
The data set was stratified by random sampling such that there
were equal numbers of PD and control subjects in each fold of
CV to better highlight performance. Note that this effectively
reduced the data set to approximately 1700 phonations. A grid
search was used to select the optimal hyperparameters for the
SVM. Of the kernels tested, the radial basis function (RBF)
was dominant in all models. A Bayesian correlated t test on
accuracy was used to determine if a model dominated another
[39]. Accuracy was chosen, despite the recent popularity of the
area under the receiver operating characteristic curve
(AUROC) because of criticisms of its bias toward certain
predictors [40]. However, for the purposes of comparison with
previously published work, we also reported sensitivity,
specificity, and AUROC.
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Table 1. Cross-validation results of a support vector machine using the full feature set and 10-feature ReliefF subset.

ReliefF subseta, mean (SD)Full, mean (SD)Performance measures

55.6 (4.5)55.6 (4.9)Accuracy (%)

47.4 (6.6)52.3 (7.0)Sensitivity (%)

63.8 (8.1)58.8 (7.8)Specificity (%)

58.2 (5.2)57.7 (5.7)Area under the receiver operating characteristic curve (%)

aThere is a 50.7% probability that the average performance of the ReliefF subset outperforms the full feature set.

Initial Model Validation: Improving Previous Results
With Novel Features
The performance of the features by Tsanas et al [11] on the
mPower data was evidently worse than that of the NCVS data
set. It is possible that this was a consequence of the noisier and
lower-quality mPower data. However, overfitting in the original
study by Tsanas et al [11] is also highly likely, especially as
evidenced by the fact that the MFCC-heavy ReliefF feature
subset performed better in experiments by Tsanas et al [11],
whereas it performed substantially worse in our testing,
achieving 55.6% accuracy rather than 98.6%. Another
consideration is the number of observations within each group;
having more participants within one group can arbitrarily
increase accuracy. It is also ambiguous whether the authors had

stratified the phonations on a per-subject scale—failure to do
so introduces the digital fingerprinting effect. The analysis
provided in a recent study [41] exemplifies this, showing that
allowing phonations from a subject to appear in both training
and testing results in an AUROC of approximately 96%,
compared with only 59% in a correctly stratified example.

The features used in the prior literature were clearly insufficient
to perform an accurate diagnosis. To improve the model, we
introduced an additional range of features that have been
effectively applied in the analysis of other biological signals.
These features are not directly related to human hearing or
speech and thus may be especially useful in detecting symptoms
unnoticeable by an expert. We repeated the experiments, adding
the novel features, with the results presented in Table 2 showing
significant improvement.

Table 2. Cross validation results of the support vector machines using different feature sets.

Combineda, mean (SD)Novel only, mean (SD)ReliefF subset, mean (SD)Performance measures

58.2 (5.1)55.3 (4.8)55.6 (4.5)Accuracy (%)

56.4 (6.8)45.1 (6.5)47.4 (6.6)Sensitivity (%)

60.0 (7.0)65.5 (7.6)63.8 (8.1)Specificity (%)

60.7 (5.9)58.2 (5.2)58.2 (5.2)Area under the receiver operating characteristic curve (%)

aThere is an 88.7% probability that the average performance of the combined subset outperforms the ReliefF subset.

Further Improvements: Ensemble Models and Data
Augmentation
Although the performance was improved, a 58.2% diagnosis
accuracy is still far below the requirements for clinical use. In
this section, we explore the reasons for the below-expected
performance and methods of improving it.

Many dysphonia features rely on estimating the precise length
of each glottal cycle, for which the f0 algorithm of Camacho
[42] was used. A preliminary investigation showed that the SD

of f0 exceeded 10 Hz for 18% of the phonations. This was
indicative of a substantial failure of the algorithm or a poorly
executed recording.

Ensemble Models
Visualizing the features as in Figure 2, it is evident that there
are distinct distributions for individuals who are healthy and
have PD as well as for males and females. However, there is a
large amount of variance and overlap over these distributions,
making it infeasible to perform diagnosis over one feature alone.
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Figure 2. Visualization of detrended fluctuation analysis against recurrence period density entropy in male and female participants with PD and controls.
Although the groups follow distinct distributions, there is heavy overlap. It is evidently difficult to classify PD based on any single feature, and powerful
machine learning models are required to make sense of their relationships. PD: Parkinson disease.

Typically, an SVM only performs well if the features are good,
which may require a lot of prior knowledge. This is because
SVMs can only model linear relationships and, even with the
use of nonlinear kernels, are restricted to that particular kernel
and are often simple. Other algorithms, such as neural networks,
can potentially learn to exploit complex nonlinear relationships
between the features to increase performance.

Given the complex relationships between features, it is possible
that an ensemble model may achieve better performance.
Ensemble models utilize multiple ML models and combine
them to create a more powerful one. These ML models can
typically be combined by averaging (ie, voting) or with other
methods (eg, stacking), making the combined prediction more
powerful than its individual parts.

Building on stacking, feature-weighted linear stacking (FWLS
[43]) assigns a weight to each feature and model combination.
This is motivated by different models being more suitable for
using certain features. FWLS was the technique used to
ensemble the hundred-model winner of the prestigious Netflix
Prize [44].

We ensembled an SVM; Gaussian process; random forest;
k-nearest neighbor classifier (with k=3); and simple dense neural
networks with 3, 5, and 7 hidden layers. All models were suited
to the task, diagnosing PD within 3% accuracy of each other.
An RBF Gaussian process was chosen to aggregate the models
in the stacking and FWLS-based ensembles, as Gaussian
processes are inherently probabilistic and suitable for making
decisions in situations of high uncertainty. The results are
presented in Table 3.

JMIR Biomed Eng 2020 | vol. 5 | iss. 1 | e13611 | p. 7https://biomedeng.jmir.org/2020/1/e13611
(page number not for citation purposes)

Wang et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 3. Cross validation results of different ensemble methods compared to the support vector machine-only model, using the combined feature set.

Feature-weighted linear stack-

inga, mean (SD)

Stacking, mean
(SD)

Voting, mean
(SD)

Support vector machine only,
mean (SD)

Performance measures

5.92 (5.3)59.1 (5.1)56.5 (5.0)58.2 (5.1)Accuracy (%)

57.4 (7.6)57.4 (7.8)54.9 (9.1)56.4 (6.8)Sensitivity (%)

61.1 (7.4)60.9 (7.4)58.1 (8.2)60.0 (7.0)Specificity (%)

62.3 (5.9)62.2 (5.8)59.1 (5.6)60.7 (5.9)Area under the receiver operating character-
istic curve (%)

aThere is a 70.6% probability that the average performance of the feature-weighted linear stacking ensemble outperforms the support vector machine-only
model.

Training ensembles is more computationally expensive;
however, in practice, making a prediction from a pretrained
model will take a negligible amount of time. Larger data sets
may require the use of localized approximations for
polynomially computable models such as SVMs and Gaussian
processes. However, a major disadvantage of ensembles is the
black box effect, where their predictions are effectively
uninterpretable.

Data Augmentation
Some features were highly sensitive to minor fluctuations in
the signal, with their value changing drastically depending on

the segment used. Many of these features were not length
invariant, and 10% varied by over 0.5 SDs when computed over
the same phonation, offset by 0.1 seconds. We computed seven
1.5-second samples from each phonation, ranging from the 1.5-
to 4.5-second mark with a 0.5-second step size. We
experimented with taking the mean over all 7 values as well as
augmenting the data by using the additional samples as extra
CV input (ensuring that phonations from the same participant
appeared in the same training set or test set). The results are
presented in Table 4.

Table 4. Cross validation results of basic data augmentation techniques with the combined feature set and the support vector machine-only model.

Augmented, mean (SD)Mean,a mean (SD)Original, mean (SD)Performance measures

57.3 (3.7)58.7 (4.5)58.2 (5.1)Accuracy (%)

54.8 (5.8)56.5 (6.8)56.4 (6.8)Sensitivity (%)

59.8 (5.8)60.8 (7.5)60.0 (7.0)Specificity (%)

60.2 (4.4)61.1 (5.1)60.7 (5.9)Area under the receiver operating characteristic curve (%)

aThere is a 59.3% probability that the performance with the mean augmented features is better than the nonaugmented features.

Augmentation did not seem to prove useful in overcoming
low-quality data and unstable features and seemed to decrease
performance. It is possible that sampling from a shorter window
exacerbates the instability of the features and that even if one
of the windows was more informative than others, that window
might not be the same for all recordings. This may essentially
introduce more noise into the training data and therefore have
an overall negative effect on model performance.

Augmentation proved beneficial when taking the mean over all
segments; however, it was not useful when simply including
the additional segments as CV data. This is likely because taking
the mean reduces the instability and noise of the features,
whereas including all the segments exacerbates the problem
and introduces more noise into the entire feature set.

Final Results: Performance in Participants With No
Speech Difficulties
After developing a decent model to classify PD based on speech,
we investigated what it could offer to real-world diagnosis. The
raw performance is clearly insufficient to replace neurologists;
however, we have shown that the performance bound has not
been reached—additional, higher quality data will greatly
improve results, along with better and more informative features.

First, we investigated whether it would be possible to detect
symptoms imperceptible to a neurologist. If this is possible, the
combination of both could potentially increase the accuracy of
diagnosis. To do this, a set of PD participants who had no speech
difficulties (NSDs) was first removed from the data set before
any experimentation (including those mentioned in the previous
sections) to prevent overfitting during the model evaluation
stage. This relied on a field of the mPower UPDRS survey,
which defaulted to zero, which we are aware relies on the
honestly/reliability of participants. This created a subset of 81
participants (of the previous 4112) who had PD and NSDs.

From the HC participants not used in CV/model evaluation
stage, 81 participants were chosen such that they exactly
matched the gender of each NSD participant and as closely
matched the age as possible. We combined the 2 to form a test
set of 162 participants and used the FWLS ensemble trained on
the CV set to evaluate the test set. No data augmentation was
performed. This is presented in Table 5. Surprisingly, there was
an increase in sensitivity between diagnosis of participants with
perceptible dysphonia (as indicated by participants having
speech difficulties) compared with the diagnosis of those with
imperceptible dysphonia (as indicated by participants having
NSDs). This implies that there must exist some features that
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capture information regarding the disease state of a person but does not relate to audible dysphonia.

Table 5. Performance of the feature-weighted linear stacking ensemble on participants with no audible symptoms and previously unseen data.

No speech difficultyCross-validation SDCross-validation meanPerformance measures

59.35.359.2Accuracy (%)

63.07.657.4Sensitivity (%)

55.67.461.1Specificity (%)

66.75.962.3Area under the receiver operating characteristic curve
(%)

We hypothesized that this is possible because of the more
abstract features, which are not related to audible symptoms.
To investigate, for each feature, we checked two matters: first,
whether the distribution over NSD and PD was similar (ie,
captured information about disease state), and second, whether
the distribution between NSD and control was different (ie, did
not relate to audible dysphonia), implying that the feature is
likely discriminative yet inaudible.

To perform significance testing, we first employed a normality
test on all features across all groups. If a single feature was
normal across all groups (ie, PD, NSD, and HC), then we
employed a one-way analysis of variance (ANOVA) to test for
significant differences, followed by a Tukey honestly significant
difference post hoc. Groups were considered to be sampled from
different distributions of a P value of .05. If that feature was
not normal across all groups, then a Kruskal-Wallis ANOVA

was used, followed by a Dunn-Bonferroni posthoc test.
Similarly, a value of P=.04 is required to say that the feature
was sampled from different distributions. Note that because we
are only interested in 2 posthoc comparisons (between NSD-PD
and NSD-HC), the posthoc tests overcorrected the P values.
This meant that we can be more confident in any significant
difference detected.

We expected that abstract features such as those that try to
capture complexity (eg, sample entropy) were likely to be
inaudible. These were not biologically motivated and more
sensitive to high-frequency information to which the human
auditory system was not. This was confirmed in Figure 3, where
a significant difference was detected for mean log energy
between the NSD and control groups, yet no significant
difference was detected between the NSD and PD groups, for
males only.

Figure 3. Violin plot of mean_Log energy for males (blue) and females (orange). For males, a significant difference was detected between the no
speech difficulty and control groups (P<.00002), but not between the no speech difficulty and Parkinson disease groups (P=.13). F: female; Log:
logarithmic; M: male; NSD: no speech difficulties; PD: Parkinson disease.

In the full results, we found that features such as energy,
entropy, and their corresponding coefficients were inaudible,
whereas features such as jitter, those derived from fundamental

frequency, MFCC, and their corresponding coefficients were
audible.
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Discussion

Principal Findings
In this study, we have shown that features used in prior literature
on small data sets do not perform well when extrapolated to
more real-world, much larger data sets such as mPower. Owing
to natural variation in speech, the separation of healthy
individuals and those with PD is not as simple as previously
believed. We have presented significant performance
improvements with an additional set of features and techniques
such as assembling and data augmentation. Importantly, we
have demonstrated this in a robust environment that is well
guarded against overfitting.

Strengths and Limitations
Although performance is currently insufficient to substitute for
a clinician’s diagnosis, significant improvements from simple
data augmentation, ensemble models, and additional features
imply that peak performance has not yet been achieved. The
power of ML only increases as more data become available.

We have also shown that some features used are capable of
detecting symptoms of the PD state, yet are imperceptible to
human hearing. This is a very promising result for the field,
with the possibility that a large robust model may eventually
outperform humans. For now, these models are a low-cost tool
for clinicians to validate their diagnosis; a positive result may
be a flag to perform further checks on the patient. This also
suggests that vocal phonation features could be used as part of
a set of noninvasive biomarkers for PD.

The biggest barrier to the introduction of ML in the clinical
setting is trust. This relies on either a strong understanding of

the models and features or good performance on a substantially
sized data set with robust evaluation approaches. We believe
that developing a deep understanding of ML in clinicians will
become increasingly difficult, as models and features become
more complex. Thus, it may be best to focus on providing larger
data sets. The mPower data set makes great strides in size and
availability, but it lacks data control. The field would benefit
greatly from a standardized data set against which the
performance of models could be empirically evaluated.

Many avenues still remain unexplored. The diagnosis of PD
often involves testing a patient’s response to medication, such
as levodopa. Additional information from phonation samples
before and after levodopa consumption may greatly improve
performance. We focused only on traditional ML approaches
based on signal processing. A notable weakness of feature
engineering is information loss, as it is difficult to perfectly
describe a signal. Structured neural networks are suitable for
making predictions from a raw data stream, such as computer
vision and neural networks. In our testing, simple convolutional
and recurrent neural networks have achieved similar
performance to our best models and greatly improved
performance when combined with feature engineering. However,
they are more difficult to interpret.

Further improvements could be seen in multidimensional data
sets using data from more than one source (eg, postural sway,
gait, and finger tapping, all of which could be measured on
smartphone devices). Measuring these during clinical visits in
a controlled setting under standardized conditions would produce
substantially cleaner data at minimal cost, but it is essential to
have the cooperation of the clinical and patient communities.
Our research provides a first step in establishing the great value
these tools could provide, not just in PD.
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