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Abstract

Background: Maturity-onset diabetes of the young (MODY) is a group of dominantly inherited monogenic diabetes, with
HNF4A-MODY, GCK-MODY, and HNF1A-MODY as the three most common forms based on the causal genes. Molecular
diagnosis of MODY is important for precise treatment. Although a DNA variant causing MODY can be assessed based on the
criteria of the American College of Medical Genetics and Genomics (ACMG) guidelines, gene-specific assessment of
disease-causing mutations is important to differentiate among MODY subtypes. As the ACMG criteria were not originally designed
for machine-learning algorithms, they are not true independent variables.

Objective: The aim of this study was to develop machine-learning models for interpretation of DNA variants and MODY
diagnosis using the ACMG criteria.

Methods: We applied machine-learning models for interpretation of DNA variants in MODY genes defined by the ACMG
criteria based on the Human Gene Mutation Database (HGMD) and ClinVar database.

Results: With a machine-learning procedure, we found that the weight matrix of the ACMG criteria was significantly different
between the three MODY genes HNF1A, HNF4A, and GCK. The models showed high predictive abilities with accuracy over
95%.

Conclusions: Our results highlight the need for applying different weights of the ACMG criteria in relation to different MODY
genes for accurate functional classification. As proof of principle, we applied the ACMG criteria as feature vectors in a
machine-learning model and obtained a precision-based result.

(JMIR Biomed Eng 2020;5(1):e20506) doi: 10.2196/20506
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Introduction

Monogenic diabetes results from DNA mutations in a single
gene, which accounts for about 1%-4% of all cases of diabetes
in the United States [1]. The most common form of monogenic
diabetes is maturity-onset diabetes of the young (MODY), an
autosomal dominant disease that most commonly occurs in
adolescence or early adulthood [2]. Genetic sequencing is
needed to identify the causal mutations and to diagnose different
subtypes of MODYs [3]. The DNA variant causing MODY can
be specifically assessed using the criteria established by the
American College of Medical Genetics and Genomics (ACMG),
as published in their guidelines [4]. Although the ACMG
guidelines can be universally applied for all human DNA
variants, our previous study suggested that a gene-specific
assessment is important for identifying disease-causing
mutations in different MODY genes [5]. In addition,
contradictory evidence is commonly seen in functional
classification of genetic variations when using the ACMG
guidelines [6]. The ACMG guidelines may suggest a variant of
uncertain significance; however, classification of the variant
may have contradictory evidence, and some variants with
contradictory evidence may turn out to have a reliable definite
classification.

Machine learning has been advocated as an important tool for
both clinical and research purposes in human diseases [7,8]. In
this study, we aimed to develop machine-learning models for
interpretation of DNA variants using the ACMG criteria, with
a focus on DNA variants of three MODY genes (HNF1A,
HNF4A, and GCK) underlying the three most common types
of MODYs [9].

Methods

Data Collection for Machine-Learning Procedures
Known DNA variants of the three MODY genes HNF1A,
HNF4A, and GCK were acquired from the dbSNP [10], the
ClinVar database [11], and the Human Gene Mutation Database
(HGMD) 2019 professional version [12]. Among the
multihundred variants reported in these genes, approximately
half have a classification of pathogenic/likely pathogenic (P/LP)
according to the annotation in ClinVar or HGMD. According
to the HGMD, the three genes were curated by Professor
Andrew Hattersley, a leading genetic expert in MODYs [13].
The classification of variants as benign/likely benign (B/LB)
varies between the different databases according to the
annotation of ClinVar or dbSNP. Overall, for the three genes,
there are 899 unique variants reported in HNF1A, including 569
P/LP sites and 330 B/LB sites; 1037 unique variants for HNF4A,
including 182 P/LP sites and 855 B/LB sites; and 1664 unique
variants for GCK, including 1065 P/LP sites and 599 B/LB sites.
However, several of these variants have different annotation
features between the different databases.

Feature Vector Generation
The feature vectors used for machine-learning modeling were
the criteria based on the ACMG guidelines [14]. The criteria
terms were generated based on InterVar [15], a computational

tool that uses a preannotated or variant call format file as an
input and generates automated interpretation based on the
ACMG criteria. It should be noted that not all 33 ACMG criteria
can be computationally scored. For example, the PS3 criterion
requires well-established in vitro or in vivo functional studies
supportive of a damaging effect on the gene or gene product.
As a result, the following 15 ACMG criteria were used, which
was also the length of feature vectors for the three MODY genes:
PVS1, PS1, PS4, PM1, PM2, PM4, PM5, PP2, PP3, PP5, BA1,
BS1, BP4, BP6, and BP7.

Using machine-learning regression procedures, we normalized
the weights for the evidence of different categories in accordance
with the ACMG guidelines, assuming that the weight coefficient
of PVS1 is 1, that of PS is 1/2, that of PM is 1/6, and that of PP
is 1/12. We additionally assumed that the weight coefficient of
BA1, BS, and BP is –1, –1/2, and –1/4, respectively. As the
ACMG criteria were not originally designed for machine
learning, these criteria are not true independent variables.
Multicollinearity among feature vectors is commonly seen
within each gene, which is the case for the PM1 and PP2 criteria.
By definition, a PM1 hit means that the variant is located in a
mutational hotspot or in a critical and well-established functional
domain without benign variation, and a PP2 hit means that there
is a missense variant in a gene that has a low rate of benign
missense variation and in which missense variants are a common
mechanism of disease. In many situations, PM1 and PP2 are
consistent with each other, which increases the risk of
inappropriate weighting of the two criteria because of
multicollinearity. To detect the collinearity among feature
vectors, we calculated the variance inflation factor (VIF) and
pairwise correlation coefficient for the ACMG criteria. Feature
vectors with a VIF greater than 10 or a correlation coefficient
larger than 0.8 were removed before the learning procedures.

Learning Procedures and Predictive Modeling
The machine-learning procedure used in this study was a typical
logistic regression based on the Scikit-learn package in Python
[16]. For detection of the weight matrix of the ACMG criteria,
all variants, including P/LP and B/LB variants, were taken into
account. For predictive modeling, we split the data based on
2-fold random shuffle processes. In other words, the P/LP and
B/LB variants were split randomly into equally sized sets, with
one set serving as training data and the other set serving as
testing data, to determine the predictive capabilities of the
model. This process was repeated 20 times to obtain the mean
and standard deviation for accuracy measures, including
sensitivity and specificity.

Results

Variation in the Weight Matrix of ACMG Criteria
Among the Three MODY Genes
Based on the machine-learning procedure, we found that the
weight matrix of the ACMG criteria was significantly different
between the three MODY genes HNF1A, HNF4A, and GCK
(Table 1, Figure 1). The differences are nontrivial and must be
taken into consideration in clinical interpretation of DNA
variants for genetic diagnosis.
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Table 1. Weight matrix of the American College of Medical Genetics and Genomics criteria for three maturity-onset diabetes of the young genes.

WeightFrequencyCriteria

GCKHNF4AHNF1AGCK B/LBGCK P/LPHNF4A
B/LB

HNF4A
P/LP

HNF1A

B/LBb
HNF1A

P/LPa

5.27511.6655.4010.00330.21830.00000.25820.00300.3040PVS1

0.2100.0000.0180.00000.00390.00000.00000.00000.0018PS1

0.0000.0000.0000.00000.00000.00000.00000.00300.0000PS4

0.4422.3400.8660.00830.63260.00000.48350.00300.5149PM1

0.5420.2900.5550.50920.99220.14500.78020.42730.9772PM2

0.9231.9441.1670.00000.00490.00000.00550.00000.0053PM4

0.9270.0070.3750.00000.13350.00000.00550.00000.0264PM5

0.0000.0000.0000.00000.00000.00120.54400.00000.0000PP2

0.3470.0000.2350.00500.74370.00000.57690.00610.6151PP3

0.2021.7270.9750.00330.15400.00000.19230.00000.1195PP5

–1.312–0.880-0.6960.17030.00390.17080.01650.20910.0105BA1

0.0000.0000.0000.48910.00780.58950.04400.56670.0228BS1

–0.6650.0000.0000.02340.04580.02220.01650.07270.0193BP4

–0.2530.0000.0000.02340.00290.04800.02200.11820.0123BP6

0.0000.0000.0000.02000.04000.02110.01100.06360.0123BP7

aP/LP: pathogenic/likely pathogenic variant.
bB/LB: benign/likely benign variant.

Figure 1. Weight matrix of three MODY genes, HNF1A, HNF4A and GCK: normalized weight for American College of Medical Genetics and
Genomics criteria for three most common maturity-onset diabetes of the young genes.

Evidence for PS is rarely observed for the MODY variants. By
contrast, evidence for PS4 (ie, the prevalence of the variant in
affected individuals is significantly increased compared with
the prevalence in controls) is commonly observed but is often
misclassified. As an example, the HNF1A variant
12:121420807-G-A (rs1183910) was reported to be associated
with C-reactive protein, a marker of inflammation, in a
genome-wide association study [17]. However, as a common
single nucleotide polymorphism with a minor allele frequency
of 0.292 in European populations, this cannot be a variant

causing the rare and dominantly inherited form of
HNF1A-MODY.

With respect to evidence for PM criteria, PM1, which is defined
as a variant located in a mutational hotspot or in a critical and
well-established functional domain (eg, active site of an enzyme)
without benign variation, and PM2 (absent from controls or at
extremely low frequency if recessive in Exome Sequencing
Project, 1000 Genomes Project, or Exome Aggregation
Consortium) are both commonly observed, in support of
pathogenic variants in the three MODY genes. However, PM2
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is also commonly seen among B/LB variants in these three
genes, thus lacking specificity for functional classification. In
this study, PM2 showed a VIF of 79.0 in HNF1A and a VIF of
247 in GCK. Therefore, although PM2 is much more common
than PM1 for the three MODY genes, the weight of PM2 in
HNF1A is lower than that of PM1.

With respect to the evidence for PP criteria, PP2 (missense
variant in a gene that has a low rate of benign missense variation
and in which missense variants are a common mechanism of
disease) is absent in HNF1A and GCK, but is commonly seen
in HNF4A. However, PP2 showed a correlation coefficient of
0.932 with PM1, and therefore does not add substantial weight
to the classification of P/LP variants in HNF4A.

Highly Accurate Predictive Ability for MODY Gene
Pathogenicity
HNF4A-MODY (MODY1), GCK-MODY (MODY2), and
HNF1A-MODY (MODY3) are the three most common types

of MODYs, accounting for ~70% of all MODY genes [18].
Therefore, a predictive model that can accurately recognize
pathogenic variants would be useful for the diagnosis of novel
mutations in these genes. As described in the Methods section,
we used 2-fold random shuffle testing with 50% of the 3600
mutations as training data and the other 50% as testing data,
and repeated the analysis 20 times. The logistic regression
machine-learning model showed overall accuracy above 95%
(1676/1786) for MODY gene mutations (Figure 2). Both HNF1A
(true negatives=163, false positives=2) and HNF4A (true
negatives=428, false positives=0) had a specificity close to
100%, and the specificity in GCK was also above 95% (true
negatives=289, false positives=10). This lower specificity is
also consistent with the benign phenotype and mild clinical
expression of GCK-MODY.

Figure 2. Overall accuracy based on logistic regression machine learning. The boxplot represents the sensitivity and specificity for 2-fold random
shuffle tests.

These results proved the principle that ACMG criteria could be
applied as meaningful feature vectors in a machine-learning
model, and such a model based on ACMG criteria could provide
accurate pathogenic classification for other Mendelian disease
genes in a gene-specific manner.

Discussion

Our results highlight the need for applying different weights of
the ACMG criteria in the functional classification of DNA
variants of different MODY genes. In the past decade,
sequencing technologies have evolved rapidly with the advance
of high-throughput next-generation sequencing (NGS). By
adopting NGS, clinical laboratories are now performing an
ever-increasing volume of genetic testing for genetic disorders.
However, increased complexity in genetic testing has been
accompanied by new challenges in sequence interpretation, and
multiple new standards have been implemented for physicians
and genetic counselors regarding the interpretation and reporting
of sequence variants at different levels of pathogenicity.

Currently, there are multiple computational tools available based
on different algorithms and databases that are being used to
predict the pathogenicity of DNA variants, such as SIFT [19],
MutationTaster [20], likelihood ratio test [21], FATHMM by a
supervised machine-learning model [22], GERP++ by
maximum-likelihood evolutionary rate estimation [23] for
coding variants, and DANN for both coding and noncoding
variants using a deep neural network [24]. However, all of these
computational tools assess each gene with a common rule, which
is not based on biology, whereas this study proposes that a
gene-specific assessment for pathogenicity is required, at least
for MODY genes [5].

The evolutionary selection pressures on MODYs vary across
different genes, and is considered to be the lowest in the case
of GCK-MODY [25]. Similar issues exist with functional
classification based on the ACMG criteria, which are globally
applied for all human genes. The ACMG criteria contain 33
terms that lead to five categories of mutations (“pathogenic,”
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“likely pathogenic,” “uncertain significance,” “likely benign,”
and “benign”), as one of the most commonly used standards.

MODY represents a group of dominantly inherited monogenic
diabetes, and HNF4A-MODY (MODY1), GCK-MODY
(MODY2), and HNF1A-MODY (MODY3) are the three most
common subtypes of MODY. These MODY genes are involved
in different molecular pathways. MODY variants of different
genes show different clinical features and thus require different
treatments. For example, HNF1A-MODY is characterized by a
reduced beta cell mass or impaired function, and has been treated
with sulfonylureas for decades with excellent results [26].
Patients with HNF1A-MODY are highly sensitive to
sulfonylurea treatment and may be susceptible to developing
hypoglycemia during the treatment [26]. HNF4A-MODY has
similar clinical features with HNF1A-MODY, and the affected
transcription network plays a role in the early development of
the pancreas. The pancreatic beta cells produce adequate insulin
in infancy but the capacity for insulin production declines
thereafter [27]. The beta cells in GCK-MODY have a normal
capacity to make and secrete insulin, but do so only above an
abnormally high glucose threshold, which results in a chronic,

mild increase in blood sugar that is usually asymptomatic [25].
Accordingly, treatment of GCK-MODY can be achieved by a
healthy diet and exercise, while oral hypoglycemic agents or
insulin is of no benefit for these patients [25]. Therefore,
accurate molecular diagnosis of these MODYs is important for
precise treatment.

In conclusion, we applied a computational machine-learning
method together with the ACMG criteria for functional
classification of genetic variants of the three most common
MODY genes, HNF1A, HNF4A and GCK. Our results show
that a typical machine-learning model using 15 computational
ACMG criteria as the feature vector has predictive abilities that
are highly accurate (>95% accuracy) for hundreds of annotated
variants in three MODY genes. Therefore, this model could
serve as a fast, gene-specific method for physicians or genetic
counselors assisting with diagnosis and reporting, especially
when confronted by contradictory ACMG criteria. Moreover,
we show that the weight of the ACMG criteria exhibits gene
specificity, which advocates for the application of
machine-learning methods with the ACMG criteria to capture
the most relevant information for each disease-related variant.
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P/LP: pathogenic/likely pathogenic
VIF: variance inflation factor
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