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Abstract

Background: Electrogastrography isanoninvasive electrophysiological procedure used to measure gastric myoelectrical activity.
EGG methods have been used to investigate the mechanisms of the human digestive system and as aclinical tool. Abnormalities
in gastric myoelectrical activity have been observed in subjects with diabetes.

Objective: The objective of this study was to use the electrogastrograms (EGGs) from healthy individuals and subjects with
diabetes to identify potentially informative features for the diagnosis of diabetes using EGG signals.
Methods: A total of 30 features were extracted from the EGGs of 30 healthy individuals and 30 subjects with diabetes. Of these,

20 potentially informative features were sel ected using a genetic algorithm—based feature selection process. The sel ected features
were analyzed for further classification of EGG signals from healthy individuals and subjects with diabetes.

Results: This study demonstrates that there are distinct variations between the EGG signals recorded from healthy individuals
and those from subjects with diabetes. Furthermore, the study revealsthat the features Maragos fractal dimension and Hausdorff
box-counting fractal dimension have ahigh degree of correlation with the mobility of EGGsfrom healthy individual sand subjects
with diabetes.

Conclusions: Based on the analysis on the extracted features, the selected features are suitable for the design of automated
classification systems to identify healthy individuals and subjects with diabetes.

(JMIR Biomed Eng 2020;5(1):€20932) doi: 10.2196/20932
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mechanical and chemical processesthat result in the breakdown

Introduction of food and absorption of nutrients [1].

Digestion is the breakdown of food into small water-soluble  Ejectrogastrography isanoninvasive technigue used to measure
moleculesthat can be absorbed by theintestinal epithelium [1].  and record the gastric myoelectrical activity associated with the
During digestion, food enters the mouth and undergoes process of digestion [2]. Electrogastrograms (EGG) are the
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recordings of the electrical signalsoriginating from the stomach
muscles. Several cutaneous electrodes are placed on the upper
abdomen, over the stomach, for the acquisition of EGG signals
[3]. The dominant frequency of the EGG signal isidentical to
the frequency of the electrical activity of the stomach. The
frequency of ahealthy EGG signal rangesfrom 2.6t0 3.7 cycles
per minute (cpm), which is produced by the interstitial cells of
Cqjal located in the muscular wall of the gastric corpus and
antrum [4].

Diabetic gastropathy is defined as a spectrum of neuromuscular
abnormalities of the stomach. In diabetic gastropathy, the normal
average EGG signal (3 cpm) is disrupted by bradygastrias,
tachygastrias, and other mixed dysrhythmias[5]. Severa studies
have identified neuromuscular abnormalities in subjects with
diabetes with upper gastrointestinal symptomsfor the diagnosis
of gastric dysrhythmias [6-10]. Koch et a (2001) [6] discussed
the clinical applications of electrogastrography in diabetic
gastropathy. Altintop et a (2016) [7] proposed the use of
parametric methods such as Cramer-Rao lower bound and power
spectral density for the analysis of EGG signals obtained from
subjects with gastroparesis and healthy volunteers using
cutaneous electrodes [7]. Additionally, the authors extracted
several featuresfrom the power spectral density functions, which
were utilized to identify subjectswith gastroparesis and healthy
subjects[7].

Thefreguency spectraof healthy and diabetic EGG signalsoften
show an exponential increase of power toward the very low
frequency range (<1 cpm) [5]. These frequencies are not likely
to originate from the stomach or other parts of the human body.
These ultralow frequency components of EGG signals may be
caused by factors such as low-frequency electrode noise dueto
variations in electrode potential, and movement artifacts [5].
Therefore, it is necessary to filter frequencies <1 cpm to avoid
fase interpretation. In recent years, the empirica mode
decomposition (EMD) technique has been used to preprocess
or filter several biosignals with high accuracy [11-15].
Furthermore, astudy has proposed the use of the noise-assisted
multivariate empirical mode decomposition for multichannel
electromyography signal processing [11].

Feature extraction is a technique used to extract useful
information that is hidden in biosignals. The selection of the
appropriate feature is important, as it leads to precise analysis
and high classification accuracy [16]. Additionally, during the
feature selection process, potentialy informative features can
be selected for future classification processes and analysis.
Furthermore, the performance of the classifier ishighly sensitive
to efficient informative features [17]. Severa studies have
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proposed various feature extraction methods such as time
domain features, frequency domain features, and time frequency
domain features for the analysis of biosignals[16-18]. A study
reviewed feature extraction methods on EEG signalsusing linear
analysisin frequency and time-frequency domains and showed
that the frequency domain methods provided more detailed
information on EEG signal analysis than the time-frequency
methods [15]. Another study about textile image classification
based on its texture used the feature extraction methods Gray
level co-occurrence matrix (GLCM), linear binary pattern, and
a moment invariant [18]. The study found that the best result
was achieved using a combination of GLCM and linear binary
pattern features [18].

The objective of this work was to extract features from EGG
signals from healthy individuals and subjects with diabetes to
select useful and highly informative features for the diagnosis
of diabetes. Additionally, we aimed to evaluate the correlation
between the selected features and the process of digestion in
both groups of individuals.

Methods

Participants

A total of 30 healthy individuals and 30 subjects with diabetes
participated in this study. Participants ranged in age from 20 to
50 years.

The ethical clearance (HR/2017/MS/002) to conduct this
research study was obtained from Global Hospitals & Health
City, Chennai.

EGG Signal Acquisition

An EGG measurement system with 3 surface electrodes was
devel oped and used to record the EGGsfrom healthy individuals
and subjects with diabetes. Of the 3 electrodes, 2 electrodes
were positioned on the outer curvature (fundus) and on theinner
curvature (mid corpus) of the stomach with a separation distance
of 5 cm between the el ectrodes, in accordance with the standard
electrode placement protocol [19-21]. For isolation purposes,
thethird el ectrode was placed as ground, away from the stomach
area. The acquired EGGs were amplified with an amplification
system developed using IC AD624 [2] and were logged using
LABVIEW hardware and software.

EGGs from al participants were acquired for a period of 10
minutes (Figures 1 and 2). All EGGs were preprocessed and
analyzed using custom made functions in MATLAB R2011b

[2].
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Figure 1. Block diagram of the el ectrogastrogram acquisition system.
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Preprocessing of EGG Signals

The EMD analysiswas used to decompose theinput EGG signal
into different frequency components called intrinsic mode
functions (IMFs) [11]. The number of IMFs can be extracted
following two fundamental requirements, the number of extrema
or zero-crossings must be the same or differ by at most 1, and
the mean of upper and lower envelopes of IMFs should be 0.
By applying the EMD a gorithm, the EGG signal (x[n]) can be
represented as follows[11,12]:

bl =3, 1aF [+

where IMF; [n] isthei™ IMF, r, [n] is the residue, and k is the
tota number of IMFs. The length, nonlinearity, and
nonstationarity of the EGG signal determines the number of
IMFs to be generated [11]. The EMD filter is well established
and has been described in detail in the available literature
[13-15]. In this study, the IMFs holding the ultralow frequency
components <1 cpm were removed and the rest of the IMFs
were added to obtain the filtered EGG signal. Further, the
preprocessed EGG signalsfrom healthy individual sand subjects
with diabetes were subjected to feature extraction methods.

(1)
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Feature Extraction

The feature extraction technique plays avital rolein achieving
high classification accuracy in the anaysis of biosignal
processing. The process of feature extraction involves the
transformation of raw EGG signals into a feature vector [22].
The 30 EGG signa features including descriptive statistics
(mean, median, mode, minimum value, maximum value,
standard deviation, skewness, and kurtosis), Hjorth parameters
(activity, mobility, and complexity), entropy measures (Renyi
entropy, Tsallis entropy, spectral entropy, and image entropy),
fractal dimensions (Maragos fracta dimensions, MFD; and
Hausdorff box count fractal dimension, HFD), the fast Fourier
transform (FFT) peak, and the GLCM (contrast, correlation,
energy, and homogeneity) were extracted from preprocessed
healthy and diabetic EGG signals.

FFT Peak

The peak frequency of healthy and diabetic EGG signals was
extracted using the FFT. By taking the FFT for recorded healthy
and diabetic EGG signals, the frequency components present
in the EGG signal were plotted against an amplitude spectrum
of a single side. Further, the frequency component with
maximum amplitude was considered as the peak frequency of
an EGG signal.
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Hjorth Parameters

Hjorth parameters are used to characterize the information on
thetemporal dynamics of the measured biosignals. Inthiswork,
the Hjorth features activity, mobility, and complexity were
extracted from healthy and diabetic EGG signals.

Activity represents the measurement of variance or the average
power of an EGG signal. Activity is given as follows [23]:

Activity = var(y(t)) (2)
where (y(t)) isthe input EGG signal.

Mohility represents the average frequency of an EGG signal.
Themobility parameter isdefined asthe squareroot of theratio
of the variance of the first derivative of the signal and the
variance of the signal. Mobility of an EGG signal is defined as
follows:

var(y (1))

var(y(1))

The mobility parameter has a proportion of standard deviation
of the power spectrum.

Mobility = (3

Complexity represents a measure of variability of an EGG
signal. Complexity of an EGG signa is defined as follows:

Modilin(y (1)
Mobility(p{(t)
The complexity parameter indicatesthe similarity between input
EGG signals to a pure sine wave. The value of complexity

converges to 1 as the shape of the signal gets more similar to a
pure sine wave.

(4)

Complexity =

Entropy Measures

Entropy is defined as a measure of disorder associated with a
system, and hence, it is a measure of information content,
uncertainty, and complexity of the system.

The Rényi entropy of the sample H(a) isgiven by thefollowing
equation [24]:

A
Hie) I-a]n'-.. Zp ) (3)

where p; isthe probability that arandom variable takes a given
value of nvalues and alphaisthe order of the entropy measure.
As alpha increases, the Rényi entropy increases. The Rényi
entropy is an effective measure of the complexity of the signal
[24-26]. The complexity of the EGG signals recorded from
healthy individuals and subjects with diabetes were extracted
using the Rényi entropy with 5 different orders of the entropy
measure (alpha=0.2, 0.4, 0.6, 0.8, and 0.9).

The Tsdlis entropy is one of the most promising information
theoretic methods for biosignal analysis. The Tsallis entropy
(Hg) is defined as follows [25]:

1 (. - &)
H":E'._ 1—;;:{ | (6)
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where p; is a given set of probabilities and apha is a red
number. As alphaincreases, the Tsallis entropy decreases. The
information content of the EGG signals recorded from healthy
individuals and subjects with diabetes were extracted using the
Tsallis entropy with 5 different orders of the entropy measure
(alpha=0.2, 0.4, 0.6, 0.8, and 0.9).

Time domain and frequency domain are the two different
possible ways in which the entropy of a biosignal can be
computed. The spectral entropy of EGG signals shall be
computed in frequency domain [26]. The spectral components
can beevaluated using the FFT. The concept of spectral entropy
originates from a measure of information called Shannon
entropy when applied to the power spectrum of asignal, spectral
Sisgiven asfollows[27]:

§=3 p;log p;/log(N)

where X7~ N=number of frequencies region, and py are
spectral amplitudes of k frequencies region.

(7)

Fractal Dimension

Fractalsare mathematical setswith ahigh degree of geometrical
complexity, which can model many classes of time series data
as well as images [28]. Maragos and Sun [29] developed an
approach for estimating the fractal dimension of time dependent
signals using morphological erosion and dilation operations to
create coversaround asigna’sgraph at multiple scales. Maragos
and Sun [29] proposed the “morphological covering method,”
which utilizes multiscale morphol ogical operationswith varying
structuring elements that improve other covering methods.
Experimental investigations on the morphological covering
method demonstrate good performance with low estimation
errors.

Spectrogram

The preprocessed EGG signals recorded from healthy
individuals and subjects with diabetes were converted into a
time corrected instantaneous frequency spectrogram using a
spectrogram method. The spectrogram was plotted as an image
with the intensities encoding the levels. The spectrogram had
time on the x-axis and frequency on the y-axis [30]. Further,
image entropy and HFD as well as the four GLCM features,
contrast, correlation, energy, and homogeneity were extracted
from converted healthy and diabetic spectrograms.

Image entropy is defined as a scalar value that represents the
entropy of agrayscaleimage. Entropy isameasure of disorder
or randomness that can be used to characterize the texture of
the input image. Images with lesser entropy have lot of black
sky, less contrast, and a large number of pixels. Image entropy
is expressed by the equation [31]:

IM =-3 Plog,P (8)

where P; isthe probability that the difference between 2 adjacent
pixelsisequal toi, and log, isthe base 2 logarithm.

The HFD is a descriptor of the complexity of the geometry of
a given set. The set can be the trgectory of any dynamical
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system and can be reconstructed from the measured data.
Suppose that A is the set whose dimension is to be calculated.
Let C(r,A) ={B,, B,...Bk} beafinite cover of the set A by sets
whose diameters are less than r. Then, the following function
defines ameasure of the set A [30]:

[(4.D.r)=lim inf 3 5" ®

For most values of D, the limit " —* 0 |eads to a degenerate

measure, either T' 20 or I' =% The box-counting dimension
estimate can be written as follows:

D, = ZAL/EC)]

Alogr
with sufficiently small r. The problemisdetermining if agiven
box of grid contains a point (or points) of trajectory over all
boxesin grids.

(10)

The GLCM is asum of the number of times that the pixel with
the gray level value i occurred in the specified spatial
relationship to a pixel with the value j. The spatial relationship
is defined as the pixel of interest and the pixel to itsimmediate
right (horizontally adjacent). The size of the GLCM is
proportional to the number of gray levelsin theimage [32,33].
In addition, the GLCM exposes certain properties about the
spatial distribution of the gray levelsin the texture image. The
features contrast, correlation, energy, and homogeneity were
extracted from the GLCM matrix of healthy and diabetic EGG
signals.

Contrast isameasure of theintensity (contrast) between a pixel
and its neighbor pixel over the whole image. Contrast is O for
aconstant image. In general, the property contrast isaso known

Initial Population

:

Figure 3. Flowchart of the genetic algorithm.
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as variance and inertia [32]. Correlation is a measure of the
correlation between apixel and its neighbor pixel over thewhole
image. The correlation value shall be 1 or —1 for a perfectly
positively or negatively correlated image, respectively. Energy
isthe sum of squared elementsin the GLCM matrix. Energy is
1 for a constant image. In general, the property energy is also
known as uniformity and uniformity of energy. Homogeneity
is ameasure of closeness of the distribution of elementsin the
GLCM to the GLCM diagonal. The homogeneity value shall
be 1 for adiagonal GLCM.

Feature Selection Using a Genetic Algorithm

Using different feature extraction methods, anumber of features
can be extracted and, from them, effective informative features
can be selected [34]. Further, the performance of aclassifier is
highly sensitive to the efficiency of the feature selection
methods. Genetic a gorithms are search-optimization techniques
based on Darwin’s principle of natural selection [34,35].

Inthiswork, agenetic algorithm—based feature sel ection method
was adapted to search, identify, and select potentialy
informative features from extracted healthy and diabetic EGG
signal featuresfor feature analysis. Theflowchart of the genetic
algorithm is shown in Figure 3. If F is the total humber of

features, then 2" possible feature subsets can be created. The
initial set of possible solutions or populations with a fixed
population size is randomly constructed and fitness of each
individual is evaluated with its fitness function. In this work,
classification accuracy was adopted as the fitness measure. By
adopting a genetic agorithm, the optimization was performed
to select the optimal subset of features [34,35].

Of the 30 features extracted from preprocessed healthy and
diabetic EGG signals, the 20 best features were chosen using a
genetic algorithm—based feature selection method.

Fitness Evaluation [«

Fitness
Function
Converged?

Optimal Feature Subset
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Selection, Crossover,
Mutation, Reproduction
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Results

Different patterns of EGG signals were observed in heathy
individuals and subjectswith diabetes. Figures4A and 4B show
atypica EGG signal recorded from a healthy individua and

Alagumariappan et al

the single-sided amplitude spectrum of a healthy EGG signal,
respectively.

Figures 5A and 5B show atypical EGG signal recorded from
asubject with diabetes and the single-sided amplitude spectrum
of adiabetic EGG signal, respectively.

Figure4. (A) Typica electrogastrogram signal recorded from ahealthy individua . (B) The single-sided amplitude spectrum of ahealthy el ectrogastrogram
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The variation of spectral entropy values was evaluated as a
function of mobility of EGG signals recorded from healthy
individuals (Figure 6A) and subjectswith diabetes (Figure 6B).
We found that the spectral entropies extracted from healthy
EGG signals (R=0.96741) and diabetic EGG signas
(R=0.90993) had a high correlation with mobility.
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The variation of HFD values was investigated as a function of
mobility of EGGs recorded from healthy subjects (Figure 7A)
and subjects with diabetes (Figure 7B). HFD values extracted
from healthy EGGs had a high degree of correlation
(R=0.91737) with mobility. HFD values extracted from diabetic
EGGs had a good correlation (R=0.77178) with mobility.
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Figure6. Variation of spectral entropy valuesasafunction of mobility of electrogastrogram signals. (A) Healthy individuals. (B) Subjectswith diabetes.
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The values of MFD were evaluated as a function of mobility of
EGGs acquired from healthy subjects (Figure 8A) and subjects
with diabetes (Figure 8B). MFD values extracted from healthy
EGGs have a high degree of correlation (R=0.88976) with
mobility. Similarly, MFD values extracted from diabetic EGG
signals have a good correlation (R=0.8077) with mobility.

The average Hjorth parameters activity, mobility, and
complexity of EGG signals were recorded from healthy
individuals and subjects with diabetes (Figure 9). The average
mobility and complexity of the EGG signals recorded from
healthy individuals are higher than the average mobility and
complexity of the EGG signals recorded from subjects with
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diabetes. Further, the average activity of the EGG signals
recorded from subjects with diabetesis higher than the average
activity of the EGG signals recorded from healthy individuals.

The MFD and HFD values of the EGG signals were recorded
from healthy individuals and subjects with diabetes (Figures
10A and 10B, respectively). The average MFD of EGG signals
recorded from healthy individuals is higher than the average
MFD of EGG signals recorded from subjects with diabetes.
Furthermore, the HFD of EGG signals recorded from healthy
individuals are lower than the average HFD of EGG signals
recorded from subjects with diabetes.
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Figure 8. Variation of the Maragos fractal dimension values as a function of mobility of electrogastrograms. (A) Healthy individuals. (B) Subjects
with diabetes.
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Figure 10. Thefractal dimension (mean) of electrogastrogram signals from healthy individuals and subjects with diabetes. Error bars indicate standard
error. (A) Maragos fractal dimension. (B) Hausdorff box-counting fractal dimension.
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Discussion Conclusion

Principal Findings

Type 2 diabetes is a chronic disease that prevents the
physiological system from using insulin efficiently. It is
expected that the global number of type 2 diabetes cases will
reach around 450 million by 2030. Undiagnosed diabetes is
often associated with complications such as cardiovascular and
kidney diseases. However, these risk factors are preventable by
the early detection and diagnosis of diabetes[36]. Inthisregard,
a method for the early detection of type 2 diabetes is of high
value. The method needs to be simple, self-applicable,
noninvasive, and safe. This study aimed to develop adevicefor
mass screening of diabetes. The results confirmed that the
frequency of 3 cpm is dominant in the EGG signals acquired
from healthy individuals. However, afrequency of 9.6 cpomwas
dominant in the EGG signals acquired from subjects with
diabetes. It was demonstrated that the EGG signalswith diabetic
complexities cannot be visualized or examined by naked eyes.
Mobility is the average frequency of an EGG; therefore, it was
highly correlated with the dynamic process of digestion.
Additionally, the extracted features of healthy and diabetic
EGGs were found to be well correlated with the physiological
process of digestion. Further, it was demonstrated that the
features spectral entropy, energy, HFD, and MFD provide
information about abnormalitiesin the EGGs.
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