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Abstract

Background: Heart rate variability (HRV) is used to assess cardiac health and autonomic nervous system capabilities. With
the growing popularity of commercially available wearable technologies, the opportunity to unobtrusively measure HRV via
photoplethysmography (PPG) is an attractive alternative to electrocardiogram (ECG), which serves as the gold standard. PPG
measures blood flow within the vasculature using color intensity. However, PPG does not directly measure HRV; it measures
pulse rate variability (PRV). Previous studies comparing consumer-grade PRV with HRV have demonstrated mixed results in
short durations of activity under controlled conditions. Further research is required to determine the efficacy of PRV to estimate
HRV under free-living conditions.

Objective: This study aims to compare PRV estimates obtained from a consumer-grade PPG sensor with HRV measurements
from a portable ECG during unsupervised free-living conditions, including sleep, and examine factors influencing estimation,
including measurement conditions and simple editing methods to limit motion artifacts.

Methods: A total of 10 healthy adults were recruited. Data from a Microsoft Band 2 and a Shimmer3 ECG unit were recorded
simultaneously using a smartphone. Participants wore the devices for >90 min during typical day-to-day activities and while
sleeping. After filtering, ECG data were processed using a combination of discrete wavelet transforms and peak-finding methods
to identify R-R intervals. P-P intervals were edited for deletion using methods based on outlier detection and by removing sections
affected by motion artifacts. Common HRV metrics were compared, including mean N-N, SD of N-N intervals, percentage of
subsequent differences >50 ms (pNN50), root mean square of successive differences, low-frequency power (LF), and high-frequency

power. Validity was assessed using root mean square error (RMSE) and Pearson correlation coefficient (R2).

Results: Data sets for 10 days and 9 corresponding nights were acquired. The mean RMSE was 182 ms (SD 48) during the day

and 158 ms (SD 67) at night. R2 ranged from 0.00 to 0.66, with 2 of 19 (2 nights) trials considered moderate, 7 of 19 (2 days, 5
nights) fair, and 10 of 19 (8 days, 2 nights) poor. Deleting sections thought to be affected by motion artifacts had a minimal impact
on the accuracy of PRV measures. Significant HRV and PRV differences were found for LF during the day and R-R, SDNN,

pNN50, and LF at night. For 8 of the 9 matched day and night data sets, R2 values were higher at night (P=.08). P-P intervals
were less sensitive to rapid R-R interval changes.

Conclusions: Owing to overall poor concurrent validity and inconsistency among participant data, PRV was found to be a poor
surrogate for HRV under free-living conditions. These findings suggest that free-living HRV measurements would benefit from
examining alternate sensing methods, such as multiwavelength PPG and wearable ECG.
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Introduction

Motivation
With the growing ubiquity of commercially available wearable
technologies, obtaining long-term physiological measurements
under free-living conditions is feasible and permits longitudinal
examination of ecologically valid patterns. This presents an
opportunity for continuous patient monitoring under free-living
conditions, including the potential to identify at-risk individuals
(eg, patients with cardiac disease). Heart rate variability (HRV)
is a well-established, powerful metric used to assess cardiac
health, including autonomic nervous system function regulating
cardiac activity. Compared with an individual’s heart rate (HR)
averaged over a short period, HRV measures variations in HR
primarily as an indicator of the efforts of the sympathetic and
parasympathetic nervous systems to achieve an optimal cardiac
response under constantly changing stimuli [1]. Previous
research has explored the use of HRV monitoring in predicting
or detecting sleep quality [2], mental stress [3], chronic pain
[4], posttraumatic stress disorder [5], bipolar disorder [5], and
cardiac health [6].

Measuring HRV
The (gold) criterion standard for measuring HRV is through an
electrocardiogram (ECG) to obtain a direct recording of cardiac
electrical activity. On ECG, the R wave represents the maximum
upward deflection of a normal QRS complex. The duration
between two successive R waves defines the R-R interval [7],
which is used to measure HR and HRV. Although wearable
ECGs exist, they typically require electrodes affixed to the skin,
which makes them obtrusive and can cause skin breakdown,
and they are also prone to motion artifacts during day-to-day
activities [8]. Alternatively, photoplethysmography (PPG) uses
an optical sensor widely used to unobtrusively track mean HR,
especially in wrist-worn devices (eg, Fitbit).

PPG for Pulse Rate Variability
PPG sensors measure changes in pulsatile blood flow within an
individual’s vasculature using color intensity signals [9]. Signal
peaks associated with the flow of blood are used as indicators
of HR, allowing for the calculation of peak-to-peak (P-P)
intervals. PPG sensors do not directly measure HRV; instead,
they measure pulse rate variability (PRV), the change in vessel
pulse periods, from which P-P intervals denote a pulse rate (PR)
[10]. PPG sensors can be placed at a variety of measurement
sites including the fingers, wrist, brachia, ear, forehead, and
esophagus without requiring additional equipment. This makes
PPG especially convenient for pervasive cardiac monitoring
[11], with well-validated use for mean HR measurements [4].
Although evidence examining PPG capabilities to accurately
measure HRV shows promise, studies comparing PPG with
gold standard ECG methods under free-living conditions remain
limited.

The accuracy of PRV as a measure of HRV has been
investigated with clinical devices under controlled, and often
stationary, conditions [12-17]. Although these studies indicate
that PRV may be a useful as a proxy measure of HRV using
medical-grade devices under controlled conditions, studies using
wearable consumer-facing devices have shown mixed results.
These few studies largely use short-term collections in controlled
circumstances, some of which do not simultaneously collect
ECG [18,19]. A systematic review by Georgiou et al [20] found
that wearable devices can provide accurate measurement of
HRV measures at rest; however, accuracy declines as exercise
and motion levels increase. The review also showed that
heterogeneity in sensor position, detection algorithm,
experimental settings, and analysis methods from existing
studies limits the evidence. A review by Shäefer and Vagedes
[21] found similar results, suggesting that physical activity and
mental stressors lead to unacceptable deviations between PRV
and HRV. Ultimately, further research is required to determine
the efficacy of PRV in estimating HRV during free-living
conditions in which individuals are unrestricted and engaging
in their daily activities [22].

Limitations of PPG
PPG sensors have been found to be sensitive to motion artifacts,
changes in blood flow caused by movement, compression and
deformation of the vasculature arising from pressure
disturbances at the interface between the sensor and the skin
[11], and light leaking between the sensor and the skin [23].
Some studies have examined the removal of motion artifacts
from PPG signals using signal processing techniques and
acceleration as a reference [23-28]. For example, methods
involving accelerometry have shown promise for improving
coherence by editing signals likely influenced by motion
artifacts [28,29]. Baek and Shin [30] collected PPG
measurements over 24 hours using a custom device and filtering
method, recommending a subset of HRV metrics as good targets
for continuous HRV tracking using commercial devices. Morelli
et al [28] conducted a study evaluating the accuracy of a
consumer-grade PPG (Microsoft Band 2) for HRV estimation
during less restrictive, but controlled, conditions (eg, sitting and
walking) over 10-min trials. Errors likely caused by motion
artifacts during walking were attenuated by using corresponding
accelerometer signals to delete sections of the data corrupted
by motion artifacts.

Objectives
Although HR and PR are correlated and closely related, the use
of PRV to estimate HRV requires further research, especially
under free-living conditions. In this study, the concurrent
validity of PRV measurements from a consumer-facing PPG
sensor is compared with HRV measurements from a portable
ECG under 2 unsupervised conditions up to 4.5 hours each: (1)
while engaging in regular activities of daily living and (2) during
sleep. A secondary goal of this study is to examine factors
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influencing estimation errors of PRV for HRV, including motion
artifacts, measurement conditions, and editing approaches.

Methods

Participants
A convenience sample of healthy individuals aged 18-65 years
was recruited for the study. Individuals with a history of cardiac
and/or sleep disorders were excluded to minimize the collection
of irregular cardiac signals. Under these conditions, approval
for this study was granted by the University of Waterloo
Research Ethics Committee on September 5, 2017, filed under
protocol #31197.

Device Setup
A total of 2 wearable devices were used to acquire
cardiovascular signals in this study: (1) a commercially available
optical PPG wearable device (Microsoft Band 2 or MB2,
Microsoft) and (2) a research-grade wearable ECG device
(Shimmer3 ECG, Shimmer). Both wearables were recorded
simultaneously with signals transmitted via Bluetooth to a
smartphone (Pixel or Nexus 3, Google). To synchronize the

devices, triaxial accelerations were also recorded with both
devices. Participants were asked to wear the devices twice, for
at least 90 min each, once during daily activities and a second
time when sleeping.

To record ECG, hydrogel electrodes (Kendall 233 Hydrogel,
Covidien) were placed in a 4-lead bipolar limb lead
configuration (ie, left arm [LA], right arm [RA], left leg [LL],
right leg) on the participant’s chest as shown in Figure 1 [31].
The participant’s skin was prepared by shaving and sanitized
using hospital-grade alcohol wipes before electrode placement.
Electrodes were connected to a Shimmer3 ECG, worn at the
waist with a strap, and all leads were taped to the chest to
prevent tangling and static, and minimize motion artifacts. On
the smartphone, the Multi-Shimmer Sync mobile app (Shimmer,
Dublin, Ireland) was used to record ECG data from the
Shimmer3 ECG. The MB2 was worn on the participant’s wrist
of choice as tightly as possible, without causing discomfort.
MB2 size (small or medium) was selected to fit the size of the
participant’s wrist. A third-party mobile app, Companion for
Microsoft Band (released by Pain in My Processor, Google Play
Store), was used to log data from the MB2 to the smartphone.

Figure 1. Electrocardiogram 4-lead bipolar limb electrocardiogram configuration on participants’ chests. LA: left arm; RA: right arm; V: precordial
leads.

Participants’ Instructions
Given the free-living nature of data collection, participants were
instructed on how to set up and monitor device connection and
logging status to facilitate troubleshooting. To ensure proper
electrode placement, a (trained) researcher placed the electrodes
in the 4-lead bipolar limb lead configuration (Figure 1) during

the first data collection (ie, day). For the second collection (ie,
night), electrodes were left on, replaced by the research assistant,
and/or marked by location and replaced by the participant.
Before the second collection, ECG signals were visually
examined to ensure that the QRS complexes were clearly
identifiable. Participants were instructed and encouraged to
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contact a researcher at any time in case of questions or concerns
during data collection.

Postprocessing
Following data collection, all postprocessing and statistical
analyses were conducted using MATLAB 2018a (MathWorks).
Figure 2 outlines the steps taken in postprocessing.

Figure 2. Postprocessing of data from the Shimmer and Microsoft Band. ECG: electrocardiogram; HRV: heart rate variability; P-P: time between 2 P
peaks in a photoplethysmogram or peak-to-peak intervals; PRV: pulse rate variability; R-R: time between 2 R peaks in an ECG.

Synchronizing Devices
Shimmer3 and MB2 were coarsely synchronized by aligning
triaxial acceleration peaks from tapping both devices

simultaneously on a table. Each device was tapped 3 times in
2 orientations with 10 s of rest between orientations. Fine

JMIR Biomed Eng 2020 | vol. 5 | iss. 1 | e17355 | p. 4http://biomedeng.jmir.org/2020/1/e17355/
(page number not for citation purposes)

Lam et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


synchronization was performed using a cross-correlation method
described below (cross-correlation synchronization).

ECG Data Processing
Both LA-RA and LL-RA ECG signals were filtered using a
first order bandpass Butterworth filter from 1 to 25 Hz. A
maximal overlap discrete wavelet transform with a Daubechies
least-asymmetric wavelet with 4 vanishing movements was
used to enhance the R peaks in the ECG, followed by a
threshold-based peak-finding function used to identify the
R-peaks [32,33]. In one sample (participant 2, daytime), the
wavelet detection algorithm more accurately and consistently
detected the T wave of the ECG signal and was used as a proxy
for the QRS complex, previously shown to give results similar
to those of R-peak detection [34]. A time series of R-R intervals
was extracted from the detected R-peaks, and outlier values
outside of the physiological range of values for a healthy
individual at rest, walking, or during sleep (R-R<0.3 s or
R-R>2.5 s) were removed [35-37]. To remove transients
associated with artifacts or noise, segments of at least 15
consecutive R-R intervals were included in the analysis. Longer
segment thresholds (30, 60, and 120 consecutive R-R intervals)
were tested with negligible effects on the results. On the basis
of the signal that provided more R-R intervals, either the LA-RA
or LL-RA electrode pair signal was chosen for processing and
analysis.

PPG Data Processing
P-P intervals and corresponding time stamps were recorded
directly from MB2 outputs as the time interval between 2
continuous heartbeats [38]. Note that the temporal resolution
of MB2 is limited to 10 ms. On the basis of existing literature
reporting signal processing methods to edit R-R intervals and
remove artifacts, three methods were used to identify and delete
artifacts in the P-P intervals outputted by the MB2, resulting in
4 conditions of P-P data. Deletion was chosen as the editing
technique (as opposed to interpolation) because motion artifacts
would likely affect consecutive samples, making interpolation
challenging. In addition, the long-term nature of data collection
would mitigate one of the major concerns associated with
deletion, the loss of samples [39]. The 4 processing conditions
were as follows:

• None (condition A): This condition contains the raw P-P
intervals.

• Threshold deletion (condition B): Removing implausible
P-P interval values for a healthy individual at rest, walking,
or sleeping (P-P<0.3 s or P-P>2.5 s) [35-37].

• Moving average deletion (condition C): Threshold deletion
(as described in B above) and removing changes in P-P
intervals faster than physiologically plausible indicated by
a moving average filter. This was done following Morelli
et al [28], discarding values for which |PPt-µ10|≥0.5µ10,
where PPt refers to the P-P interval data and µ10 is a 10 s
moving average.

• Acceleration-based deletion (condition D): A series of
threshold filters, moving average filters (described in C
above), and an acceleration filter. Considering that low PPG
signal quality may be attributable to movement, Morelli et
al [28] removed signal segments affected by motion artifacts

by estimating periods of signal quality associated with the
corresponding accelerometry time series, Wt, and then
removing P-P intervals where Wt was found to exceed a
threshold, k. k was identified by examining the correlation
between Wt and error, where Wtis calculated as an average
of wt over a window of duration τ, and Wt is calculated as
follows:

In this study, no significant correlation between Wt and   was

found. As such, a threshold of  =0.02 m/s2 was used to filter the
data with τ=40 s (the same parameters as used by Morelli et al)
[28].

Data Synchronization
Following coarse synchronization of MB2 and Shimmer3,
consistent delays between the 2 devices were observed. To
identify the highest correlation between devices, a
cross-correlation between P-P and R-R data was conducted.
The estimate of the time-shift was applied to the P-P data,
similar to the method used by Pietilä et al [40]. P-P intervals
were then matched to R-R intervals by matching data points
with the closest time stamps. If a data point did not have a
matching interval within 1 s, the interval was deleted. The 1-s
delay was chosen to accommodate for delays in Bluetooth
transmission and pulse transit time. After matching, the
remaining data were divided into 2-min windows from which
the HRV and concurrent validity metrics were calculated [41].

HRV Metrics for Analysis
After postprocessing, the following time domain HRV and PRV
features were extracted for each trial, where N-N refers to either
R-R or P-P:

• Mean N-N: the mean of all N-N intervals
• Mean HR: reciprocal of mean N-N, in beats per minute

(bpm)
• SDNN: a measure of overall variability, the SD of all N-N

intervals, also known as RRSD
• pNN50: percentage of subsequent differences more than

50 ms
• RMSSD: root mean square of subsequent differences
• LF, HF, LF/HF ratio: low-frequency power (LF),

high-frequency power (HF), and the ratio of LF to HF
• SD1 and SD2: SDs of short (x=y) and long (orthogonal to

x=y) diagonal Poincaré plot axes [12]

For spectral measures, R-R and P-P intervals were converted
to instantaneous HR (60/N-N, where N-N is interval time in
seconds) and then interpolated to 4 Hz using a piecewise cubic
Hermite interpolation (MATLAB function “pchip”). This
ensured regular time intervals between data points, a prerequisite
for estimating the Fourier transform and signal power. The
Fourier transform was performed (using “fft” function in
MATLAB) on the entire data set for each participant. This
allowed for the calculation of frequency domain HRV features
such as LF (0.04-0.15 Hz) and HF (0.15-0.40 Hz). LF and HF
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were computed in normalized units by the sum of LF and HF.
The ratio of LF to HF was also reported.

Analyses
To quantify the concurrent validity between R-R and P-P
intervals, the following metrics were used:

• Root mean square error (RMSE): RMSE between matched
R-R and P-P samples

• Pearson correlation coefficient (R2): The correlation strength

between R-R and P-P intervals. R2 values were categorized

as strong (R2≥0.7), moderate (0.5≤R2<0.7), fair

(0.3≤R2<0.5), and poor (0.3<R2) [42].

To compare PPG-derived metrics across collection and
processing conditions (ie, day- or nighttime collection, filtering
condition), two-tailed paired t tests were used. Bland-Altman
plots were generated to illustrate the agreement between R-R
and P-P intervals. In the Bland-Altman plot, the difference
between each P-P and R-R measurement is plotted against the
mean of each measurement [43].

Results

Overview
This section presents the results of (1) investigating the
concurrent validity between R-R and P-P intervals across
published filtering methods, (2) a comparison between ECG-
and PPG-derived metrics of HRV, and (3) a comparison across
free-living data collection conditions (ie, day and night). A total
of 10 volunteers were recruited (3 men and 7 women, aged
20-61 years) for this study for a total of 19 trials (1 day and 1
night per participant). One participant’s ECG night data were
corrupted and therefore not analyzed or reported.

After processing, a large amount of data was lost. The number
of matched and windowed N-N intervals is described in Table
1; all comparison statistics were calculated on the basis of these
data. The percentages of compared intervals were calculated by
dividing the number of matched and windowed samples by the
total number of R-R or P-P intervals detected from the ECG or
MB2, respectively.

Table 1. Group mean (SD) of data sample sizes used for comparison between R-R and P-P intervals across processing and collection conditions.

Percent P-P intervals compared,
mean (SD)

Percent R-R intervals compared,
mean (SD)

Number of samples, mean (SD)Collection condition and processing
condition

Day

47.29 (18.32)52.35 (26.89)5168.70 (1683.92)A

43.91 (18.31)48.25 (26.30)4706.5 (1447.57)B

32.29 (16.88)34.68 (24.73)3311.30 (1316.13)C

21.39 (15.92)23.03 (26.28)1847.40 (1334.28)D

Night

53.30 (19.26)55.05 (27.70)8418.78 (5179.41)A

52.06 (19.15)53.79 (27.31)8197.11 (5060.21)B

46.66 (19.38)46.89 (24.24)7383.00 (4075.76)C

42.97 (21.23)41.15 (27.67)7177.33 (4901.63)D

A larger data sample was acquired at night than that acquired
during the day. Despite formal instructions and training on the
operation and charging of the sensor systems, several technical
barriers were frequently encountered that limited the number
of samples in each trial. These included inadvertent
misplacement of ECG electrodes or MB2, insufficient battery
charging before night collection, and/or dropped Bluetooth
stream to the mobile device.

Concurrent Validity Across the Editing Techniques
Table 2 compares the concurrent validity of P-P data with that
of the R-R data across all processing conditions, including

RMSE and R2. The largest differences were observed in the
RMSE between the raw (A) and filtered (B, C, and D)
conditions.
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Table 2. Group mean root mean square error, concurrent validity (R2), and number of matched samples across processing and collection conditions.

Night (n=9)Day (n=10)Processing condition

Root mean square error (ms), mean (SD)

158 (67)182 (48)A

136 (53)165 (42)B

120 (45)144 (39)C

119 (45)122 (47)D

R2 , mean (SD)

0.28 (0.17)0.15 (0.12)A

0.33 (0.19)0.14 (0.13)B

0.34 (0.21)0.18 (0.13)C

0.34 (0.21)0.22 (0.17)D

The RMSE ranged between 46 and 285 ms across all conditions.
Increased editing reduced the average error (RMSE). Under
condition C, error was further examined by generating

Bland-Altman plots comparing the P-P intervals with R-R
intervals, as shown in Figure 3. Although the mean error is close
to zero for both day and night conditions, the limits of agreement
were greater than 200 ms.

Figure 3. Bland-Altman plots for 1 participant under processing condition C for (A) day and (B) night. P-P: time between 2 P peaks in a
photoplethysmogram or peak-to-peak intervals; R: time between 2 R peaks in an electrocardiogram.

Across all conditions, R2 values ranged from 0 to 0.66. Editing

did not have a large impact on R2. Although R2 improved at
night, none of the correlations were considered strong; 2 of 19
(all night) were moderate, 7 (2 days, 5 nights) were fair, and 10
(8 days, 2 nights) were poor. Of the 19, 16 (9 days, 7 nights)
paired t tests between R-R and P-P intervals under condition C
yielded P=.01, indicating significant differences between ECG-
and PPG-based methods.

Under condition D, no data sets showed strong correlations.
Only 3 (1 day, 2 nights) were moderate, 7 were fair (1 day, 6
nights), and 9 were poor (7 days, 2 nights). Paired t tests between
matched R-R and P-P intervals edited under condition D were
significant for 12 trials (5 days, 7 nights). Notably, condition

D reduced the amount of data available for analysis, especially
during the day. From condition C to D, the average sample loss
was 40.18% (SD 29.59) during the day and 3.73% (SD 4.37)
at night.

Compared with condition C, condition D improved RMSE and

R2 slightly during the day and varied by trial. The mean
correlation between error and Wt was 0.28 (SD 0.24), with a
range of 0.13 to 0.70 for day data, and 0.29 (0.21), with a range
of 0.16 to 0.73 for night data. Figure 4 [44] shows the error and
Wt for a sample showing lower correlation between Wt and

error (R2=0.16) and a sample trial with higher observed

correlation (R2=0.50).
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Figure 4. Correlation between absolute error and mean change in triaxial acceleration (Wt) under the same conditions as Morelli et al (A) and (B)

comparison of |Error| and Wt over time for a sample with low correlation (R2=0.16) (C), and (D) comparison of |Error| and Wt over time for a sample

with higher correlation (R2=0.50).

Comparison of HRV and PRV Measures
Table 3 compares the HRV and PRV measures across
participants under condition C, as this condition yielded the
highest concurrent validity for most participants while retaining
sample size. The findings in Table 3 are based on a 3311.30
(SD 1316.13) matched samples for day data and 7303.00 (SD
4075.76) for night data. Under condition C, paired t tests
revealed no significant differences between HRV and PRV

measures. At night, SDNN, pNN50, RMSSD, SD1, SD2, LF,
HF, and LF/HF ratio metrics were observed to be significantly
different. Significant differences between HRV and PRV
measures were observed in more measures at night, a condition
during which motion artifacts are expected to be lower, allowing
for collection of more accurate PRV data. Note that the temporal
resolution of MB2 is limited to 10 ms, but many of the observed
differences between R-R and P-P intervals are larger.
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Table 3. Comparison of mean heart rate variability and pulse rate variability metrics under processing condition C.

NightDayFeatures

P valuec|Error|PRVHRVP valuec|Error|PRVbHRVa

Time domain features

.0810 (9)960 (142)967 (151).5919 (15)833 (51)829 (70)NN (ms), mean (SD)

.0320 (10)69 (25)87 (37).4825 (20)98 (25)90 (36)SDNNd (ms), mean
(SD)

.0219.48 (14.11)21.35 (15.06)38.58 (30.59).1415.90 (11.30)39.74 (16.18)30.60 (24.51)pNN50e (%), mean
(SD)

.0234 (36)67 (20)101 (57).5442 (36)116 (38)104 (58)RMSSDf (ms), mean
(SD)

.0224 (26)48 (21)72 (40).5430 (26)82 (27)74 (41)SD1g (ms), mean
(SD)

.0518 (14)83 (29)97 (35).2431 (33)110 (25)94 (40)SD2h (ms), mean
(SD)

Frequency domain features

.020.02 (0.02)0.72 (0.01)0.70 (0.03).430.03 (0.02)0.69 (0.02)0.70 (0.03)LFi (nu), mean (SD)

.020.02 (0.02)0.28 (0.01)0.30 (0.03).430.03 (0.02)0.31 (0.02)0.30 (0.03)HFj (nu), mean (SD)

.010.21 (0.18)2.64 (0.13)2.43 (0.28).290.28 (0.23)2.26 (0.22)2.39 (0.32)LF/HF ratio, mean
(SD)

aHRV: heart rate variability.
bPRV: pulse rate variability.
cResults from paired t test between HRV and PRV measures.
dSDNN: SD of all N-N intervals.
epNN50: percent of subsequent differences more than 50 ms.
fRMSSD: root mean square of subsequent differences.
gSD1: SD of short (x=y) Poincaré plot axis.
hSD2: SD of long (orthogonal to x=y) Poincaré plot axis.
iLF: low-frequency power.
jHF: high-frequency power.

Compared with processing condition C, similar results were
observed in condition D (Multimedia Appendix 1). Under
condition D, paired t tests revealed significant differences
between HRV and PRV measures for no measures during the
day, but there were significant differences in R-R and pNN50
at night. Although this may be attributed to condition D using
motion artifact editing, the large number of samples edited from
condition C to D may partially explain these findings. Given
the large sample loss associated with condition D and a lack of
strong correlation between Wt and error, the remainder of this

study focuses on the results from processing condition C (over
D).

Time series plots of matched and edited R-R and P-P intervals
(Figure 5) highlight several differences between the ECG and
PPG methods. Similar to the mean N-N results, the data sets
follow the same trends on average, but there are notable
differences. First, P-P intervals seem to be less sensitive to
changes in R-R intervals, as many shorter and longer intervals
were not well matched. Fewer artifacts were observed in the
R-R intervals that did not appear in the P-P interval signal,
which may be attributable to less R-R interval editing.
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Figure 5. Time series of matched time between 2 R peaks in an electrocardiogram and time between 2 P peaks in a photoplethysmogram or peak-to-peak
intervals for a single participant under processing condition C during (A) day and (B) night. P-P: time between 2 P peaks in a photoplethysmogram or
peak-to-peak intervals; R-R: time between 2 R peaks in an electrocardiogram.

Poincaré plots for the same participant under condition C are
shown in Figure 6. The P-P and R-R plots during the day appear
qualitatively different. Although plots of night data demonstrate

more similarities, a greater number of outliers for shorter P-P
intervals were observed.
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Figure 6. Poincaré plots for a single participant under processing condition C for (a) P-P intervals during the day, (b) R-R intervals during the day, (c)
P-P intervals at night, and (d) R-R intervals at night. P-P: time between 2 P peaks in a photoplethysmogram or peak-to-peak intervals; R-R: time between
2 R peaks in an electrocardiogram.

Comparison of Free-Living Data Collection Conditions
(Day vs Night)
Table 2 shows the difference in concurrent validity for night
data versus day data under condition C. Closer examination of
the data reveals further details. For 8 of 9 participants with a

day and night data set, the average R2 values were higher at

night. The increase in R2 is highlighted for one participant in

Figure 7, where the R2
day=0.26 and R2

night=0.40. The magnitude

of R2 improvements from day to night differed between
participants, ranging from −0.03 to 0.60 with an average
improvement of 0.22 (SD 0.31). Paired t tests comparing

changes in R2 were significant (P=.01).
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Figure 7. P-P versus R-R intervals for a participant under processing condition C during (A) day and (B) night. P-P: time between 2 P peaks in a
photoplethysmogram or peak-to-peak intervals; R-R: time between 2 R peaks in an electrocardiogram.

Night collections were found to have a slight decrease in RMSE,
indicated by a mean decrease in RMSE of 24 (SD 45) ms,
ranging from −89 ms to +40 ms difference across participants.
For the participant highlighted in Figure 7, RMSEday=148 ms
and RMSEnight=138 ms. Paired t tests comparing changes in
RMSE from day to night approached significance (P=.09).

Although night data had more matched samples, an unpaired t
test revealed that the difference between night and day samples
was significant (P=.03). The mean percent increase in samples
from day to night was 138.61% (SD 159). Differences in
percentage loss of data owing to filtering (condition C vs
condition A) were slightly higher during the day, averaging
13.31% (SD 11.47), versus night, 8.16% (SD 6.05). This
difference did not reach significance under the unpaired t test
(P=.25).

Tables 2 and 3 demonstrate that many PRV estimates of HRV
measures were more accurate at night, with |Error|avg decreasing
or remaining the same for NN, SDNN, RMSSD, SD1, SD2,
and LF/HF ratio. |Error|avg for LF and HF remained
approximately the same, whereas |Error|avg increased for pNN50
at night. Although |Error|avg generally decreased, paired t tests
revealed more differences between PRV and HRV estimates
across participants for night samples than day.

Discussion

Principal Findings
This paper examined the accuracy and concurrent validity of
PRV measurements from a commercially available PPG sensor
against HRV measurements obtained from a portable ECG
sensor during unsupervised daytime and nighttime conditions.
Accuracy and concurrent validity were examined across different
editing methods and day and night collection conditions. In
general, concurrent validity and HRV metrics were stronger at
night compared with daytime conditions. Although collection
during the night was more accurate with a lower mean error,
this finding was not generalizable across all participants. Editing
to remove outliers was effective in reducing noise, as reflected
by the reduced RMSE for conditions B, C, and D. However,

efforts to remove samples affected by motion artifacts using
accelerometry (ie, condition D) were not as effective in this
study compared with previous studies. The implications of these
findings on ambulatory measurement of HRV using a
commercially available PPG sensor to indicate health are
discussed.

Although PPG sensors have strong mean HR measurement
capabilities, the results from this study indicate poorer HRV
capabilities. As expected, both ECG and PPG methods
demonstrated similar mean R-R values with differences of less
than 20 ms, reflecting established capabilities to estimate mean
HR [17,20]. Examining beat-to-beat intervals using
Bland-Altman plots, the mean error is close to zero (Figure 3).
However, the wide variability of both under- and overestimated
intervals indicates the presence of error-inducing factors,

reflected in lower correlation (R2) and large differences in
calculated HRV metrics. Furthermore, Bland-Altman (Figure
3), time series (Figure 5), and Poincaré (Figure 6) plots indicate
PPG sensing to trend toward underestimation errors.

The implications of PPG sensing errors on HRV metrics are
highlighted in Table 3. pNN50 and LF/HF ratios were
particularly sensitive to errors in point-to-point accuracy.
PPG-derived estimates of pNN50 were poor, which corroborates
previous reports of up to 30% error [12,21]. In addition, LF/HF
ratio estimation errors were anticipated to be related to poorer
HF estimates during the day arising from larger and more
frequent (wrist) motion associated with regular activities of
daily living. Across day and night collection conditions, SDNN
estimates were similar when comparing ECG and PPG methods.
SDNN has been shown to be associated with daytime
occupational stress and has been hypothesized to demonstrate
the parasympathetic autoregulation of the cardiac system in
response to variations in cardiac output [45,46].

Day Versus Night Collection
When comparing day and night collection conditions, concurrent
validity and HRV metrics indicate more accurate HRV estimates
at night. Improved concurrent validity at night may be attributed
to fewer errors related to ambient light changes at night [47,48],
as presumably during sleep, the lighting conditions are
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consistently darker. An important distinction between day and
night was the larger sample size at night, likely owing to a more
consistent Bluetooth stream and reduced noise arising from
stationary conditions at night (ie, sleeping, lying down).

Although mean R2 values (condition C: mean 0.34, SD 0.21;
condition D: mean 0.34, SD 0.21) were highest during night
collections, the range of improvements varied across
participants. Conversely, paired t tests revealed greater
differences between PRV and HRV metrics (Table 3) at night.
This may be attributed to the larger variability observed during
the day, likely associated with a larger set and magnitude of
motion during activities of daily living (compared with night).
Considering significantly stronger concurrent validity measures
(Table 2), coupled with smaller mean differences in HRV
measures, we consider PRV estimates to better reflect HRV
metrics at night. Although data collected at night may have
improved concurrent validity, it is important to note that
individuals may not have gone to bed or fallen asleep
immediately after beginning the data collection. As a result,
metrics taken at night may have captured features of
wakefulness, such as shorter N-N intervals. For example,
unaccounted for time in bed while remaining awake may have
skewed the shape of the Poincaré plots as well as metric SD2.

Impact of Editing
Simple editing methods to improve PPG signals were examined
in this study. PPG recordings are known to be affected by
motion artifacts, contact force, posture, and ambient temperature
[11]. Owing to the free-living nature of the study, the latter
factors were not controlled. By adopting methods established
by Morelli et al [28], RMSE improved by removing
physiologically implausible intervals (condition B) and
concurrent validity improved by deleting areas with rapid
changes (condition C) at night. However, screening for motion
artifacts using accelerometry signals (condition D) was
ineffective at improving PPG-derived signals and HRV
estimates. This is consistent with the findings by Baek and Shin
[30], who were also unsuccessful in obtaining accurate long-term
free-living recordings of wrist PPG using a custom device, even
when performing deletions based on acceleration and P-P
intervals differing by more than 15%. These findings, along
with those by Georgiou et al [20], suggest that under unrestricted
conditions, PRV is a poor estimator of HRV. Although other
studies have looked to improve HRV estimation using
alternative editing and correction methods [39,44,49], an
exhaustive investigation of correction methods is beyond the
scope of this study.

Our finding of relatively ineffective use of motion artifact
compensation suggests that other factors affect PPG signals.
For example, changes in respiration and peripheral vascular
factors (ie, vascular volume, vasomotor activity, and
vasoconstrictor waves) are known to affect the AC and DC
frequency components of the PPG waveform [50]. In particular,
the effect of peripheral vascular factors affects pulse transit time
(PTT), or the time delay required for blood to travel between
the heart and peripheral tissues [17]. Considering the range of
daily activities (eg, body position changes [51], stress, and
physical activity) lead to fluctuations in blood pressure [52], an

assumed constant PTT is a likely source of error in estimating
PRV parameters.

Limitations
The primary limitations of this study were the sample population
and technical limitations of the devices. In this study, a
convenience sample of 18- to 65-year-old participants with no
known cardiac history participated. Although those with known
cardiac conditions were excluded, the presence of underlying
vascular disease in our cohort is unknown. As such, the findings
may not be applicable to target disease populations. The impact
of vascular conditions, such as atherosclerosis and cholesterol
deposits in the arterial walls leading to decreased vessel
compliance, which have been shown to alter pulse waveform
from the classic triphasic pattern to mono- or biphasic patterns
[53], remains to be examined. Although the number of
participants was relatively small (n=10), the large number of
within-participant samples (>1500 matched interval points per
participant) and analyses supports the overall questions
regarding sensor comparisons to estimate HRV.

The devices used in this study were limited in several ways.
Both Shimmer3 and MB2 devices logged using separate device
clocks, with potential for drift (approximately 1-2 s) over the
course of a single trial. The devices were synchronized using
an external mechanical stimulus (ie, 3 taps in 2 orientations)
and by applying a data-driven delay estimate (ie,
cross-correlation). Although these procedures have been used
in previous studies with good results coupled with qualitative
and quantitative observation of synchronized signals, the
potential for dropped samples or desynchronization exists. The
publicly available documentation for MB2 offers little to no
insight into R-R interval processing or adjustment for when
faced with motion artifacts and is no longer commercially
available at the time of writing. Of note, signal drops were
observed sporadically, including (1) large amplitude arm
movements and (2) when MB2 was out of Bluetooth range from
the smartphone for long periods (>10 min). We interpret these
signal drops as obvious situations where motion artifacts and
wireless communication are severely challenged with little to
no impact on our findings. Furthermore, the resolution of RR
intervals reported by MB2 was 10 ms, limiting accuracy similar
to quantization error (ie, round-off errors). Given the large
number of samples, resolution limitations are unlikely to affect
mean values (eg, mean RR) but may increase variability (eg,
RMSSD) estimates. However, the observed underestimation is
unlikely to arise from quantization errors and are interpreted as
systematic errors associated with the sensing method.

Implications for Future Work
Wearable technologies are becoming more sophisticated with
commercially available products capable of providing consumers
access to information previously limited to clinical settings,
including HRV and ECG data to identify arrhythmias [54]. With
this in mind, it is important to understand when and if the data
can be considered valid and reliable. This study provides
evidence that the relationship between PRV and HRV varies
throughout the day, likely attributable to dynamic changes in
the peripheral vasculature. The study findings suggest that
PPG-derived measures of HRV are reasonable under particular
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conditions (ie, at night), wherein this relationship is relatively
stable for some HRV metrics (ie, SDNN and Poincaré axes). A
deeper examination of factors modifying HRV estimation,
particularly vascular factors, is yet to be conducted. As stated
previously, our conclusions are drawn primarily from the HR
and acceleration data. To further study these windows of high
correlation in the future, other variables such as body
temperature, cortisol levels, or a cognitive assessment of the
participant’s mental state may be beneficial.

In future, examining more editing, correction, and interpolation
techniques for interbeat intervals may enhance the
interpretability and quality of the P-P intervals obtained from
commercially available wearables [44,55-57]. This study found
that published movement artifact reduction techniques did not
significantly improve the quality of our data. As wearable
technologies continue to become more advanced, future studies
in this field would benefit from the use of improved hardware
and more robust sensors. For example, PulseOn and Apple
Watch, both commercially available wearable devices, use
different strategies to improve the quality of their signals.
PulseOn uses multiwavelength PPG to reduce the sensitivity to
movement artifacts and ambient light disturbances [47,48],
demonstrating 99.57% accuracy during sleep [47]. Considering
the lack of peripheral vascular indicators to account for changes

in PTT, the Apple Watch approach of directly acquiring R-R
intervals using built-in or peripheral ECG sensors (Kardia Band,
Alivecor) [58] is justifiable.

Conclusions
The objective of this study was to assess the validity of PRV
measurements taken from a PPG sensor by comparing it with
the HRV measurements taken from a portable ECG while
individuals were engaged in activities of daily living and during
sleep. Although PPG sensors demonstrated greater validity at
night, overall concurrent validity was poor. HRV metrics pNN50
and LF/HF ratio were especially sensitive to errors in
point-to-point accuracy. Increased editing via deletion improved

the RMSE but had a small impact on R2. In comparing editing
and deletion methods, screening for motion artifacts using
accelerometry signals to remove error-prone signals was largely
ineffective in improving HRV estimates. The best results were
obtained under condition C (moving average method) at night,

with the highest mean R2 values. Overall, the findings from this
study suggest that PRV is a poor surrogate of HRV under
free-living conditions. Findings from this study indicate that
advances in hardware and wearable technologies, such as
multiwavelength PPG sensors, are warranted to unleash the
potential of PRV to serve as a proxy measure for HRV.
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Abbreviations
ECG: electrocardiogram
HF: high-frequency power (0.15-0.40 Hz)
HR: heart rate
HRV: heart rate variability
LA: left arm
LF: low-frequency power (0.04-0.15 Hz)
LL: left leg
MB2: Microsoft Band 2
N-N: N-N intervals (either R-R or P-P intervals)
pNN50: percent of subsequent differences more than 50 ms
P-P: time between 2 P peaks in a PPG or peak-to-peak intervals
PPG: photoplethysmography
PR: pulse rate
PRV: pulse rate variability
PTT: pulse transit time
R2: Pearson correlation coefficient
RA: right arm
RMSE: root mean square error
RMSSD: root mean square of subsequent differences
R-R: time between 2 R peaks in an ECG
SD1: standard deviation of short (x=y) Poincaré plot axis
SD2: standard deviation of long (orthogonal to x=y) Poincaré plot axis
SDNN: standard deviation of all N-N intervals, also known as RRSD
Wt: mean change in triaxial acceleration
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