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Abstract

Background: A majority of employees in the industrial world spend most of their working time in a seated position. Monitoring
sitting postures can provide insights into the underlying causes of occupational discomforts such as low back pain.

Objective: This study focuses on the technologies and algorithms used to classify sitting postures on a chair with respect to
spine and limb movements, using sensors and wearables such as inertial measurement units, pressure or piezoresistive sensors,
accelerometers or gyroscopes, combined with machine learning approaches.

Methods: A total of three electronic literature databases were surveyed to identify studies classifying sitting postures in adults.
Quality appraisal was performed to extract critical details and assess biases in the shortlisted papers.

Results: A total of 14 papers were shortlisted from 952 papers obtained after a systematic search. The majority of the studies
used pressure sensors to measure sitting postures, whereas neural networks were the most frequently used approaches for
classification tasks in this context. Only 2 studies were performed in a free-living environment. Most studies presented ethical
and methodological shortcomings. Moreover, the findings indicate that the strategic placement of sensors can lead to better
performance and lower costs.

Conclusions: The included studies differed in various aspects of design and analysis. The majority of studies were rated as
medium quality according to our assessment. Our study suggests that future work for posture classification can benefit from using
inertial measurement unit sensors, since they make it possible to differentiate among spine movements and similar postures,
considering transitional movements between postures, and using three-dimensional cameras to annotate the data for ground truth.
Finally, comparing such studies is challenging, as there are no standard definitions of sitting postures that could be used for
classification. In addition, this study identifies five basic sitting postures along with different combinations of limb and spine
movements to help guide future research efforts.

(JMIR Biomed Eng 2021;6(1):e21105)   doi:10.2196/21105
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Introduction

Background
The proportion of people sitting for long hours during work and
daily life has increased in recent years. Approximately 75% of

employees in call centers, software companies, and other
industrial jobs spend an average of 90% of their workday sitting
on a chair [1,2]. Many individuals who sit for long hours in the
same posture, or bad posture, experience musculoskeletal
discomfort and pain at the ischiocrural muscle region [3].
Prolonged sitting behavior and spine-straining sitting postures

JMIR Biomed Eng 2021 | vol. 6 | iss. 1 |e21105 | p.2http://biomedeng.jmir.org/2021/1/e21105/
(page number not for citation purposes)

Kappattanavar et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

mailto:Arpita.Kappattanavar@hpi.de
http://dx.doi.org/10.2196/21105
http://www.w3.org/Style/XSL
http://www.renderx.com/


have been reported to act as negative factors, increasing the
probability of developing low back pain (LBP) [1,2,4-6].

LBP has been identified as a significant cause of sick leaves
and disability, leading to impairment in daily and occupational
activities, reflecting a significant economic burden on the society
[7-9]. The majority (90%) of LBP cases are nonspecific
[8,10-12]. By definition, nonspecific LBP cases have an
unknown origin, where mechanical factors and multifactorial
etiology are suspected. There is still a gap in understanding
whether mechanical factors are associated with nonspecific
LBP, as it has not been verified in research studies [8].
Continuous monitoring of spine movements and daily activities
would help understand the link between the various mechanical
and psychosocial factors leading to LBP and differentiate them
[12].

To implement appropriate intervention and prevention programs
for LBP, especially within an office environment, identifying
risk factors such as stress at work and sitting postures is of high
importance according to the Bulletin of the World Health
Organization (WHO) [9] and from the studies conducted by
Bontrup et al [1] and Søndergaard et al [3]. Therefore, this
systematic literature review focusses on the classification of
sitting postures.

In traditional methods, sitting postures were analyzed by
observing the seated subjects and self-reported answers to
questionnaires [13]. However, these methods are biased and
subjective, and vary for each doctor and patient. Therefore, the
data were unreliable. With advancements in
micro-electro-mechanical systems and nano-electro-mechanical
systems, different types of miniaturized sensor technologies are
readily available in the market. They can assess and classify
sitting postures more objectively and accurately. In the last
decade, studies have used miniaturized pressure sensors made
from air bladders, piezoelectric materials, fibers coated with
yarn materials, force sensors, and force-sensing resistors in the

form of cushions, sensor array sheets, and mats or just as
individual sensors to provide the necessary signals to classify
sitting postures [1,13-24]. Such classifications should also
preferably include limb movements, as these are suspected to
be associated with musculoskeletal discomfort and pain [25-27].

Objective
This study has been conducted to understand the state-of-the-art
technologies for classifying sitting postures on a chair along
with limb and spine movements. To achieve this goal, we (1)
use a systematic database search approach using the Population
or Problem, Intervention or Exposure, Comparison, and
Outcome (PICO) scheme; (2) carry out a quality appraisal of
the included papers; (3) summarize the algorithms and the
number of postures classified; (4) investigate the study design
and the type of environment in which these studies were
conducted; and (5) identify the challenges in classifying sitting
postures and critically assess the technological solutions
employed.

The majority of the studies in this review used pressure sensors
to measure sitting postures, whereas neural networks (NNs)
were the most frequently used approaches for classification
tasks in this context. In total, 5 main postures as shown in Figure
1, were presented in all studies along with different
combinations of limb and spine movements.

The organization of this paper is as follows: In the Methods
section, we present the search approach, the inclusion and
exclusion criteria applied to shortlist the papers, checklists for
bias assessment, and data extracted from the papers. In Results
section, we present the summary of all the shortlisted articles
and outline the details of the extracted data. In the Discussion
section, we investigate and discuss the findings, and in the
Conclusions section, we provide recommendations and an
outlook on future work. Finally, in the Limitations section, we
discuss the limitations of this study.

Figure 1. The 5 most common sitting postures: (a) lean right, (b) lean left, (c) lean backward, (d) upright sitting, and (e) lean forward.

Methods

Search Approach
A systematic search was conducted on PubMed, IEEE Xplore,
and Web of Science databases until June 2019. The literature
search strategy framework in systematic reviews is typically
based on the PICO scheme [28]. The search in this study was
partially based on PICO. In the keywords’ formation, we
included sitting for population or problem, the tools or

technology was mentioned for intervention, and algorithms
were mentioned for the outcome. As we did not have a
comparison, it was excluded from PICO. The search focused
on papers with the main terms and specific terms, as indicated
in Table 1. Search engines’ specific terms varied slightly
(Multimedia Appendix 1). Additional papers were identified
by manually searching and screening the reference lists of other
papers to identify papers that have been overlooked by the
electronic search. Retrieved papers were imported to Mendeley
Desktop.
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Table 1. Terms for literature database search. The specific terms of the 3 main categories have been joined by an AND condition.

Specific search termsMain terms

(sitting OR seating OR seated) AND (posture* OR position OR behaviour)Sitting

sensor* OR “inertial measurement unit” OR IMU OR wearable OR pressure OR piezoresistive OR accelerometer OR gyroscopeSensor

“machine learning” OR “neural network*” OR algorithm* OR *supervised OR classif* OR detection OR identification OR
recognition

Algorithm

Study Selection Method
The search terms were assessed by two authors independently
and iteratively and then finalized. The final search terms were
used to obtain papers from the aforementioned databases. The
titles and abstracts of the obtained papers were carefully read
and analyzed before shortlisting them based on the inclusion
and exclusion criteria.

Papers that met the following criteria have been included:

1. More than 3 sitting postures were classified
2. Journal or conference papers were published in English

language
3. The involved population was sitting on a chair
4. The study involved adult population (older than 18 years)

Papers have been excluded based on the following criteria, if:

1. Limb movements while sitting were not considered. Studies
have revealed that leg movements affect musculoskeletal
discomfort and pain [25-27].

2. The involved population was sitting in a wheelchair or
driving a vehicle. The postures for a wheelchair subject
were less dependent on the leg movements. Moreover,
driving postures differ from those of sitting postures in
occupational settings.

3. The methodology and classification accuracy of each
posture was not mentioned or reported, as the classification
accuracy provided the proof of the methodology for
replication.

4. Duplicates were avoided if the same author mentioned the
same methodology in a journal and a conference article,
and then the conference article was excluded.

5. The same methodology is mentioned in 2 papers by the
same authors with little variation. A paper that provided a
higher level of details was included in this study.

6. A paper is not related to sitting postures.
7. Sensors were implanted inside the body, as our study

focused on noninvasive methods.

Differences in the inclusion of specific papers were resolved
by consulting with other authors of this study.

Study Quality Assessment
Quality appraisal checklists were developed to extract key
details and identify the risk of bias in each study. This checklist
was prepared based on consultation with other authors and using
the studies by Papi et al [12] and Hagströmer et al [29] as a
reference to include relevant points. The prepared checklist has
questions related to 3 categories, that is, study description, study
design, and robustness. Table 2 presents the study quality
assessment checklist questionnaires based on the three categories
to assess the risk of bias.

The customized checklist is provided in Table 3. The table has
been further numbered as 0, 1, or 2 for each selected paper to
rate it as no detail, limited detail, and good detail, respectively.
The total score is based on the sum of those checkpoint scores
(0-26). These papers were rated as low (low<10), moderate
(10<moderate<18), or high (19<high<26) quality based on the
total score of the paper. The score for each paper was based on
the discussion with other authors.

Data Extraction
This study was conducted to investigate the technology and
algorithms used to classify the sitting postures in different
settings. Therefore, we extracted details concerning the
technology, study design, classification algorithm, and algorithm
performance from the shortlisted papers, as presented in Textbox
1. In addition to quality appraisal, these items will guide the
remainder of this paper.
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Table 2. The checklist questions to assess the risk of bias.

Checklist questionsCategories

Study description • Q1. Are the research objectives or aims stated?
• Q2. Is the study clearly described?
• Q3. Were the main findings of the study stated?
• Q4. Are the limitations of the study clearly described?

Study design • Q5. Are appropriate subject information and anthropometric details provided?
• Q6. Were the number of subjects studied justified?
• Q7. Was prominence of leg crossing considered?
• Q8. Were the eligibility criteria mentioned?
• Q9. Were there ethics committee approval and written consent mentioned in the papers?
• Q10. Was the justification for the sensor setup and location given?

Robustness • Q11. Were measures of reliability or accuracy of the algorithm reported?
• Q12. Were the classifications cross-validated?
• Q13. Is the system robust in the wild (controlled or free-living environments)?

Table 3. Quality bias assessment table to rate the quality of the shortlisted papers based on the three question categories described previously. Q
represents the checklist question number.

QualityTotalRobustnessStudy designStudy descriptionStudy

Q13Q12Q11Q10Q9Q8Q7Q6Q5Q4Q3Q2Q1

Medium10101001100c211b2aMa et al [30]

High191110211222222Zemp et al [14]

Medium121021001011212Xu et al [13]

Medium171122002022212Martins et al [15]

Medium182120201022222Zemp et al [16]

Medium131120002010222Kamiya et al [17]

Medium111210001000222Liu et al [18]

Medium141022002020122Pereira et al [19]

Medium111011002010212Zhu et al [20]

Medium182120211022212Bontrup et al [1]

Medium161122002012212Mutlu et al [21]

Medium101020001001212Huang et al [22]

Medium141021001021222Wang et al [23]

Low71020000000202Noh et al [24]

a2: good detail.
b1: limited detail.
c0: no detail.
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Textbox 1. Summary of the data extracted from each of the shortlisted papers.

Technology

• Sensor type

• The number of sensors

• Sensor location

Study design

• The environment in which these studies were performed

• The number of subjects recruited

• Study protocol

Classification algorithm

• Algorithms used

• The type of features extracted

• Number of postures classified

Algorithm performance

• Performance metrics

• Evaluation setup

Results

Shortlisted Papers
The shortlisting of the papers was based on the PRISMA
(Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) flowchart presented in Figure 2 [31]. The search
terms given in Table 1 were used with minor modifications to
identify and retrieve 1359 potentially relevant papers: 610 from
Web of Science, 307 from IEEE Xplore, and 442 from PubMed.
The elimination of duplicates from these retrieved papers
resulted in 949 papers. A total of 3 additional papers were

included from the reference search and other sources. After
screening them by reading the titles and abstracts, 105 papers
were shortlisted. The excluded papers were related to air
embolism, human activity recognition, gait analysis,
hypertension, and other topics unrelated to sitting postures. Only
14 of the 105 shortlisted papers were selected after reading the
complete papers, based on the inclusion criteria. The reasons
for excluding the remaining 91 papers are provided in Figure
2. In total, 5 of the selected papers are from journal publications.
A summary of the shortlisted papers is presented in Tables 4
and 5.
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Figure 2. The literature search strategy using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flowchart.
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Table 4. Summary of the reviewed papers.

Classification accuracyNumber and type of posturesStudy

SVMe: 95.33% accuracy; K-means clustering:
89.35% accuracy

5 types: USa, LFb, LBc, LRd, and sitting cross-leggedMa et al [30]

Multimodal regression: 90.4% accuracy; NNg: 90.4%

accuracy; RFh: 90.9% accuracy; combination of
boosting, NN, and RF: 90.8% accuracy

7 types: US, LF, LB, LLf, LR, the left leg crossed over the right, and
the right leg crossed over the left

Zemp et al [14]

Dynamic time warping: 85.9% accuracy7 types: US, LF, LB, LL, LR, right foot over left, and left foot over
right

Xu et al [13]

Experiment A: artificial NN: 70% accuracy; experi-
ment B: thresholding and artificial NN: 93.4% accu-
racy

Experiment A: 11 types: US, LF, LB, LL, LR, LB with no lumbar
support, the right leg crossed, the right leg crossed with LL, the left
leg crossed, the left leg crossed with LR, and slouching; experiment
B: 8 types: US, LF, LB, LL, LR, LB with no lumbar support, the right
leg crossed, and the left leg crossed

Martins et al [15]

RF: 82.7% accuracy7 types: US, LF, LB, LL, LR, crossed legs right over left, and crossed
legs left over right

Zemp et al [16]

SVM: 98.9% accuracy known subject; SVM: 93.9%
accuracy unknown subject

9 types: US, LF, LB, LL, LR, the right leg crossed, LR with the right
leg crossed, the left leg crossed, and LL with the left leg crossed

Kamiya et al [17]

Convolutional NN: 98% accuracy; back propagation
NN: 92.8% accuracy

8 types: US, LF, LB, LL, LR, crossed legs right over left, crossed
legs left over right and slouching

Liu et al [18]

Artificial NN: 80.9% accuracy12 types: US, LF, LB, LL, LR, LB with no lumbar support, the right
leg crossed, the right leg crossed with LL, the left leg crossed, the left
leg crossed with LR, left leg over right, and the right leg over left

Pereira et al [19]

k-nearest neighbor: 81% accuracy; principal compo-
nent analysis: 86% accuracy; linear discriminant
analysis: 81% accuracy; sliced inverse regression:
86% accuracy; NN: 80% accuracy

10 types: US, LF, LB, LL, LR, the right leg crossed, the left leg
crossed, LL with the right leg crossed, LR with the left leg crossed,
and slouching

Zhu et al [20]

RF: 90% accuracy7 types: US, LF, LB, LL, LR, crossed legs right over left, and crossed
legs left over right

Bontrup et al [1]

Tekscan: 31 sensor SimpleLogistic: 87% accuracy;
Prototype Sensor System: 19 sensors SimpleLogistic:
78% accuracy

10 types: US, LF, LB, LL, LR, the left leg crossed with LR, the right
leg crossed, slouching, the left leg crossed, the right leg crossed with
LL

Mutlu et al [21]

Artificial NN: 92.2% accuracy8 types: US, LF, LB, LL, LR, slumped sitting, the right leg crossed,
and the left leg crossed

Huang et al [22]

Decision tree: 99% accuracy6 types: US, LF, LB, the left leg crossed, the right leg crossed, and
astride sitting

Wang et al [23]

Triangle center: 98% accuracy9 types: US, LF, LB, LL, LR, left leg trembling, right leg trembling,
left leg twisted, and the right leg twisted

Noh et al [24]

aUS: upright sitting.
bLF: lean forward.
cLB: lean backward.
dLR: lean right.
eSVM: support vector machine.
fLL: lean left.
gNN: neural network.
hRF: random forest.
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Table 5. Summary of the reviewed papers.

Number and type of sensor(s) and locationDuration of the studyPopulationStudy

One triaxial accelerometer and cervical spineEach posture was held for 5 min, but data
were collected after 1 to 2 min.

6 subjectsMa et al [30]

17 pressure sensors: 10 pressure sensors were fixed within
the seat pan, 4 were fixed on the backrest, 3 were fixed on
each armrest, and 1 accelerometer sensor at the rear of the
backrest

Each posture was held for 5 s.41 subjectsZemp et al [14]

256 pressure sensors in a cushion placed on the seat of the
chair

—a25 subjectsXu et al [13]

8 pressure sensors or cells: 4 in the seat pad and 4 in the
backrest

Experiment A: each subject held each pos-
ture for 20 s; experiment B: each subject
held each posture for 15 s.

Experiment A: 30
subjects; experiment
B: 30 subjects

Martins et al [15]

64 pressure sensors mat placed on the seat panFree-living environment recording was for
330 min.

20 subjectsZemp et al [16]

64 pressure sensors sheet placed on the seat of the chairEach posture was maintained for 2 to 3 s.10 subjectsKamiya et al [17]

1024 pressure sensors array placed on the chair—25 subjectsLiu et al [18]

8 pressure sensor (air bladder): 4 in the seat pad and 4 in the
backrest

Each subject had each posture for 20 s.72 subjectsPereira et al [19]

Two 2016 pressure sensor sheets mounted on the seat pan
and the backrest of the chair

—50 subjectsZhu et al [20]

196 pressure sensors mat fixed to the seat pan of an office
chair

Data were collected from each participant
for almost 6.2 (SD 1.5) h

64 call center employ-
ees

Bontrup et al [1]

Tekscan: 2016 pressure sensor mat each placed on the
backrest and the seat;

Prototype Sensor System: 19 pressure sensors optimally
placed on the backrest and on the seat of the chair.

—Tekscan: 52 subjects;

Prototype Sensor Sys-
tem:

20 subjects

Mutlu et al [21]

2288 pressure sensor (a piezoresistive sensor) on the seatEach posture maintained for 5 s.—Huang et al [22]

8 pressure sensor (capacitive proximity sensor): 4 sensors
on the seat and 4 sensors on the backrest

Data were collected with each posture for
30 s, followed by 10 s rest.

5 subjectsWang et al [23]

8 pressure sensors on the seating areaData were collected for 10 min.10 subjectsNoh et al [24]

aData not available.

Study Quality Assessment
The quality assessment of papers was performed based on the
evaluations of the questionnaires in Table 2. All papers had a
low bias in their aims (Q1), in their reliability in reporting the
accuracy of the algorithms (Q11), and when stating their
findings (Q3). Most papers were rated low regarding the
justification of the number of subjects enrolled (Q6) and the
eligibility criteria (Q8) used to recruit them into the studies.
Other factors for the lower rating were that most papers did not
mention ethics approval and written informed consent from
subjects (Q9), the justification of sensor positioning (Q10), the
use of cross-validation to evaluate the algorithms (Q12), and
the study’s limitations (Q4). Due to the aforementioned factors,
most papers were rated as medium quality, and only 1 study
[14] was as rated high quality. Therefore, for all the included
papers’ total median assessment score was rated as 13.5 (on a
scale of 0 to 26).

Technology
This section describes and investigates the types of sensors used,
their quantity, and their placement. All studies, except for 1
study out of the 14 shortlisted studies [30], have used pressure

sensors to classify sitting postures. These pressure sensors were
used in the form of smart cushions, pressure mats, pressure
sensor sheets, or as individual pressure sensors. In the
experiment conducted by Zemp et al [14], an additional triaxial
accelerometer sensor was used that was placed in the backrest
of the seat to access the global chair movement and angle of
the backrest. The experiment conducted by Ma et al [30] is the
only study in which a triaxial accelerometer sensor was used to
measure the sitting posture. An accelerometer was placed on
the cervical spine to study the seated posture.

In previous studies [1,13,16-18,20-22], pressure sensors were
used in the form of an array of sensors and placed on the chair’s
seat pan. In 2 papers, the sensor arrays were placed on the
backrest of the chair [20,21]. The sizes of these sensor arrays
varied between 64 and 2288 sensors.

In some papers [14,15,19,21,23,24], sensors were sparsely
placed, varying from 7 to 17. In previous studies [15,19,23],
the sensors were placed such that the ischial tuberosity, the thigh
region, the lumbar region of the spine, and the scapula had better
contact with the sensors. The variations in the pressure
distributions in these regions were distinct for different postures.
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In 1 of the papers, pressure sensors were additionally placed in
the armrest [14]. In the study by Mutlu et al [21], ideal positions
for the sensors were identified using approximation algorithms.
These placements were based on the classes and features
extracted from the pressure sensors. A total of 7 studies used
commercial sensors in their experiments [1,14-16,20,21,24].
These commercial pressure sensors were either from Tekscan,
Interlink, Sensomative, or Honeywell. The rest of the authors
had designed custom-made pressure sensors.

Study Design
This section describes the environment of the study, the duration
of the study’s recording, and the number of subjects recruited.
Most of the studies were conducted in a controlled environment,
and the subjects were asked to follow the protocol designed for
that study. In these studies, the recording duration for each
posture was between 5 seconds to 3 minutes. A total of 4 papers
did not mention the duration of the study [13,18,20,21]. Two
studies [1,16] were designed in an occupational (free-living)
setting with a sitting duration from 3 hours to 6.2 hours. In these
2 studies, the subjects were free to choose their postures as they
worked. All studies in this paper had recruitment numbers
varying between 6 and 72 subjects. Except for 1 study [22], all
mentioned the number of subjects.

Classification Algorithms
Different algorithms applied to differentiate and identify the
various sitting postures, the type of features, and the number of
postures classified are investigated in this section. NNs with
varying parameters of neurons, layers, transfer function, and
backpropagation methods were used for classifying the sitting
postures in the majority of the studies [14,15,18-20,22]. Support
vector machines [17,21,30] and random forest (RF) [1,14,16]
were the second most used models. Furthermore, algorithms
such as K-means [30], multimodal regression [14], boosting
[14], dynamic time warping [13], k-nearest neighbors [20],
sliced inverse regression (SIR) [20], decision tree [23], Naive
Bayes [21], SimpleLogistic [21], linear discriminant analysis
[20], principal component analysis (PCA) [20], and triangle
center [24] were deployed in the papers to classify sitting
postures. In this study, 6 papers [14,15,18,20,21,30] compared
the performance of classification algorithms using more than
one classifier. Please refer to Table 4 for more information on
the classification accuracy.

Training of the classification algorithm and its accuracy depends
on the type of features used and its sample size. Different types
of features have been used in papers to train and test
classification algorithms. Ma et al [30] extracted features from
the accelerometer using PCA. Zemp et al [1,14,16] used the
median of the sensor data’s 1-second duration as the features.
In the study by Xu et al [13], the two-dimensional pressure data
were converted into one-dimensional data, and the similarity
between the signals was used as the feature. In 2 papers [15,19],
data collected for each posture from the pressure sensors were
divided into groups, and the average of each group was used as
a feature. Mutlu et al [21] obtained the position and size of the
bounding box; distance of the bounding boxes; the distance and
angle between the centers of the pressure areas of the seat and
backrest; the centers, radii, and orientations of 2 ellipses from

the seat; and the pressure applied to the bottom area as the
features to train the algorithm. Huang et al [22] used 40 frames
of collected pressure data for each position as the training data.
Wang et al [23] used the average and SD of the pressure of the
sensors as features. Noh et al [24] used the distance between
the center points, intensity, and frequency size of the pressure
sensor movements between the current frame center and the
previous to train the algorithm.

In the reviewed papers, the number of sitting postures classified
varied between 5 and 12. The most common postures observed
in Table 4 were upright sitting lean forward, lean backward,
lean right, and lean left, as shown in Figure 1. The rest of the
postures mentioned in the papers are slight variants of these
postures and include different limb movements. Noh et al [24]
has also considered in their studies trembling and twisting of
the right and left legs.

Algorithm Performance
The evaluation of the algorithms must understand the accuracy,
sensitivity, and positive predictive value and check if there is
overfitting of the algorithm. Most classification algorithms use
confusion matrices to evaluate the posture’s classification
accuracy. The confusion matrix gives the accuracy of the
algorithm and helps interpret the data and the posture that has
been misclassified as some other posture. The confusion matrix
helps analyze misclassification and rectify errors using each
posture’s sensitivity and positive predictive value. Of the 14
papers [1,13,15-17,19,21-24], 10 used a confusion matrix to
evaluate the performance of the classification algorithm.

Overfitting is another challenge when training an algorithm for
machine learning. This occurs when the algorithm fits the
training data set and not on a new data set. To check that the
algorithm is not overfitting, 6 papers [1,14-17,21] used either
10-fold or leave-one-out cross-validation (internal validation).
External validation was performed in the study by Liu et al [18]
using 5 external test data sets instead of just cross-validation.
Thus, the evaluation and overfitting of the algorithms need to
be checked for each classification algorithm.

Discussion

Principal Findings
The WHO and other authors [1,3,9] emphasize the monitoring
of sitting postures in free-living environments as a way to
understand the mechanical factors involved in musculoskeletal
discomfort and pain such as LBP. Different types of sensors
(eg, pressure and triaxial accelerometer sensors) and algorithms
could be used to accomplish this task. Therefore, this study
intends to reveal the current state-of-the-art and the involving
algorithms and sensors to classify sitting postures. In each of
the included studies, we investigated the type of sensors, the
algorithms used, the number of postures classified, the study
design, and the environment in which these studies were
conducted.

Study Quality Assessment
In summary, most of them had an overall medium quality, with
a median score of 13.5. Most of the included papers were
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conference papers, and only 5 papers were published as journal
papers. Among the 5 journal papers, we rated only 1 as high
quality. Most of these papers neither had a straightforward study
design nor were their results cross-validated. Thus, the sitting
posture classification research is still preliminary and requires
further investigation to evaluate the findings. Therefore, to
evaluate the findings more systematically in future studies, we
recommend that the study be designed carefully. The
classification results need to be cross-evaluated such that newer
studies can replicate the findings.

Technology
The majority of the papers in this study reported pressure sensors
positioned on a chair to classify sitting postures. In these studies,
the authors could distinguish between postures because of
changes in pressure intensity at different body locations. Arrays
of such pressure sensors were used in the backrest and seat
[1,13,16-18,20-22] in these studies. However, this is an
inefficient use of sensors. As we know from the other studies
[15,19,23], the sensors can be strategically placed on the chair
in direct contact with the ischial tuberosity, thigh, lumbar, and
scapular regions of the subject’s body. Such positioning can
show the changes in the pressure intensity by using fewer
sensors. Nevertheless, while using pressure sensors, researchers
must ensure that the subjects empty their pant pockets, as this
could hamper the results by changing the pressure intensity
further [15,19]. Furthermore, the study conducted by Mutlu et
al [21] concluded that the number of pressure sensors should
be decreased to reduce the cost of hardware and improve the
classification accuracy. Therefore, to improve the classification
accuracy and reduce the hardware cost, we suggest the strategic
placement of sensors. Thus, the type of sensor and its location
must be carefully considered while performing the study.

Regarding the classification of postures, as the number of
distinct postures increased, the accuracy of the algorithm
decreased [1,16], as the differentiation between the postures
was challenging. Therefore, in some studies that used pressure
sensors, specific postures were merged into a single posture,
resulting in the loss of similar postures. One possible solution
to overcome this challenge is to measure the spine movement.
Spine movements can be used to differentiate between similar
but distinct postures. In the study conducted by Ma et al [30],
a triaxial accelerometer was placed at a random location on the
cervical spine to measure spine movements to classify sitting
postures. However, this was not enough to measure the spine
movement, as the upper and lower parts of the spine are
independent in motion [32,33]. Accordingly, we propose using
multiple sensors, which measure the orientation (eg, inertial
measurement unit [IMU] sensors) of the upper and lower spine
to be employed to differentiate and classify similar postures.
IMUs used in movement trackers in clothing is another option
that could be considered if the sensors are placed at the right
location on the spine.

Study Design
Most studies were performed in a controlled environment, with
subjects being asked to sit in specific postures. However, in
free-living conditions, the number of postures could vary and
might not match those performed in controlled environments.

Moreover, sitting postures depend on the subject’s spinal
curvature, intradiscal pressure, tissue stress, and muscle
activation [34,35]; however, most studies did not investigate
these factors in depth. Therefore, we strongly recommend that
communities perform sitting posture classification in free-living
environments. The sitting posture classification is personalized
and can be translated into real-life sitting.

Classification Algorithms
The accuracy of the classification algorithms depends on the
type of features, location of the sensors, number of subjects,
sample size of the data used for training the algorithm, and
number of postures classified. For example, the studies that had
the highest number of subjects (72, 64, 52, and 50) had
maximum accuracies of 80.9% (Artificial NN), 90% (RF), 87%
(SimpleLogistic), and 86% (SIR), respectively [1,19-21]. On
the basis of the comparison of the number of classes and the
duration of the experiment, the RF algorithm appears to be
suitable for classification using pressure sensors. However, the
conclusion that the RF algorithm performs well could be biased;
it is still too early to conclude that the RF algorithm has the best
performance, as there were only 7 postures involved; and the
information regarding evaluation using labels was not provided.
On the basis of these findings, we advise that the assessment
of the predictions of these algorithms should not be based only
on the overall accuracy of the system but also on the
classification accuracy of each posture and the sample size.

After analyzing the Type of postures column in Table 4, we can
infer that there are 5 main sitting postures: upright sitting, lean
forward, lean backward, lean left, and lean right. Other similar
postures are the combination of these postures along with spine
and limb movements. Limb movements are an essential aspect
of understanding musculoskeletal discomfort and pain [25,27].
Studies have revealed that cross-legged sitting results in
asymmetries in the spine and pelvic shapes and increases
external oblique muscle activities [26]. Therefore, limb
movements must be considered while performing the
classification. Furthermore, the postures can be subclassified
based on the spine movement. For example, there are 2 types
of sitting postures in upright sitting: thoracic upright sitting and
lumbopelvic upright sitting. Therefore, in the subclassification,
the spine curvature should also be identified along with the
posture type, as the curves provide insight into the type of strain
the lower back undergoes [36]. Thus, we would point out that
future researchers perform subclassification of postures based
on spine and limb movements and 5 basic sitting postures.

Static sitting postures are associated with musculoskeletal
discomfort and pain. Hence, it is important to understand how
frequently a subject moves while monitoring sitting postures
[1,16]. Therefore, static sitting postures must be differentiated
from dynamic sitting postures. Hence, 2 studies measured
transitional periods [1,16], representing the change of one
posture to other. Transitional periods also indicate whether a
person with static sitting posture has made changes. Therefore,
transitional periods must be considered when classifying sitting
postures. However, the types of static postures that indicated
the presence of musculoskeletal discomfort and pain were not
mentioned. Therefore, to understand the cause of
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musculoskeletal discomfort and pain, we urge future studies to
unambiguously classify the type of static sitting posture while
considering the transitional periods for differentiating between
static and dynamic postures.

Algorithm Performance
In the shortlisted papers, there was no mention of the use of
labels for evaluating the accuracy of the classification. An
exclusive annotation of labels is not required in studies using a
defined protocol. However, when the study is performed in a
free-living environment, exclusive annotation of labels is needed
to evaluate the performance of the classification algorithm. One
solution for labels is the self-reporting of sitting postures by the
subject. However, this was limited by the duration of the
measurements. Over a longer time, the subjects may become
unaware of many movements while concentrating on their work.
The challenge of self-reporting of labeled postures can be
overcome using video cameras [37]. In the future, we will use
a three-dimensional camera as a ground truth that can be used
to verify the predicted activity at any particular time instant.

During the evaluation, it is also important to check if there is
an overfitting of the algorithm. In this study, most of the
included studies prevented overfitting by performing
cross-validation or by using a new data set for testing. In one
of the studies, when the algorithm’s training and testing were
performed on a data set collected from a known subject, the
classification accuracy was 98.9% after cross-validation.
However, when training and testing were performed with 10-fold
cross-validation using 9 subjects’ data for training and 1
subject’s data for testing, the accuracy decreased to 93.9% [17].
Therefore, it is crucial to evaluate the robustness of an algorithm
even when the same subject is not used to train the algorithm.

Conclusions
This study has been conducted to understand the types of sitting
postures in the context of spine and leg movements, as sitting
for long hours is related to musculoskeletal discomfort and pain.

The quality appraisal shows that future studies need to provide
a more precise description of the study design and validation

to replicate the studies. The following 5 main sitting postures
were present in most of the studies evaluated: upright sitting,
lean forward, lean backward, lean left, lean right, and different
combinations of limb and spine movements. However, a deeper
understanding of spine orientation and variations in those sitting
postures are still needed for a more personalized assessment in
the context of musculoskeletal discomfort and pain. This is
because the individual posture relies on spine curvature, that is,
even upright sitting differs from person to person. Even the
same person does not always maintain the same posture as the
postures instructed in the laboratory. Therefore, it is essential
to perform these studies in a free-living environment to
understand people’s actual postures and reduce the bias from
experiments in a controlled environment. To accomplish these
studies in a free-living environment in the future, we recommend
using multiple sensors that can measure three-dimensional spine
movement and angle, such as IMUs. Furthermore, we suggest
using labels to evaluate the classification of sitting postures and
cross-validation of the algorithms to avoid overfitting to a
specific data set. Three-dimensional cameras could be
recommended for initial studies to obtain labels. Finally, we
recommend the measurement of transitional periods to shed
light on more factors affecting musculoskeletal discomfort and
pain.

Limitations
In this study, we only included papers written in English,
excluding papers written in other languages. Furthermore, with
the strict exclusion criteria, there is a possibility that this study
missed some additional methods for sitting posture
classification. Moreover, we did not include a quantitative
analysis (eg, meta-analysis) because of the high heterogeneity
in subject characteristics, experimental design, and algorithms.
Finally, systematic technological reviews would benefit from
standardized methods to assess the risk of bias and systematic
content creation, similar to the PRISMA guidelines used in
medical and life sciences. Therefore, we believe that the research
community must invest in more standardized systematic reviews
in such interdisciplinary areas.
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Abstract

Background: Historically, the evaluation of physical activity has involved a variety of methods such as the use of questionnaires,
accelerometers, behavior records, and global positioning systems, each according to the purpose of the evaluation. The use of
web-based physical activity evaluation systems has been proposed as an easy method for collecting physical activity data. Voice
recognition technology not only eliminates the need for questionnaires during physical activity evaluation but also enables users
to record their behavior without physically touching electronic devices. The use of a web-based voice recognition system might
be an effective way to record physical activity and behavior.

Objective: The purpose of this study was to develop a physical activity evaluation app to record behavior using voice recognition
technology and to examine the app’s validity by comparing data obtained using both the app and an accelerometer simultaneously.

Methods: A total of 20 participants (14 men, 6 women; mean age 19.1 years, SD 0.9) wore a 3-axis accelerometer and inputted
behavioral data into their smartphones for a period of 7 days. We developed a behavior-recording system with a voice recognition
function using a voice recognition application programming interface. The exercise intensity was determined from the text data
obtained by the voice recognition program. The measure of intensity was metabolic equivalents (METs).

Results: From the voice input data of the participants, 601 text-converted data could be confirmed, of which 471 (78.4%) could
be automatically converted into behavioral words. In the time-matched analysis, the mean daily METs values measured by the
app and the accelerometer were 1.64 (SD 0.20) and 1.63 (SD 0.20), respectively, between which there was no significant difference
(P=.57). There was a significant correlation between the average METs obtained from the voice recognition app and the
accelerometer in the time-matched analysis (r=0.830, P<.001). In the Bland-Altman plot for METs measured by the voice
recognition app as compared with METs measured by accelerometer, the mean difference between the two methods was very
small (0.02 METs), with 95% limits of agreement from –0.26 to 0.22 METs between the two methods.

Conclusions: The average METs value measured by the voice recognition app was consistent with that measured by the 3-axis
accelerometer and, thus, the data gathered by the two measurement methods showed a high correlation. The voice recognition
method also demonstrated the ability of the system to measure the physical activity of a large number of people at the same time
with less burden on the participants. Although there were still issues regarding the improvement of automatic text data classification
technology and user input compliance, this research proposes a new method for evaluating physical activity using voice recognition
technology.

(JMIR Biomed Eng 2021;6(1):e19088)   doi:10.2196/19088
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Introduction

There has been remarkable progress in wearable devices (the
collective name for information devices that are worn and
carried) in recent years. Particularly, devices that objectively
record lifelog data, such as physical activity and sleep, have
attracted attention [1]. Many companies have developed
smartphones and wristwatch-type behavior-recording sensors.
Wearable devices such as these are expected to contribute to
the promotion of physical activity for many people [2].
According to the global market forecast for mobile health
solutions (2015-2022), the global mobile health market is
expected to reach $90.4 billion in 2022 from $21.1 billion in
2017 [3]. The global health market, along with the Internet of
Things and big data analysis, has become an important part of
Japan's growth strategy for the fourth industrial revolution [4].
Despite the fact that deficient physical activity is the third
leading cause of death [5], physical activity in Japan has
reportedly decreased slightly over the past 10 years [6].

The questionnaire method has excellent cost performance and
is suitable for large-scale physical evaluation surveys, but it has
been pointed out that there is a problem with its validity [7].
An epidemiological study [8] used a smartphone app (the Argus
app) to demonstrate that step count is negatively associated with
obesity. However, most wearable devices with built-in
accelerometers have been shown to underestimate the physical
activity energy expenditure value of the doubly labeled water
[9]. Although accelerometers are highly useful, data bridging
might be necessary in epidemiologic studies due to
underestimation (depending on the wearable device used to
measure energy expenditure). In a previous study [10], we
developed and validated a physical activity measurement system
based on a 24-hour activity recording method, to be used as an
accessible physical activity evaluation system. The accuracy of
the energy expenditure measurement was determined using the
doubly labeled water method. The average energy expenditure
measurement value and the average value of the doubly labeled
water nearly matched, and the two were very highly associated
[10]. In another study [11], we collected data from thousands
of people using this physical activity measurement system and
conducted epidemiological studies such as regional comparisons.
We found that our system can evaluate physical activity in a
large number of people simultaneously, with substantial
accuracy and at a low cost. However, the users are tasked with
inputting information about the activities in which they have
engaged every 15 minutes for the 24 hours in a day. As a result,
users are required to make an effort and input time while
stopping physical activity.

To address these problems, we attempted, in this study, to
develop a behavior-recording method using voice recognition.
Voice recognition technology enables the recognition and
translation of verbal information into text, which can then be
used in automated data processing systems. Using voice
recognition technology enables behavior recording without
requiring users to touch electronic devices. Information and
communication technology–based telehealth programs with
voice recognition technology show the potential to improve the
health of patients with chronic heart failure by self-care

management behaviors [12]. With the improvement of voice
recognition technology accuracy, such programs are used in the
medical field to enhance the adherence of health behavior of
patients with chronic diseases [13,14]. The possibility of a
voice-based mobile nutrition monitoring system that uses voice
processing has been reported [15]. However, we do not know
of any research that has, to date, used voice recognition
technology to evaluate physical activity. Because it has been
shown that physical activity can be estimated with high accuracy
from 33 types [16] and 66 types [10] of behavior records, we
hypothesized that physical activity could be evaluated by using
voice input that could then be converted into behavioral text.

If this study could prove the validity of physical activity
evaluation using a behavior recording method that relies on
voice recognition technology, it might be possible to evaluate
physical activity more simply in the future. This study may
improve the validity of physical activity evaluation and the
usability of voice recognition devices.

The purpose of this study was to develop a physical activity
evaluation app that records behavior using voice recognition
and to examine the validity of the method by using the app and
accelerometer at the same time.

Methods

Participants
A total of 20 healthy students (14 men and 6 women) with an
average age of 19.1 (SD 0.9) years participated in the study.
The developed voice recognition app was downloaded to their
smartphones and a 1-week behavior record was inputted. We
explained the purpose of the survey to the participants and the
voluntary nature of their participation. We explained that the
privacy and anonymity of the participants would be strictly
observed, confirmed that there were no related health concerns,
and obtained consent. This research project was approved by
the Nihon University College of Sports Science for Research
Ethics Review (2019-012).

Voice Recognition App Development
We developed a behavior-recording system with a voice
recognition function (Figures 1 and 2) using a voice recognition
application programming interface. In this research, we
commissioned the development of a voice recognition app called
ACTRA (Yonefu International Inc, Fukuoka) using the SIRI
application program interface (Apple Inc, California). SIRI's
speech recognition technology uses an acoustic model and a
language model to convert speech data into text via a server.
Attempts have been made to utilize various speech recognition
technologies, including SIRI, in the field of health medicine
[17-19]. The basic structure of our physical activity evaluation
system is based on the Web-Based Physical Activity
Measurement System [10] and Web-Based Physical Activity
Records [11] developed with reference to a simplified physical
activity record [16]. By accumulating data in a cloud server and
analyzing big data, we were able to analyze behavior patterns,
which enabled the categorization of behavior patterns and the
estimation of future physical activity from current physical
activity patterns.
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Figure 1. A behavior-recording system with a voice input app.

Figure 2. Conceptual view of the visualization of physical activity from the voice input.
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We developed an algorithm that can calculate total energy
expenditure based on voice data. To our knowledge, this method
is the first to evaluate physical activity and energy expenditure
based on a behavioral record generated via self-inputted voice
data. Figure 3 shows the screen of the developed voice
recognition app. When the user presses the microphone button
and tells the smartphone what they are or were doing, their voice
is recognized and converted into text data (Figure 3, left). The
terms “start,” “end,” “from,” “to,” and “do” were set as key
words to separate words and list the activity in time units with
the machine learning function (Figure 3, right). Participants
could use the device in real time, such as by saying “start now”
when they began an activity. They could also look back at the
activities completed that day, and input activities as follows:
“Starting at △△〇〇 hour □□ minute, ●● hour ▼▼ minute

end.” The behavior database is queried from the word, and the
“start” and “end” of the trigger word are extracted. Then, the
total time of each behavior is extracted, and the activity intensity
from the start to the end of the behavior is automatically
recorded. During the study, it was difficult to convert the
recorded behavior into text completely automatically, and in
some cases human judgment was necessary. The exercise
intensity was determined from the text data obtained by the
voice recognition program as well as from the correspondence
table [20] between the behavior and exercise intensity. For each
behavior, the product of exercise intensity and time was
obtained, and METs time per day was calculated. The average
METs per day was obtained by dividing the total METs value
per minute by the total activity time.

Figure 3. Screen of the developed voice recognition app.

Physical Activity Measurement via Accelerometer
Participants wore a 3-axis Active Style Pro accelerometer
(HJA-750C, Omron Healthcare, Kyoto) on their lower back for
one week as confirmed by the input data of the physical activity
measurement system. The accelerometer was considered to have
a better correlation with doubly labeled water in the
measurement of physical activity energy expenditure than other
accelerometers [9]. Participants were instructed to always wear
the unit except for during sleep and bathing. The epoch length

for processing the data obtained from the accelerometer was set
to 10 seconds. The activity intensity (METs) was estimated
from the combined acceleration in the vertical, front-back, and
left-right directions, and was collected in units of 10 seconds.
Activity intensity below the detection threshold, categorized as
“a zero count,” was a period in which no activity was detected
for more than 60 minutes. This time was considered to correlate
to periods when the participant was not wearing the device
(nonwearing time); the wearing time was determined by
subtracting the nonwearing time from 24 hours. Datasets for
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days with daily wearing times of 10 hours or more were
analyzed. To calculate the 24-hour average METs, 0.9 METs
were calculated without measurement data.

Time-Matched Analysis of Both Voice Recognition and
Accelerometer Methods
The advantage of using acceleration is that it has high temporal
resolution; voice recognition can also be analyzed every minute.
Therefore, we performed an analysis in which acceleration data
was collated with the behavior recording timeline of voice
recognition. As a procedure for time matching, the activity
intensity obtained from the accelerometer was matched with
multiple behavior records obtained from voice input every
minute, and the average METs per day was calculated by each
method. The time matching was not automated and was done
manually.

Statistical Analysis
Mean METs per day are shown as the mean with the standard
deviation. A paired t test was performed to compare the average
METs values obtained from the voice recognition app and the
3-axis accelerometer. Pearson's correlation coefficient was
calculated to examine the correlation between METs obtained
from the voice recognition app and the 3-axis accelerometer.
The average METs values were calculated for cases where the
voice recognition was recorded for 10 hours of activity or more,
14 hours or more, and for time matching analysis. For the values
calculated under each analysis condition, the average METs
values were compared, and the correlation coefficient was
calculated. Using Bland-Altman plots, we related the difference
in METs between voice recognition and accelerometer (y axis)
to the arithmetic mean of METs for voice recognition and

accelerometer (x axis) [21]. Statistical analysis was performed
using SPSS version 25 IBM (IBM Corporation, Somers, NY,
USA) with an alpha level of less than .05.

Results

In the voice input data of the subject, 601 text-converted data
could be confirmed, of which 471 (78.4%) could be
automatically converted into behavioral words. For example,
phrases with trigger words such as “study from 9:00 to 12:00,”
“start meal at 7:00, end meal at 8:00,” and clear words could
be automatically converted. However, automatic conversion
was not possible for phrases without trigger words such as “get
up at 7:00,” or for long sentences containing objects such as
“going home by riding a bicycle.” Therefore, the text data that
could not be automatically converted was checked and converted
by hand.

Table 1 shows the average METs for the voice recognition app
and accelerometer. There were 36 days with more than 10 hours
of voice recognition data and 16 days with more than 14 hours
of voice recognition data. The average daily METs measured
by the accelerometer was 1.47 (SD 0.23) and 1.48 (SD 0.24)
compared to 1.56 (SD 0.24) and 1.58 (SD 0.28) when the voice
recognition data were analyzed for days with 10 or more hours
of activity and 14 or more hours, respectively. Under all data
extraction conditions, the average METs value determined by
voice recognition was significantly higher than that determined
by the accelerometer (≥10 hours P=.02, ≥14 hours P=.04). In
the time-matched analysis, the voice recognition and
accelerometer values were 1.64 (SD 0.20) and 1.63 (SD 0.20),
respectively, and there was no significant difference (P=.57).

Table 1. Comparison of average daily METsa measured by voice recognition app and accelerometer.

Number of analyzed daysP value of the t testAccelerometer, average
METs (SD)

Voice recognition, average
METs (SD)

Dataset

360.021.47 (0.23)1.56 (0.24)Days with 10 or more hours
of measured activity

160.041.48 (0.24)1.58 (0.28)Days with 14 or more hours
of measured activity

360.571.63 (0.20)1.64 (0.20)Time-matched analysis

aMETs: metabolic equivalents.

Figure 4 shows the correlation between the voice recognition
data and the average daily METs measured by the accelerometer.
Figure 4A shows the data for voice recordings more than 10
hours long, Figure 4B shows the data for recordings that were
more than 14 hours long, and Figure 4C shows the date for the
time-matched analysis of both voice recognition and
accelerometer methods. Under all conditions, the average METs
values from voice recognition ranged from 1.2 METs to 2.3

METs. In contrast, the average METs values measured by the
accelerometer ranged from 1.0 METs to 2.2 METs. There was
a significant correlation between the average METs obtained
from voice recognition and that obtained by the accelerometer
in the 10 hour dataset, 14 hour dataset, and the time-matched
analysis (r=0.545, P=.02; r=0.750, P=.008; and r=0.830,
P<.001, respectively).
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Figure 4. Correlation of average measured METs with voice recognition app and accelerometer. METs: metabolic equivalents.

Figure 5 shows the Bland-Altman plot for METs as measured
by voice recognition compared with METs as measured by the
accelerometer. Figure 5A shows the data for voice recordings
more than 10 hours long, Figure 5B shows the data for
recordings that were more than 14 hours long, and Figure 5C
shows the date for the time-matched analysis of both voice
recognition and accelerometer methods. The mean difference
(Figure 5A) for the voice recognition and the accelerometer was
small (0.09 METs), and the limits of agreement were large at
0.44 METs (SD 1.96). The test for trend was not statistically
significant. The regression equation was y = 0.054x + 0.012

(r=.049, P=.78). The mean difference (Figure 5B) between the
two methods was small (0.11 METs), and the limits of
agreement were large at 0.37 METs (SD 1.96). The test for trend
was not statistically significant. The regression equation was y
= 0.167x – 0.15 (r=.217, P=.42). In the Bland-Altman plot
(Figure 5C) for METs measured by voice recognition compared
with METs measured by the accelerometer, the mean difference
between the two methods was very small (0.02 METs), and the
limits of agreement were 0.24 METs (SD 1.96). The test for
trend was not statistically significant. The regression equation
was y = –0.0341x + 0.035 (r=–.056, P=.74).
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Figure 5. Bland–Altman plot illustrating the difference in average measured METs between the voice recognition app and accelerometer. METs:
metabolic equivalents.

Figure 6 shows two examples in which the error between the
METs value measured by voice recognition and the METs value
measured value by the accelerometer was large. Figure 6 (α, β)
shows the individual data for α and β in Figures 4 and 5. Figure
6α shows that voice recognition app recorded higher METs
values than the accelerometer. This was due to the fact that the
voice recognition app determined that the game was in progress,

while the acceleration data showed a low intensity period. On
the other hand, in Figure 6β, the METs values measured by the
accelerometer were higher than those measured by the voice
recognition app. The cause was judged to be that the voice
recognition app recorded the activity as training and set the
METs value to 5, whereas, in reality, the activity was
accompanied by intense exercise exceeding 10 METs.
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Figure 6. 24-hour data for the two high-error examples (α and β in Figure 4C, Figure 5C).

Discussion

Overview
In this study, we developed a behavior-recording app that uses
voice recognition technology and verified the validity of the
app using an accelerometer. Participants’exercise intensity was
estimated from the activity recorded using the voice recognition
app, and the average daily METs was calculated [10,11]. When
the validity of this data was verified using an accelerometer,
we found a high correlation between the time-matched analysis
of both app- and accelerometer-measured data, and a moderate
correlation when the behavior was recorded for both 10 hours
or more and 14 hours or more in a single day. Further, the
average daily METs value measured by the voice recognition
app in time-matched analysis was not significantly higher than
that measured by the accelerometer. However, the average daily
METs value measured by the voice recognition app was
significantly higher than that measured by the accelerometer
for both the 10 hour or more dataset and the 14 hour or more
dataset. In a previous study [22], a 24-hour behavior recording
strategy using a website produced a significantly higher METs
value than an accelerometer. Therefore, when estimating energy
expenditure via voice recognition recording, the relevance was
moderate if it did not time match the acceleration data, but the
average might be overestimated.

Validity of Physical Activity Evaluation Using Voice
Recognition
It has been reported that the total energy expenditure reported
by an accelerometer underestimates physical activity, even when
the gold standard doubly labeled water method is used as a
standard [9]. This is because the device is removed during
bathing and to charge the device. Therefore, in the present study,
the average METs obtained by the voice recognition app might

have been slightly higher than that of the accelerometer. In
addition, the accelerometer does not count movements that
occur in a sitting position or stationary standing position, and
acceleration is not measured. Acceleration does not match
energy expenditures when riding a bicycle, climbing stairs, or
walking on slopes [23]. Also, energy expenditures due to
movements of antigravity muscles should be considered [24].
Further, the influence of dietary thermogenesis upon digesting
food may be an overlooked factor [7]. Although there is a limit
to the physical activity evaluation of the accelerometer, the
correlation with physical activity energy expenditure by doubly
labeled water has also been shown [9]. In this study, physical
activity energy expenditure is not examined because the basal
metabolism was not measured, and the average METs was
evaluated. Figure 5 (A, B, C) indicates that the error range of
the values recorded by voice recognition did not change,
regardless of the highest and lowest average METs values.
Figure 5 demonstrates no significant correlation between the
data in any of the graphs; the error range was shown (0.44 METs
(A), 0.37 METs (B), and 0.24 METs (C), 95% confidence
interval) regardless of the size of the estimate. In Figure 5B,
the regression line of the Brand Altman plot was slightly upward
(y = 0.1667X – 0.1474), and the data varied. It might be said
that the higher the average METs value, the larger the error. In
other words, it could be said that there was a day when the
acceleration did not actually move much, even if a high-intensity
behavior was inputted by voice. On the contrary, the
accelerometer moved well, but, in some cases, it didn’t move
much during voice recording.

Therefore, in consideration of the time resolution, which is the
merit of voice recognition and accelerometer use, the time of
both methods was matched and analyzed. By using this analysis
method, the validity was verified by excluding behaviors that
cannot be measured by the accelerometer, which is a weak point

JMIR Biomed Eng 2021 | vol. 6 | iss. 1 |e19088 | p.23http://biomedeng.jmir.org/2021/1/e19088/
(page number not for citation purposes)

NambaJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


of the accelerometer. For example, data for periods of bathing,
periods of daytime sleep, and instances in which participants
forgot to put on the accelerometer were excluded. In Figure 5C,
the regression line of the Brand Altman plot was flat (y =
–0.0341X – 0.035) and was within the 95% confidence interval,
except for one case. Even so, there was a case where there was
a large difference between the voice behavior record and the
daily average METs recorded by the accelerometer, so Figure
6 shows the details of the α and β data. The graphs of α and β
show cases where voice recognition is overestimated and
underestimated compared to acceleration data in sports activities.
Other than with sports activities, errors occurred when the
activity intensity was difficult to understand for long periods,
such as when participants rode bicycles or worked part-time
jobs.

Possibility of Behavior Recording by Voice Recognition
In the physical activity measurement system developed
previously [10], behavior was reported every 15 minutes. Thus,
an activity that was performed for about 10 minutes would have
been counted as having taken place for 15 minutes. In this study,
we hypothesized that behaviors would be more accurate when
recorded via voice recognition because the behavior would be
evaluated on a finer timescale. In the time-matched analysis, a
high correlation was found between the behavior recorded by
voice recognition and the acceleration data, and the mean value
also matched, so our hypothesis could be true. However, in the
analysis dealing with all the data of one day, there was a
difference in the mean METs values taken by the two
measurement systems, and the correlation coefficient was
moderate. This may be due to participants having experienced
difficulty remembering the details of their behaviors, or fatigue
related to the task of inputting behaviors sequentially in real
time. In recent studies that used the estimation method of
physical activity with wearable trackers, data collection
compliance and validity were positively correlated, but stricter
compliance may have increased the number of excluded data
points [25]. It is necessary to correctly calculate the average
daily METs, assuming practical application that is useful for
dietary guidance and lifestyle improvement.

Limitations and Future Studies
The limitation of this study is that if participant compliance is
not high, the measurement accuracy will decrease. In this study,

the average daily METs per person were treated as one dataset.
If all inputs were perfect, there would have been a total of 140
days of recording, but the final data set we analyzed included
36 days with 10 or more hours of activity and 16 days with 14
or more hours of activity. Increasing compliance when
evaluating physical activity using voice recognition is an
important factor for future research. There was a technical
problem to convert all voice data automatically and
mechanically into exercise intensity. However, this study is the
first report to validate the evaluation of physical activity using
voice input technology. The advantage of the app developed in
this research is that it is possible to record behavior by voice
input with just a single touch on the device.

This section describes applied research and practice for the
future of this research. The method developed in this study
could replace the traditional questionnaire in epidemiological
studies and could be used to evaluate the physical activity of
many people with less burden on the subjects. Time-matched
analysis showed that physical activity could be evaluated with
extremely high accuracy using voice recognition technology.
The developed app enables a simple and low-cost evaluation
of physical activity measurement, which may contribute to
disease prevention. Future apps that incorporate deep learning
using artificial intelligence may be useful for physical activity
evaluation research. Although the details of participants’
behavior are not known from the acceleration data, the voice
recognition method might be useful for analyzing many behavior
patterns.

Conclusions
We developed a behavior-recording app using voice recognition
and examined its validity using an accelerometer. The system
was found to be an effective method for collecting physical
activity data and is appropriate for use in epidemiological
studies. Although the conversion of voice-to-text data into
behavior was not perfect, voice recognition technology is
evolving day by day and improvement could be expected. The
results of the time-matched analysis showed that physical
activity could be measured with high accuracy by voice
recognition technology. Participant compliance when using
voice input technology is important for ensuring data validity.
This research proposes a new method for evaluating physical
activity using voice recognition technology.
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Abstract

Background: With advances in digital health technologies and proliferation of biomedical data in recent years, applications of
machine learning in health care and medicine have gained considerable attention. While inpatient settings are equipped to generate
rich clinical data from patients, there is a dearth of actionable information that can be used for pursuing secondary research for
specific clinical conditions.

Objective: This study focused on applying unsupervised machine learning techniques for traumatic brain injury (TBI), which
is the leading cause of death and disability among children and adults aged less than 44 years. Specifically, we present a case
study to demonstrate the feasibility and applicability of subspace clustering techniques for extracting patterns from data collected
from TBI patients.

Methods: Data for this study were obtained from the Progesterone for Traumatic Brain Injury, Experimental Clinical
Treatment–Phase III (PROTECT III) trial, which included a cohort of 882 TBI patients. We applied subspace-clustering methods
(density-based, cell-based, and clustering-oriented methods) to this data set and compared the performance of the different
clustering methods.

Results: The analyses showed the following three clusters of laboratory physiological data: (1) international normalized ratio
(INR), (2) INR, chloride, and creatinine, and (3) hemoglobin and hematocrit. While all subclustering algorithms had a reasonable
accuracy in classifying patients by mortality status, the density-based algorithm had a higher F1 score and coverage.

Conclusions: Clustering approaches serve as an important step for phenotype definition and validation in clinical domains such
as TBI, where patient and injury heterogeneity are among the major reasons for failure of clinical trials. The results from this
study provide a foundation to develop scalable clustering algorithms for further research and validation.

(JMIR Biomed Eng 2021;6(1):e24698)   doi:10.2196/24698
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Introduction

Traumatic brain injury (TBI) is broadly defined as disruption
in normal brain function or other evidence of brain pathology
as a result of mechanical force directed at the head or a rapid
acceleration/deceleration event. TBI is the most common cause
of death and disability in children and adults aged less than 44
years [1]. However, there has been little change in TBI-related
deaths despite advancements in care delivery [2]. Additionally,
a major challenge to both TBI-related clinical research and acute
care is reliably identifying candidates for targeted interventions
[3]. While there have been substantial advances in technological
and computational approaches to TBI phenotyping [4-6], there
is still a dearth of actionable information that can be used for
pursing secondary clinical research in this domain.

Existing approaches to stratification of patients based on clinical
presentation does not adequately address the heterogenous nature
of TBI, whereas data mining and machine learning techniques
have shown promise in identifying subgroups [5], predicting
outcomes [7], and prognosticating among TBI patients [8]. In
particular, clustering-based techniques serve as an important
step for phenotype definition and have the potential to uncover
previously unrecognized relationships between various
physiologic variables [9]. For example, in other clinical domains,
traditional cluster analyses have been helpful in identifying
unique subgroups of patients. These studies include application
of k-means cluster analysis for identifying distinct phenotypes
of asthma patients [10], as well as using hierarchical clustering
to identify both new and known relationships between
physiologic variables collected from critically ill patients [9].
In this study, we applied subspace clustering (or subclustering)
methods on physiologic data collected from TBI patients and
compared the performance of different subspace clustering
methods (density-based, cell-based, and clustering-oriented
methods). The rationale for applying subspace clustering over
traditional clustering methods (eg, k-means) is the ability to
account for the multiple low-dimensional subspace structure of
higher dimensional data [11]. In terms of critical illnesses, such
as acute TBI, we hypothesize that the complex latent
relationships between various physiologic variables are better
represented in subspaces and thus better captured by
subclustering methods than traditional methods that are often
limited to spatial proximity of data points in individual clusters.

Methods

Data Source
Data for this study were obtained from the Progesterone for
Traumatic Brain Injury, Experimental Clinical Treatment–Phase
III (PROTECT III) study. The PROTECT III trial included a
cohort of 882 TBI patients [12], who were originally recruited
for a randomized clinical trial to study the effect of progesterone
on patients with acute TBI. Patients were randomly assigned to
a treatment group that received progesterone within 4 hours of
injury or placebo. While the PROTECT III clinical trial showed
that there was no difference in patients between the two study
groups, the longitudinal data from the trial were made available
for secondary analyses and continued research.

This data set included patient demographics, baseline assessment
data, 6-month outcome data, including the Glasgow Outcome
Scale Extended scale, and mortality status. The temporal data
in this study included laboratory test results for the first 7 days
of stay. Other clinical and radiologic data were not included in
this analysis. Deidentified data were obtained in collaboration
with the PROTECT III investigators and are now available
through the Federal Interagency Traumatic Brain Injury
Research informatics system. The inclusion criteria for this
analysis were as follows: (1) subjects were alive for at least 3
days, (2) subjects were not excluded from the parent study, and
(3) their baseline laboratory results were available. The 3-day
criterion is used because subjects who do not survive for at least
3 days or 72 hours have likely experienced devastating brain
injury or other forms of severe trauma, which often require
aggressive interventions [13]. Additionally, the first 72 hours
of observation is the time interval used for determining the
preliminary effect of the injury and is thus recommended for
valid prognostication [14,15].

Subspace Clustering
Subspace or projective clustering is a clustering method that
emphasizes on clustering in subspaces of high-dimensional
spaces, that is, it tries to find clusters in smaller subspaces and
builds up to form larger clusters by using overlapping subspaces
[16]. Subspace clustering can be classified into the following
three main categories: density-based approaches, cell-based
approaches, and clustering-oriented approaches. Density-based
approaches define subspaces in dense areas [17]. In cell-based
approaches, subspaces are formed by predefining the width of
grid cells and the number of objects within each cell [18].
Clustering-oriented approaches define properties of the entire
set of clusters, as opposed to definition of the cluster itself, and
then assign objects to the cluster with the most relevant
properties [19].

Density-Based Approach
One of the commonly used clustering algorithms is
density-based spatial clustering of applications with noise
(DBSCAN) [20]. The key idea of DBSCAN is that after
detecting a cluster using density-based grids, it looks at the
neighborhood of each cluster point in a defined radius; any point
that exists in this radius is contributed to the cluster.

Every cluster C in a subspace projection is defined by a set of
objects O, that is a subset of database DB and a set of relevant
dimensions S out of the set of all dimensions D.

A clustering result R is a set of clusters k found in the respective
subspace projections as follows:

A density-based subspace cluster (O, S) in a two-dimensional
space is defined with respect to parameters minPoints and

ε–neighborhood Nε (p) = {q ∈ DB |distS (p, q) ≤ ε}, where distS

represents a distance function constrained to the dimensions S,
as follows [20]:
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(1) ε–neighborhood of a point: Let p and q be two points of the
sample, and the distance equation between these two points is
defined by dist (p, q). The distance could be defined with
Manhattan distance, Euclidean distance, or other different
distance methods. The ε–neighborhood of a point is defined as
follows:

(2) Directly density reachable: A point p is directly density
reachable from a point q with respect to ε and MinPts if

(3) Density reachable: A point p is density reachable from a
point q with respect to ε and MinPts if all the points in a chain
of points (including q and p) are directly density reachable from
each another.

(4) Density connected: A point p is density connected to a point
q if only there is point o, which both p and q are density
reachable from.

(5) Noise: The sets of points in database DB that are not
assigned to any cluster are called noise.

To find a cluster, the DBSCAN algorithm starts with a random
point p and finds all density reachable points with respect to ε
and MinPts. DBSCAN also merges two clusters together if the
distance between two sets of points is defined as follows:

Density-connected subspace clustering (SUBCLU) is a greedy
algorithm built on an adaption of the DBSCAN algorithm for
high-dimensional data. It computes all density-connected sets
hidden in subspaces of high-dimensional data. Studies have
shown that SUBCLU can outperform other subspace clustering
methods based on different measures [18,20,21]. SUBCLU is
capable of detecting arbitrarily shaped clusters using the
DBSCAN algorithm in subspaces. To use DBSCAN in each
subspace, let DB be a d-dimensional feature vectors data set

with n objects DB ⊆ Rd. Let A = {a1, a2,…, ad} be the set of all
attributes a of DB. Any subset S ⊆ A is called a subspace. The
projection of an object o into a subspace S is denoted by πs (o),
and the distance function is denoted by dist. For instance, the
ε–neighborhood of o in S is the same as DBSCAN, but projected
in S subspace as follows:

The core object is defined as follows:

The algorithm begins by generating all one-dimensional clusters
using the DBSCAN algorithm. For each detected cluster, it
checks whether the cluster also exists in higher dimensions or
not. For each k-dimensional subspace S ∈ Sk, the algorithm
searches all other k-dimensional subspaces T ∈ Sk having (k-1)
attributes in common and combines them to generate (k +
1)-dimensional candidate subspaces. Based on prior studies
[21], we chose the Midpts to be in the range from 8 to 128 (with

five steps) and the ε–neighborhood to be from 0.01 to 0.25 (with
nine steps). For this study, the initial Midpts value was set to 8
and increased by 30 after each run until it reached 128. The
ε–neighborhood value was initially set to 0.01 and was increased
by 0.03 until a maximum of 0.25.

Cell-Based Approach
Cell-based clustering is centered on cell estimate of the data
space. The width of the cells is parametrized by w. A cluster R
contains a set of cells, and each cell contains at least τ number
of data points. One of the popular cell-based methods is the
MineClus algorithm, which describes each of these cells as the
objects of the cluster by a hypercube with width w. These
hypercubes are arbitrarily positioned to define a region with
frequent data patterns.

A cell-based subspace cluster (O, S) is defined with respect to
the minimum number of objectives τ in cells CS of w width
specified by intervals Ii per dimension ∀i ∈ S. Each interval is
part of the common domain Ii = [li…ui] ⊆ [0…v] with lower
and upper bounds li and ui. For all irrelevant dimensions ∀j ∈
D\S, the interval is the full domain Ij = [0…v], and the cluster
objects O = {o|o ∈ DB ∩ CS} fulfill |O| ≥ τ [21].

Clustering-Oriented Approach
Clustering-oriented approaches focus on the clustering result R
by specifying objective functions. PROCLUS [22], one of the
first top-down subspace clustering algorithms, forms the clusters
first and iteratively improves the clustering model. In the
PROCLUS algorithm, the number of clusters and the average
dimensionality are used as parameters, and data are partitioned
into k clusters with the average dimension being l. A
clustering-oriented approach is defined with respect to objective
function f(R), which is based on the entire clustering result R,
and an optimal value parameter optF is a result set R with f(R)
= optF.

In this case study, we adapted the aforementioned subspace
clustering techniques to analyze the PROTECT III data set.
Analyses were performed using OpenSubspace [21,23], an
open-source framework that extends the WEKA platform
[24,25]. All laboratory values were normalized to a scale
between 0 and 10 before applying the algorithms.

Evaluation
Evaluation of unsupervised learning methods, such as cluster
analysis, is typically informed by domain expertise. For this
work, two clinicians (coauthors of this work [BF and JR])
independently evaluated the results and validated the clusters
based on their experiences in the clinical management of TBI
as well as clinical research in neurotrauma. The informatician
on the team (VS) coordinated the clinician validation process.
Mechanistic interpretations for potential markers or associations
indicated by clusters were offered based on clinical expertise.
To demonstrate alignment of subclustering solutions to a clinical
outcome, mortality at 6 months after injury was examined.

Additional evaluation metrics used in this study included F1
score, entropy, coverage, average dimension, and accuracy of
classification. The F1 value, a common metric for evaluating
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clustering algorithms, is defined as the harmonic mean of
precision and recall. Entropy is a metric that accounts for clarity
of clustering [26]. Coverage characterizes how clusters cover
the input data space. Average dimension is the average of
number of dimensions that the clusters cover in each run.
Accuracy of classification compares the patterns detected in the
model in relation to labeled data, such as outcome. Here, the
mortality status of TBI patients was used as the outcome.
Finally, the performance of subspace clustering algorithms was
compared to traditional k-means clustering, which partitions n
data points into k clusters, placing each observation in one of
the clusters with neared mean representation. While k-means
rely on distance metrics and proximity of observations within
individual clusters, subspace methods group data points based
on their lower-dimensional subspaces. Given these distinct
algorithmic differences between subspace and k-means

clustering in formulation of the clustering problem, a direct
comparison of the clusters formed and interpretation of clusters
may not be appropriate. Instead, we report performance metrics
for comparison purposes.

Results

Subject Characteristics
Of the 882 study subjects in the parent PROTECT III trial, 643
subjects met the inclusion criteria for this study. Table 1 shows
the characteristics of these study subjects at baseline. Ten
different laboratory results were used in this study, including
blood serum chemistry and hematology results at baseline (Table
2). Coagulation tests, such as the international normalized ratio
(INR) and activated partial thromboplastin time, were also
included.

Table 1. Patient characteristics.

Value (N=643)Characteristic

34 (17-93)Age (years), mean (range)

475 (73.9)Male sex, n (%)

105 (16.3)Black people, n (%)

97 (15.1)Hispanic people, n (%)

Cause of injury, n (%)

242 (37.7)Motor vehicle accident

121 (18.8)Motorcycle or scooter accident

78 (12.1)Pedestrian struck by a moving vehicle

202 (31.4)Other

Table 2. Laboratory results.

Value, mean (range)Laboratory parameter

151.6 (68-554)Glucose, mg/dL

1.015 (0.3-4.2)Creatinine, mg/dL

3.667 (1.5-5.8)Potassium, mmol/L

139.8 (125-157)Sodium, mmol/L

105.4 (88-130)Chloride, mmol/L

22.77 (8.0-34.0)Bicarbonate, mmol/L

13.66 (4.9-18.6)Hemoglobin, g/dL

40.31 (14.6-54.2)Hematocrit, %

14.85 (3.2-41.40)Total white blood cell count, ×109/L

249.7 (51-700)Platelet count, ×103/mm3

Application of Subspace Clustering Algorithms to
PROTECT III Data
All three types of subspace clustering algorithms (density-based
[SUBCLU], cell-based [MineClus], and clustering-oriented
[PROCLUS] algorithms) were applied to the PROTECT III
data set. The INR, which characterizes the clotting tendency of
blood, was identified as one of the distinct clusters. This could
represent coagulopathy, a marker of secondary insult in TBI

patients [27]. For example, coagulopathy is associated with
increased risk of ongoing bleeding and expansion of any
intracranial traumatic hemorrhage. One of the clinicians also
noted that progressive coagulopathy, which is resistant to
correction, is further associated with worse outcomes in TBI
patients.

The clustering models also showed a strong relation among
INR, chloride, and creatinine. Both clinicians noted and agreed
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that elevations in chloride levels are often related to fluid
administration for treatment of intracranial hypertension or a
shock (hypoperfusion) state. Therefore, elevations in these
parameters may also be indicators that the clinical team needed
to treat a sicker patient more aggressively. Creatinine may be
elevated at baseline in patients with chronic illness or may
indicate that secondary kidney failure may impact outcome as
a complication of TBI. One of the clinicians noted that there is

a further relationship between elevated chloride and subsequent
elevation in creatinine, though a wide variety of insults may
lead to elevations in creatinine. Finally, in models with higher
dimensions, a relationship between the hemoglobin level and
hematocrit percentage was noted. This relationship is quite
intuitive, given that both measure similar properties. These
observations are demonstrated in Figure 1 and Figure 2.

Figure 1.

Figure 2.

The performances of different subspace clustering methods as
well as the traditional k-means algorithm on the PROTECT III
data set were compared using various evaluation metrics and
the mortality status as the outcome (Table 3). The density-based
algorithm (SUBCLU) had higher F1 and coverage. The
cell-based algorithm (MineClus) had good performance on the

F1 measure while having lower number of clusters. The
clustering-oriented algorithm (PROCLUS) performed reasonably
in terms of accuracy and entropy, while it had the lowest F1
compared to other models. K-means, given its simplicity, was
the fastest algorithm, but performed worst in all other metrics.
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Table 3. Comparison of subspace clustering algorithms.

K-means, min-maxClustering-oriented algorithm
(PROCLUS), min-max

Cell-based algorithm
(MineClus), min-max

Density-based algorithm (SUBCLUa),
min-max

Evaluation metric

0.21-0.300.36-0.440.42-0.640.45-0.69F1

0.51-0.530.48-0.630.44-0.550.45-0.59Entropy

0.11-10.43-0.820.78-0.970.9-1Coverage

2-328-326-646-1024Number of clusters

122-93.2-6.12.3-9Average dimensions

51-6388-8888-8881-88Accuracy (%)

0.07155-40258-194367-745,785Runtime (s)

aSUBCLU: density-connected subspace clustering.

Discussion

Currently, clinical data used to predict outcomes after TBI come
from modeling and validation performed across two older
clinical studies in TBI encompassing more than 15,000 patients
[28,29]. The covariates that were significant in these prior
regression models included glucose and hemoglobin, in addition
to clinical predictors such as age and clinical examination.
However, the area under the curve of these models is
suboptimal. Clusters of data may also incorporate clinical
knowledge such as the observation that the combination of lactic
acidosis, hypothermia, and coagulopathy at presentation after
major trauma imparts poor prognosis. Furthermore, many of
these patients do not survive the 72 hours required for inclusion
in the current analysis.

Lack of access to multiple data sources has limited further
external validation of the proposed methods. Nonetheless,
clinician validation is important to inform analyses of data from
ongoing observational studies and provide valuable insights

into the development of clinically relevant tools for TBI
management. This case study serves as a demonstration for such
applications. As a next step, focus on temporal data and methods
for time-series analyses are warranted.

Conclusion
This study explored the application and feasibility of subspace
clustering techniques for a specific clinical condition, TBI, using
clinical data from a randomized clinical trial. The analyses
showed the following three clusters of laboratory physiological
data: (1) INR, (2) INR, chloride, and creatinine, and (3)
hemoglobin and hematocrit. While all subclustering algorithms
had a reasonable accuracy in classifying patients by mortality
status, the density-based algorithm had a higher F1 score and
coverage. Clustering approaches serve as an important step for
phenotype definition and validation in clinical domains, such
as TBI, where patient and injury heterogeneity are among the
major reasons for failure of clinical trials. Results from this
study also provide a foundation to develop scalable clustering
algorithms for further research and validation.
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Abstract

Background: Maternal serum alpha-fetoprotein (MSAFP) concentration typically increases during pregnancy and is routinely
measured during the second trimester as a part of screening for fetal neural tube defects and Down syndrome. However, most
pregnancy screening tests are not available in the settings they are needed the most. A mobile device–enabled technology based
on MSAFP for screening birth defects could enable the rapid screening and triage of high-risk pregnancies, especially where
maternal serum screening and fetal ultrasound scan facilities are not easily accessible. Shifting the approach from clinic- and
laboratory-dependent care to a mobile platform based on our point-of-care approach will enable translation to resource-limited
settings and the global health care market.

Objective: The objective of this study is to develop and perform proof-of-concept testing of a lateral flow immunoassay on a
mobile platform for rapid, point-of-care quantification of serum alpha-fetoprotein (AFP) levels, from a drop of human serum,
within a few minutes.

Methods: The development of the immunoassay involved the selection of commercially available antibodies and optimization
of their concentrations by an iterative method to achieve the required detection limits. We compared the performance of our
method with that of commercially obtained human serum samples, with known AFP concentrations quantified by the Abbott
ARCHITECT chemiluminescent magnetic microparticle immunoassay (CMIA).

Results: We tested commercially obtained serum samples (N=20) with concentrations ranging from 2.2 to 446 ng/mL to compare
the results of our point-of-care assay with results from the Abbott ARCHITECT CMIA. A correlation of 0.98 (P<.001) was
observed on preliminary testing and comparison with the CMIA. The detection range of our point-of-care assay covers the range
of maternal serum AFP levels observed during pregnancy.

Conclusions: The preliminary test results from the AFP test on the mobile platform performed in this study represent a proof
of concept that will pave the way for our future work focused on developing a mobile device–enabled quad-screen point-of-care
testing with the potential to enable the screening of high-risk pregnancies in various settings. The AFP test on the mobile platform
can be applied to enable screening for high-risk pregnancies, within a few minutes, at the point of care even in remote areas where
maternal serum tests and fetal ultrasound scans are not easily accessible; assessment of whether clinical follow-up and diagnostic
testing may be needed after a positive initial screening evaluation; and development of surveillance tools for birth defects.

(JMIR Biomed Eng 2021;6(1):e23527)   doi:10.2196/23527
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Introduction

Background
Neural tube defects (NTDs) are one of the most common and
debilitating birth defects documented in the United States and
globally. These defects arise when the neural folds fail to fuse
entirely during early embryogenesis. Outcomes for an infant
born with an NTD vary by severity and the affected region of
the neural fold [1,2]. Anencephaly and other open NTDs that
affect the infant’s brain are incompatible with life, further
leading to fetal loss during pregnancy or death soon after birth,
whereas those affecting the spine can lead to serious
neurological and physical impairment [1,2]. Closed NTDs have
a layer of skin covering the defect and are less severe; however,
they can require surgery and cause motor and sensory
impairments [1,2]. It is estimated that there are over 260,000
NTD cases globally per year, with the burden ranging from 1
to 80 per 10,000 births globally, leading to 70,800 deaths and
loss of 6.4 million disability-adjusted life years [3-8]. The total
lifetime direct cost of care [9] for a child born with spina bifida
in the United States is estimated to be US $791,900.

In cases with elevated maternal serum alpha-fetoprotein
(MSAFP) levels, an ultrasound examination is recommended
to further determine whether an NTD or another anomaly
associated with elevated MSAFP levels is present, in addition
to confirming the gestational age, fetal viability, and number
of fetuses. If ultrasound findings are ambiguous or show an
apparently normal fetus, then genetic counseling and further
evaluation through amniocentesis are usually performed.
Screening and an early diagnosis of affected pregnancies
provides parents with the options for diagnostic and clinical
follow-up, interventions during pregnancy, and preparation for
the birth of an affected child, including associated medical costs
for surgical or nonsurgical treatments. In addition, prenatal NTD
detection also informs clinical triage regarding the optimal
timing, route, and site of delivery (eg, referral to high-risk or
tertiary care hospitals, cesarean delivery). In the United States,
the universal screening for NTDs is supported by the American
College of Obstetricians and Gynecologists (ACOG) [10] and
the American College of Medical Genetics [11], while
emphasizing the need to provide adequate counseling and
follow-up services. NTD screening approaches, such as
biomarker assessment (measurement of MSAFP) and ultrasound
examinations (anatomical), also enable the screening and
detection of fetal abnormalities other than NTDs and inform
clinical care and follow-up [12,13].

MSAFP is one of the biomarkers included in the triple screen
test for pregnant women. The triple screen test is a maternal
blood screening test that looks for 3 distinct analytes—MSAFP,
human chorionic gonadotropin (hCG), and unconjugated
estriol—to identify women who are at an increased risk of
having a baby with NTD or trisomy syndrome. The triple
screening is recommended between 15 and 22 weeks of gestation
and is most accurate if performed between 16 and 18 weeks of
gestation. Fetal serum alpha-fetoprotein (AFP) concentrations
peak at 10-13 weeks’ gestation and decline progressively until
term, whereas maternal levels peak during the third trimester

[14]. Elevated MSAFP levels with a screen positive rate of 5%
or less can detect 75%-90% of NTDs and ≥95% of anencephaly
[11], which is the most severe type of NTD that is incompatible
with life [1]. Abnormally low AFP values [15] (most often a
median value of <0.5) are associated with Down syndrome and
other chromosomal abnormalities. MSAFP levels may also
detect 85% of the ventral wall defects [11].

MSAFP levels are typically quantified using
immunoassay-based methods. Conventional immunoassays
include enzyme-linked immunosorbent assay [16],
radioimmunoassay [17], fluoroimmunoassay [18],
electrochemiluminescence [19], and the latex-enhanced
immunoturbidimetric method [20]. Several fully automated
benchtop instruments, such as the µTasWako i30 (Fujifilm Wako
Diagnostics), IMMULITE 2000 Xpi Immunoassay system
(Siemens Healthineers), and the ARCHITECT i1000SR
immunoassay analyzer (Abbott Diagnostics), are also
commercially available. However, many settings do not have
access to cold chain and centralized laboratories for these
laboratory tests. Typically, these conventional immunoassays
take a few days, starting from sample collection to a patient
finally getting access to test results through a health care
provider.

Mobile platforms (smartphones) are positioned to be the hub
of the future of medicine [21], with smartphone- and
tablet-based medical devices continuing to be integrated into
patients’ lives in various settings. The increased use of
smartphone-based apps and analytical devices has been
demonstrated in recent years for numerous apps such as diet
tracking apps [22], well-being apps [23], environmental
monitoring [24], food toxin screening [25], and medical
diagnostics [26-29]. Point-of-care testing (POCT), using
smartphones [30], is rapidly emerging as a potential alternative
to conventional screening and laboratory-based diagnostic
testing, particularly in resource-limited settings.

Objectives
In this study, we present a proof of concept for the lateral flow
immunoassay–based rapid screening of serum AFP levels on a
mobile platform, from a drop of human serum, within a few
minutes. We aim to demonstrate the quantification of AFP in
commercial serum calibrators and preliminary results with
commercially obtained human serum samples with known AFP
concentrations, quantified by the Abbott ARCHITECT CMIA.
Preliminary results from this work will pave the way for our
future work focused on developing a mobile device–enabled
quad-screen test at the point of care in resource-limited settings.

Methods

Overview
The components of the test strip were selected to achieve
optimum flow rates as well as the volume of reagents and AFP
in the test samples. Development of the immunoassay involved
the selection of commercially available antibodies and
optimization of their concentrations by an iterative method to
achieve the required detection limits. The entire testing process
is guided by a mobile app AFPhone, which is designed to input
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important patient information, provide step-by-step instructions
to the user for running the test, and display the AFP
concentrations on the device screen. Briefly, the testing process
required a drop of the test sample on the test strip to initiate the
test. The camera within the portable reader captures the relative
intensity changes of the colored bands on the test strip. A custom
code is used to batch process the captured images of the test
strip and provide the AFP concentrations. The test strip design
was optimized, and the calibration curves were experimentally
determined using commercially available serum-based AFP
calibrators and commercially obtained serum samples with
known AFP concentrations. This study does not contain any
studies involving human participants; hence, ethical approval
was not required. This development process is described in
detail in the following sections.

Reagents and Materials
Gold nanoparticle (AuNP) conjugation kit (InnovaCoat 20OD)
with 40 nm diameter AuNPs were obtained from Expedeon,
Inc. Purified AFP from human fetal cord serum (Cat# 8F8) and
monoclonal mouse antihuman-AFP antibodies (Hytest Cat#
4F16-4A3, RRID:AB_2223930, and Hytest Cat# 4F16-5H7,
RRID:AB_2223929) were purchased from HyTest Ltd (Finland).
Rabbit antimouse immunoglobulin G (IgG) was purchased from
Jackson ImmunoResearch Inc. Audit AFP calibrators (Linearity

FD Tumor Markers, Cat# K719M-5) were purchased from
AUDIT MicroControls, Inc. Amine-free phosphate buffer saline
(at 0.01 M) with a pH of 7.4, Tween 20, bovine serum albumin
(BSA), borate buffer, and sucrose were acquired from
Sigma-Aldrich. A glass fiber conjugate pad with dimensions of
300 mm × 10 mm, Hi-Flow Plus 180 membrane cards, and a
cellulose fiber pad for an absorbent pad were acquired from
EMD Millipore. The membrane for the sample pad was
purchased from mdi Membrane Technologies, Inc.

Equipment
The following equipment was used in this study: lateral flow
reagent dispenser (Claremont BioSolutions, Upland), Legato
200 Dual Syringe Pump (Claremont BioSolutions LLC), matrix
2360 programmable shear (Kinematic Automation, Inc), and
V-1200 Spectrophotometer.

Technology and Components
The technology comprises a custom-made test AFP test strip,
cassette for housing the test strip, portable test strip reader, and
a mobile app AFPhone to guide the user through the various
steps of the testing protocol. A custom-developed image
processing code was applied to batch process the acquired
images to compute the test and control line intensity (TC) ratios
for each test strip. Figure 1 shows the technology components
of the point-of-care approach described in this study.

Figure 1. (A) Components of the point-of-care testing system. (B) Schematic showing various. components of the test strip with sandwich-type assay
for alpha-fetoprotein detection. AFP: alpha-fetoprotein; AuNP: gold nanoparticle; C: control; IgG: immunoglobulin G; T: test.

Test Strip Architecture and Immunoassay Format
The AFP test strip in Figure 1 was based on a sandwich format
immunoassay and comprised a whole blood filtration membrane
as the sample pad; a conjugate pad for prestoring the

AuNP–antihuman–AFP–antibody conjugates in a dry form; a
nitrocellulose membrane with antihuman–AFP monoclonal
antibodies and secondary antibodies, respectively; and a wicking
pad made of cellulose fiber that functions as a waste reservoir.
The addition of the test sample and running buffer causes the
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AuNP–antihuman–AFP-antibody conjugates to flow freely due
to capillary action and react with AFP in the test sample. At
high AFP concentrations in the test sample, most of the
AuNP–antihuman–AFP–antibody conjugates will bind with the
free AFP, eventually binding to the antihuman–AFP–antibody
on the test line, resulting in a sandwich complex. All unbound
AuNPs–antihuman–AFP were captured at the control line. This
relative binding of the AuNP–antihuman–AFP–antibody at the
test and control lines increases the test line (T) to control (C)
line intensity ratio (TC ratio) in test samples with higher AFP
concentration. Similarly, in test samples with lower AFP
concentrations, binding of the AuNP–antihuman–AFP–antibody
to form a sandwich complex at the test line is reduced, thereby
causing an overall decrease in the TC ratio.

AuNP–Antihuman–AFP–Antibody Conjugate Pad
Preparation
The antihuman–AFP–antibody was conjugated with AuNPs,
following the protocol provided in the gold conjugation kit. The
protocol provided by the vendor was used to obtain
AuNP–anti-AFP–antibody conjugation. To remove the excess
unbound antibodies, a 1:10 dilution of the quencher with water
was added up to 10 times the volume of the conjugate mixture
and the suspension was centrifuged at 9000 × g for 10 min. The
remaining pellet of AuNP–anti-AFP–antibody was resuspended
in a solution comprising a 1:10 dilution of quencher with water.
The final optical density (OD) was measured using a Spectramax
384 spectrophotometer at 530 nm. The AuNP–anti–AFP
conjugate was diluted to 0·35 OD in a conjugate buffer (2 mM
borate buffer with 5% sucrose). The conjugate pad was soaked
in diluted conjugates for 1 min and oven dried at 37°C for 2
hours, followed by storage at room temperature overnight.

Test Strip Assembly
The membrane card comprised a polyester film backed with a
nitrocellulose layer on top. Striping of the test and control line
antibodies (1 mm wide and 3 mm spacing), consisting of
antihuman AFP–antibody and antimouse–IgG on the
nitrocellulose membrane, was performed using the lateral flow
antibody dispenser. Membrane cards were then immediately
dried for 2 hours at 37°C in a forced convection oven and stored
at room temperature in a humidity-controlled box. The conjugate
pad, absorbent pad, and sample pad were then assembled with
a 2-mm overlap between each pad. The assembled card was cut
using an automated shear cutter to obtain test strips of 5 mm
width.

Testing Protocol
Figure 2 shows a schematic of the various steps involved in
conducting point-of-care AFP testing. The user is guided with
step-by-step instructions on the mobile app. Briefly, the user
first adds the test sample comprising a mixture of the archived
serum or serum-based standards and chase buffer (1×
Tris-buffered saline with 1% BSA, 1.5% Tween20, and 0.1%
sodium azide) to the test strip to initiate capillary flow within
the test strip, which causes the AuNP–antihuman–AFP–antibody
conjugates to be released from the conjugate pad. The free AFP
i n  t h e  t e s t  s a m p l e  r e a c t s  w i t h  t h e
AuNP–antihuman–AFP–antibody and flows downstream to
further react with antibodies at the test and control lines. The
remaining sample was finally collected in the absorbent pad.
The user inserts the test strip into the test strip reader to capture
the images of the colorimetric signals with the camera and to
analyze via the mobile app to provide the AFP concentrations.

Figure 2. Testing protocol with representative screenshots of the mobile app providing the user with step-by-step instructions.
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Preparation of AUDIT AFP Calibrators
The AUDIT AFP calibrators (vials S0-S5) available in a
lyophilized form were dissolved in deionized water, based on
the instructions provided in the kit to obtain concentrations
ranging from 4 to 1034 ng/mL.

Image Processing
The mobile app performs image processing steps on the captured
test strip image to improve the accuracy and detection limit.
Details of the image processing approach have been previously
reported. Briefly, captured images are cropped and converted
into grayscale to extract the local minima of pixel intensities
and calculate the TC ratios, which correlate with AFP
concentrations.

Statistical Analysis
All analyses were performed using Excel (Microsoft) and R
software (RStudio version 1.1.456, RStudio Inc). TC ratios were
compared with AFP concentrations determined by the reference
method with nonparametric bootstrap resampling analysis
conducted in R.

Results

Calibration Curve for AUDIT AFP Calibrators
Commercially available AUDIT calibrators were obtained as 5
separate vials labeled A-E, with concentrations ranging from 4
to 1034 ng/mL. Testing was performed simultaneously for each
concentration in triplicates. The colorimetric changes in the test
and control lines at various known concentrations of the AUDIT
calibrators are shown in Figure 3.

Figure 3. (A) Colorimetric variation of the test and control line regions on the alpha-fetoprotein test strip at various known concentrations of
alpha-fetoprotein in AUDIT serum-based calibrators. (B) Calibration curve showing the test and control line intensity ratios of the colorimetric signals
at various alpha-fetoprotein concentrations in AUDIT serum-based calibrators. AFP: alpha-fetoprotein; C: control; T: test.

The calibration curve shown in Figure 3 demonstrated that the
TC ratios were correlated with the AFP concentration in the
calibrators. The TC ratio increased with increasing AFP
concentrations until approximately 650 ng/mL and then began
to decrease beyond the physiological range because of the hook
effect [31,32].

Calibration Curve for Human Serum Samples
The performance of the AFP test strips was further evaluated
using archived human serum samples. Serum samples included
commercially available serum samples with known AFP
concentrations provided by the vendor based on Abbott
ARCHITECT CMIA. The colorimetric changes in the test and
control lines at various known concentrations of serum samples
are presented in Figure 4.
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Figure 4. (A) Colorimetric variation of the test and control line regions on the alpha-fetoprotein test strip for serum samples. (B) Correlation plot of
serum alpha-fetoprotein concentrations predicted from point-of-care test strip results against the corresponding Abbott ARCHITECT results. (C) Results
of bootstrapping to compare bootstrap means of predicted alpha-fetoprotein concentrations and standard errors for the observed test and control line
intensity ratio values from a power model using 1000 resampled data sets. AFP: alpha-fetoprotein; TC: test and control line intensity.

We selected TC data for 8 samples and compared our test strip
results with the corresponding reference method (Abbott
ARCHITECT) results to obtain an initial calibration curve. This
calibration curve was then applied to predict the AFP
concentrations of the remaining samples tested on the mobile
platform. Figure 4 shows a correlation plot comparing the AFP
levels predicted by our point-of-care technology against the
corresponding levels provided by the vendor, based on Abbott
ARCHITECT testing.

Bootstrap resampling analysis was performed using RStudio
with serum AFP concentration results of 20 samples to assess
the correlations between TC ratios determined on the
point-of-care system with Abbott ARCHITECT–determined
AFP concentrations. The bootstrapping function was applied
to resample 1000 times, and the resulting correlation coefficients
were computed. Figure 4 presents the bootstrapping results to
compare the bootstrap means of predicted AFP concentrations
and SEs for the observed TC ratio values from a power model,
using 1000 resampled data sets. A 95% CI for the correlation
coefficient between TC ratios and AFP concentrations of the
tested serum samples was also obtained (0.846-0.975). Findings
from bootstrap analyses provide quantitative evidence that TC
ratios from our point-of-care technology and AFP concentrations
of the tested serum samples are highly correlated.

Discussion

Principal Findings
In this study, we demonstrated a proof of concept for a
sandwich-type immunoassay test strip on our mobile platform
for the quantification of AFP concentrations in human serum
samples. We determined calibration curves for the AFP assay
on a mobile platform with commercially available AUDIT AFP
serum-based calibrators and commercially obtained serum
samples with known AFP concentrations. The detection range
demonstrated in the AUDIT AFP calibrators was 4-650 ng/mL,
which covers the range of maternal serum AFP levels observed

during pregnancy. The point-of-care AFP assay on the mobile
platform was successfully applied to quantify the AFP
concentrations in commercially obtained human serum samples
with concentrations ranging from 2.2 to 456 ng/mL based on
the Abbott ARCHITECT method. On preliminary testing and
comparison with Abbott ARCHITECT, a correlation of 0.98
(P<.001) was observed with high sensitivity.

Interpretation of the Findings
On preliminary testing and comparison with Abbott
ARCHITECT, a correlation of 0.98 (P<.001) was observed with
high sensitivity. The detection range of our point-of-care assay
covers the range of maternal serum AFP levels observed during
pregnancy. The mobile platform for AFP has the capability to
quantify AFP within a few minutes without the need for
expensive and time-intensive methods. Obstetricians worldwide
face the challenge of screening high-risk pregnancies among
the overwhelming number of pregnant women presenting to
hospitals. Advances in medical technology often widen health
disparities, seldom reaching resource-limited populations.
State-of-the-art diagnostic equipment is costly, is bulky, and
requires sophisticated training for operation and maintenance.
Shifting the approach from clinic- and laboratory-dependent
care to a mobile platform based on our point-of-care approach
will enable translation to resource-limited settings and the global
health care market. Mobile devices, which are increasingly
ubiquitous even in resource-limited settings, have the capacity
to transform clinical care, health services, research, and
surveillance [33,34] across populations. An early confirmation
of high-risk pregnancies gives parents more time to process the
information and learn about early intervention programs
including establishing care in a patient-centered medical home,
reviewing eligibility for parental financial and psychological
support programs. Clinicians can provide parents with unbiased,
comprehensive, and culturally sensitive information about
congenital birth defects and available services. An early
screening is critical to identify and enroll newborns in
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state-specific early intervention programs as soon as possible
to improve the short- and long-term outcomes.

Screening for MSAFP concentrations is a standard of prenatal
care to identify pregnancies that may increase the risk of NTDs
and some trisomy-affected pregnancies, such as trisomy 21
(Down syndrome) and trisomy 18 (Edwards syndrome). These
methods aim to screen for the risk of adverse pregnancy
outcomes by quantifying biochemical markers in the maternal
serum and, in some cases, also incorporate fetal nuchal
translucency measurements obtained via ultrasound. This screen
is aimed at identifying pregnancies at a higher risk, so that these
patients can be offered diagnostic testing and counseling if
required. MSAFP results during pregnancy are usually expressed
as multiple of the median (MoM) for each gestational week.
MoM values are easy to derive, more stable, and allow for an
interlaboratory variation. MSAFP levels that are above 2.0 to
2.5 MoMs are considered abnormal. Using the MSAFP cut-off
level of 2 to 2.5 MoM for a given gestational age in singleton
pregnancies, the detection rates are approximately 95% for
anencephaly and between 70% and 85% for other NTDs [35].
In many cases, high-resolution ultrasound is used in conjunction
with MSAFP screening, with detection rates depending on
gestational age and the type and severity of the NTD.

MSAFP assessment can also be used to screen for other fetal
malformations. Studies have shown that elevated second
trimester MSAFP can also indicate gestational age, multiple
pregnancies, intrauterine death, or other fetal malformations
[36]. High MSAFP levels are also observed in certain types of
ovarian germ cell tumors (eg, endodermal sinus tumor and
embryonal carcinoma), with levels often greater than 1000
ng/mL, especially with pure endodermal sinus (yolk sac) tumors,
in which MSAFP levels are greater than 10,000 ng/mL. MSAFP
screening has been shown to play a valuable role in the
management of twin pregnancy [37], both in the detection of
twins and in the prediction of perinatal outcomes in twin
pregnancies.

When MSAFP is elevated, targeted ultrasound examination is
offered as the initial diagnostic test, in addition to, or in place
of, amniocentesis. The quadruple test, which includes AFP, is
performed in the early second trimester, optimally at 15-18
weeks of gestation. Errors in the estimation of gestational age
[38,39] are the most common reason for a false-positive result.
If the true gestational age is earlier than reported, then AFP
MoM values will be falsely interpreted as low. However, in
resource-limited settings, even with a high number of false
positives, a screening test can identify those in need of an
ultrasound; furthermore, the number of false positives can be
reduced with simple sequencing during clinical examinations,
such as matching the last menstrual period with fundal height
assessment where relevant and feasible. The sensitivity of serum
AFP screening for NTDs has been shown to significantly
improve when the gestational age used for the AFP MoM
calculation was verified by ultrasound [40]. There is also
evidence that in pregnancies resulting in spontaneous early
preterm delivery, MSAFP level at 11-13 weeks’ gestation is
higher, and MSAFP measurement improves the prediction of
preterm delivery compared with maternal characteristics and
obstetric history alone [41]. The mobile app for this test can be

designed to include a data collection module to compile maternal
age, weight, ethnicity, gestational age, and other relevant patient
history. This additional patient information presented along
with the AFP results can enable an obstetrician to interpret the
test results and make informed decisions regarding any
diagnostic and clinical follow-up. The mobile app can also be
designed to wirelessly transmit the test result data to a
centralized database of laboratories or public health agencies
that can be accessed by obstetricians to interpret the test results
and make informed decisions regarding any diagnostic and
clinical follow-up.

Serum AFP is a widely accepted serum marker for the detection
of hepatocellular carcinoma (HCC). Serum AFP is elevated in
tumors, including HCC, hepatoblastoma, and nonseminomatous
germ cell tumors of the ovary and testis. Most studies report
elevated AFP concentrations in approximately 70% of patients
with HCC and in 50% to 70% of patients with nonseminomatous
testicular tumors. The 5-year survival rate of primary liver
cancer is approximately 15%, and the mortality rate is mainly
attributed to late diagnosis in many patients, with a high
recurrence rate after curative treatment. There is an urgent need
for regular screening for patients at risk for HCC to enable an
early detection of this tumor or its recurrence. The second model
list of essential in vitro diagnostics list (EDL) was recently
released by the World Health Organization for detecting,
diagnosing, and monitoring a wide array of disease conditions.
There is an urgent need for POCT, especially for the diagnostics
listed under the first tier in community and health settings
without laboratories. The second model list of EDL includes
AFP diagnostic testing for the screening of HCC and staging
and disease monitoring of germ cell tumors. HCC accounts for
70%-85% of all primary liver cancers and is the ninth leading
cause of cancer-related deaths in the United States.

In areas with the highest burden of NTDs, such as India
[5,42-44], there is also limited access to centralized laboratories,
cold chain, amniocentesis, and ultrasound technology. Such
limited access makes a POCT device for screening NTDs
especially relevant for these populations. The use of a drop of
capillary blood from a finger prick in our approach is minimally
invasive, and sample collection is faster compared with venous
blood sampling used in a traditional laboratory approach. A
study comparing AFP values of capillary and venous blood in
43 participants concluded that there were no significant
differences, with a high correlation (r=0.995) between the
sampling methods [45]. AFP concentrations in men and
nonpregnant women vary by age and race but are typically in
the range of 0-40 ng/mL. MSAFP levels in pregnancy begin to
increase beginning around 14 weeks of gestation until
approximately 32 weeks. Between weeks 15 and 20, MSAFP
levels mostly range between 10 and 150 ng/mL [46]. In adults,
serum AFP levels greater than 200 ng/mL in patients with liver
cirrhosis are a strong indicator of HCC.

Our preliminary work presented here is a quantitative,
point-of-care lateral flow immunoassay–based screening test
for the quantification of serum AFP concentrations. This
technology will enable a rapid screening of high-risk
pregnancies and enable physicians to make informed decisions,
especially in resource-limited settings with limited access to
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diagnostic laboratories. The ACOG recommends integrated or
sequential screening tests with high detection rates earlier in
pregnancy, which can provide patients with diagnostic options
to consider. The findings suggest that at the current stage of
development, this technology can play a significant role as a
screening tool for high-risk pregnancies to assess whether further
diagnostic testing may be needed.

Limitations
This study has some limitations. There were limited number of
test samples used in this study. In addition, there is a need for
validation with larger samples in our future work and a more
comprehensive evaluation of the diagnostic performance. In
future studies, we plan to optimize the performance of the AFP
point-of-care assay on a mobile platform using whole blood in
human validation studies among a greater number of participants
with a broader range of AFP concentrations to improve the
calibration curve and conduct an extensive evaluation of
diagnostic performance.

Conclusions
In conclusion, we developed and performed a preliminary testing
of a point-of-care screening test on our mobile platform for the
detection of serum AFP levels from a drop of serum sample
within a few minutes. On the basis of preliminary testing results,
the AFP screening test on the mobile platform reported in this
study will pave the way for our future work focused on
developing a point-of-care mobile device–enabled quad-screen
test in real time in clinical and field settings. State-of-the-art
diagnostic equipment is costly, is bulky, and requires

sophisticated training for operation and maintenance. Shifting
the approach from clinic- and laboratory-dependent care to a
mobile platform based on our point-of-care approach will enable
translation to resource-limited settings and the global health
care market. Screening for high-risk pregnancies will enable
physicians to make informed decisions on whether further
diagnostic testing, such as ultrasound and amniocentesis, should
be considered. Prenatal NTD detection also informs decisions
about the optimal time, route, and site of delivery. Our future
work will focus on conducting appropriately powered diagnostic
test accuracy studies with maternal serum samples and
developing a multiplexed assay to include hCG and
unconjugated estriol as a part of the triple screening test. An
early confirmation of high-risk pregnancies provides parents
more time to process the information and learn about early
intervention programs, including establishing care in a
patient-centered medical home, reviewing eligibility for parental
financial and psychological support programs. An early
screening is critical to identify and enroll newborns in
state-specific early intervention programs as soon as possible
to improve short- and long-term outcomes. Overall, the
preliminary results reported in this work serve as a foundation
for our future research focused on developing a quad-screen
POCT to enable (1) screening for high-risk pregnancies within
a few minutes at the point of care even in remote areas; (2)
identification of patients who might need continued health care
advice and counseling; (3) planning for enrolling newborns in
state-specific early intervention programs as soon as possible
to improve short- and long-term outcomes; and (4) development
of surveillance tools for birth defects.
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