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Abstract

Background: Heart rate (HR) and heart rate variability (HRV) measurements are widely used to monitor stress and recovery
status in sedentary people and athletes. However, effective HRV monitoring should occur on a daily basis because sparse
measurements do not allow for a complete view of the stress-recovery balance. Morning electrocardiography (ECG) measurements
with HR straps are time-consuming and arduous to perform every day, and thus compliance with regular measurements is poor.
Contact-free, ballistocardiography (BCG)-based Emfit QS is effortless for daily monitoring. However, to the best of our knowledge,
there is no study on the accuracy of nocturnal HR and HRV measured via BCG under real-life conditions.

Objective: The aim of this study was to evaluate the accuracy of Emfit QS in measuring nocturnal HR and HRV.

Methods: Healthy participants (n=20) completed nocturnal HR and HRV recordings at home using Emfit QS and an ECG-based
reference device (Firstbeat BG2) during sleep. Emfit QS measures BCG by a ferroelectret sensor installed under a bed mattress.
HR and the root mean square of successive differences between RR intervals (RMSSD) were determined for 3-minute epochs
and the sleep period mean.

Results: A trivial mean bias was observed in the mean HR (mean –0.8 bpm [beats per minute], SD 2.3 bpm, P=.15) and Ln
(natural logarithm) RMSSD (mean –0.05 ms, SD 0.25 ms, P=.33) between Emfit QS and ECG. In addition, very large correlations
were found in the mean values of HR (r=0.90, P<.001) and Ln RMSSD (r=0.89, P<.001) between the devices. A greater amount
of erroneous or missing data (P<.001) was observed in the Emfit QS measurements (28.3%, SD 14.4%) compared with the
reference device (1.1%, SD 2.3%). The results showed that 5.0% of the mean HR and Ln RMSSD values were outside the limits
of agreement.

Conclusions: Based on the present results, Emfit QS provides nocturnal HR and HRV data with an acceptable, small mean bias
when calculating the mean of the sleep period. Thus, Emfit QS has the potential to be used for the long-term monitoring of
nocturnal HR and HRV. However, further research is needed to assess reliability in HR and HRV detection.

(JMIR Biomed Eng 2020;5(1):e16620) doi: 10.2196/16620
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Introduction

Technological development has brought forth numerous apps,
gadgets, and high-tech solutions designed to enhance health,
fitness, and performance. Based on a survey by the American

College of Sports Medicine, wearable technology is the most
popular fitness trend of 2019 [1]. Data from everyday life can
be easily recorded by wearable solutions. Because of the
growing use of wearable technologies, it has become important
to determine their validity. However, more than half of the
devices currently used to monitor and improve personal health
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and sports performance have not been validated through
independent research [2].

Over the past several decades, heart rate (HR) has been used to
monitor physiological stress and workload during exercise [3].
Recently, heart rate variability (HRV) measurements has been
growing in popularity. HRV reflects the activity of cardiac
autonomic regulation and can be used in the monitoring of stress
and recovery status [4-6]. Traditionally, HR has been determined
through the process of electrocardiography (ECG) by measuring
the electrical activity of the heart. A 12-lead ECG, with
electrodes attached to the body surface, is widely used in
medical examinations. Traditional HR monitors allow for
real-time measurement, using a chest strap with wireless ECG
sensors [3]. Nowadays, HR can also be measured optically by
photoplethysmography (PPG) with wearables, such as watches
and mobile phones [7,8]. In addition, HR can be determined by
ballistocardiography (BCG), which measures ballistic forces
on the heart arising from the sudden ejection of blood into the
great vessels with each heart beat [9]. It is a long-established,
noninvasive technique that uses several types of sensors like
pressure sensors, film-type force sensors, microbend fiber optic
BCG sensors, electromechanical film transducer sensors,
piezoelectric film sensors, polyvinylidene fluoride sensors,

strain gauges, and pneumatic and hydraulic sensors [10]. The
novel sensor technologies may detect HR and HRV more
accurately. In addition, several different algorithms are being
used to detect BCG peaks, each with differing detecting abilities
[11]. However, previous studies have been conducted under
laboratory conditions. Thus, it is necessary to evaluate the
validity of BCG measurements under real-life conditions.

Emfit QS is a BCG-based commercial device for monitoring
sleep and recovery. An EMFi sensor (6 cm x 55 cm in size)
installed under a bed mattress can detect HR, HRV, breathing,
and other body movements (Figure 1 [12]). Emfit QS
measurement starts automatically shortly after the user goes to
bed and stops recording once they have left the bed in the
morning. Data are transferred via a Wi-Fi or 3G network to the
internet, and the results can be accessed from a smartphone,
tablet, or computer shortly after awakening. Thus, it is a
contact-free, effortless, and user-friendly method with the
capacity to improve user compliance on a daily basis. However,
to the best of our knowledge, there is no previously published
data on measuring BCG-based nocturnal HR and HRV under
real-life conditions. Thus, the aim of this study was to evaluate
the accuracy of Emfit QS in measuring HR and HRV during
sleep, alongside an ECG-based device as a reference.

Figure 1. Correct placement of the Emfit QS sensor beneath the mattress or mattress topper under the chest area. Source: Emfit Ltd [12].

Methods

Participants
A total of 20 participants were recruited to the study. Women
(n=11; mean age 34 yrs, SD 7 yrs; mean height 1.69 m, SD 0.05
m; mean weight 67 kg, SD 10 kg) and men (n=9; mean age 42
yrs, SD 8 yrs; mean height 1.80 m, SD 0.06 m; mean weight
78 kg, SD 3 kg) were healthy (eg, no disease) and nonsmokers,

and did not take medication on a regular basis. The participants
were fully informed about the study design and the use of
measurement devices before signing an informed consent
document. The study complies with the standards set by the
Ethics Committee of the University of Jyväskylä, Finland.

Data Collection
Nocturnal recordings were taken at home during sleep.
Recordings began shortly after participants went to bed and
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stopped once they left their bed in the morning. Before the first
recording, Emfit QS’s own proprietary cellular ferroelectret
sensor was placed beneath the mattress or mattress topper under
chest area (Figure 1). The reference RR interval (RRI) data were
recorded with Firstbeat Bodyguard 2 (BG2), an ECG-based
recorder with two disposable electrodes and a sampling
frequency of 1000 Hz. BG2 and its electrodes were set up on a
participant’s body according to instructions in the user manual.
The accuracy of BG2 was previously evaluated in laboratory
protocol studies by Parak et al [13] and Bogdány et al [14], and
in our unpublished study, which showed perfect agreement in
the detection of RRIs (r=1.00) during a 30-minute rest period
with Custo Cardio 100BT, a 12-channel ECG device (Custo
med GmbH). The participants recorded the data over 3
consecutive nights, and the last recording was used in the
analysis. Before measurements were taken, time synchronization
was performed on the devices.

Data Analysis
Emfit QS provides HR, the vagal-related HRV index, and the
root mean square of successive differences (RMSSD) in RRIs
throughout the sleep period in 3-minute epochs. If heart beat
detection is disturbed due to a poor signal or artifacts any time
during this period, data are not collected. The RRI data of BG2
were analyzed using the Firstbeat Sports software (Firstbeat
Technologies Ltd). RRIs were checked by an artifact detection
filter of the Firstbeat Sports software [15] and subsequently
excluded all falsely detected, missed, and premature heart beats
caused by movement artifacts or any other artifacts of unknown
origin. HR and RMSSD values were calculated for each
3-minute epoch throughout the measurement. Averages of the
whole night period, which were used in the analysis, were
calculated from those 3-minute values. Emfit QS and BG2 data
were synchronized according to the time stamp. In addition to
HR and RMSSD data, the amount of missing data was
calculated.

Statistical Analysis
Values are expressed as mean (SD). Averages of the whole
night period were calculated from the 3-minute epochs. The
Gaussian distribution of the data was assessed with the
Shapiro-Wilk goodness-of-fit test. Ln (natural logarithm)-
transformation was applied to the RMSSD data in order to meet
the assumptions of the parametric statistical analysis. The
accuracy of HR and RMSSD measured by Emfit QS was
evaluated by determining the amount of missing data, the mean
bias (absolute and percentage), and the root mean square error

(RMSE) compared with the reference (BG2). Statistical
difference between the measurements of BG2 and Emfit QS
was analyzed using a paired Student t test. In addition, the
magnitude of the differences was expressed as effect size (ES).
The difference was considered trivial when ES≤0.2, small when
ES≤0.6, moderate when ES≤1.2, large when ES≤2.0, and very
large when ES>2.0. A Pearson product-moment correlation and
a Bland-Altman plot were used to analyze agreement between
the reference and Emfit QS data. A Spearman rank correlation
coefficient was calculated to investigate the correlation between
the absolute differences (reference minus Emfit QS) and the
average of the devices for HR and Ln RMSSD. In addition to
the measures of statistical significance, the following criteria
were adopted to interpret the magnitude of the correlation
between measurement variables: <0.10 (trivial), 0.11-0.30
(small), 0.31-0.50 (moderate), 0.51-0.70 (large), 0.71-0.90 (very
large), and 0.91-1.0 (almost perfect) [16]. Significance was
accepted as P<.05. Data were analyzed using SPSS Statistics
25 software (IBM Corp).

Results

No significant differences were found in HR (mean difference
–1.7%, SD 4.6%, P=.15) and Ln RMSSD (mean difference
–2.0%, SD 6.5%, P=.33) between the measurements by ECG
(BG2) and BCG (Emfit QS) (Figure 2 and Table 1). A greater
amount of erroneous or missing data (P<.001) was found in the
3-minute values of Ln RMSSD by Emfit QS (mean 28.3%, SD
14.4%) compared with the reference device (mean 1.1%, SD
2.3%). Very large correlations were found in HR and Ln
RMSSD between the devices (Figure 3). Bland-Altman plots
detailing the differences in the mean HR and Ln RMSSD
between the reference and Emfit QS are shown in Figure 4. The
Spearman rank correlation coefficient between the absolute
differences and the average of the devices was r=0.39 (P=.09)
for HR and r=0.53 (P=.02) for Ln RMSSD.

No differences were found in the 3-minute averaged HR values
between the recordings of the reference device and Emfit QS
(Figure 5). Significant differences in Ln RMSSD were found
between the devices at 4 time points: 15 minutes (P=.01), 57
minutes (P=.05), 171 minutes (P=.04), and 450 minutes (P=.03).
A very large correlation (r=0.72, P<.001) was found in the
3-minute averaged HR, and a large correlation (r=0.58, P<.001)
was found in Ln RMSSD between the reference device and
Emfit QS.
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Figure 2. (A) Mean nocturnal heart rate (HR) and (B) the natural logarithm of the root mean square of successive differences between RR intervals
(Ln RMSSD), measured by electrocardiogram (the reference) and ballistocardiogram (Emfit QS) (n=20). Box plots represent median values (solid line),
50th percentile values (box outline), and minimal and maximal values (whiskers).

Table 1. Comparison between the mean (SD) values of Emfit QS and the reference device.

Effect sizeRMSEbBiasa (%), mean (SD)Biasa (absolute), mean (SD)Variable

0.16 (trivial)2.4–1.7 (4.6)–0.8 (2.3)HRc (bpm)

0.14 (trivial)0.25–2.0 (6.5)–0.05 (0.25)Ln RMSSDd (ms)

aBias: the difference between the reference and Emfit QS.
bRMSE: the root mean square error.
cHR: heart rate.
dLn RMSSD: natural logarithm of the root mean square of successive differences.

Figure 3. Correlation of the mean (A) heart rate (HR) and (B) the natural logarithm of the root mean square of successive differences (Ln RMSSD)
between RR intervals between electrocardiogram (the reference) and ballistocardiogram (Emfit QS). The dashed line represents the line of equivalence
(r=1.0).
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Figure 4. A Bland-Altman plot comparing the reference mean to that of Emfit QS: (A) heart rate (HR) and (B) the natural logarithm of the root mean
square of successive differences (Ln RMSSD) between RR intervals.

Figure 5. Nocturnal (A) heart rate (HR) (n=17-20) and (B) the natural logarithm of the root mean square of successive differences (Ln RMSSD) between
RR intervals (n=9-19) in 3-minute epochs during sleep between recordings of electrocardiogram (the reference) and ballistocardiogram (Emfit QS).
Significant difference between the devices noted (P<.05).
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Discussion

Principal Results
To the best of our knowledge, this study is the first to evaluate
the accuracy of BCG-based nocturnal HR and HRV
measurements under real-life conditions. The main finding of
this study is that BCG-based Emfit QS showed a trivial mean
bias in nocturnal mean HR (1.7%, ES=0.16) and RMSSD (2.0%,
ES=0.14) compared with the ECG-based reference device. In
addition, the correlation coefficient showed good agreement
(r=0.89-0.90) between the devices. Terbizan et al [17] suggested
a minimum correlation of 0.9 for heart monitors to be clinically
reliable. However, it needs to be acknowledged that a high
correlation coefficient does not solely represent good agreement
in all cases [18].

Comparison With Prior Work
Choe and Cho [19] found an RMSE of 1.8 bpm (beats per
minute) for HR measured over a 15-minute rest period by a
piezoelectric sensor (BCG) under laboratory conditions. The
error was slightly smaller compared with that in our study (2.4
bpm). In addition, Xie et al [20] reported a 0.90 bpm mean
absolute error in HR detection by a BCG sensor placed under
a chair during 15-minute recordings and a greater correlation
(r=0.98) compared with the present study. In previous studies,
the participants were instructed to avoid movement since
muscular activity may cause measurement errors in BCG. In
this study, the measurements were carried out at home under
real-life conditions. During sleep, movement can have
interfering effects on HR and HRV detection, which can explain
the slightly higher error and the amount of missing data in the
present study.

For valid HRV determination, consecutive heart beats must be
detected with a high degree of accuracy. Shin et al [21] observed
a 5% relative error and a strong correlation (r=0.97) in a
time-domain analysis of HRV by BCG and ECG. Wang et al
[22] observed perfect correlations (r=0.99-1.00) in HRV
variables between BCG and ECG. The authors concluded that
HRV can be measured reliably with BCG. In this study, the
mean bias in RMSSD was smaller (2.0%) than that in the study
by Shin et al [21], but the correlation was weaker (r=0.89).

The Bland-Altman plots showed that 5% (1/20) of the mean
HR and Ln RMSSD values were outside the limits of agreement
(LoA). Bland and Altman [23] recommended that 95% of the
data points should lie within the mean difference (SD 1.96).
Our results showed a proportional error in the mean Ln RMSSD
determined by Emfit QS. Based on the Bland-Altman plot, a
larger error can be found in smaller and larger Ln RMSSD
values; it seems that Emfit QS underestimates Ln RMSSD at
high HRV levels and overestimates Ln RMSSD at low HRV
levels. The LoA for the mean HR is relatively narrow (SD 4.6
bpm, ~8%). It is important that LoA would be narrower than
daily changes in long-term monitoring. Al Haddad et al [24]
reported a ~12% day-to-day variation in resting Ln RMSSD.
In the present study, the LoA for the mean Ln RMSSD was
~12%. Thus, it can be concluded that it is not greater than the
day-to-day variation in Ln RMSSD; the LoA is barely
acceptable. Unfortunately, this research did not answer whether

the biases are stable in repetitive measurements. Reliability is
crucial for long-term monitoring of stress and recovery states;
if the bias varies within an individual in repetitive
measurements, the true changes in daily HR and HRV cannot
be detected, and thus, an accurate interpretation of cardiac
autonomic regulation will be compromised. In addition, it is
good to standardize sleeping and measurement conditions (eg,
bed, mattress) in long-term monitoring for reducing biases.

The 3-minute averaged data showed no differences in HR at
any time points during the night and few differences in Ln
RMSSD (Figure 5). The differences can be explained by the
greater amount of missing data of Emfit QS; it is possible that
a 3-minute epoch can include only, for example, 15 seconds of
Emfit QS data; yet, the system provides a value for the 3-minute
epoch. Comparatively, the reference data could include the
entire 3-minute data, which could explain the differences in the
3-minute values. Thus, it seems that HR and HRV values for
the entire night are more adequate. The overall view of nocturnal
HRV is also more important than a single 3-minute value
because HRV fluctuates during sleep according to sleep phases
[25,26].

Although the bias and LoA analyses appear promising, future
development in the accuracy of HRV measurement is needed
to decrease the amount of missing data and incorrect 3-minute
values. Because of the relatively large amount of missing data
in HRV by Emfit QS compared to the reference data (28% vs
1%), the HRV data do not reflect values of the whole night for
every individual. Suliman et al [11] observed large differences
(77%-95%) in the ability to detect BCG peaks between different
algorithms during a short resting period. Thus, the development
of these algorithms may decrease missing data. It could be
speculated that individuals with a high amount of missing data
could also have more differences between the reference and
Emfit QS, but our results showed no correlation between the
amount of missing data and the mean bias of the measurements.
Furthermore, future studies should clarify reliability over time
for measuring HR and HRV by Emfit QS.

Practical Applications
Morning ECG measurements with HR straps are
time-consuming and arduous to perform every day, and thus,
compliance with regular measurements is poor [27]. Nocturnal
HRV is a time-efficient method compared to morning HRV
measurements taken at waking [28]. Previous studies have
mainly focused on BCG measurements under laboratory
conditions. This study showed the potential of Emfit QS to serve
as a tool for everyday use at home to measure nocturnal HRV.
Contact-free and fully automatic analysis by Emfit QS facilitates
effortless daily monitoring of stress and recovery status among
athletes. Furthermore, it does not require attaching electrodes
on the body surface and thus does not disturb participants’
typical sleep behaviors, which is advantageous over ECG. Based
on our results, Emfit QS provides HR and HRV data with an
acceptable, small mean bias compared with ECG. However,
due to some large errors in detecting HR and HRV in some
individuals, it would be best practice to ensure accuracy by
comparing initial results from Emfit QS with ECG.
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Conclusions
This study evaluated the accuracy of BCG-based Emfit QS for
measuring HR and HRV. Our results showed that Emfit QS
provides HR and HRV data with an acceptable, small mean bias

compared with ECG. Thus, Emfit QS can be a potential tool
for the long-term monitoring of HR and HRV. However, further
research is needed to evaluate the reliability of HR and HRV
detected by Emfit QS.
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