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Abstract

Background: Sleep is essential for human health. Considerable effort has been put into academic and industrial research and
in the development of wireless body area networks for sleep monitoring in terms of nonintrusiveness, portability, and autonomy.
With the help of rapid advances in smart sensing and communication technologies, various sleep monitoring systems (hereafter,
sleep monitoring systems) have been developed with advantages such as being low cost, accessible, discreet, contactless, unmanned,
and suitable for long-term monitoring.

Objective: This paper aims to review current research in sleep monitoring to serve as a reference for researchers and to provide
insights for future work. Specific selection criteria were chosen to include articles in which sleep monitoring systems or devices
are covered.

Methods: This review investigates the use of various common sensors in the hardware implementation of current sleep monitoring
systems as well as the types of parameters collected, their position in the body, the possible description of sleep phases, and the
advantages and drawbacks. In addition, the data processing algorithms and software used in different studies on sleep monitoring
systems and their results are presented. This review was not only limited to the study of laboratory research but also investigated
the various popular commercial products available for sleep monitoring, presenting their characteristics, advantages, and
disadvantages. In particular, we categorized existing research on sleep monitoring systems based on how the sensor is used,
including the number and type of sensors, and the preferred position in the body. In addition to focusing on a specific system,
issues concerning sleep monitoring systems such as privacy, economic, and social impact are also included. Finally, we presented
an original sleep monitoring system solution developed in our laboratory.

Results: By retrieving a large number of articles and abstracts, we found that hotspot techniques such as big data, machine
learning, artificial intelligence, and data mining have not been widely applied to the sleep monitoring research area. Accelerometers
are the most commonly used sensor in sleep monitoring systems. Most commercial sleep monitoring products cannot provide
performance evaluation based on gold standard polysomnography.

Conclusions: Combining hotspot techniques such as big data, machine learning, artificial intelligence, and data mining with
sleep monitoring may be a promising research approach and will attract more researchers in the future. Balancing user acceptance
and monitoring performance is the biggest challenge in sleep monitoring system research.

(JMIR Biomed Eng 2020;5(1):e20921) doi: 10.2196/20921
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Introduction

Background
Sleep is crucial for human health and quality of life. Poor sleep
and sleep disorders have been increasingly prevalent among the
world’s older population [1,2]. Polysomnography (PSG) has
long been the gold standard to quantify sleep time, to
differentiate sleep stages, and to assess sleep fragmentation.
PSG provides comprehensive physiological information during
sleep including electroencephalograms (EEGs),
electrocardiograms (ECGs), electromyography (EMG),
electrooculography (EOG), oral-nasal airflow, body position,
thoracic and abdominal movements, pulse oximetry, and limb
movements. The serious impact of sleep on health and
well-being is the dominant motivation for sleep monitoring.

• On personal health, sleep is a foundation for good health
as important as diet and exercise, according to the National
Sleep Foundation. Poor sleep can lead to adverse health
consequences, including obesity [3], cardiovascular disease
[4], and depressive disorders [5]. Sleep is also associated
with creativity [6], memory consolidation [7], and cognitive
function [8]. Patients affected by sudden cardiac death with
sleep disorders such as obstructive sleep apnea (OSA) have
been reported to have peak mortality during sleep hours
[9].

• On society, the incidence of sleep disorders appears to be
a concern worldwide. Among the global population, 16.6%
of people in Africa and Asia [10], 18% of people in Europe
[11], and more than 20% of people in North America
[12,13] are affected by nocturnal sleep disorders. Such
prevalence has led to a range of societal problems, such as
high rates of chronic diseases, road traffic accidents, and
workplace accidents. Approximately 13% of work injuries
are due to sleep problems [14]. In the United States, the
expenditure for the treatment of moderate-to-severe sleep
disorders and related disorders amounts to US $165 billion
per year, far more than the costs of treating diseases such
as heart failure, stroke, hypertension, and asthma, which
range from US $20 to US $80 per year [15]. In 5 OECD
(Organisation for Economic Co-operation and
Development) countries, the economic costs of sleep
deprivation are 1.35% (Canada), 1.56% (Germany), 1.88%
(United Kingdom), 2.28% (United States), and 2.92%
(Japan) of their respective gross domestic product (GDP)
[16].

Sleep Stages Scoring Rules
Clinicians can obtain reliable sleep monitoring results, such as
sleep stages, by analyzing the PSG recording during the night.
For sleep stage guidelines and scoring rules, the R&K rules
proposed by Rechtschaffen and Kales in 1968 [17] were used
until 2007, when the American Academy of Sleep Medicine
(AASM) updated the scoring manual commonly referred to as
the AASM scoring manual [18]. The R&K rules and the AASM
rules differ in the terminology used. The R&K rules divide sleep
into 6 distinct stages: W (wake); non–rapid eye movement
(non-REM [NREM]) stages S1, S2, S3, and S4; and REM sleep
stage. The AASM rules recognize 5 sleep stages: W (wake)
stage N1 (formerly stage 1 sleep), stage N2 (formerly stage 2
sleep), stage N3 (formerly stages 3 and 4 sleep), and stage R
sleep (formerly stage REM sleep), as illustrated in Figure 1.

For the same sleep, the scoring results obtained from R&K rules
and the AASM rules will be slightly different. One study [19]
adopted both rules to score PSG sleep recordings of healthy
subjects and patients (38 women and 34 men) aged 21 to 86
years. The results showed that sleep latency, REM latency, total
sleep time, and sleep efficiency were not affected by the
classification standard. In contrast, the time (in minutes and as
a percentage of total sleep time) spent in stage 1 (S1/N1), stage
2 (S2/N2), and slow wave sleep (S3+S4/N3) differed
significantly between the R&K and AASM classifications.
Although light and deep sleep increased (S1 vs N1 [+10.6 min,
(+2.8%)]: P<.01; S3+S4 vs N3 [+9.1 min (+2.4%)]: P<.01),
stage 2 sleep decreased significantly according to the AASM
rules (S2 vs N2 [−20.5 min, (–4.9%)]: P<.01).

The differences between the results of the 2 sleep standards can
be attributed to the different rules used [20].

The reader is reminded that sleep stages should not be
considered as distinct entities but rather as a gradual transition
of a waveform. Sleep usually follows a predictable pattern,
moving cyclically between the light sleep stage, the deep sleep
stage, and REM. Each sleep cycle typically lasts about 90 min
and is repeated 4 to 6 times during the night. In each sleep cycle,
people usually experience a transition from light to deep sleep
first and then switch to REM. However, some stages can be
skipped during sleep. For example, one can switch to REM or
return directly to deep sleep from REM sleep [21]. Sleep quality
is analyzed using standard parameters such as sleep efficiency,
total sleep time, sleep latency, sleep stages 1 and 2, slow-wave
sleep (sleep stages 3 and 4), rapid eye movement sleep, wake
time after sleep onset, and nocturnal wake time [22].
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Figure 1. Terminology used by R&K and AASM for sleep stages scoring.

Sleep disorders, the most recently released third edition of the
International Classification of Sleep Disorders (ICSD-3) has
identified 7 major categories of sleep disorders that include
insomnia, sleep-related breathing disorders, central
hypersomnolence disorders, circadian rhythm sleep-wakefulness
disorders, sleep-related movement disorders, parasomnia, and
other sleep disorders [23]. Most sleep disorders can be
monitored by sleep monitoring systems, and some of them are
detailed below:

• Insomnia refers to impairment in the quality and quantity
of sleep. According to Ohayon [24], 10% to 30% of the
adult population is affected by insomnia. The ICSD-3
criteria for this diagnosis include (1) a report of sleep
initiation or maintenance problems, (2) adequate opportunity
and circumstances for sleep, and (3) consequences during
the day. The ICSD-3 duration criterion for chronic insomnia
disorder is 3 months, and a frequency criterion (at least 3
times per week) was added.

• Sleep apnea is characterized by pauses in breathing or
instances of shallow breathing during sleep [25]. Due to
sleep apnea, the patient wakes up regularly throughout the
night to retrieve breathing. Frequent awakening results in
very poor quality of sleep and excessive daytime fatigue.
Usually, sleep apnea may be accompanied by loud snoring,
which can be easily monitored by a microphone (many
researchers have studied Snoring signal processing–based
methods to achieve a supplementary diagnosis way of sleep
apnea) [26-28].

• Restless legs syndrome (RLS) is based on an urge to move
the legs, sometimes accompanied by an uncomfortable
sensation that (1) occurs primarily with rest or inactivity,
(2) is partially or totally relieved by the movement, for as
long as the movement occurs, and (3) occurs primarily in
the evening or night [29]. Up to 30% of cases are caused
by iron deficiency. These abnormal leg movements can be
easily monitored with an accelerometer [30-32].

• Periodic limb movement disorder (PLMD) is characterized
by abnormal limb movements and is responsible for
deterioration in sleep quality [33]. For young people, it will
be considered as pathologic when the index of periodic
limb movement during sleep (PLMS; number of PLMS per
hour) is greater than 5. For older people, an index of PLMS

greater than 15 is usually adopted as the pathological
threshold. This disorder can be detected by using EMG [34]
or actigraphy [30].

• Disorders of arousal from NREM (DAN) include confusion
arousal, sleepwalking, sleep terrors, and sleep-related eating
disorders [23,35]. The general criteria for disorders of
arousal include (1) recurrent episodes of incomplete
awakening, (2) absent or inappropriate responsiveness, (3)
limited or no cognition or dream report, and (4) partial or
complete amnesia for the episode. Detection of repeated
wakes during the NREM stage can be a sign of DAN. This
disorder can be detected using EEG.

• REM sleep behavior disorder (RBD) is characterized by
the intermittent loss of REM sleep atonia and the appearance
of elaborate motor activity associated with the situation in
dreams, such as repeated episodes of behavior or
vocalization arising from REM [36]. When specific
movements and sounds are detected during the REM stage,
a suspicion of RBD should be considered. This disorder
could be detected by using a microphone, actigraphy, and
EEG.

Therefore, there appears to be a growing interest in researching
new sleep monitoring system solutions to provide rapid, reliable,
and long-term monitoring results to users and clinicians.
Innovative home-used sleep monitoring systems offer users
access to sleep phases and quality by themselves and can be a
reference for the diagnosis of sleep disorders by clinicians.

For sleep monitoring, a sleep monitoring system can include a
wide range of wearable or noncontact devices, including sensors,
actuators, smart fabrics, power supplies, wireless communication
networks, processing units, multimedia devices, user interfaces,
software, and algorithms for data capture, processing, and
decision support. These systems are able to measure vital signs,
such as body and limb movements, body and skin temperature,
heart rate, ECGs, EEGs, EMG, and respiration rate. The
measurements are transmitted via a sensor network either to a
central connection node, such as a personal digital assistant, or
directly to a medical center for storage, data processing, and
decision making.

To discuss this potential, this paper aimed to review the current
state of research and development in the field of sleep
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monitoring system, highlighting the main features of the most
promising projects being developed and future challenges.

Methods

Overview
With the growing appearance of sleep problems, the sleep
monitoring system study has been one of the hotspots in the
field of smart human monitoring. As a result, advances in sleep
monitoring system development technology are continuously
accelerating. Simple, lightweight, and small-size sensor systems
are being adopted to acquire sleep-related physiological
information. These systems are designed to be adaptable to the
gold standard PSG, including sleep stages, sleep or wake, sleep
apnea, sleep positions, and so on. Furthermore, the advantages
of such a system over the traditional PSG method are that it is
affordable, requires little or no technician intervention, is
installed in the home, and can be used over the long term. The
systems have developed rapidly with the progress made in the
miniaturization of sensors, the reduction of energy consumption,
and various communication possibilities (Bluetooth, Wi-Fi,
Sigfox, LoRa, and NB-IoT). These technologies enable current
sleep monitoring systems to be less intrusive and effective, with
remote and continuous monitoring. In this review, specific
selection criteria are chosen as reference articles on sleep
monitoring systems.

Inclusion Criteria for Sleep Monitoring System Search
Most sleep monitoring system research projects have focused
on smart, portable, and nonintrusive devices that encompass
wireless communication, moving the monitoring site from the
hospital to the home, in patch or noncontact form. Systems that
have the following features are included:

• Wearable, portable, nonintrusive, wireless, and noncontact.
• Patch, body sensor system, and sensor network.
• Band, watch, textile, bedsheet, and belt.
• Mobile, stationary, ambulatory, at home, and remote.

Automatic collection and transmission of acquired data and
processing results can help physicians and caregivers easily
follow sleep conditions over time. In addition, it can make it
easier to find trends in the data, providing insight into
individualized sleep patterns.

Search Methods and Strategies
This literature review focuses on the presentation of the
hardware and software adopted in the current sleep monitoring
system. We have included journal publications, conference
publications, and information on related websites. The keywords
for material collection are shown in Textbox 1. We conducted
a keyword search in Web of Science, PubMed, and PubMed
Central.

Textbox 1. Keywords used for the literature search.

• Sleep

• Sleep quality

• Sleep monitor

• Sleep monitor system

• Sleep monitor and sensor

• Sleep monitor and smart patch

• Sleep monitor and commercial products

• Sleep monitor at home

• Polysomnography

• Electroencephalography

• Rapid eye movement or light or deep sleep or wake

• Long-term sleep monitor

• Sleep phase classification

• Sleep stage classification

• Noncontact sleep monitor

• Nonintrusive sleep monitor

• Noninvasive sleep monitor

• Sleep big data

• Sleep data mining

• Sleep deep learning

• Sleep machine learning

• Sleep artificial intelligence

JMIR Biomed Eng 2020 | vol. 5 | iss. 1 | e20921 | p. 4http://biomedeng.jmir.org/2020/1/e20921/
(page number not for citation purposes)

Pan et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Results

Owing to a large number of articles and abstracts retrieved, it
was decided to include only articles published for the period
2013 to 2018 in Web of Science, PubMed, and PubMed Central.
By counting the number of hits in the bibliographic database
for each keyword, we can find search hotspots in this field and
aspects that are still rarely covered. In this first search, we tried
to find articles and abstracts, and websites with the keywords
listed in Textbox 1. Keywords are used alone or combined using
and, or operators. The article should report a clear description
of the systems, the recipients or users requiring these systems,
and issues related to sleep monitoring systems, including the
parameters measured, wireless sensor network (WSN), user
needs, and user acceptance. As this review does not constitute
an exhaustive presentation of the scientific literature in the field

of sleep monitoring systems, only a few representative sleep
monitoring system research and development projects or
products from academia or industry are presented.

The number of hits in the sleep monitoring system research
field between 2013 and 2018 is shown in Table 1.

Table 1 shows that the number of hits for sleep big data, sleep
machine learning, sleep artificial intelligence, and sleep data
mining is lower than the other keywords. It would appear that
techniques such as big data, machine learning, artificial
intelligence, and data mining have not been widely applied to
the sleep monitoring research area, although they are now
focused in other research areas. Therefore, the combination of
these hotspot techniques and sleep monitoring may be a
promising research direction and will attract more researchers
in the future. To facilitate reading of the data in Table 1, a
histogram is drawn, as shown in Figure 2.
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Table 1. Number of occurrences in the field of sleep monitoring system research over 5 years.

PubMed Central, nPubMed, nWeb of Science, nKeywords

23,21213451416Sleep monitoring system

36,14645613955Sleep stage

31,02222243542Sleep phase

30,36722043174Light sleep

86,65354,4381172Deep sleep

804432205224REMa

51,88213,1546760Sleep care

48,32411,61615,517Sleep quality

623233799001Wearable device

49126632735Assistive system

19292051017Noncontact monitoring

53773854Nonintrusive monitoring

28,29893556507Noninvasive monitoring

146256561Smart patch

723283482Medicine skin patch

13,91027609501Portable device

361316332808eHealth

70,83620,58311,712mHealthb

1226404508Homecare

934761613Telecare

734310,2116378Telemedicine

1575617921Telemonitoring

42,906222012,356Body sensor

17,4872713368Body sensor network

5239108337,771Wireless sensor network

152856790Wireless sensor network wearable

198230592Body area network wearable

72,11740131975Personal area network

1389567Personal area network wearable

4294277131Sleep monitoring gold standard

421922402036PSGc

36,06929,39631,027EEGd

41,13926,58818,358ECGe

22,2064371534Sleep, data processing

537769131Sleep, big data

400Sleep data mining

2807187277Sleep machine learning

119420227Sleep artificial intelligence

40,766236253,375User needs

10,2749027711User acceptance

11,25016188892User satisfaction
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aREM: rapid eye movement.
bmHealth: mobile health.
cPSG: polysomnography.
dEEG: electroencephalography.
eECG: electrocardiography.

Figure 2. Number of results in the field of research on sleep monitoring systems over a 5-year period.

Discussion

Through the observation and analysis of search results, we found
that current and rapidly developing frontier hotspot techniques,
such as large data sets, data mining, artificial intelligence, and
machine learning, are not yet widely used in the field of sleep
monitoring. However, due to the powerful performance and
wealth of applications of these techniques, their application in
the field of sleep monitoring is expected to be the future
development trend and certainly presents great research value
and market opportunities.

Big data can be defined by 3 key concepts: volume, velocity,
and variety. Volume refers to the amount of data generated and
stored. In general, the larger the amount of data, the greater the
statistical power for descriptive and predictive analysis. Applied
to sleep monitoring systems, it could better describe sleep
behavior and predict sleep-related disorders and health status.
Velocity refers to the speed of data generation and processing.

Big data are often available in real time. This makes it easier
for people to get their sleep monitoring results in a timely
manner, while helping subjects or medical staff to respond
quickly to abnormalities and emergencies discovered during
sleep monitoring. Finally, the term variety refers to different
sources, types, and formats of data. Nowadays, more data types
are being collected via sleep monitoring systems, including text,
audio, image, and video data. Big data allow missing data to be
completed through data fusion. This enables comprehensive
sleep information to be obtained efficiently. In addition, big
data can provide targeted information through the
comprehensive and detailed collection of various relevant
information, such as age, gender, BMI, place of residence,
occupation, and so on. For example, certain age groups, a certain
gender, people living in a certain location, people working in a
certain profession, and people of a certain body type have a
higher rate of poor sleep quality. On the basis of this, it is
possible to organize more medical resources in certain areas,
and at the same time, more attention in terms of sleep health
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can be given to some people who have a higher rate of poor
sleep quality. This will improve the efficiency of the medical
system.

Artificial intelligence refers to technology that presents human
intelligence through computer programs. Machine learning uses
data or previous experience to automatically improve the
performance of specific algorithms. Data mining is a
computational process that uses artificial intelligence, machine
learning, statistics, and databases to discover patterns in
relatively large data sets. In general, machine learning is
considered a subset of artificial intelligence and consists mainly
of data mining. As a tedious and repetitive task, sleep monitoring
is well suited to the adoption of these promising and powerful
approaches. When applying these approaches, it is more
convenient and timely to obtain a large amount and variety of
sleep-related data through the continued development of big
data technology. This allows these approaches to be used to
train more powerful models and to progressively extract
higher-level features from the raw data to create a smarter, more
efficient, and more convenient sleep monitoring systems.

Current Issues With Sleep Monitoring Systems

User Needs, Perception, and Acceptance
A good sleep monitoring system should take into account user
needs, perception, and acceptance before it is designed. User
needs for sleep monitoring systems are diverse. These could
include obtaining accurate and complete information about
sleep. These needs could be met by professional medical
instruments such as PSG and EEG. In addition, the user needs
could also obtain auxiliary reference information, that is, only
a small amount of key information such as sleep duration,
number of awakenings, proportion of different sleep stages, and
even only a summary of the sleep score. These needs are
typically met by various apps in consumer electronics and
smartphones with sleep monitoring functions. Compared with
professional medical devices, this type of commercial product
takes better account of the user’s perception and is usually
noninvasive, nonintrusive, or even contact free. The user's
perception of the sleep monitoring system is closely related to
the number of electrodes or sensors attached to the body, the
position, and the method of attachment on the body.

For the number of electrodes or sensors, the fewer the number,
the better the user’s perception. For the position of the
attachment, it is preferable to attach it to the distal limbs such
as the wrist, fingers, ankle, instep, and toes rather than to the
main body, face, and head. The method of attachment to the
body may be by using adhesive tape or a belt, such as a chest
belt. In general, adhesive bonding may give a better user
perception than a belt because there is less contact area with the
body and less restraint on the body. User acceptance of sleep
monitoring systems depends on the satisfaction of the user's
needs and perception. Usually the satisfaction of user needs and
the satisfaction of user perception are contradictory. To meet
user needs as much as possible, more complete and accurate
human physiological information needs to be collected, which
often means that more sensors need to be attached to more body
positions, often worsening user perception. Therefore, the design
of a good sleep monitoring system has to find a compromise

between users’ needs and their perception to achieve a good
user perception, which is usually related to ease of use while
trying to meet user needs as much as possible.

Effectiveness
Although PSG is the gold standard for sleep monitoring, it is
expensive, highly invasive, and complicated to perform. PSG
monitoring is not easily accessible, especially in developing
countries [37]. Owing to the many limitations of PSG, most
people are only subject to PSG monitoring for one night.
However, monitoring at night is not sufficient to determine the
actual sleep status. To improve effectiveness and obtain
appropriate follow-up, long-term, at-home monitoring is
necessary.

Guettari et al [38] proposed a system based on one thermal
sensor is used over a long period of time to supervise changes
in sleep quality and can be used at home and consulted remotely
by sleep medicine experts. Changes in sleep quality derived
from long-term monitoring are very useful for assessing sleep
health. Using existing equipment daily for sleep monitoring is
found to be an effective approach, such as sleep monitoring
using our smartphone router. Liu et al [39] proposed monitoring
vital signs of breathing and heart rate during sleep using a single
Wi-Fi access point (such as a router) and a single Wi-Fi device
(PC or smartphone) without any wearable or dedicated devices.
Thus, the system has the potential to be widely deployed and
to perform continuous long-term monitoring. Smartphone apps
are considered a good choice for large-scale, low-cost, and
long-term sleep monitoring, which will improve effectiveness
and accuracy [21,40]. Sleep Hunter [41] is a mobile service that
uses smartphones' built-in sensors. It is implemented on the
Android platform and can detect the transitions between sleep
stages for monitoring sleep quality and the intelligent wake-up
call, which wakes users in light sleep. The ability to perform
long-term monitoring is important for the effectiveness of a
sleep monitoring system. Long-term monitoring is essential for
reliable results and early detection of abnormal sleep changes.
To do this, sleep monitoring systems should be as inexpensive,
easy to use, and easily accessible as possible.

Interoperability
Sleep monitoring devices are useful in health care. The value
of these devices will increase if sleep monitoring system
software apps can seamlessly collect medical data and upload
the data to a database. The ISO/IEEE11073 (X73) family of
interoperability standards was originally designed for
point-of-care clinical environments. The latest branch of X73,
X73 for personal health devices (X73PHD), enables the
development of interoperable personal health ecosystems and
brings benefits to both technology producers (design cost
reduction, experience sharing, and marketing facilities) and
users (plug and play, accessibility, ease of integration, and
prices) [42]. OpenICE is an open-source software project of the
Medical Device Plug-and-Play Interoperability Program at
Massachusetts General Hospital, leveraging much of the
program’s research performed since 2004 to support 4 distinct
user groups: use case demonstrations, clinical adoption,
regulatory science, and commercial adoption [43]. Data sharing
and interoperability are positive for users, researchers,
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physicians, and businesses. With the development and
popularization of big data technology, improving interoperability
is a hotspot in sleep monitoring system research and will be the
trend for future development.

Hardware and Software Considerations
The main considerations for sleep monitoring system hardware
focus on 3 aspects: cost, comfort, and convenience, which could
be the determining factors for the acceptance of implementation.
In terms of cost, the equipment should be affordable for most
people. In addition, for devices that require frequent
maintenance, such as the need for frequent replacement of
specific components and the consumption of specific reagents
or materials, their costs should be considered. For devices
designed to use disposable batteries instead of rechargeable
batteries, the energy consumption should be taken into account,
as frequent battery replacement will significantly increase the
cost of use. In terms of comfort, contactless systems have the
greatest advantage, but for contact systems, the emphasis is on
wireless, miniaturization, and weight reduction. The comfort
aspect includes ease of implementation and maintenance
convenience. In terms of the convenience of implementation,
daily implementation does not have to be complex and time
consuming. The main objective is to allow users to carry out
the application themselves without the intervention of
professional technicians. Generally, in terms of maintenance
convenience, the longer the maintenance interval, the easier the
operations are.

The main considerations for sleep monitoring system software
are two-fold: effectiveness and efficiency. First, the sleep
monitoring software must be able to effectively process the data
collected to obtain the most accurate monitoring results. In terms
of efficiency, this includes temporal efficiency and energy
efficiency. It is very important for real-time sleep monitoring
system processing to consider temporal efficiency. The cost of
the execution time must be short enough to meet the real-time
requirement.

For non–real-time sleep monitoring systems that process data
after the end of monitoring, time efficiency is also of great
importance. After sleep, users tend to be concerned about the
results obtained. Waiting time will have an impact on the user
experience, so the shorter the processing time, the better. Energy
efficiency depends on 2 aspects: optimization of the algorithm
and sleep or wake programming for the hardware. If the
algorithm can be optimized well, it will significantly reduce the
energy consumption for the execution of the algorithm.
Furthermore, with reasonable sleep or wake programming of
the hardware, unnecessary energy consumption can be avoided.

Medical, Wellness, and Quality-of-Life Benefits
Sleep quality is a crucial factor for human health and quality of
life. There is growing recognition of the harmful effects of poor
sleep quality and sleep disorders. Patients with sleep disorders
are prone to chronic diseases such as obesity, diabetes, and
hypertension. The use of sleep monitoring systems could reduce
the incidence of sleep-related illnesses or illnesses could be
predicted by sleep through long-term monitoring and trend
analysis. McHill et al [44] demonstrated the relationship between

obesity and sleep time. Lee et al [45] examined the impact of
sleep quantity and sleep quality on blood glucose control in
type 2 diabetes. Fuchs et al [46] showed that OSA is a clear risk
factor for resistant hypertension. The application of sleep
monitoring system can overcome infrequent clinical visits that
may not detect transient events that predict dangerous future
events. Early diagnosis through long-term trend analysis could
prevent the potential severity of a disease. These analyses could
provide an instant diagnosis of acute events, issue alerts to health
care professionals, and reduce the time of intervention through
telediagnosis and teletherapy. Some typical sleep disorders,
such as sleep apnea, restless leg syndrome, and periodic limb
movement disorders can be detected in time through sleep
monitoring. Unfortunately, people with sleep disorders such as
OSA tend to go undiagnosed [47] because they are usually not
even aware that sleep apnea events have occurred. This lack of
awareness of symptoms during sleep is a serious health problem
for modern life [48]. The early signs of these disorders could
be monitored and treated with mild medications [49].

Cost, Psychological, and Socioeconomic Barriers
Wireless patches, wristbands, chest belts, headbands, or other
wearable devices that connect a sleeper to formal or informal
caregivers, a data center or call center, who can then notify
medical services in the event of abnormal sleep, are affordable
and reliable. This technology has been available for more than
15 years, but despite its affordability [50], its adoption is
minimal in almost all countries. Wearing permanent health care
mobile devices and systems has psychological effects on
patients. Significant barriers limit the widespread use of these
systems due to the lack of studies on testing smart wearable
systems by end users who provide feedback and preferences
[51]. The high cost of current sleep monitoring system services
limits their expansion. Wireless networks are another barrier to
sleep monitoring system deployment. Until the end of 2019,
the global internet penetration rate was only 58.7% [52].
Consequently, access to services via internet is not always
available. People affected by sleep disorders may have
difficulties in finding adequate sleep monitoring devices and
services to support them in monitoring the quality of their sleep.
Economic and social issues also need to be addressed to ensure
that the market for sleep monitoring systems is opened up. A
sound analysis of the costs and benefits of sleep monitoring
systems has not been conducted. Some studies focus solely on
system technology and performance [40,53]. Sociotechnical
design science needs to be taken into consideration to ensure
that sleep health care meets the needs of society. Ultimately,
Coiera [54] argued that it is the beliefs and values of our culture
that shape what we will create and what we will dream about.
A total of 4 rules govern the design of health services: (1)
technical systems have strong social consequences, (2) social
systems have technical consequences, (3) we do not design
technology; designing sociotechnical systems does not just mean
designing technology, and (4) the design of sociotechnical
systems must consider the way in which people and technologies
interact.
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Privacy, Ethics, and Legal Barriers
With the continuous development of sleep monitoring
technology, the collection of user information via sleep
monitoring system has become increasingly detailed and diverse.
At the same time, it has gradually evolved from traditional
overnight monitoring to long-term monitoring. This series of
developments has improved the accuracy and reliability of sleep
monitoring but has significantly increased the risk of leakage
of user privacy information. To protect the privacy of users, the
traditional method is to provide informed consent before
receiving sleep monitoring, and data collection can only take
place once the user has signed the informed consent. Consent
is normally used to authorize a single study, and there are no
specific regulations for data sharing in the research community.
Given the high value and gradually popular trend of big data
apps, privacy issues related to data sharing need to be addressed
urgently by legislators.

Impact of Sleep Monitoring Systems on Society
Sleep disorders affect a significant part of the population
[10-12]. The socioeconomic consequences can be dramatic. It
includes drowsiness while driving, drowsiness in the workplace,
and cardiovascular diseases [55]. Surantha et al [56] argued that
sleep quality monitoring is one of the solutions to maintaining
sleep quality and preventing chronic diseases, mental problems,
or accidents caused by sleep disorders.

On the basis of these considerations and issues, many types of
sleep monitoring systems have been developed. The features
of these are detailed in the following section.

Sleep Monitoring System Features

Conventional Sleep Monitoring Systems

Polysomnography

Polysomnography (PSG) is the gold standard in sleep assessment
introduced in the 1960s as a tool for assessing sleep disorders.

The subject equipped with a PSG is illustrated in Figure 3. A
PSG records a minimum of 12 channels requiring a minimum
of 22 wires attached to the patient. These channels vary in each
laboratory and can be adapted to meet the physician’s
requirements. There are a minimum of 3 channels for the EEG,
1 or 2 measure airflow, 1 or 2 are for chin muscle tone, 1 or
more for leg movements, 2 for eye movements (EOG), 1 or 2
for heart rate and rhythm, 1 for oxygen saturation, and 1 for
each waist belt, which measures movements of the chest wall
and upper abdominal wall. Belt motion is usually measured
using piezoelectric sensors or respiratory inductance
plethysmography. Breathing amplitude is often measured with
the temperature changes that occur with breathing, as measured
by a thermistor or thermocouple placed in the path of the airflow
(nose and mouth). Body movement was measured by using
EMG. Oximetry is adopted to measure oxygen saturation levels
in the blood by passing infrared light through the finger and
measuring absorption patterns (made by the oxygen-carrying
pigment, hemoglobin, in the blood). The body position sensor
is used to distinguish between lying, standing, and lateral
positions during sleep.

Although PSG provides the most accurate and objective
measurement of sleep, specialized equipment, an elaborate
facility, and dedicated and experienced PSG technologists are
required to perform and analyze recordings, which are costly
and labor intensive. This technique is not practical for
large-scale and long-term sleep monitoring [57].

Figure 3 shows the standard configuration of a polysomnogram.
In Figure 3, the patient lies in a bed with sensors attached to the
body. In Figure 3, the polysomnogram recording shows the
blood oxygen level, the respiratory event, and the REM sleep
stage over time.
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Figure 3. The PSG sleep monitoring - National Heart Lung and Blood Institute (NIH), November 2013.

Electroencephalography

EEG is an electrophysiological monitoring method that records
electrical activity of the brain using electrodes placed along the
scalp to measure the voltage fluctuations resulting from ionic
current in the neurons of the brain [58]. The EEG signal is the
most important signal in the classification of sleep stages [59].

Different sleep stages are characterized by different brain
activities that can be detected by EEG recordings. The EEG
patterns of the different sleep stages are shown in Figure 4.
Stage 1 is the transition stage between wakefulness and sleep.
It usually lasts between 1 and 5 min. This stage consists of a
low voltage EEG trace with well-defined alpha (Figure 5) and
theta (Figure 5) activity, occasional vertex peaks, and slow eye
movements. This stage, on average, represents 4% to 5% of
total sleep and is free of sleep spindles (Figure 5) and
K-complexes (Figure 5). Stage 2 is the baseline of sleep and is
characterized by the occurrence of sleep spindles and
K-complexes and a relatively low voltage, mixed frequency
EEG background. In addition, high voltage delta waves may

account for up to 20% of stage 2 epochs. Stage 3 is a period in
which at least 20% and no more than 50% of sleep consists of
EEG signals with a frequency less than or equal to 2 Hz and an
amplitude greater than 75 µV (delta waves; Figure 5). Stage 4
is quite similar to stage 3, except that delta waves cover 50%
or more of the recording. Stage 4 typically represents 12% to
15% of total sleep time.

Stages 3 and 4 together are also called deep sleep or slow wave
sleep (SWS), and it is the most restorative part of sleep. REM
is the sleep stage in which dreams occur and makes up 20% to
25% of a normal night’s sleep. It is well known that the
incidence of rapid eye movements under closed eyelids, motor
atonia, and low voltage EEG patterns. During REM sleep, the
brain activity is reversed from stage 4 to a pattern similar to
that in stage 1. The characteristics of each sleep stage are
summarized in Table 2. Although the EEG is accurate for
determining sleep stages, the complexity and intrusiveness of
the user make it difficult to achieve large-scale, long-term, and
home sleep monitoring.
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Figure 4. Typical EEG pattern for different stages of sleep [60].

Figure 5. Typical EEG wave types.

Table 2. Characteristics of each stage of sleep.

EEG percentage (one screen)EEG amplitude (mv)EEGa frequency (Hz)Proportion of sleep, %Sleep stages

α>50%<5015-50<5Awake

Theta wave >50% or alpha wave <50%50-1004-82-5N1

Delta wave <20%; K-complex >1.7%50-1504-1545-55N2

Delta wave 20% to 50%100-1502-43-8N3

Delta wave >50%100-2000.5-210-15N4

EEG with mixed wave<5015-3020-25REMb

aEEG: electroencephalography.
bREM: rapid eye movement.

Electrocardiography

Electrocardiography (ECG) is the process of recording the
electrical activity of the heart over a period of time using
electrodes placed on the skin. These electrodes detect tiny
electrical changes on the skin that result from the
electrophysiological pattern of depolarization and repolarization

of the heart muscle with each heartbeat. In a conventional
12-lead ECG, 10 electrodes are placed on the patient’s limbs
and on the surface of the chest. The correlation behavior in the
heartbeat rate significantly differed for light sleep, deep sleep,
and REM sleep. During deep sleep, the heartbeat rate is reduced,
whereas a relative increase is observed in REM sleep [61].
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Furthermore, spontaneous movements during sleep are preceded
by an increase in heart rate [62]. These observations indicate a
functional link between cardiac activities and sleep stages. As
with PSG and EEG, the complexity, high equipment, and
expertise requirements of the standard ECG are barriers to its
use as a large-scale, long-term, home sleep monitoring method.

Wireless Body Area Network

Introduction

The wireless body area network (WBAN) is a wireless sensor
network that aims to monitor the vital signs and physiological
information of the user by deploying sensors on or next to the
human body. Parameters acquired from the WBAN can include
brain waves, heart rate, body movements, body temperature,
blood oxygen saturation level, sound, and so on, or
environmental conditions such as temperature, brightness, noise
level, and humidity. Owing to advances in sensor and
communication technology, WBAN enables the exchange of
information or commands over short distances between sensor
components. Moreover, remote data transmission or control
between the sensor components and the database or control
center is also available based on WBAN. Such features make
the WBAN a very suitable tool for performing continuous
monitoring tasks without requiring too much manual
intervention, which meets the requirements of sleep monitoring.
As a result, many sleep monitoring systems have been developed
by researchers and technicians based on the WBAN.

WBAN technology is highly valued in the fields of medical
sciences and human health care [63]. In the health care field,
WBAN has established itself as a leading technology capable
of providing real-time patient health monitoring in hospitals,
asylums, and even at home [64]. WBAN allows the removal of
cables and the delocalization of instrumentation and intelligence
to the sensor nodes themselves, which is useful for establishing
a nonintrusive, portable, continuous home sleep monitoring
system [55]. Currently, WBAN-based sleep monitoring system
has attracted increasing attention from researchers worldwide
[65-67]. Similar to the evolution of the WBAN, the trends in
sleep monitoring system are miniaturization, intelligence, and
long-term monitoring capability. In this section, we have
selected a few representative works on WBAN-based sleep
monitoring systems in recent years, which we briefly present
from a hardware and software perspective.

Hardware Implementation

A WBAN-based sleep monitoring system is a sensor network
application in which the sensor is an essential piece of hardware.
The choice of sensor determines the type of body parameters
that will be acquired, and the position of the sensors directly
influences the efficiency, quality of data acquisition, and user
acceptance. For these reasons, we list the type and position of
sensors used in several works, specify the possible description
of sleep phases, and briefly analyze the advantages and
drawbacks of each type of sensor, as presented in Multimedia
Appendix 1 [68-99]. Table 3 lists the sensors used in each study.

As shown in Multimedia Appendix 1 [68-99], the accelerometer
is the most commonly used sensor in these works, usually placed
on the wrist or chest or close to both positions. The microphone
was adopted only once among these works. However, the
microphone is a widely used sensor in sleep apnea monitoring
[63,104,105]. As a sound recording sensor, the microphone is
useful for detecting snoring or even abnormal breathing [106],
which are also important physiological parameters related to
the sleep state. Both the ECG sensor and the pulse sensor are
used for heart rate monitoring, but due to different detection
principles, their positions are different. Multimedia Appendix
1 [68-99] shows that in most cases, the ECG sensor is placed
near the chest, whereas the pulse sensor is placed near the wrist.
Thus, for user acceptance, the pulse sensor is better than the
ECG sensor.

Both the accelerometer and the thermopile sensor can be used
for motion detection, but they have their own advantages. In
terms of user acceptance, the accelerometer should generally
be attached to the user’s body, but the thermopile sensor is a
noncontact sensor, so the thermopile sensor is preferable.
However, with regard to measurement accuracy, thermopile
sensors are easily disturbed by the user’s coatings, such as
duvets, which affect the measurements. In addition, thermopile
sensors can only monitor effectively in a limited and fixed area.
It is difficult for thermopile sensors to specifically measure the
movement of certain parts of the body, such as measuring only
leg movement to detect periodic leg movements during sleep.
As a result, the accelerometer outperforms the thermopile sensor.
In short, the type of sensor to be chosen depends on the
application scenario and specific requirements.
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Table 3. Choice of sensor for different works related to sleep monitoring.

Pulse sensorECGa sensorMicrophoneThermopile sensor
(Infrared)

Temperature
sensor

Pressure sensorAccelerometerSources

——✓———c✓bKalkbrenner et al [70]

———✓———Guettari et al [38]

———✓✓—✓Seba et al [100]

✓————✓Velicu et al [68]

✓✓——✓—✓Suzuki et al [96]

✓—————✓Suzuki et al [76]

✓———✓—✓Saad et al [92]

—————✓—Sadek et al [98]

—————✓—Sadek et al [101]

—✓————✓Lee et al [102]

—✓————✓Chan et al [97]

—————✓—Samy et al [103]

aECG: electrocardiography.
bThe sensor is included.
cThe sensor is not included.

Software and Algorithm Processing

Software or algorithms are used to process the data collected
by the hardware. Table 4 presents the algorithms, software, and
system results illustrated in several books or articles.

Data or signal processing algorithms usually include spectral
analysis, wavelet transformation, empirical mode decomposition
(EMD), and various varieties of filters. Many sleep-related
physiological signals, such as EEG and ECG, are nonstationary.
A wavelet analysis is very useful for processing nonstationary
signals, which is why it has been adopted by many researchers
specializing in sleep monitoring. EMD, proposed by Huang et
al [109], is usually used to extract breathing and heartbeat
signals from measured data. Unlike wavelet-based
decomposition methods, this method is data-driven and does
not require a parent wavelet to be defined beforehand. With this
technique, any complicated signal can be decomposed into a
defined number of high- and low-frequency components, called
intrinsic mode functions. This technique is suitable for the
analysis of nonlinear and nonstationary biosignals [110] and

can extract local temporal structures such as heartbeats
superimposed on respiration signals [111]. In sleep monitoring,
several types of biosignals of different frequencies are acquired
simultaneously. Therefore, filters are effective and simple tools
for signal discrimination that are widely adopted in this field.

The classification algorithm is usually used for the classification
of sleep stages. Sleep stage classification is an important and
common output of sleep monitoring system. Although sleep
stages include stages 1, 2, 3, and 4 and stage REM according
to the AASM [18], most research classifies sleep stages in a
simpler way as wake, lightsleep (stages 1 and 2), deep sleep
(stages 3 and 4), REM [108] or wake, NREM (stages 1, 2, 3, and
4), REM [102], or some other similar way. This simplification
of sleep stages involves balancing the difficulty of the task with
the application requirements. Commonly used classifiers include
random forest (RF), support vector machine (SVM), multilayer,
feedforward neural network (NN), linear discriminant analysis
(LDA), decision tree (DT), and Bayes. Some papers compare
the performance of several classifiers in their work to find the
best one [101,108].
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Table 4. Implementation of software or algorithm in different works.

OutputsInvolved algorithms or softwareSources

Kalkbrenner
et al [73]

1. Sleep and wake classification1. An FIRa bandpass filter with boundaries between 200 and 2000 Hz was used on
the initial raw tracheal body sound signal acquired by microphone to obtain a pure 2. Wake, REMc, and NREMd classifica-

tionbreathing sound signal
3. Wake, REM, light sleep, and deep2. A bandpass filter with the boundaries between 5 and 30 Hz was applied on the

sleep classificationinitial raw tracheal body sound signal acquired by microphone to suppress breathing
and most of the artifacts to get heart beat sound

3. A LDb classifier was used on cardiorespiratory features and movement features
for automated sleep staging

Heart rate, respiratory, and apneaSadek et al
[98]

1. Wavelet decomposition was used on microbend fiber optic sensor data to achieve
the measuring of heart rate

2. Third-order polynomial fit and Savitzky-Golay smoothing was used on microbend
fiber optic sensor data to achieve the measuring of respiratory rate

3. Adaptive thresholding method was used on SD of the respiratory signal for apnea
or nonapnea classification

4. Chebyshev type-I bandpass filter was used on microbend fiber optic sensor data

to extract BCGe and respiratory signals
5. The MODWTf with the multiresolution analysis was used on microbend fiber optic

sensor data to estimate heart rate

Classification of signal segments as 3
phases of sleep:

Guettari et al
[38]

1. SAXg method was used on thermal sensor data for segmentation processing of the
thermal signal

2. SOMh algorithm—Kohonen maps is used on features of thermal signal segmentation 1. Deep and paradoxical sleep (REM, N3)
2. Agitated and light sleep (N1, N2)level, thermal signal segmentation duration and the variance of each thermal signal
3. Awake phase (Wake)segmentation for achieving classification

Classification of the activities into 3 classes:
awakening, calm sleep, and agitated sleep

K-means algorithm was used on IButton skin temperature sensor data to achieve data
clustering and classification

Seba et al
[100]

The relationship between the room ambi-
ence and quality of sleep

This sleep monitoring system involves Arduino IDEi software and Visual Studio 2015.Saad et al [92]

1. Arduino IDE is programmed that consist of sensor algorithms to enable those
sensors and to read the value that has been captured from room ambience and body
condition.

2. A window application was programed by Visual Studio to display the value of
those parameters

Heart rate of the person sitting in the mas-
sage chair

Sadek et al
[99]

1. Multiresolution analysis of the maximal overlap discrete wavelet transform was
used on piezoelectric sensor data to compute heart rate

2. Bandpass Butterworth filter is used on microbend sensor data to retrieve BCG
signal

Discrimination for wake or sleep, wake or
REM, and light or deep

Kushida algorithm–derived equation was used on accelerometer data as the discriminator
for wake or sleep, wake or REM, and light or deep by applying 3 different thresholds

Velicu et al
[68]

Classification of informative and noninfor-
mative signal for further heart rate detection
work

Sadek et al
[101]

1. For comparison, 5 classifiers are employed, that is, RFj, SVMk, multilayer, feed-

forward NNl, LDAm, and DTn

2. Butterworth bandpass filter with frequency limits of 1 Hz and 12 Hz was used on
microbend fiber optic sensor data to extract BCG component

3. MATLAB based software was developed as a data labeling tool

Heartbeats, breathing, snoring, sleeping
positions, and movements of the volunteer

Kalkbrenner
et al [70]

1. The developed software for visualizing and storing received data
2. Heart sound was extracted by applying a bandpass filter ranging from 15 Hz up to

80 Hz on microphone data
3. Breath sound was extracted by applying a bandpass filter ranging from 100 Hz up

to 1.5 kHz on microphone data
4. Stable results of accelerometer are provided by using the Madgwick-Filter

Heart rateSadek et al
[107]

1. The BCG signal is decomposed using CEEMDAN (complete ensemble empirical
mode decomposition with adaptive noise)

2. Sensor data fusion method: time domain average
3. The BCG signal is extracted using a Butterworth high-pass filter (fifth-order with

a cutoff frequency of 0.2 Hz) followed by a Butterworth low-pass filter (10th order
with a cutoff frequency of 30 Hz) on microbend fiber optic sensor data
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OutputsInvolved algorithms or softwareSources

ECG wave, pulse wave, body temperature
and body movements were measured by the
set and send to a smartphone using a Blue-
tooth wireless connection

1. Silmee framework provides basic functionality of Silmee system by locating Silmee
sensor node, smartphone (or tablet or wearable terminal) and cloud server

2. Silmee firmware provides vital signal processing capabilities such as noise reduc-
tion, important information extraction, or data compression

3. Silmee APIo: This API provides basic information to realize wide-variety of smart

healthcare MWp and apps
4. Silmee MWs are located in smartphone (or tablet or wearable terminal) or in health

care cloud server. The MWs provide less medical expert API than Silmee API.
For example, determination of REM and non-REM sleep, which is a popular term,
is one of Silmee MW API, which is calculated by R-R intervals information includ-
ed in the Silmee API

Suzuki et al
[96]

Wristwatch-shaped physiological sensor
that monitors user’s wrist motion and pulse
wave interval

1. The Cole algorithm for wake and sleep identification from the amount of activity
data

2. Fast Fourier transformation (FFT) is executed for the even-interval pulse-to-pulse
intervals to get the frequency spectrum

3. The k-means clustering method is adopted to classify sleep stages

Suzuki et al
[76]

Classification of sleep stages:

1. Wake
2. NREM
3. REM

1. To capture the respiratory signal, first-order derivation is used to compensate for
the drifting phenomenon of pressure sensor

2. A low-pass filter is applied to eliminate short-term fluctuations in respiration signals
3. Sum all the pixels in the lower half of the pressure image and mark a leg movement

when a significant drop or increase in pressure is detected
4. A simple thresholding technique for movement reporting

Lee et al [102]

Classification of sleep stages:

1. Wake
2. Light (N1 or N2) sleep
3. Deep (N3) sleep
4. REM

The Scikit library used to explore different types of classifiers: LD classifiers, quadratic
discriminant classifiers, RF, and SVM approaches, and the LD classifier achieved the
best performance

Beattie et al
[108]

aFIR: Finite impulse response.
bLD: linear discriminant.
cREM: rapid eye movement.
dNREM: nonrapid eye movement.
eBCG: ballistocardiography.
fMODWT: maximal overlap discrete wavelet transform.
gSAX: symbolic aggregate approximation.
hSOM: self-organizing map.
iIDE: integrated development environment.
jRF: random forest.
kSVM: support vector machine.
lNN: neural network.
mLDA: linear discriminant analysis.
nDT: decision tree.
oAPI: application programming interface.
pMW: middleware.

Research Prototypes

Noncontact Methods

Seba et al [100] discussed the development of a new approach
to sleep analysis. This system, based on temperature monitoring
(patient and ambient), aims to be integrated into the telemedicine
platform developed in the framework of the Smart-EEG project
by the SYEL—SYstèmes ELectroniques team. The proposed
method is based on the thermal signature to classify the activity
into 3 classes: awakening, calm sleep, and agitated sleep by
k-means clustering. A thermopile sensor (TMP007) was placed

above the bed at a distance close to 2 m to measure the upper
Bed+Patient temperature. A thermal camera giving images in
medical format but also information on the target temperature
according to a spatial distribution is used to label the different
events related to changes in the patient's posture in the bed by
visual analysis of an expert. An inertial unit is used to obtain
the wrist acceleration in 3 axes to compare the responses of the
thermopile sensor. The system measured the wrist, distal, and
proximal skin temperatures using IButtons [112]. The day and
night alternation corresponds, on the one hand, to the alternation
between wakefulness and sleep and, on the other hand, to the
alternation between high and low temperature. During sleep,
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the body temperature decreases whereas it increases during the
day. Skin temperature, unlike the body temperature, increases
during sleeping and decreases after awakening. The work in
[113] examined possible mechanisleep monitoring system
linking rhythms in sleep and core body and skin temperature,
focusing on the causal effects of changes in core and skin
temperature on sleep regulation. Several studies refer to the
links between body temperature and sleep [112,114]. This work
gave a figure of an example of classification for sleep base on
thermal data.

Guettari et al [38] presented the design and first evaluation of
a new monitoring system based on contactless sensors to
estimate sleep quality. A passive thermopile sensor fixed on the
wall produces thermal signals to detect human presence in the
bed and then to estimate the quality of sleep. The Symbolic
Aggregate Approximation (SAX) method has been implemented
[115], which uses Gaussian window in the thermal signal
segmentation processing. Each segment is generated by the
SAX method based on a segmentation of the midvariance and
then by identifying its sleep phase. The system extracted 3
features: the duration of the thermal data segment, the variance
of the thermal segment of each segment, and the level of each
segment. The Kohonen self-organized map (SOM) [116] was
used to classify the signal segments into 3 sleep phases: deep
or paradoxal sleep (R, N3), agitated or light sleep (N1, N2), and
awake phase (W). It synchronized the thermal signal with the
sleep stage labels based on the physiological parameters
measured by the PSG with a hypnogram being established
manually by the physicians. This study involved 13 patients,
11 people for learning the SOM model, and 2 other patients for
evaluation of the learned SOM model. In total, 87% (40/46) of
evaluation results showed good classifications.

Gu et al [41] presented Sleep Hunter, a mobile service that
detects the transition between sleep stages for monitoring sleep
quality and intelligent wakefulness. The smartphone was placed
next to the participant’s pillow. Using sensors integrated in
smartphones, Sleep Hunter integrates body movements, acoustic
events, environmental lighting conditions, sleep duration, and
personal factors using a statistical model: linear-chain
conditional random field (CRF) [117] for sleep stage detection.
It argued that, compared with the hidden Markov model [118],
CRFs are more relevant for sequences that have long
interdependencies and may therefore perform better in this
application. On the basis of the duration of each sleep stage,
Sleep Hunter also provides a report on sleep quality and a smart
call service for users. In this work [41], commercial product
Zeo [119] was adopted as the reference device. One study [120]
indicated that the quality of sleep is actually determined by the
distribution of the different stages of sleep rather than the length
of sleep during the night. This work distinguished sleep stages
between wakefulness, light sleep, deep sleep, and REM. The
sleep quality score is then calculated based on the duration of
each sleep stage. The detection accuracy of the Sleep Hunter
proposed in this work [41] was 64.55%.

Krishna et al [121] proposed SleepSensei, an automated sleep
quality monitor that estimates the sleep duration for the user. It
uses (1) the built-in web camera and microphone of a personal
computer connected to a power source, and custom software to

collect environmental features and (2) the accelerometer sensor
of a smartphone to detect body movements. Smartphones are
placed close to the user (next to the pillow). In this system, the
user can be in 1 of 2 sleep states: deep sleep or light sleep. The
user's sleep state (sound or light) is determined solely on the
basis of the variance of the user's body movements during sleep.
Environmental features such as light intensity, ambient noise,
temperature, and humidity have been entered by using custom
software.

Temperature, ambient sound (noise and music), and light
conditions have been found to be strong indicators of the user’s
environment that clearly affect sleep [122]. The system proposed
a regression model consisting of linear regression and SVM
regression. The regression model estimates the share of each
time slot (30-min window) that contributes to the completion
of a user’s sleep quota (the total duration of sleep a user needs
to obtain satisfactory sleep). The ground truth of this system
comes from the data provided by users on sleep quality by
answering the question: was the sleep fulfilling? It uses SVM
and naive Bayes models as classifiers. By comparing the results
of each classifier with 2 and 4 times cross-validation, the SVM
model with 2 times cross validations has the best results and
has an average accuracy of 79.84%.

Contact Methods

Distributed Sensor System on the Body

Velicu et al [68] proposed a system based on an accelerometer
and an ECG sensor for the classification of sleep phases
(wakefulness, light sleep, deep sleep, and REM). The
accelerometer was embedded into a wristband, but the position
of the ECG sensor was not mentioned. It described the
classification logic: (1) body movements become less intense
and less frequent as we enter the deeper phases of sleep and (2)
HR becomes more stable as sleep deepens. The Kushida
algorithm–derived equation [69] was adopted in this system as
a discriminator between wake and sleep using accelerometer
data collected every minute, with a 9-min sliding time window,
showing 69% agreement with the EEG sensor result. This work
shows a part of the classification results for an experiment
lasting 3 hour and 43 min. However, the results have not been
validated against PSG or any other reliable standard.

Kalkbrenner et al [70] presented the first step in the development
of a sleep monitoring system. It includes the capabilities of
capturing heartbeats, breathing, snoring, sleeping positions, and
movements of 2 volunteers. In this system, a microphone was
set up at the suprasternal notch to record breathing sounds and
heart sounds. The heart signal is extracted by applying a
bandpass filter from 15 Hz to 80 Hz. Nakano [71] and Yadollahi
[72] showed that placing a stethoscope such as a microphone
in the suprasternal notch at night can detect sleep apnea. At the
same time, an MPU6000 inertial measurement unit embedded
in an abdominal belt worn by the patient determines the sleep
position and movements. The data are transmitted wirelessly
to the laptop via Bluetooth and processed, visualized, and stored
using developed software. The validation of the proposed system
by comparison with the gold standard was published in [73]. A
total of 60 adult subjects were subjected to overnight diagnosis,
and a PSG screening was included for validation of the proposed
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system. A total of 30 dimensions of features were extracted
from data on breath, heartbeat, and movement. A linear
discriminant (LD) classifier was used for automated sleep
staging. The classifier achieved 86.9% accuracy and a kappa
of 0.69 for sleep or wake classification, 76.3% accuracy and a
kappa of 0.42 for Wake or REM or NREM classification, and
56.5% accuracy and a kappa of 0.36 for wake or REM or light
sleep or deep sleep classification.

Lee et al [74] proposed smart patches and wearable bands
(W-band) for recording biosignals during sleep. The system
consists of 15 smart patches attached to the user's face to monitor
multiple biosignals (EEG, ECG, EMG, and EOG). A total of
14 biosignal sensing (SN) patches to monitor biosignals, a
network controller (NC) patch placed behind the ear to manage
the whole system and used as a reference electrode for ECG,
EEG, and EOG signals. All electrodes are implemented on a
multilayered fabric patch based on the Planar Fashionable
Circuit Board technology. The biosignals recorded by the SN
patches were collected in the NC patch with an internal 20 kb
SRAM via the W-band. When the memory is full, the recorded
data are transmitted to an external device via an inductively
coupled interface. The program displaying the data runs on an
external PC so that the user can check the monitoring result
after waking up. The performance of biosignal recording by
this system has not been compared with a gold standard.

Stand-Alone System With Several Sensors

Shambroom et al [75] evaluated a wireless system for automatic
collection and scoring of human sleep. This system uses dry
silver-coated fabric sensors in the headband to collect
electrophysiological signals from the forehead, which include
contributions from the EEG and eye and frontal muscle
movements. The resulting signal is transmitted to a base station
using an ultra–low-power wireless protocol at 2.4 GHz. The
system was compared with the PSG data scored by 2 technicians
according to the R&K criteria. A reduced set of sleep stage
classifications was adopted, including awake, REM, light sleep
(combined stages N1 and N2), and deep sleep (combined Stages
N3 and N4) [17]. A total of 26 healthy adults were subjected
to simultaneous sleep measurements using this system and the
PSG. The agreement was 62% and 56%, respectively, with
regard to PSG1 (PSG recording scored by technician 1) and
PSG2 (PSG recording scored by technician 2). The mean (SD)
entire night sleep stage agreement for the 26 subjects was 75.9%
(7.0%) for this system versus PSG1 (PSG recording scored by
technician 1), 74.7% (8.5%) for this system versus PSG2 (PSG
recording scored by technician 2), and 81.2% (7.4%) for this
system versus PSGC (PSG recording scored consistently by 2
technicians).

Suzuki et al [76] described a wristwatch-shaped wearable sleep
monitoring system for home use. The sensor incorporates a
photoelectric pulse wave sensor and a 3-axis accelerometer to
measure pulse waves and accelerations on a user’s wrist and
stores the computed pulse intervals (PPIs) and amount of activity
in a flash memory (4 MB). It uses the Cole algorithm to identify
wake or sleep from the amount of activity data [77]. The system
compared the estimation result with the PSG results. Fast Fourier
transform (FFT) is performed to obtain the heart rate spectrum.

In the frequency domain, the integral value of the power from
0.04 Hz to 0.15 Hz is called LF (low frequency), which shows
both sympathetic and parasympathetic nervous activities. The
integral value of the power from 0.15 Hz to 0.4 Hz is called HF
(high frequency), which shows parasympathetic nervous activity.
The balance between sympathetic and parasympathetic nervous
activity is related to sleep stages. According to the study by
Baharav et al [78], there is a decrease in LF during sleep, with
minimal values during non-REM slow-wave sleep, that is, deep
sleep, and high levels similar to those of wakefulness during
REM.

The HF increased with the onset of sleep, reaching maximal
values during slow-wave sleep, and behaved as a mirror image
of LF, as shown in Figure 6. The correlation between HF, LF
of PPI, and sleep stages is summarized in Table 5.

The sympathetic predominance that characterizes wakefulness
decreases during non-REM sleep, is minimal during slow wave
sleep, and approaches average levels of wakefulness during
REM sleep. Autonomic balance shifts to parasympathetic
predominance during slow-wave sleep. To classify sleep stages
from the LF and HF data sets, the k-means clustering method
is adopted. It defines the coincidence ratio as a moving average
sleep stage correlation coefficient (20-min window) between
the stages estimated by this method and those estimated by the
PSG. A mean coincidence ratio of 0.735 (SD 0.052) was
obtained for the classification of the SWS, REM, non-REM,
and wake stages.

Beattie et al [108] estimated sleep stages using a wrist-worn
device that measured movements using a 3D accelerometer and
an optical pulse photoplethysmograph, which provided data on
movement, breathing, and heart rate variability. Overnight
recordings were obtained from 60 adult participants wearing
these devices on their left and right wrists, simultaneously with
a type III home sleep testing device (Embletta MPR) that
included EEG channels for sleep staging. The reference Embletta
recordings were scored for sleep stages using the AASM
guidelines [79], which labeled sleep stages as awake, light (N1
or N2), deep (N3), and REM over 30 second epoch level.
Motion-based features include the number of activities over 30
second, the magnitude of rotation (using the 3D accelerometer
to combine the maximum−minimum of each axis), the time
from the last significant movement, and the time to the next
significant movement. It extracted heart rate features such as
HF power (0.15-0.4 Hz), LF power (0.04-0.15 Hz), very low
frequency (VLF) power (0.01-0.04 Hz), root mean square of
the successive differences, pNN50 (proportion of the number
of pairs of successive RR intervals (the interval between R
waves of ECG, that is, the time between heart beats) that differ
by more than 50 msec divided by the total number of RR
intervals), delta RR (intervals between beats), and mean heart
rate.

The spectral features of the estimated breathing rate on a 1 s
basis such as HF power (0.15-0.4 Hz), LF power (0.04-0.15
Hz), and VLF power (0.015-0.04 Hz) were formed. This system
used the Scikit library to explore different types of classifiers:
LD classifiers, quadratic discriminant classifiers, RFs, and SVM
approaches. The LD mode seems to work slightly better than
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the others, so it was chosen as the final model. On the basis of
a single validation, the overall accuracy per epoch of the

automated algorithm was 69%, with a Cohen kappa of 0.52 (SD
0.14).

Figure 6. Illustration of HF and LF from PPI [97].

Table 5. Correlation between high frequency and low frequency from pulse-to-pulse intervals and sleep stages.

WakefulnessSlow wave sleepSleep onsetFrequency bands

Low levelMaximalIncreaseHFa

high levelMinimalDecreaseLFb

aHF: high frequency.
bLF: low frequency.

Only One Sensor Attached to One Site of Body

Tataraidze et al [80] presented an algorithm for detecting
wakefulness, REM, and non-REM sleep based on a set of 33
features extracted from the respiratory inductive
plethysmography signal captured by the PSG thoracic belt. The
features extracted include the logarithm of power in different
frequency ranges, time and frequency domain features, motion,
breathing, and volume-based features. A bagging classifier was
used in the experiments and a heuristic algorithm was applied
to increase the performance of the classification. Compared
with the PSG gold standard, an accuracy of 80.38 (SD 8.32%)
and a Cohen kappa of 0.65 (SD 0.13) were obtained with the
classifier.

Commercial Products
Given the various shortcomings of PSG, such as its invasiveness,
high cost, and one-night monitoring, the industry has shown
great enthusiasm for the development of commercial sleep
monitoring products with the advantages of being portable,
noninvasive, and suitable for long-term monitoring. Commercial
products used for home sleep monitoring are currently available
for direct purchases on the market. Some of the most popular
and representative products are briefly introduced below.

Zeo [119] is a headband based on a true lightweight EEG
brainwave pod monitor. It can provide a classification of sleep
stages into awake, light (stages 1 and 2 combined), deep (stages
3 and 4 combined), and REM sleep. The Companion for Zeo
smartphone app was developed for data collection. A validation
study has been published [75]. Compared with the PSG, the
epoch-to-epoch concordance of light, deep, and REM sleep is
greater than 74%.

Up (Jawbone) [81] is a soft rubber wristband. In terms of sleep
monitoring, it provides total sleep duration, time to fall asleep,
and the number of nighttime awakenings. It also interacts with
smartphone apps. To date, there have been no validation studies.

Fitbit [82] is also a wristband product. Its sleep monitoring
algorithm classifies night sleep into awake, light sleep, deep
sleep, and REM based on wrist movements and heart rate data.
It also provides total sleep duration, sleep starting time, and end
time. The publication [83] evaluates the performance of the
Fitbit against the PSG. It showed a sensitivity of 0.96 (sleep
detection accuracy), a specificity of 0.61 (wakefulness detection
accuracy), an accuracy of 0.81 for the detection of N1+N2 sleep
(light sleep), an accuracy of 0.49 for the detection of N3 sleep
(deep sleep), and an accuracy of 0.74 for the detection of REM
sleep.
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RestOn [84] is a thin belt. It uses a single click of the magnetic
cover to fix the device on the bedsheet; the position corresponds
to the user’s chest. RestOn can measure heart rate and
respiratory rate in real time. Medical-grade sensors that are
2-foot long are embedded into a thin belt less than a length of
2 mm. The device can provide sleep time, actual sleep time,
and sleep stages including awake, light, medium, and deep sleep.
Its smart alarm can wake the user during the lightest sleep time.

The Sleep Dot [85] measures sleep cycles and body movements
by simply attaching it to the upper corner of the pillow. It can
play music to help the user fall asleep. Soothing sounds and
music are adopted as alarm tones to wake the user more naturally
during the lightest sleep. This product works with a smartphone
app and generates a sleep report that can be shared with family
and friends.

Withings Aura [86] is a bedside device with a white cloth sleep
sensor placed under the mattress, aligned in position with the
user’s chest. It is recommended that the 11-inch high bedside
device be placed at least 1 m from the bed. The bedside device
measures environmental parameters such as temperature, light,
and noise. The white cloth sleep sensor indicates the time to
sleep, number of awakenings during the night, duration of light
sleep or deep sleep or REM sleep, and percentage of sleep goal
achieved.

Our Proposition of Sleep Monitoring System
The LAAS-CNRS (Laboratory for Analysis and Architecture
of Systems-French National Centre for Scientific Research) has
been developing systems for monitoring people since 1990
[87,88]. This mainly includes research on health monitoring for
older adults and frail people at home based on a wireless local
body area network (WLBAN) [89-91]. On the basis of the
techniques and experiences of studying the WLBAN monitoring
system for many years, our laboratory has started research on
sleep monitoring. The objective is to perform continuous and
long-term sleep monitoring at home, focusing on the variance
of sleep conditions night by night and monitoring indicator
deviations after each night. The first week's sleep is considered
the reference nights and is used for comparison of the following
nights. When an abnormal condition is detected, the user is
warned via a specific visual interface (graph or other) on a
computer, tablet, or smartphone.

Many indicators may be relevant for monitoring sleep
conditions, such as the following:

1. Distribution of sleep stages during the night.

2. Number of wrist activities.
3. Amount of leg activity during sleep (this is also the main

indicator of Restless Legs Syndrome [RLS]).
4. Body turnover time.
5. Onset of snoring. If so, the duration and number of apneas.

The contribution here is to propose the following indexes:

• Change in apnea behavior.
• Sleep phase deviation.
• Leg movement.
• Heart rate and blood oxygen saturation.
• Finger, big toe, and chest temperature.
• Temperature and brightness of the environment.

Thresholds on these indexes could trigger alerts to the doctor.
It is also possible to correlate these indices to provide an overall
index of sleep quality.

The current research at the LAAS-CNRS on sleep monitoring
is shown in Figure 7. The developed system consists of a local
network integrating sensors embedded on the person, and these
sensors communicate using Bluetooth to a data concentrator
(Master). The master communicates via an Android app with
the person itself. The master transmits the data via the LoRa
technology to a gateway that takes care of sending the data to
a database that can be remotely consulted by the physician.

Using this system, we collect a hypnogram based on wrist
movement data using the clustering algorithm and to monitor
the restless leg syndrome using leg movement data and to detect
symptoms such as snoring using sound data.

We proposed threshold-based and k-means clustering based
methods to process acceleration data from the nondominant
wrist. The threshold-based method uses 3 thresholds to achieve
falling asleep or waking up detection and 4-sleep stages
classification (awake, light sleep, deep sleep, and REM). The
k-means clustering-based method performs 5-iteration of
k-means clustering for epochs between falling asleep and waking
up to also achieve a 4-sleep stage classification (awake, light
sleep, deep sleep and REM). The epochs between falling asleep
and waking up are determined by falling asleep or waking up
detection from the threshold-based method. Furthermore, a
method for calculating sleep scores for a night's sleep is also
proposed in our system. The calculation of the sleep score was
based on the sleep duration and the duration of each sleep stage.
With tests carried out on 5 volunteers, all the methods we
propose give promising results. The related article will be
submitted soon.
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Figure 7. Sleep monitoring system ongoing research at LAAS (Laboratory for Analysis and Architecture of Systems).

Conclusions
The objective of this paper is to provide an overview of the
current state and future prospects of research and development
of sleep monitoring system s. Observation and sleep monitoring
is a very important medical issue for the possible consequences
on life behavior. The gold standard used is the PSG technique,
which is an intrusive method that can only be used in a clinical
setting. In addition, several studies have focused on the
development of methods and strategies for lighter and
longitudinal monitoring. sleep monitoring systems have been
proposed but they raise questions about the acceptance of the
wearing of these devices by users, socioeconomic aspects,
privacy, and impact on society, but also about the performance
of the proposed algorithmic processing. This document deals
with these issues and the different solutions reported in the
literature and available on the market. The sleep monitoring
system features a broad and heterogeneous range of devices,
WSN standards, apps, and involve the efforts of numerous
researchers, developers, and users. Owing to its interdisciplinary
nature, a number of apps related to sleep monitoring integrate
biomedical engineering and medical informatics. Other
knowledge in the fields of medicine, social sciences, psychology,
economics, ethics, and law must be taken into account and
integrated into the development and deployment of wearable
health care systems. Most systems are still in their prototype
stages, and developers have not yet faced deployment issues.
Information technology and electronics are mature fields and
can provide viable, disposable, and affordable wearable systems.

Systematic evaluations of the effectiveness and efficiency of
sleep monitoring system are considered crucial to ensure
potential user acceptance. Sleep monitoring is important for
individuals and clinicians. Beyond the interest in healthy
lifestyle and clinical diagnosis, sleep monitoring may also be
important in reducing fatigue-related workplace injuries,
particularly for shift workers. However, this type of monitoring
will only be practical if systems with proven reliability and
validity are in place. Consumers and patients will have the
opportunity to take part in the revolution in personal health data.
Increasingly powerful and convenient wearable technologies
will be able to provide rich health information, but it is not clear
that this will translate into workable health decisions. The
democratization of devices previously reserved for doctors
should improve access to health data and overall awareness of
personal health. It is important that such information is properly
communicated and understood by consumers. More complex
integrated sensor technologies, detection, and analytical
algorithms are likely to be developed in the coming years. Other
wearable diagnostic tools for consumers, or even implantable
devices and nanotechnologies, are currently under development.
Products exist that can integrate sensors into clothing. Ideally,
these technologies will empower consumers and patients and
promote preventive medicine. The most important challenges
are the development of nonintrusive hardware implementation,
smart signal processing, data analysis and interpretation,
communication standards interoperability, electronic component
efficiency, energy self-sufficiency, and long-term monitoring.
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