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Abstract

Background: Due to the COVID-19 pandemic, the demand for remote electrocardiogram (ECG) monitoring has increased
drastically in an attempt to prevent the spread of the virus and keep vulnerable individuals with less severe cases out of hospitals.
Enabling clinicians to set up remote patient ECG monitoring easily and determining how to classify the ECG signals accurately
so relevant alerts are sent in a timely fashion is an urgent problem to be addressed for remote patient monitoring (RPM) to be
adopted widely. Hence, a new technique is required to enable routine and widespread use of RPM, as is needed due to COVID-19.

Objective: The primary aim of this research is to create a robust and easy-to-use solution for personalized ECG monitoring in
real-world settings that is precise, easily configurable, and understandable by clinicians.

Methods: In this paper, we propose a Personalized Monitoring Model (PMM) for ECG data based on motif discovery. Motif
discovery finds meaningful or frequently recurring patterns in patient ECG readings. The main strategy is to use motif discovery
to extract a small sample of personalized motifs for each individual patient and then use these motifs to predict abnormalities in
real-time readings of that patient using an artificial logical network configured by a physician.

Results: Our approach was tested on 30 minutes of ECG readings from 32 patients. The average diagnostic accuracy of the
PMM was always above 90% and reached 100% for some parameters, compared to 80% accuracy for the Generalized Monitoring
Models (GMM). Regardless of parameter settings, PMM training models were generated within 3-4 minutes, compared to 1 hour
(or longer, with increasing amounts of training data) for the GMM.

Conclusions: Our proposed PMM almost eliminates many of the training and small sample issues associated with GMMs. It
also addresses accuracy and computational cost issues of the GMM, caused by the uniqueness of heartbeats and training issues.
In addition, it addresses the fact that doctors and nurses typically do not have data science training and the skills needed to
configure, understand, and even trust existing black box machine learning models.

(JMIR Biomed Eng 2020;5(1):e24388) doi: 10.2196/24388
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Introduction

Background
An electrocardiogram (ECG) is a medical test that records the
electrical activities of the heart. It is widely used by medical
practitioners for diagnosing cardiac conditions by detecting
irregular heart rhythms and abnormalities [1]. In some cases,

arrhythmic heartbeats can be lethal and the risk of sudden death
is significant without remote patient monitoring (RPM) [2].
Therefore, it is highly desirable for patients to have an efficient
ECG remote monitoring system that can identify life-threatening
situations and send alerts to their health care providers [3].
Lately, the demand for remote ECG monitoring has increased
drastically because of the COVID-19 pandemic. To prevent the
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spread of the virus and keep individuals with less severe cases
out of hospitals, more patients are having heart disease
diagnosed and monitored remotely, while at home. The accuracy
of the ECG signal classifier is becoming more important because
false alarms can overwhelm the system. Therefore, classifying
the ECG signals accurately and sending alerts to health care
professionals in a timely fashion are urgent problems that need
to be addressed.

The classification of ECG signals is an extremely challenging
problem as there are no defined optimal classification rules.
Many researchers have focused on developing different machine
learning models, such as Bayesian framework [4], random forest
[5], gradient boosting [6], ensemble boosting [7], and support
vector machine [8], among others, and achieved relatively high
accuracy. To extract different features for models, various
techniques were proposed, such as principal component analysis
[9-12], wavelet transform [13], and filter banks [14]. Deep
learning methods such as deep neural networks [15],
convolutional neural networks [16-20], and recurrent neural
networks [21] are also applied extensively to classification
problems. Deep learning can be a powerful tool for solving
cognitive problems [22], but accurately training such models
requires large amounts of labeled data [23]. For clinical
applications, due to limited patient contact, variation in medical
care, and privacy issues, getting a large amount of high-quality
data can be very challenging [24], and the efficacy of deep
learning methods can be greatly affected by the lack of training
data [25-29]. According to Chen et al’s [30] investigation of
the training time of deep learning and machine learning methods,
deep learning requires a longer training time compared to
conventional machine learning algorithms. In addition, building
and maintaining the computational infrastructure required for
deep learning can be too costly for small health care
organizations to implement. Thus, a less computationally
expensive method is needed to effectively resolve the issue.

Another limitation of deep learning methods is that the models
are not able to capture the individuality of the ECG features
and patterns [31]. Most of the deep learning models are
generalized models and are not able to be built to the individual
level due to a lack of data [26]. However, each patient has
unique heartbeats and the waveforms can be completely different
on an individual level. Hence, accuracy might be an issue for
these models when using real-time data. Traditional machine
learning methods usually require more effort related to data
preprocessing and feature engineering compared to deep learning
models [29]. In addition, they tend to be like black boxes to
medical practitioners without a data science background. The
lack of interpretability can hinder health care providers’decision
making process and communication with patients.

In this paper, we propose a Personalized Monitoring Model
(PMM) for ECG monitoring based on motif discovery to address
the abovementioned challenges. Motif discovery is a method
for analyzing large amounts of time series data. In the health
care domain, it has been used for trend analysis and data
summarization [32]. Motifs are defined as frequently recurring
patterns in certain time series [33]. In a motif discovery process,
a similarity search is conducted based on a certain similarity
threshold to detect and locate previously defined patterns. In a

similarity search, the distances between time series subsequences
are calculated, which indicates how similar two subsequences
are.

Objectives
The primary aim of this research is to create a robust and
easy-to-configure solution for monitoring ECG signals in
real-world settings. We developed a technique for building
personalized prediction models to address the limitations of
generalized models [31]. The main strategy of the model is to
extract personalized motifs for each patient and use the motifs
to predict the rest of the readings of that patient using an
artificial logical network. By performing a systematic analysis
and evaluation, we will investigate the hypothesis that the
proposed PMM is more accurate and efficient than generalized
models. In most cases, doctors and nurses do not have a data
science background and the existing machine learning models
might be difficult to configure. Hence, a new technique will be
required as RPM becomes more common, as has occurred due
to the COVID-19 pandemic. The main goal is to develop a
technique that allows doctors, nurses, and other medical
practitioners to easily configure a personalized model for RPM.
The proposed model can be easily understood and configured
by medical practitioners, since it requires less training data and
fewer parameters to configure.

Methods

In this section, we discuss the proposed PMM for ECG data in
detail. The process includes time series sampling, personalized
motif discovery, and motif-based prediction using an artificial
logical network.

Time Series Sampling
We treated each patient's ECG measures as individual data; the
recording is a time series. An ECG is a medical test that detects
heart problems by measuring the electrical activity generated
by the heart as it contracts. An ECG complex is composed of
different components, or waves, that represent the electrical
activity in specific regions of the heart. ECG readings from
healthy hearts have a characteristic shape. If the ECG reading
is a different shape, that could suggest a heart problem.

During this stage, there is an important parameter, t, which
represents the training ratio (0<t<1) and affects the sampling
process. Before starting to discover motifs, each individual
patient's ECG time series was sampled as individual training
data. L represents the length of each patient's ECG time series.
Based on the value of the training ratio t, we used Equation 1
to calculate the length of time series S we should take from the
whole ECG reading of each patient:

S = L x t (1)

As calculated, we took the first S length of time series from the
ECG readings of each individual patient as the individual
training sample data to generate the personalized motifs. During
sampling, we started from the first point of the patient's ECG
time series and sampled until the length of sample reached the
expected sample size S. We then divided the sampled ECG data
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into M subsequences based on Equation 2 and each subsequence
was regarded as a pattern unit.

M = S/180 (2)

In Equation 2, the number 180 is the sampling rate of the ECG
recording device. It partitions the ECG into heartbeats with
sufficient precision of intervals for heart rate variability analysis
[34]. Figure 1 shows an ECG sample with 1800 points from
one of the patients.

Figure 1. ECG sample. ECG: electrocardiogram.

Personalized Motif Discovery
After sampling, we discovered personalized motifs from the M
subsequences sampled from an individual patient. For this model
design, we needed to consider two major parameters that could
affect the performance of motif discovery: (1) r, the time series
similarity threshold and (2) k, the number of motifs.

We calculated all Euclidean distances between each subsequence
and generated motif candidates. In each motif circle/cluster, the
distances from the central subsequence to other subsequences
that belong to the same motif circle must be less than r and all
motif circles cannot share the same subsequence, as proposed
by a previous paper [35] and as shown in Figure 1. In Figure 2,

each black dot represents each subsequence and each red dot
represents the central subsequence in that motif circle. We
supposed k=3, as we can see 1-motif has the most subsequences,
2-motif has the second most, and 3-motif has the fewest
subsequences. All motif circles have the same radius r. The
distance between the red central subsequence of 1-motif and
the red central subsequence of 2-motif is more than 2r, and these
naturally do not share the same subsequence. However, the
distance between the central subsequence of 1-motif and the
central subsequence of 3-motif is less than 2r, but they do not
share the same subsequence, which is allowable during motif
discovery. In this example, the 3 red central subsequences are
the 3 extracted motifs.

Figure 2. Subsequence motifs (k=3).
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Based on this strategy of motif discovery, we generated all motif
circle candidates from the M subsequences. Based on the
parameter k, which is the number of motifs, we only kept the
first k motif circles and used the central subsequences of all
these k motif circles as our extracted heartbeat motifs. From
this stage, we obtained k personalized motifs for each individual
patient.

Motif-Based Prediction Using an Artificial Logical
Network
We used the generated k personalized motifs to predict the rest
of the ECG readings for each corresponding patient. For
example, suppose we have two types of heartbeats (N and V)
and need to predict which type (N or V) the test subsequence
belongs to. Following the personalized motif discovery, we

generated k of N motifs and k of V motifs from the sampled
subsequences of each individual patient. The generated N and
V motifs were organized into an artificial logical network where
each N and V motif is a dedicated evaluation node, as shown
in Figure 3. For the remaining subsequences of that patient, we
then tested each subsequence by comparing its distance to all
N motifs and V motifs in the artificial logical network. A simple
logical rule was applied to select the closest one as the predicted
type of test subsequence. Finally, we predicted all labels for the
rest of the subsequences of that patient. If the subsequences did
not meet the matching criteria of any of the N and V nodes, the
logical rule identified them as new anomalies for future learning.
The combination of dedicated motif comparison and logical
rules allows us to easily build a prediction system.
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Figure 3. Motif-based prediction using an artificial logical network.

Results

Benchmark Data
For this benchmark data, we used 32 patients' ECG measures;
each measure contained 30 minutes of ECG readings from each
patient. In the data set, there were 5 different types of heartbeats
(V, N, A, F, and S). The V pathology is expected to be
morphologically different than the normal N. To detect the A
pathology, we needed to monitor the frequency of the heartbeats
and identify the heartbeats that appeared faster than expected.
The F pathology is also expected to have a different morphology
than the normal N. The S pathology is related to heart rhythm
abnormalities that may not drastically change the morphology,
but its occurrence is out of rhythm. Before training and testing

the models, we removed the “noisy” heartbeats and only kept
N heartbeats and V heartbeats as the two labels the models
would identify.

Baseline Models
We evaluated and compared the following 3 models:

1. Generalized Monitoring Model 1 (GMM1): Based on the
training ratio t, we took the first t percent samples from
each of 32 patients and combined the samples from those
32 patients together to extract the k of N motifs and k of V
motifs as the N and V heartbeat motifs. During the testing
stage, we applied the extracted N motifs and V motifs to
the rest of the ECG readings for each patient and predicted
the label (N or V).
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2. Generalized Monitoring Model 2 (GMM2): We first
extracted all N heartbeats and V heartbeats from all 32
patients. Based on the training ratio t, we then randomly
extracted t percent samples from all N heartbeats and t
percent samples from all V heartbeats. Next, we extracted
the k of N motifs from the N heartbeat samples and the k
of V motifs from the V heartbeat samples. The testing was
the same as for GMM1. The main difference between
GMM1 and GMM2 is how the training data were sampled.

3. Our proposed Personalized Monitoring Model (PMM): In
this personalized model, based on the training ratio t, we
only extracted the first t percent of N heartbeats and the
first t percent of V heartbeats from an individual patient
and then generated a set of personalized k of N motifs and
k of V motifs to test the rest of the ECG readings of that
patient. The main strategy here was to individually extract
personalized motifs for the current patient and use those
extracted motifs to predict the rest of readings for that
patient.

There are 3 major parameters that could affect the models'
performance, which are compared in detail in this section: (1)
r, the time series similarity threshold, (2) k, the number of
motifs, and (3) t, the training ratio.

To compare the models and determine which model is the best,
we evaluated them based on the following 2 factors:

1. Accuracy: We needed to get an estimate of how accurate
each model is on unseen/test data. For all tested heartbeats,
we have the corresponding ground-truth information, which
is the original label. By comparing the predicted label with
the original label, we can calculate how many heartbeats
were correctly predicted. Therefore, accuracy is calculated
by taking the number of heartbeats predicted correctly and
dividing it by the number of all heartbeats tested.

2. Running time: To obtain the final prediction results faster,
we also needed to guarantee the chosen model was the
fastest, including training and testing time.

Effectiveness Evaluation
Considering the 3 main parameters r, k, and t, we designed the
effectiveness evaluation by adjusting the values of these 3
parameters and seeing how the performance of each model
changed. In figures, we used the corresponding capital letters
R, K, and T of r, k, and t for clear representation.

First, we adjusted the similarity threshold R values from 0.8 to
1.6, by steps of 0.2, and observed how the average performance
changed for each model. The average accuracy was calculated
based on the sum accuracy across all 32 patients. Figure 4 shows
3 curves, each representing the average accuracy change of each
model when R was increased from 0.8 to 1.6. The green line
represents the PMM, which performed the best among the 3
models in terms of stability and accuracy.

Figure 4. Performance comparison with different R (similarity thresholds).

Second, we adjusted the K values from 2 to 10, by steps of 2,
and observed how average performance changed for each model.
The PMM still performed the best, even as the K varied (Figure
5).

Lastly, we adjusted the training ratio T from 0.1 to 0.25, by
steps of 0.05. Generally, more training samples result in more
accurate prediction; although this is not what we observed with
GMM1 and GMM2, it did apply to the PMM (Figure 6). From
the curve comparison, we can see the PMM significantly
outperformed GMM1 and GMM2.
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Figure 5. Performance comparison with different K (number of motifs).
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Figure 6. Performance comparison with different T (training ratios).

T is the training ratio and could affect model performance more
than R and K in most cases. Hence, we showed the detailed
performance result for each patient as determined by the 3
models based on two sets of values of R and K: (1) R=0.8 and
K=2 and (2) R=1 and K=6.

In Figures 7 to 12, we can see GMM2 fluctuated much more
than GMM1 and the PMM. However, if we compare GMM1

and the PMM when T was increased from 0.1 to 0.25, the PMM
gradually performed better on almost all patients, while GMM1
became worse as that parameter changed. In Figures 13 and 14,
the two bar charts show the average accuracy of each model
with different T. As T increases, GMM1’s performance becomes
worse, while GMM2's performance fluctuates the most. The
PMM performed the best.
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Figure 7. GMM1 results when R=0.8 and K=2: performance comparison on each patient with different T. GMM1: Generalized Monitoring Model 1.
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Figure 8. GMM2 results when R=0.8 and K=2: performance comparison on each patient with different T. GMM2: Generalized Monitoring Model 2.
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Figure 9. PMM results when R=0.8 and K=2: performance comparison on each patient with different T. PMM: Personalized Monitoring Model.

Figure 10. GMM1 results when R=1 and K=6: performance comparison on each patient with different T. GMM1: Generalized Monitoring Model 1.

Figure 11. GMM2 results when R=1 and K=6: performance comparison on each patient with different T. GMM2: Generalized Monitoring Model 2.
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Figure 12. PMM results when R=1 and K=6: performance comparison on each patient with different T. PMM: Personalized Monitoring Model.
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Figure 13. Results from all models when R=0.8 and K=2: average performance comparison with different T. GMM1: Generalized Monitoring Model
1; GMM2: Generalized Monitoring Model 2; PMM: Personalized Monitoring Model.

Figure 14. Results from all models when R=1 and K=6: average performance comparison with different T. GMM1: Generalized Monitoring Model
1; GMM2: Generalized Monitoring Model 2; PMM: Personalized Monitoring Model.

Efficiency Evaluation
We evaluated the time efficiency of each model and observed
which model runs the fastest. The process consists of two stages:
training and testing. We considered all computation time in this
evaluation, including the training and testing time. From the 3
evaluated parameters in the previous section, we know that the
training ratio T is the one that most affects training time. Here,

we adjusted the value of T and observed the corresponding
running time of each model. Figure 15 shows the linear change
in running time for each model, while Figure 16 is a bar chart
of the running time. The time consumption of GMM1 and
GMM2 increased almost exponentially with an increase in T.
However, the time consumption of the PMM was linear and the
lowest among the 3 models.
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Figure 15. Linear comparison of time efficiency across models when R=0.8 and K=2. GMM1: Generalized Monitoring Model 1; GMM2: Generalized
Monitoring Model 2; PMM: Personalized Monitoring Model.

Figure 16. Time efficiency of all models when R=1 and K=6. GMM1: Generalized Monitoring Model 1; GMM2: Generalized Monitoring Model 2;
PMM: Personalized Monitoring Model.

Discussion

Principal Results
According to the empirical results, the PMM performed the best
in all cases in terms of prediction accuracy and time efficiency.

Figure 4 shows the average classification accuracy (y-axis) with
respect to the R (x-axis) of all 3 models when using different
similarity thresholds R. The PMM's performance (green line)
becomes better as R increases from 0.8 to 1.4, and becomes
stable when R reaches 1.6. The prediction performance of the
PMM is relatively stable for similarity threshold R. If we
compare GMM1 and GMM2, we find GMM1 outperforms
GMM2. However, GMM1's performance (blue curve) was
unstable with respect to R, and GMM2's performance (orange
curve) became better as R increases, although the overall
performance of GMM2 was worse than GMM1. This is because
GMM2 extracts all N heartbeats and V heartbeats from all 32

patients for motif discovery and a greater similarity threshold
allows GMM2 to aggregate more similar heartbeats for motif
circles, which may help GMM2 find more representative motifs
for heartbeat prediction. However, if the similarity threshold R
is too big, it may introduce different types of heartbeats into a
given motif circle, which may result in worse prediction. GMM1
takes the first T percent of samples from 32 patients and then
extracts motifs based on the similarity distance threshold R. An
increase in R may introduce more heartbeats from different
patients and the extracted motifs may result in a fluctuation in
accuracy. However, the PMM only extracts the first T percent
of N samples and V samples from one patient and then generates
personalized motifs to test the rest of the ECG readings of that
patient. As R increases, more similar N heartbeats and V
heartbeats will be collected for motif discovery, which could
help enhance prediction if R is not so large that it introduces
another type of heartbeat.
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Figure 5 shows the average classification accuracy (y-axis) with
respect to the K (x-axis) of all 3 models, by using different
numbers of motifs K.

The PMM was always the best, but the GMM1 and GMM2
curves fluctuated as K, which represents the number of motifs,
changed. A certain number of motifs can be representative and
guide prediction well. However, having too many motifs may
introduce unrepresentative motifs, which could hinder
prediction. This is why all models fluctuated as K changed.

Figure 6 shows the average classification accuracy (y-axis) with
respect to T (x-axis) on all 3 models by using different training
ratios T from 0.1 to 0.25. As T increases from 0.1 to 0.25 in
steps of 0.05, the PMM curve becomes higher. However, the
GMM1 and GMM2 curves fluctuate a lot and are both lowest
when T is 0.2. Generally, in machine learning, more training
data should improve a model's performance. However, if more
interference or noisy data is introduced into the training data,
then performance will degrade. This could explain why GMM1
and GMM2 fluctuate a lot, as these models used training data
from different patients and most heartbeats are unique at the
patient level. As for the PMM, a larger training ratio could help
improve performance because all training heartbeats are from
the same patient, which avoids the introduction of interference
or noisy data. As T changed, the PMM always outperformed
GMM1 and GMM2 (Figures 7 to 14).

Based on the overall evaluation results, the PMM significantly
outperformed GMM1 and GMM2 in terms of prediction
accuracy.

Considering time efficiency, Figures 15 and 16 show the average
running time (y-axis) with respect to the training ratio T (x-axis)
for all 3 models by using different training ratios T from 0.1 to
0.25. Compared with GMM1 and GMM2, the PMM required
significantly less running time. The average running time of the
3 models increased as the training ratio increased. This is
because a larger training ratio results in more training data,
which increases the training time accordingly. The overall
average time required by GMM1 is close to that required by
GMM2 and both increase almost exponentially as the training
ratio increases. Therefore, the PMM has more stable and better
efficiency as the training ratio increases.

Limitations
A limitation of the PMM is that it might be hard to maintain
the models for each patient. However, this limitation is not
significant given that retraining the model does not take a lot
of time. In addition, the cost of maintenance and computation
might be lower in the future as more industries adopt
personalized models.

Conclusions
In this paper, we proposed a PMM for ECG recordings for two
reasons: (1) the COVID-19 pandemic has accelerated the
adoption of remote diagnosis and patient monitoring and (2)
personalized care promises better outcomes, especially as it
applies to digital health. Digital health care allows for
continuous 24/7 care in the home environment while minimizing
the risk of fatal accidents and re-admissions. For remote
monitoring to gain traction at scale, several requirements must
be met. First, monitoring has to be sufficiently automated with
fewer false positive alarms to minimize the number of health
professionals involved in monitoring. Second, it has to be
quickly and easily configurable by the health care professionals
themselves. Although traditional machine learning and deep
learning approaches can be used in automation, they typically
cannot be easily configured or adjusted by health care
professionals due to a lack of modeling skills and data needed
to build a personalized model. To solve these challenges, we
employed a motif discovery algorithm to individually extract
personalized motifs for each individual patient and used an
artificial logical network for ECG signal prediction. We
proposed a personalized model for faster ECG signal detection,
which significantly improves the efficiency of ECG prediction;
such a model could help satisfy the demand for remote
monitoring services, especially during the COVID-19 pandemic.
By comparing our proposed model, PMM, with two generalized
monitoring models using real-world patient ECG data, we
demonstrated that the PMM outperformed the generalized
models in both prediction accuracy and time efficiency.

Per our discussions with clinicians, this approach can easily be
deployed for outpatient monitoring as outlined below; this is
the subject of a forthcoming clinical trial. A wearable 12-channel
ECG monitor is sent to a patient or configured during a hospital
stay. An augmented reality app or video conference is used to
remotely guide the patient to accurately place the electrodes,
while simultaneously testing the accuracy of the received signal.
During setup, personalized motifs are automatically extracted,
and the physician selects the center motifs to be used by the
artificial logical network. The artificial logical network is a
flexible structure that allows for learning when particular
reference motifs are missing from the setup sample. For
example, if samples of atrial fibrillation motifs are not recorded
during setup, reference motifs from a general library can be
used, or general anomaly detection can be applied, alerting a
medical professional to review any anomalous occurrences. If
the physician determines that the anomaly is atrial fibrillation,
they can instantly push the motif to the artificial logical network.
These configurations are the subject of the forthcoming clinical
trial. By augmenting the expert’s knowledge with algorithmic
computational power, hospital stays can be significantly reduced,
and care can be delivered in the comfort of the patient’s home.
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