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Abstract

Background: Ambulatory assessment of electrodermal activity (EDA) is an emerging technique for capturing individuals’
autonomic responses to real-life events. There is currently little guidance available for processing and analyzing such data in an
ambulatory setting.

Objective: This study aimed to describe and implement several methods for preprocessing and constructing features for use in
modeling ambulatory EDA data, particularly for measuring stress.

Methods: We used data from a study examining the effects of stressful tasks on EDA of adolescent mothers (AMs). A biosensor
band recorded EDA 4 times per second and was worn during an approximately 2-hour assessment that included a 10-min
mother-child videotaped interaction. The initial processing included filtering noise and motion artifacts.

Results: We constructed the features of the EDA data, including the number of peaks and their amplitude as well as EDA
reactivity, quantified as the rate at which AMs returned to baseline EDA following an EDA peak. Although the pattern of EDA
varied substantially across individuals, various features of EDA may be computed for all individuals enabling within- and
between-individual analyses and comparisons.

Conclusions: The algorithms we developed can be used to construct features for dry-electrode ambulatory EDA, which can be
used by other researchers to study stress and anxiety.

(JMIR Biomed Eng 2020;5(1):e17106) doi: 10.2196/17106
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Introduction

Background
Electrodermal activity (EDA), commonly known as galvanic
skin response, is a measure of sympathetic nervous system
activity that is used to assess physiological arousal.
Measurement of and methods for examining EDA in the
laboratory setting have been well described [1], but there is less

guidance for ambulatory EDA. The aim of this study was to
describe and illustrate several analytic methods, specifically
functional data analysis (FDA) [2] and local polynomial
regression with autoregressive (AR) errors [3], neither of which
have previously been applied to EDA data. We also addressed
the challenges of collecting ambulatory EDA, denoising the
data, and detecting meaningful features common across
participants. We concluded with opportunities and limitations
of the future use of ambulatory EDA data.
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Electrodermal Activity
EDA has been measured in the laboratory using gel electrodes
typically placed on the palm. Entire books [1] and publication
standards (eg, Society for Psychophysiological Research Ad
Hoc Committee on Electrodermal Measures [4]) have been
written about the measurement and the use of EDA data
collected in the laboratory. However, much less has been written
about the measurement of EDA in ambulatory settings [5],
which has recently become popular because of the availability
of dry-electrode wrist-worn devices that can be used while
participants go about their daily activities. These devices have
dry electrodes that are placed on the ventral wrist as opposed
to laboratory placement on the palm. Emotional effects on EDA
can be more sensitively recorded with electrodes on the palm
rather than the wrist, but obviously, electrodes on the palm
would interfere with normal activities. However, dry electrodes
used in ambulatory measurement have uncertain contact with
the skin in comparison with gel electrodes used in
laboratory-based measurements. Important issues in the
measurement of ambulatory EDA are the influence of
temperature (both ambient and skin) and physical activity [4].
Several wrist-worn devices have been developed for the
ambulatory collection of EDA as well as temperature and
three-axis accelerometry [6,7] (eg, Affectiva Q sensor) and,
more recently, blood volume pulse (eg, Empatica E4). This
study used the iCalm device [8], which measures temperature
and accelerometry as well as EDA (the Methods section provides
a detailed description about this).

All these devices record the overall skin conductance (SC),
which can be decomposed into what is referred to as tonic and
phasic activity components [9-11]. Tonic activity varies slowly
and is also referred to as skin conductance level (SCL).
Individuals have different levels of tonic activity, that is, some
individuals have a higher level of tonic activity and others have
a lower level of tonic activity. In contrast, phasic activity varies
rapidly in response to stimuli such as stress and is also referred
to as the skin conductance response (SCR). The SCR amplitude
is considered to be a measure of sympathetic activity. SCR is
characterized by a rapid incline to a peak and then a slower
decline back to the individual’s SCL [1]. Typically, the goal is
to detect these peaks and compute their features (eg, amplitude),
which can serve as predictors or outcomes in statistical models.
Although the features can be detected by visualizing the data
and coding the peaks, the amount of data that are typically
collected in ambulatory research studies makes this time
consuming and impractical. Next, we introduce the study from
which the data were obtained before returning to approaches
for analyzing ambulatory EDA data.

Power Source Parenting Study
Many adolescent mothers (AMs) have challenges effectively
regulating emotion, which interferes with their use of positive
parenting skills and places them at risk of maltreating their
children. Data for this study were collected from participants
in a pilot, group-randomized controlled trial of the Power Source
Parenting (PSP) intervention for high-risk AMs [12,13]. The
AMs were homeless and lived with their children in transitional
living programs (TLPs) in a Northeast state. Each participant

received a baseline and 2 postintervention follow-up assessments
(at 3 and 6 months). Each assessment lasted between 1.5 and 2
hours, and the AMs wore the iCalm biosensor band that
measured EDA throughout each of the 3 assessments, which
included 2 potentially stressful tasks: (1) a timed Stroop task
and (2) a 10-min videotaped mother-child interaction. We
examined EDA at each assessment for the Stroop and video
interaction tasks. We chose these 2 tasks because we expected
that they induce different types of stressors (eg, Stroop task is
a cognitive stressor) and they have differing degrees of
structured activity. The Stroop task was more structured than
the videotaped interaction task, and it more closely resembles
the measurement of EDA in the laboratory (ie, AMs complete
the computerized task seated alone without her child present).
In contrast, the semistructured mother-child videotaped
interaction does not have the constraints of carefully controlled
laboratory settings but provides more ecologically valid
information about maternal and child behaviors concurrent with
measurement of AMs’ EDA that can be examined across
participants.

In our study, different AMs had quite different features in their
EDA profiles (ie, the EDA level over the time span of a single
task), making it difficult to compare them directly. Some of the
differences are noise, such as those from movement artifacts.
Despite innovations in devices, ambulatory assessment of EDA
is inherently noisier than laboratory assessment because of these
movement artifacts and the dry electrodes. Thus, the first step
in processing EDA data is to identify these artifacts so that these
data can be discarded. The step typically involves applying a
signal processing filter, such as a Hanning filter with a 1-second
window [14], a zero-phase order 10 low-frequency Butterworth
filter [5], or a finite impulse response (FIR) low-pass filter [15].
The application of a signal processing filter is not mandatory,
as the next step, identifying valid versus invalid data, can be
applied directly to the raw, unfiltered data [15]. Taylor et al [15]
developed an algorithm using support vector machines (SVMs)
to identify valid versus invalid data and applied it to both the
raw SC data and SC data filtered using an FIR low-pass filter.
SVMs have a disadvantage in that it is not transparent what
rules are being implemented to classify data as valid versus
invalid. In contrast, a rule-based algorithm was proposed [16]
for classifying data as valid or not. For example, values of less
than 0.05 μS could be excluded [5]. A disadvantage of this type
of approach is that it is less flexible; however, it does not have
the reproducibility problems that the Taylor et al [15] approach
may have [16]. Usually, a combination of a signal processing
filter and either a rule-based approach or a machine learning
approach is used to identify and discard invalid data [5,15].
Given the valid data, the next step is to separate the tonic and
phasic components.

Many of the previous methods for separating the components
are based on EDA data collected in the laboratory in which the
participant is exposed to a stimulus, such as a loud noise, at
regular intervals (eg, interstimulus interval of 8 seconds). These
methods include the sigmoid exponential model [11] and
negative deconvolution [9]. Although these methods were
developed for data collected in the laboratory, the negative
deconvolution method has been applied to ambulatory data [14].
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There is a question as to whether it is important to separate these
components in ambulatory data because the stimuli are typically
more gradual (typically referred to as nonspecific SC responses
[1]) as opposed to the abrupt startle response stimuli typically
used in laboratory research. Hernandez et al [14] analyzed the
data without decomposing the tonic and phasic components and
by decomposing them using nonnegative deconvolution and
found that the decomposition provided more discriminative
information. Thus, they recommended decomposing the EDA.
Regardless of whether the EDA is decomposed or not, the next
step is to identify features of the data, typically peaks, and
compute the characteristics of these features.

One automated approach to detecting peaks and constructing
features is available on an interactive website at the MIT Media
Lab [15] and uses SVMs, although the focus was primarily on
identifying valid versus invalid data. Kleckner et al [16] also
did not focus on detecting peaks but only on identifying valid
versus invalid data. Thus, there is very little guidance on
detecting peaks once data have been identified as valid. We

initially used the Taylor et al [15] approach and discovered that
the approach did not identify many of the peaks and marked
much of the data as invalid. The results of applying this
approach are presented in Figure 1 for one AM as an example
and are what motivated us to try to find a better approach to
detecting peaks in the ambulatory setting.

In general, our approach was to (1) use the raw SC data or SC
data filtered with an FIR low-pass filter, (2) identify valid versus
invalid data using rules established in the literature, (3)
decompose the signal into its tonic and phasic components using
negative deconvolution, (4) apply a spline-based smoothing
technique (eg, B-spline regression or local polynomial regression
with AR errors) to the EDA profile, and (5) compute various
features of the peaks identified from the smoothed curve. The
latter 2 steps, particularly the spline-based approaches, are the
unique contributions of this study. Comparisons between
different groups of individuals can then be performed on the
peak features, if desired.
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Figure 1. Electrodermal activity peak detection results for the free-play (first 5 min) and teaching (second 5 min) videotaped interaction tasks for one
control group mother (patient ID=102) and at baseline and 3-month follow-up assessments. EDA: electrodermal activity.

Methods

iCalm Sensor Band
The iCalm applies a constant voltage to the skin through 2
silver/silver chloride metal electrodes and measures the resulting
current [8,13]. A transconductance amplifier is used to convert
the current to a voltage, which is sampled at a rate of 4 Hz using
a 12-bit analog-to-digital converter. Three-axis accelerometry
and temperature were sampled at the same rate. The iCalm has
been validated against laboratory measures of EDA [6]. The
iCalm connects via Bluetooth to Android-based mobile phones.

Participants
The data were obtained from the aforementioned PSP
intervention study of 71 mothers. The EDA values for some
mothers were very low, which was primarily because of a lack

of contact between the skin and the electrodes. The general
guidance in the literature is to discard data in which the EDA
is approximately 0 [16], as it indicates that the electrodes were
not in good contact with the skin. Details regarding these invalid
data are given in section Data Preprocessing. Finally, there were
5 AMs who did not return at any of the follow-up assessments
and several AMs who had data at one but not both of the
follow-up assessment periods; thus, we used 6-month follow-up
data if an AM did not have data at the 3-month follow-up. The
final sample size numbers are given following discussion of the
identification of valid versus invalid data.

Procedures
The AMs were interviewed at the TLP in a private room by
trained interviewers. The interviews included a survey
questionnaire examining demographic and background
characteristics; questions regarding mental health, parenting,
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and risk-taking behaviors; as well as activities described in the
Measures section. AMs wore the iCalm band on their right wrist
throughout the duration of each interview. Following the
interview, mothers in the intervention TLPs received the PSP
intervention, whereas the control TLPs received standard care
[12].

Measures
Each assessment included the computer-delivered survey, a
variety of computerized tasks including the Stroop task, and the
10-min videotaped interaction of mothers with their child. In
this analysis, we focused on the Stroop task and the videotaped
interaction task. The Stroop task involved reading the written
color names independent of the color name that is written as
quickly as possible in 1 min. For the videotaped interaction task,
the mothers were asked to play with their child as they usually
do for the first 5 min, which we will refer to as free play. For
the second 5 min of the interaction task, the mothers were asked
to teach their child a concept that was slightly above their
developmental level. This latter task, which we will refer to as
teaching, was intended to be slightly frustrating for the mother
and the child. In addition, a physical task (going up and down
stairs for approximately 5 min) was only performed at the
baseline assessment and only for the intervention group AMs.
We examined these data as a comparison task in which there is
a lot of movement.

Data Analysis
The data analysis for analyzing and comparing the EDA profiles
entails several steps described earlier, including preprocessing,
smoothing, identifying peaks, computing features of the peaks,
and, finally, statistical modeling. In this section, we present the
details of these steps with regard to our data. The R code for
implementing the analysis is provided in Multimedia Appendix
1. To date, software for identifying invalid data, decomposing
SC, detecting peaks, and constructing features has been written
in either MATLAB or Python. To our knowledge, there are no
R packages for handling these tasks.

Data Preprocessing
Data preprocessing involved computing the elapsed time since
the beginning of the Stroop and video interaction tasks for each
mother at the baseline and follow-up assessments so that both
assessments and all AMs would be on the same time scale. Next,
we constructed plots of EDA for each mother by task to visualize
motion artifacts and loose band connections. For the filtered
data, we generated an FIR low-pass filter using the function
fir1 in the R package signal and chose the number of coefficients
as 16 (ie, the sample rate×4). We considered EDA values that
were approximately 0 as invalid, as these usually indicate that
the band had a loose connection and did not accurately record
EDA [5]. These data were removed from both the filtered and
raw SC data. We also examined plots of the EDA during the
physical task to ensure that, as expected, EDA increased with
physical activity and that the band had a good connection.
Finally, each mother at each of the baseline and follow-up
assessments had differing ranges of EDA values (eg, refer to
the y-axis in Figure 1). Hence, in accordance with standard

practice [14], we normalized EDA values by the range and
distance from the maximum value:

where the one minus is to correct the sign of the normalized
EDA values to be the same as the original EDA values. Next,
we used 2 methods for data smoothing: FDA with B-splines
and local polynomial regression for data with AR errors.

Functional Data Analysis
FDA considers the EDA profile as a single entity rather than as
a collection of data points. Missing data or unequally spaced
measurements are smoothed over. The target function is
estimated by a linear combination of basis functions, specifically
spline functions (hence the name B-splines) of a specific
polynomial order m. The entire range of the target function is
divided into subintervals at breakpoints called knots. Splines
are then fitted in each interval and are adjusted to join the knots
to estimate the underlying smoothed function. We also added
a penalty on the roughness of the fitted curve, with the tuning
parameter chosen by the generalized cross-validation (GCV)
index. In addition, the number of knots was chosen by the
method proposed by Ruppert [17]. We implemented this
approach using the fda R package to smooth the data and create
functional profiles. Specifically, we used the function
create.bspline.basis to generate B-spline basis functions and
then used the functions fdPar and smooth.basis to produce the
fitted functional form as well as the corresponding value for the
GCV index. The first 2 derivatives of the estimated function
were calculated and saved for future use. The estimated
smoothed curve captures the general features of the normalized
EDA profile. The results could change significantly for the
choice of location of knots and the number of knots. We chose
the knots to be equally spaced on the time span, but it is not
necessary that they be equally spaced [18]. If they are not
equally spaced, then the spacing may need to be customized for
each individual. For example, knots could be placed more
closely together when the EDA profile is changing significantly
and placed further apart when the EDA profile does not change
as much (ie, when the EDA profile is flat).

Local Polynomial Regression
Local polynomial regression with AR errors is another technique
to obtain a smooth estimate of the EDA profile. We applied a
version of local linear regression for data with AR errors [3]
because the EDA data in a profile is longitudinal and from the
same individual (hence correlated). This approach assumes that
the response variable is the sum of a smoothed unknown
function of time and an error term, where the error term follows
an AR model with d terms:

For a fixed d, the estimation procedure starts by obtaining an

initial estimate by assuming working independence among
observations and then calculating the corresponding residuals

. The initial estimate is calculated by local linear
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regression with the plug-in bandwidth selector. The problem
can be converted to a partial linear problem as follows:

and and are estimated by profile least squares. More

specifically, we first estimate by the so-called
difference-based method [19] and then derive a local linear
smoother on the difference:

as an estimate of the final . The number of AR terms, d, is
selected by a penalization method, with the tuning parameter
selected by the Bayesian information criterion [20]. The local
linear approach may not work well in cases where the fitted
curve is lower than the actual EDA profile or is influenced by
some outliers with extreme values. The local linear regression
may also over smooth the fitted curves and therefore miss
capturing peaks in the EDA profiles. In these cases, local
quadratic regression or local cubic regression may yield better
results. We applied both the local quadratic and local cubic
regressions, but the fit was similar to the local linear regression;
hence, we present only the local linear regression results in the
Results section. Other literature [15] on analyzing EDA data
suggests using a low-pass filter to denoise data first. Thus, we
also tried the combination of an FIR low-pass filter and local
linear regression as well as using local linear regression alone.

Identifying Peaks
Using the smoothed EDA profiles, our interest lies in identifying
features related to significant local maxima (ie, peaks). Correct
peaks should increase quickly and then decrease more slowly,
with large enough rise and drop [1]. To identify peaks, we used
the first and second derivatives saved earlier during the spline
smoothing estimation. The local maxima are locations where
the first derivative is 0 and the second derivative is negative.
We first found all local maxima and then filtered them by the
magnitude of the rises/drops. Specifically, for each local
maximum, we identified the nearest local minimum on each
side and then calculated the corresponding drop. If both drops

are larger than a preset threshold, the local maximum is
identified as a peak. The threshold was set to 0.1 [1]. There
could be an incomplete peak at the right limit of the EDA
profile, which we did not identify as a useful peak even if its
drop satisfies the 0.1 criterion.

Computing Features of the Identified Peaks
To make a comparison between different individuals, we
computed the characteristics or features of the identified peaks,
including the number of identified peaks, time to the first peak,
time to the highest peak, and maximum value (ie, amplitude)
at the first peak. Initially, we also considered the area under the
entire smoothed curve. However, the actual observed time span
for each individual was not exactly the same, although the actual
task was designed to last the same amount of time, making the
area under the curve (AUC) not very comparable across
individuals for a given task. Nevertheless, for data in which the
time span is the same for each individual, AUC may be a
meaningful feature. For each task, we calculated the
abovementioned peak features for each AMs’EDA profile. The
R code for identifying and computing the features of the peaks
is provided in Multimedia Appendix 1.

The final step is statistical modeling using the features of EDA
peaks. This step depends, of course, on whether there are groups
to be compared and repeated features on the same individual
(eg, baseline and postintervention). Thus, any statistical model
could potentially be used depending on the characteristics of a
particular study.

Results

We began by examining plots of the EDA for each mother by
task. Graphical display of the data showed EDA varied both
between individuals and within individuals during both tasks.
Owing to space, we did not present figures for all the AMs.
Instead, we focused on one control group AM (patient ID [PID]
102) and one intervention group AM (PID 202).

We also examined plots of the EDA data for the physical task
for the intervention AMs at baseline. The examination of these
plots revealed that the AMs’EDA increased, as it should (Figure
2 shows an example plot of one mother) during the physical
task.
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Figure 2. Electrodermal activity for physical task at baseline for one intervention group mother. A loess curve has been fit to the data. EDA: electrodermal
activity; PID: patient ID.

Local Polynomial Regression
Next, we present the results of the local linear regression with
AR errors. Figure 3 shows the smoothed function overlaying
the normalized EDA values for the baseline and 3-month
follow-up assessments for the teaching task for one control
group AM. Figure 4 presents the smoothed function overlaying
the normalized EDA values for baseline and 3-month follow-up
assessments for the free-play task for the same AM, as presented
in Figure 3. In the case of this AM, the smoothed function does
not fit the actual peaks in the data very well. Specifically, the
smoothed peaks are dampened in comparison with the actual
peaks, which creates a problem for identifying peaks because
they are defined by their increase/decrease. Even if peaks are

identified, some features of the peaks (eg, amplitude) would be
dampened in comparison with the actual data. We also tried
using an FIR low-pass filter before smoothing with local linear
regression for AR errors. However, this did not substantially
improve the fit of the estimated functions to the actual data.
Figure 5 shows the smoothed function overlaying the normalized
EDA values after applying the FIR low-pass filter for the
baseline and 3-month follow-up assessments for the teaching
task for the same AM, as presented in Figure 3. The free-play
task is presented in Figure 6. It is evident that the FIR low-pass
filter did not change the estimated EDA profiles substantially
from the raw SC data. We next attempted smoothing using
B-splines to estimate the functional EDA profiles.
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Figure 3. Local linear regression with autoregressive errors for the teaching task at baseline and 3-month follow-up assessments for one mother (patient
ID=102). EDA: electrodermal activity; PID: patient ID.

Figure 4. Local linear regression with autoregressive errors for the free-play task at baseline and 3-month follow-up assessments for one mother. EDA:
electrodermal activity; PID: patient ID.
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Figure 5. Local linear regression with autoregressive errors for the teaching task at baseline and 3-month follow-up assessments for one mother after
applying a low-pass filter. EDA: electrodermal activity; PID: patient ID.

Figure 6. Local linear regression with autoregressive errors for the free-play task at baseline and 3-month follow-up assessments for one mother after
applying a low-pass filter. EDA: electrodermal activity; PID: patient ID.

Functional Data Analysis
In implementing the smoothing via B-splines, we used 13 basis
functions. We plotted the smoothed versus normalized EDA
for each AM, for each task, and for each assessment. The plots
for the same AM illustrated in Figures 3 and 4 are shown in
Figure 7, left column. The figure illustrates a potential problem
with the B-spline approach, which relies on a cubic polynomial.
To fit the first peak, the cubic function, by definition, must first
increase and then decrease before increasing again. In so doing,
the function imposes a false peak just before the actual first
peak, and therefore, the function does not fit the actual data well
(Figure 7). A different polynomial could be chosen for fitting

the B-splines, but it would also impose a particular functional
form that may not fit the actual data well. Figure 8 shows the
EDA profiles for the teaching task for the same AM (PID 102),
as shown in Figure 7. In comparison with the local linear
regression approach illustrated in Figure 3, the B-spline
approach illustrated in Figure 8 appears to fit at least as well
for PID 102. In addition, the B-spline approach fits some
individuals better than the local linear regression (not shown).
For example, EDA for the free-play task for one intervention
group AM is presented in Figure 9, and EDA for the teaching
task for the same AM is presented in Figure 10. For this AM,
the B-spline approach seemed to work well. We will discuss
the 2 smoothing approaches further in the Discussion section.
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Figure 7. Electrodermal activity (EDA) for the free-play task at baseline and 3-month follow-up assessments for one mother (patient ID=102). The
left column shows the estimated B-spline smoothed function overlaying the normalized EDA values. The right column shows the identified peaks and
the values for peak features. The red dashed vertical lines demarcate the first peak, the black dashed vertical lines demarcate the highest peak, and the
blue dashed vertical lines demarcate all other identified peaks. AUC: area under the curve; EDA: electrodermal activity; PID: patient ID.
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Figure 8. Electrodermal activity (EDA) for the teaching task at baseline and 3-month follow-up assessments for one mother (patient ID=102). The left
column shows the estimated B-spline smoothed function overlaying the normalized EDA values. The right column shows the identified peaks and the
values for peak features. The red dashed vertical lines demarcate the first peak, the black dashed vertical lines demarcate the highest peak, and the blue
dashed vertical lines demarcate all other identified peaks. AUC: area under the curve; EDA: electrodermal activity; PID: patient ID.
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Figure 9. Electrodermal activity (EDA) for the free-play task at baseline, 3-month, and 6-month assessments for one mother (patient ID=202). The
left column shows the estimated B-spline smoothed function overlaying the normalized EDA values. The right column shows the identified peaks and
the values for peak features. The red dashed vertical lines demarcate the first peak, the black dashed vertical lines demarcate the highest peak, and the
blue dashed vertical lines demarcate all other identified peaks. AUC: area under the curve; EDA: electrodermal activity; PID: patient ID.
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Figure 10. Electrodermal activity (EDA) for the teaching task at baseline, 3-month, and 6-month assessments for one mother (patient ID=202). The
left column shows the estimated B-spline smoothed function overlaying the normalized EDA values. The right column shows the identified peaks and
the values for peak features. The red dashed vertical lines demarcate the first peak, the black dashed vertical lines demarcate the highest peak, and the
blue dashed vertical lines demarcate all other identified peaks. AUC: area under the curve; EDA: electrodermal activity; PID: patient ID.

Computing Features of the Identified Peaks
Next, we identified peaks and computed various features of the
peaks from the estimated EDA profiles. Figure 7 (right column)
illustrates the identified peaks and presents the values for the
peak features. The red dashed vertical lines demarcate the first
peak, the black dashed vertical lines demarcate the highest peak,

and the blue dashed vertical lines demarcate all other identified
peaks. The time to first peak and the highest peak (both in
seconds), the normalized EDA value at the highest peak (ie,
amplitude), the drop from the highest peak (ie, reactivity), and
the number of peaks are all presented in Figure 7, right column
for one AM. The peaks were identified, and the features were
computed for all AMs. These may be saved in a file for

JMIR Biomed Eng 2020 | vol. 5 | iss. 1 | e17106 | p. 13http://biomedeng.jmir.org/2020/1/e17106/
(page number not for citation purposes)

Coffman et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


statistical analysis. Our sample size was ultimately too small
for statistical significance testing between the intervention and

control groups (ie, between-subjects), but we present descriptive
statistics of the peak features in Table 1.

Table 1. Descriptive statistics for peak features by task among those adolescent mothers with identified peaks.

Follow-upa, mean (SD)Baseline, mean (SD)Peak feature/task

Time to the highest peak (seconds)

103.30 (61.45)122.14 (63.42)Stroop

123.55 (94.04)144.29 (87.07)Teaching

215.10 (93.17)201.79 (87.07)Free play

Value at highest peak (μS)

0.75 (0.21)0.67 (0.21)Stroop

0.67 (0.22)0.50 (0.29)Teaching

0.48 (0.25)0.59 (0.26)Free play

Drop from the highest peak (seconds)

17.91 (18.87)13.18 (10.76)Stroop

27.90 (43.01)30.12 (17.49)Teaching

27.76 (18.41)29.86 (24.71)Free play

Number of peaks

5.13 (3.05)6.39 (3.34)Stroop

6.86 (3.61)4.14 (3.51)Teaching

5.71 (3.33)5.59 (2.95)Free play

Time to the first peak (seconds)

51.49 (49.47)45.66 (36.14)Stroop

27.73 (18.91)90.61 (86.08)Teaching

81.25 (90.94)95.78 (69.93)Free play

aNote that follow-up is at 3 months unless it was missing, in which case, the 6-month follow-up assessment for that individual was used (n=23 adolescent
mothers [AMs] for the Stroop task, n=14 AMs for the teaching task at both baseline and follow-up, and n=17 AMs for the free-play task at both baseline
and follow-up).

Discussion

Our goal was to present 2 approaches for smoothing and
summarizing EDA data by identifying EDA peaks and
computing features of those peaks, including the number of
peaks, time to first peak, time to highest peak, amplitude of the
highest peak, and the time it takes to drop from the highest peak
(ie, reactivity). These are certainly not all the features that could
be constructed; rather, these are the ones that we thought may
be most informative based on the laboratory EDA literature. It
is quite possible that other features might be more interesting
for ambulatory EDA. Similarly, the approaches we presented
for smoothing the data are not the only 2 options [15,16]. Future
research needs to examine other possible smoothing methods
because the 2 approaches we used did not fit some individuals
very well. On the other hand, there may be data for which these
methods will fit better than others, as it really depends on the
characteristics of a particular dataset. Even within our own data,
we found instances where one approach fits the data better than
the other and vice versa. Smoothing, identification, and
construction of peak features are dependent on data quality.

A larger issue with regard to the use of EDA data for measuring
stress, particularly in the ambulatory setting, is the degree to
which it is an ecologically valid measure of stress. In the
ambulatory setting, it is particularly difficult to distinguish
emotional arousal from, for example, hand motions. It may be
that the 2 of these are correlated to some degree because if
people are emotionally aroused while talking, they may be
moving their hands around a lot. Although the device contains
an accelerometer, this does not entirely solve this problem.
Other devices have been proposed for assessing stress that do
not involve EDA. For example, the cStress device triangulates
on stress by measuring respiration and heart rate variability via
a chest strap [21]. On the other hand, a chest strap device is not
as appealing as a wrist-worn device for most participants.
Nevertheless, as the technology for the measurement of
ambulatory EDA improves, the longitudinal measurement of
EDA may have significant clinical implications, as providers
and patients can review patterns of arousal that correspond to
particular environmental stressors at specific times of day and
help patients plan strategies for dealing with these stressors
[22]. Similarly, the measurement of EDA may enable better
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stress management in the workplace, particularly in highly
stressful occupations [23].

Limitations
As mentioned previously, a lot of data were lost because the
electrodes did not have a good connection with the skin, which
resulted in EDA values that were approximately 0. Thus, the
first lesson is to make sure that there is a good connection
between the dry electrodes on the device and the skin. This
means that the electrodes must be touching the skin on the
ventral side of the wrist, which means that the device must be
fairly tight on the wrist. People often do not wear watches,
bands, or bracelets as tight as is necessary for the EDA device.
Therefore, we suggest real-time monitoring of incoming EDA
data so that if all the values are approximately 0, the participant
could be contacted to inform them to tighten the device. Note
that simply detecting that data are not being recorded in real
time is not enough; there must be real-time detection of data
that is being recorded but is essentially 0. Some of our EDA
data were not usable because the band lost contact with the skin
during some tasks, particularly early in the interview. By loose
connection, we mean that the electrodes on the band did not
have a good connection with the skin. We do not mean that the
band was not connected in terms of recording the EDA. If the
band was not recording, then EDA was missing at that particular
measurement. This did happen sometimes but not enough to
present a problem, particularly because we were able to smooth
over it using the proposed smoothing approaches. It should be
noted that the loose connection problem is not limited to the
particular device, the iCalm, that we used. Empatica E4 also
has this problem, as we have used it in a pilot study [24] and
lost data because of a loose connection. Other studies using
wrist-based ambulatory measures of EDA with the Affectiva Q
Sensor have reported greater success [25,26] in both controlled
and uncontrolled settings. However, other studies using the
Affectiva Q sensor have reported data lost to electrode
connection problems (eg, 31% [14] and 17% [22]). A total of
22.5% of data were lost because of electrode connection
problems for the free-play task and 24% for the teaching task.

Owing to the loose connection problems during data collection,
our sample size was substantially reduced, which limits our
ability to draw conclusions about the between-subject effects
of the intervention on the features constructed from the EDA
data. Nevertheless, we think it is important to draw attention to
data collection challenges as the measurement of ambulatory
EDA has become more popular. In addition, researchers
currently collecting EDA data have limited guidance on how
to preprocess the data before statistical analysis.

A second challenge in EDA data collection is motion artifacts.
These are identifiable as sharp spikes or drops in EDA data.
One concern with the free-play task is that there were many
more potential motion artifacts than there were in the teaching
task because the AMs may have been moving around more
during the free-play task. Another issue that may sometimes
occur is that the EDA during the current task could be affected
by the EDA response to the previous task. In our study, we tried
to minimize this by having recovery periods between tasks, but,
of course, there is no guarantee that the recovery periods were
long enough. An individual’s EDA does not always return to
the previous baseline, so it can be difficult to assess if the
recovery period is long enough.

Conclusions
In summary, in light of the increase in wearables for the
continuous, ambulatory collection of EDA and associated
challenges collecting data outside of the laboratory, analytic
methods for computing various features of EDA are needed to
help meet these challenges. We described 2 methods for
smoothing and summarizing EDA data using FDA and local
polynomial regression with AR errors. As the technology of
wearable devices continues to advance, future research
opportunities abound for improvement in device design that
may improve the electrodes and their connection with the skin
and facilitate in the development of improved methods for
smoothing the data, identifying peaks, and constructing features.
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