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Abstract

Background: Historically, the evaluation of physical activity has involved a variety of methods such as the use of questionnaires,
accelerometers, behavior records, and global positioning systems, each according to the purpose of the evaluation. The use of
web-based physical activity evaluation systems has been proposed as an easy method for collecting physical activity data. Voice
recognition technology not only eliminates the need for questionnaires during physical activity evaluation but also enables users
to record their behavior without physically touching electronic devices. The use of a web-based voice recognition system might
be an effective way to record physical activity and behavior.

Objective: The purpose of this study was to develop a physical activity evaluation app to record behavior using voice recognition
technology and to examine the app’s validity by comparing data obtained using both the app and an accelerometer simultaneously.

Methods: A total of 20 participants (14 men, 6 women; mean age 19.1 years, SD 0.9) wore a 3-axis accelerometer and inputted
behavioral data into their smartphones for a period of 7 days. We developed a behavior-recording system with a voice recognition
function using a voice recognition application programming interface. The exercise intensity was determined from the text data
obtained by the voice recognition program. The measure of intensity was metabolic equivalents (METs).

Results: From the voice input data of the participants, 601 text-converted data could be confirmed, of which 471 (78.4%) could
be automatically converted into behavioral words. In the time-matched analysis, the mean daily METs values measured by the
app and the accelerometer were 1.64 (SD 0.20) and 1.63 (SD 0.20), respectively, between which there was no significant difference
(P=.57). There was a significant correlation between the average METs obtained from the voice recognition app and the
accelerometer in the time-matched analysis (r=0.830, P<.001). In the Bland-Altman plot for METs measured by the voice
recognition app as compared with METs measured by accelerometer, the mean difference between the two methods was very
small (0.02 METs), with 95% limits of agreement from –0.26 to 0.22 METs between the two methods.

Conclusions: The average METs value measured by the voice recognition app was consistent with that measured by the 3-axis
accelerometer and, thus, the data gathered by the two measurement methods showed a high correlation. The voice recognition
method also demonstrated the ability of the system to measure the physical activity of a large number of people at the same time
with less burden on the participants. Although there were still issues regarding the improvement of automatic text data classification
technology and user input compliance, this research proposes a new method for evaluating physical activity using voice recognition
technology.

(JMIR Biomed Eng 2021;6(1):e19088) doi: 10.2196/19088
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Introduction

There has been remarkable progress in wearable devices (the
collective name for information devices that are worn and
carried) in recent years. Particularly, devices that objectively
record lifelog data, such as physical activity and sleep, have
attracted attention [1]. Many companies have developed
smartphones and wristwatch-type behavior-recording sensors.
Wearable devices such as these are expected to contribute to
the promotion of physical activity for many people [2].
According to the global market forecast for mobile health
solutions (2015-2022), the global mobile health market is
expected to reach $90.4 billion in 2022 from $21.1 billion in
2017 [3]. The global health market, along with the Internet of
Things and big data analysis, has become an important part of
Japan's growth strategy for the fourth industrial revolution [4].
Despite the fact that deficient physical activity is the third
leading cause of death [5], physical activity in Japan has
reportedly decreased slightly over the past 10 years [6].

The questionnaire method has excellent cost performance and
is suitable for large-scale physical evaluation surveys, but it has
been pointed out that there is a problem with its validity [7].
An epidemiological study [8] used a smartphone app (the Argus
app) to demonstrate that step count is negatively associated with
obesity. However, most wearable devices with built-in
accelerometers have been shown to underestimate the physical
activity energy expenditure value of the doubly labeled water
[9]. Although accelerometers are highly useful, data bridging
might be necessary in epidemiologic studies due to
underestimation (depending on the wearable device used to
measure energy expenditure). In a previous study [10], we
developed and validated a physical activity measurement system
based on a 24-hour activity recording method, to be used as an
accessible physical activity evaluation system. The accuracy of
the energy expenditure measurement was determined using the
doubly labeled water method. The average energy expenditure
measurement value and the average value of the doubly labeled
water nearly matched, and the two were very highly associated
[10]. In another study [11], we collected data from thousands
of people using this physical activity measurement system and
conducted epidemiological studies such as regional comparisons.
We found that our system can evaluate physical activity in a
large number of people simultaneously, with substantial
accuracy and at a low cost. However, the users are tasked with
inputting information about the activities in which they have
engaged every 15 minutes for the 24 hours in a day. As a result,
users are required to make an effort and input time while
stopping physical activity.

To address these problems, we attempted, in this study, to
develop a behavior-recording method using voice recognition.
Voice recognition technology enables the recognition and
translation of verbal information into text, which can then be
used in automated data processing systems. Using voice
recognition technology enables behavior recording without
requiring users to touch electronic devices. Information and
communication technology–based telehealth programs with
voice recognition technology show the potential to improve the
health of patients with chronic heart failure by self-care

management behaviors [12]. With the improvement of voice
recognition technology accuracy, such programs are used in the
medical field to enhance the adherence of health behavior of
patients with chronic diseases [13,14]. The possibility of a
voice-based mobile nutrition monitoring system that uses voice
processing has been reported [15]. However, we do not know
of any research that has, to date, used voice recognition
technology to evaluate physical activity. Because it has been
shown that physical activity can be estimated with high accuracy
from 33 types [16] and 66 types [10] of behavior records, we
hypothesized that physical activity could be evaluated by using
voice input that could then be converted into behavioral text.

If this study could prove the validity of physical activity
evaluation using a behavior recording method that relies on
voice recognition technology, it might be possible to evaluate
physical activity more simply in the future. This study may
improve the validity of physical activity evaluation and the
usability of voice recognition devices.

The purpose of this study was to develop a physical activity
evaluation app that records behavior using voice recognition
and to examine the validity of the method by using the app and
accelerometer at the same time.

Methods

Participants
A total of 20 healthy students (14 men and 6 women) with an
average age of 19.1 (SD 0.9) years participated in the study.
The developed voice recognition app was downloaded to their
smartphones and a 1-week behavior record was inputted. We
explained the purpose of the survey to the participants and the
voluntary nature of their participation. We explained that the
privacy and anonymity of the participants would be strictly
observed, confirmed that there were no related health concerns,
and obtained consent. This research project was approved by
the Nihon University College of Sports Science for Research
Ethics Review (2019-012).

Voice Recognition App Development
We developed a behavior-recording system with a voice
recognition function (Figures 1 and 2) using a voice recognition
application programming interface. In this research, we
commissioned the development of a voice recognition app called
ACTRA (Yonefu International Inc, Fukuoka) using the SIRI
application program interface (Apple Inc, California). SIRI's
speech recognition technology uses an acoustic model and a
language model to convert speech data into text via a server.
Attempts have been made to utilize various speech recognition
technologies, including SIRI, in the field of health medicine
[17-19]. The basic structure of our physical activity evaluation
system is based on the Web-Based Physical Activity
Measurement System [10] and Web-Based Physical Activity
Records [11] developed with reference to a simplified physical
activity record [16]. By accumulating data in a cloud server and
analyzing big data, we were able to analyze behavior patterns,
which enabled the categorization of behavior patterns and the
estimation of future physical activity from current physical
activity patterns.
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Figure 1. A behavior-recording system with a voice input app.

Figure 2. Conceptual view of the visualization of physical activity from the voice input.
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We developed an algorithm that can calculate total energy
expenditure based on voice data. To our knowledge, this method
is the first to evaluate physical activity and energy expenditure
based on a behavioral record generated via self-inputted voice
data. Figure 3 shows the screen of the developed voice
recognition app. When the user presses the microphone button
and tells the smartphone what they are or were doing, their voice
is recognized and converted into text data (Figure 3, left). The
terms “start,” “end,” “from,” “to,” and “do” were set as key
words to separate words and list the activity in time units with
the machine learning function (Figure 3, right). Participants
could use the device in real time, such as by saying “start now”
when they began an activity. They could also look back at the
activities completed that day, and input activities as follows:
“Starting at △△〇〇 hour □□ minute, ●● hour ▼▼ minute

end.” The behavior database is queried from the word, and the
“start” and “end” of the trigger word are extracted. Then, the
total time of each behavior is extracted, and the activity intensity
from the start to the end of the behavior is automatically
recorded. During the study, it was difficult to convert the
recorded behavior into text completely automatically, and in
some cases human judgment was necessary. The exercise
intensity was determined from the text data obtained by the
voice recognition program as well as from the correspondence
table [20] between the behavior and exercise intensity. For each
behavior, the product of exercise intensity and time was
obtained, and METs time per day was calculated. The average
METs per day was obtained by dividing the total METs value
per minute by the total activity time.

Figure 3. Screen of the developed voice recognition app.

Physical Activity Measurement via Accelerometer
Participants wore a 3-axis Active Style Pro accelerometer
(HJA-750C, Omron Healthcare, Kyoto) on their lower back for
one week as confirmed by the input data of the physical activity
measurement system. The accelerometer was considered to have
a better correlation with doubly labeled water in the
measurement of physical activity energy expenditure than other
accelerometers [9]. Participants were instructed to always wear
the unit except for during sleep and bathing. The epoch length

for processing the data obtained from the accelerometer was set
to 10 seconds. The activity intensity (METs) was estimated
from the combined acceleration in the vertical, front-back, and
left-right directions, and was collected in units of 10 seconds.
Activity intensity below the detection threshold, categorized as
“a zero count,” was a period in which no activity was detected
for more than 60 minutes. This time was considered to correlate
to periods when the participant was not wearing the device
(nonwearing time); the wearing time was determined by
subtracting the nonwearing time from 24 hours. Datasets for
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days with daily wearing times of 10 hours or more were
analyzed. To calculate the 24-hour average METs, 0.9 METs
were calculated without measurement data.

Time-Matched Analysis of Both Voice Recognition and
Accelerometer Methods
The advantage of using acceleration is that it has high temporal
resolution; voice recognition can also be analyzed every minute.
Therefore, we performed an analysis in which acceleration data
was collated with the behavior recording timeline of voice
recognition. As a procedure for time matching, the activity
intensity obtained from the accelerometer was matched with
multiple behavior records obtained from voice input every
minute, and the average METs per day was calculated by each
method. The time matching was not automated and was done
manually.

Statistical Analysis
Mean METs per day are shown as the mean with the standard
deviation. A paired t test was performed to compare the average
METs values obtained from the voice recognition app and the
3-axis accelerometer. Pearson's correlation coefficient was
calculated to examine the correlation between METs obtained
from the voice recognition app and the 3-axis accelerometer.
The average METs values were calculated for cases where the
voice recognition was recorded for 10 hours of activity or more,
14 hours or more, and for time matching analysis. For the values
calculated under each analysis condition, the average METs
values were compared, and the correlation coefficient was
calculated. Using Bland-Altman plots, we related the difference
in METs between voice recognition and accelerometer (y axis)
to the arithmetic mean of METs for voice recognition and

accelerometer (x axis) [21]. Statistical analysis was performed
using SPSS version 25 IBM (IBM Corporation, Somers, NY,
USA) with an alpha level of less than .05.

Results

In the voice input data of the subject, 601 text-converted data
could be confirmed, of which 471 (78.4%) could be
automatically converted into behavioral words. For example,
phrases with trigger words such as “study from 9:00 to 12:00,”
“start meal at 7:00, end meal at 8:00,” and clear words could
be automatically converted. However, automatic conversion
was not possible for phrases without trigger words such as “get
up at 7:00,” or for long sentences containing objects such as
“going home by riding a bicycle.” Therefore, the text data that
could not be automatically converted was checked and converted
by hand.

Table 1 shows the average METs for the voice recognition app
and accelerometer. There were 36 days with more than 10 hours
of voice recognition data and 16 days with more than 14 hours
of voice recognition data. The average daily METs measured
by the accelerometer was 1.47 (SD 0.23) and 1.48 (SD 0.24)
compared to 1.56 (SD 0.24) and 1.58 (SD 0.28) when the voice
recognition data were analyzed for days with 10 or more hours
of activity and 14 or more hours, respectively. Under all data
extraction conditions, the average METs value determined by
voice recognition was significantly higher than that determined
by the accelerometer (≥10 hours P=.02, ≥14 hours P=.04). In
the time-matched analysis, the voice recognition and
accelerometer values were 1.64 (SD 0.20) and 1.63 (SD 0.20),
respectively, and there was no significant difference (P=.57).

Table 1. Comparison of average daily METsa measured by voice recognition app and accelerometer.

Number of analyzed daysP value of the t testAccelerometer, average
METs (SD)

Voice recognition, average
METs (SD)

Dataset

360.021.47 (0.23)1.56 (0.24)Days with 10 or more hours
of measured activity

160.041.48 (0.24)1.58 (0.28)Days with 14 or more hours
of measured activity

360.571.63 (0.20)1.64 (0.20)Time-matched analysis

aMETs: metabolic equivalents.

Figure 4 shows the correlation between the voice recognition
data and the average daily METs measured by the accelerometer.
Figure 4A shows the data for voice recordings more than 10
hours long, Figure 4B shows the data for recordings that were
more than 14 hours long, and Figure 4C shows the date for the
time-matched analysis of both voice recognition and
accelerometer methods. Under all conditions, the average METs
values from voice recognition ranged from 1.2 METs to 2.3

METs. In contrast, the average METs values measured by the
accelerometer ranged from 1.0 METs to 2.2 METs. There was
a significant correlation between the average METs obtained
from voice recognition and that obtained by the accelerometer
in the 10 hour dataset, 14 hour dataset, and the time-matched
analysis (r=0.545, P=.02; r=0.750, P=.008; and r=0.830,
P<.001, respectively).
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Figure 4. Correlation of average measured METs with voice recognition app and accelerometer. METs: metabolic equivalents.

Figure 5 shows the Bland-Altman plot for METs as measured
by voice recognition compared with METs as measured by the
accelerometer. Figure 5A shows the data for voice recordings
more than 10 hours long, Figure 5B shows the data for
recordings that were more than 14 hours long, and Figure 5C
shows the date for the time-matched analysis of both voice
recognition and accelerometer methods. The mean difference
(Figure 5A) for the voice recognition and the accelerometer was
small (0.09 METs), and the limits of agreement were large at
0.44 METs (SD 1.96). The test for trend was not statistically
significant. The regression equation was y = 0.054x + 0.012

(r=.049, P=.78). The mean difference (Figure 5B) between the
two methods was small (0.11 METs), and the limits of
agreement were large at 0.37 METs (SD 1.96). The test for trend
was not statistically significant. The regression equation was y
= 0.167x – 0.15 (r=.217, P=.42). In the Bland-Altman plot
(Figure 5C) for METs measured by voice recognition compared
with METs measured by the accelerometer, the mean difference
between the two methods was very small (0.02 METs), and the
limits of agreement were 0.24 METs (SD 1.96). The test for
trend was not statistically significant. The regression equation
was y = –0.0341x + 0.035 (r=–.056, P=.74).
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Figure 5. Bland–Altman plot illustrating the difference in average measured METs between the voice recognition app and accelerometer. METs:
metabolic equivalents.

Figure 6 shows two examples in which the error between the
METs value measured by voice recognition and the METs value
measured value by the accelerometer was large. Figure 6 (α, β)
shows the individual data for α and β in Figures 4 and 5. Figure
6α shows that voice recognition app recorded higher METs
values than the accelerometer. This was due to the fact that the
voice recognition app determined that the game was in progress,

while the acceleration data showed a low intensity period. On
the other hand, in Figure 6β, the METs values measured by the
accelerometer were higher than those measured by the voice
recognition app. The cause was judged to be that the voice
recognition app recorded the activity as training and set the
METs value to 5, whereas, in reality, the activity was
accompanied by intense exercise exceeding 10 METs.
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Figure 6. 24-hour data for the two high-error examples (α and β in Figure 4C, Figure 5C).

Discussion

Overview
In this study, we developed a behavior-recording app that uses
voice recognition technology and verified the validity of the
app using an accelerometer. Participants’exercise intensity was
estimated from the activity recorded using the voice recognition
app, and the average daily METs was calculated [10,11]. When
the validity of this data was verified using an accelerometer,
we found a high correlation between the time-matched analysis
of both app- and accelerometer-measured data, and a moderate
correlation when the behavior was recorded for both 10 hours
or more and 14 hours or more in a single day. Further, the
average daily METs value measured by the voice recognition
app in time-matched analysis was not significantly higher than
that measured by the accelerometer. However, the average daily
METs value measured by the voice recognition app was
significantly higher than that measured by the accelerometer
for both the 10 hour or more dataset and the 14 hour or more
dataset. In a previous study [22], a 24-hour behavior recording
strategy using a website produced a significantly higher METs
value than an accelerometer. Therefore, when estimating energy
expenditure via voice recognition recording, the relevance was
moderate if it did not time match the acceleration data, but the
average might be overestimated.

Validity of Physical Activity Evaluation Using Voice
Recognition
It has been reported that the total energy expenditure reported
by an accelerometer underestimates physical activity, even when
the gold standard doubly labeled water method is used as a
standard [9]. This is because the device is removed during
bathing and to charge the device. Therefore, in the present study,
the average METs obtained by the voice recognition app might

have been slightly higher than that of the accelerometer. In
addition, the accelerometer does not count movements that
occur in a sitting position or stationary standing position, and
acceleration is not measured. Acceleration does not match
energy expenditures when riding a bicycle, climbing stairs, or
walking on slopes [23]. Also, energy expenditures due to
movements of antigravity muscles should be considered [24].
Further, the influence of dietary thermogenesis upon digesting
food may be an overlooked factor [7]. Although there is a limit
to the physical activity evaluation of the accelerometer, the
correlation with physical activity energy expenditure by doubly
labeled water has also been shown [9]. In this study, physical
activity energy expenditure is not examined because the basal
metabolism was not measured, and the average METs was
evaluated. Figure 5 (A, B, C) indicates that the error range of
the values recorded by voice recognition did not change,
regardless of the highest and lowest average METs values.
Figure 5 demonstrates no significant correlation between the
data in any of the graphs; the error range was shown (0.44 METs
(A), 0.37 METs (B), and 0.24 METs (C), 95% confidence
interval) regardless of the size of the estimate. In Figure 5B,
the regression line of the Brand Altman plot was slightly upward
(y = 0.1667X – 0.1474), and the data varied. It might be said
that the higher the average METs value, the larger the error. In
other words, it could be said that there was a day when the
acceleration did not actually move much, even if a high-intensity
behavior was inputted by voice. On the contrary, the
accelerometer moved well, but, in some cases, it didn’t move
much during voice recording.

Therefore, in consideration of the time resolution, which is the
merit of voice recognition and accelerometer use, the time of
both methods was matched and analyzed. By using this analysis
method, the validity was verified by excluding behaviors that
cannot be measured by the accelerometer, which is a weak point
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of the accelerometer. For example, data for periods of bathing,
periods of daytime sleep, and instances in which participants
forgot to put on the accelerometer were excluded. In Figure 5C,
the regression line of the Brand Altman plot was flat (y =
–0.0341X – 0.035) and was within the 95% confidence interval,
except for one case. Even so, there was a case where there was
a large difference between the voice behavior record and the
daily average METs recorded by the accelerometer, so Figure
6 shows the details of the α and β data. The graphs of α and β
show cases where voice recognition is overestimated and
underestimated compared to acceleration data in sports activities.
Other than with sports activities, errors occurred when the
activity intensity was difficult to understand for long periods,
such as when participants rode bicycles or worked part-time
jobs.

Possibility of Behavior Recording by Voice Recognition
In the physical activity measurement system developed
previously [10], behavior was reported every 15 minutes. Thus,
an activity that was performed for about 10 minutes would have
been counted as having taken place for 15 minutes. In this study,
we hypothesized that behaviors would be more accurate when
recorded via voice recognition because the behavior would be
evaluated on a finer timescale. In the time-matched analysis, a
high correlation was found between the behavior recorded by
voice recognition and the acceleration data, and the mean value
also matched, so our hypothesis could be true. However, in the
analysis dealing with all the data of one day, there was a
difference in the mean METs values taken by the two
measurement systems, and the correlation coefficient was
moderate. This may be due to participants having experienced
difficulty remembering the details of their behaviors, or fatigue
related to the task of inputting behaviors sequentially in real
time. In recent studies that used the estimation method of
physical activity with wearable trackers, data collection
compliance and validity were positively correlated, but stricter
compliance may have increased the number of excluded data
points [25]. It is necessary to correctly calculate the average
daily METs, assuming practical application that is useful for
dietary guidance and lifestyle improvement.

Limitations and Future Studies
The limitation of this study is that if participant compliance is
not high, the measurement accuracy will decrease. In this study,

the average daily METs per person were treated as one dataset.
If all inputs were perfect, there would have been a total of 140
days of recording, but the final data set we analyzed included
36 days with 10 or more hours of activity and 16 days with 14
or more hours of activity. Increasing compliance when
evaluating physical activity using voice recognition is an
important factor for future research. There was a technical
problem to convert all voice data automatically and
mechanically into exercise intensity. However, this study is the
first report to validate the evaluation of physical activity using
voice input technology. The advantage of the app developed in
this research is that it is possible to record behavior by voice
input with just a single touch on the device.

This section describes applied research and practice for the
future of this research. The method developed in this study
could replace the traditional questionnaire in epidemiological
studies and could be used to evaluate the physical activity of
many people with less burden on the subjects. Time-matched
analysis showed that physical activity could be evaluated with
extremely high accuracy using voice recognition technology.
The developed app enables a simple and low-cost evaluation
of physical activity measurement, which may contribute to
disease prevention. Future apps that incorporate deep learning
using artificial intelligence may be useful for physical activity
evaluation research. Although the details of participants’
behavior are not known from the acceleration data, the voice
recognition method might be useful for analyzing many behavior
patterns.

Conclusions
We developed a behavior-recording app using voice recognition
and examined its validity using an accelerometer. The system
was found to be an effective method for collecting physical
activity data and is appropriate for use in epidemiological
studies. Although the conversion of voice-to-text data into
behavior was not perfect, voice recognition technology is
evolving day by day and improvement could be expected. The
results of the time-matched analysis showed that physical
activity could be measured with high accuracy by voice
recognition technology. Participant compliance when using
voice input technology is important for ensuring data validity.
This research proposes a new method for evaluating physical
activity using voice recognition technology.
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