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Abstract

Background: With advances in digital health technologies and proliferation of biomedical data in recent years, applications of
machine learning in health care and medicine have gained considerable attention. While inpatient settings are equipped to generate
rich clinical data from patients, there is a dearth of actionable information that can be used for pursuing secondary research for
specific clinical conditions.

Objective: This study focused on applying unsupervised machine learning techniques for traumatic brain injury (TBI), which
is the leading cause of death and disability among children and adults aged less than 44 years. Specifically, we present a case
study to demonstrate the feasibility and applicability of subspace clustering techniques for extracting patterns from data collected
from TBI patients.

Methods: Data for this study were obtained from the Progesterone for Traumatic Brain Injury, Experimental Clinical
Treatment–Phase III (PROTECT III) trial, which included a cohort of 882 TBI patients. We applied subspace-clustering methods
(density-based, cell-based, and clustering-oriented methods) to this data set and compared the performance of the different
clustering methods.

Results: The analyses showed the following three clusters of laboratory physiological data: (1) international normalized ratio
(INR), (2) INR, chloride, and creatinine, and (3) hemoglobin and hematocrit. While all subclustering algorithms had a reasonable
accuracy in classifying patients by mortality status, the density-based algorithm had a higher F1 score and coverage.

Conclusions: Clustering approaches serve as an important step for phenotype definition and validation in clinical domains such
as TBI, where patient and injury heterogeneity are among the major reasons for failure of clinical trials. The results from this
study provide a foundation to develop scalable clustering algorithms for further research and validation.

(JMIR Biomed Eng 2021;6(1):e24698) doi: 10.2196/24698
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Introduction

Traumatic brain injury (TBI) is broadly defined as disruption
in normal brain function or other evidence of brain pathology
as a result of mechanical force directed at the head or a rapid
acceleration/deceleration event. TBI is the most common cause
of death and disability in children and adults aged less than 44
years [1]. However, there has been little change in TBI-related
deaths despite advancements in care delivery [2]. Additionally,
a major challenge to both TBI-related clinical research and acute
care is reliably identifying candidates for targeted interventions
[3]. While there have been substantial advances in technological
and computational approaches to TBI phenotyping [4-6], there
is still a dearth of actionable information that can be used for
pursing secondary clinical research in this domain.

Existing approaches to stratification of patients based on clinical
presentation does not adequately address the heterogenous nature
of TBI, whereas data mining and machine learning techniques
have shown promise in identifying subgroups [5], predicting
outcomes [7], and prognosticating among TBI patients [8]. In
particular, clustering-based techniques serve as an important
step for phenotype definition and have the potential to uncover
previously unrecognized relationships between various
physiologic variables [9]. For example, in other clinical domains,
traditional cluster analyses have been helpful in identifying
unique subgroups of patients. These studies include application
of k-means cluster analysis for identifying distinct phenotypes
of asthma patients [10], as well as using hierarchical clustering
to identify both new and known relationships between
physiologic variables collected from critically ill patients [9].
In this study, we applied subspace clustering (or subclustering)
methods on physiologic data collected from TBI patients and
compared the performance of different subspace clustering
methods (density-based, cell-based, and clustering-oriented
methods). The rationale for applying subspace clustering over
traditional clustering methods (eg, k-means) is the ability to
account for the multiple low-dimensional subspace structure of
higher dimensional data [11]. In terms of critical illnesses, such
as acute TBI, we hypothesize that the complex latent
relationships between various physiologic variables are better
represented in subspaces and thus better captured by
subclustering methods than traditional methods that are often
limited to spatial proximity of data points in individual clusters.

Methods

Data Source
Data for this study were obtained from the Progesterone for
Traumatic Brain Injury, Experimental Clinical Treatment–Phase
III (PROTECT III) study. The PROTECT III trial included a
cohort of 882 TBI patients [12], who were originally recruited
for a randomized clinical trial to study the effect of progesterone
on patients with acute TBI. Patients were randomly assigned to
a treatment group that received progesterone within 4 hours of
injury or placebo. While the PROTECT III clinical trial showed
that there was no difference in patients between the two study
groups, the longitudinal data from the trial were made available
for secondary analyses and continued research.

This data set included patient demographics, baseline assessment
data, 6-month outcome data, including the Glasgow Outcome
Scale Extended scale, and mortality status. The temporal data
in this study included laboratory test results for the first 7 days
of stay. Other clinical and radiologic data were not included in
this analysis. Deidentified data were obtained in collaboration
with the PROTECT III investigators and are now available
through the Federal Interagency Traumatic Brain Injury
Research informatics system. The inclusion criteria for this
analysis were as follows: (1) subjects were alive for at least 3
days, (2) subjects were not excluded from the parent study, and
(3) their baseline laboratory results were available. The 3-day
criterion is used because subjects who do not survive for at least
3 days or 72 hours have likely experienced devastating brain
injury or other forms of severe trauma, which often require
aggressive interventions [13]. Additionally, the first 72 hours
of observation is the time interval used for determining the
preliminary effect of the injury and is thus recommended for
valid prognostication [14,15].

Subspace Clustering
Subspace or projective clustering is a clustering method that
emphasizes on clustering in subspaces of high-dimensional
spaces, that is, it tries to find clusters in smaller subspaces and
builds up to form larger clusters by using overlapping subspaces
[16]. Subspace clustering can be classified into the following
three main categories: density-based approaches, cell-based
approaches, and clustering-oriented approaches. Density-based
approaches define subspaces in dense areas [17]. In cell-based
approaches, subspaces are formed by predefining the width of
grid cells and the number of objects within each cell [18].
Clustering-oriented approaches define properties of the entire
set of clusters, as opposed to definition of the cluster itself, and
then assign objects to the cluster with the most relevant
properties [19].

Density-Based Approach
One of the commonly used clustering algorithms is
density-based spatial clustering of applications with noise
(DBSCAN) [20]. The key idea of DBSCAN is that after
detecting a cluster using density-based grids, it looks at the
neighborhood of each cluster point in a defined radius; any point
that exists in this radius is contributed to the cluster.

Every cluster C in a subspace projection is defined by a set of
objects O, that is a subset of database DB and a set of relevant
dimensions S out of the set of all dimensions D.

A clustering result R is a set of clusters k found in the respective
subspace projections as follows:

A density-based subspace cluster (O, S) in a two-dimensional
space is defined with respect to parameters minPoints and

ε–neighborhood Nε (p) = {q ∈ DB |distS (p, q) ≤ ε}, where distS

represents a distance function constrained to the dimensions S,
as follows [20]:
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(1) ε–neighborhood of a point: Let p and q be two points of the
sample, and the distance equation between these two points is
defined by dist (p, q). The distance could be defined with
Manhattan distance, Euclidean distance, or other different
distance methods. The ε–neighborhood of a point is defined as
follows:

(2) Directly density reachable: A point p is directly density
reachable from a point q with respect to ε and MinPts if

(3) Density reachable: A point p is density reachable from a
point q with respect to ε and MinPts if all the points in a chain
of points (including q and p) are directly density reachable from
each another.

(4) Density connected: A point p is density connected to a point
q if only there is point o, which both p and q are density
reachable from.

(5) Noise: The sets of points in database DB that are not
assigned to any cluster are called noise.

To find a cluster, the DBSCAN algorithm starts with a random
point p and finds all density reachable points with respect to ε
and MinPts. DBSCAN also merges two clusters together if the
distance between two sets of points is defined as follows:

Density-connected subspace clustering (SUBCLU) is a greedy
algorithm built on an adaption of the DBSCAN algorithm for
high-dimensional data. It computes all density-connected sets
hidden in subspaces of high-dimensional data. Studies have
shown that SUBCLU can outperform other subspace clustering
methods based on different measures [18,20,21]. SUBCLU is
capable of detecting arbitrarily shaped clusters using the
DBSCAN algorithm in subspaces. To use DBSCAN in each
subspace, let DB be a d-dimensional feature vectors data set

with n objects DB ⊆ Rd. Let A = {a1, a2,…, ad} be the set of all
attributes a of DB. Any subset S ⊆ A is called a subspace. The
projection of an object o into a subspace S is denoted by πs (o),
and the distance function is denoted by dist. For instance, the
ε–neighborhood of o in S is the same as DBSCAN, but projected
in S subspace as follows:

The core object is defined as follows:

The algorithm begins by generating all one-dimensional clusters
using the DBSCAN algorithm. For each detected cluster, it
checks whether the cluster also exists in higher dimensions or
not. For each k-dimensional subspace S ∈ Sk, the algorithm
searches all other k-dimensional subspaces T ∈ Sk having (k-1)
attributes in common and combines them to generate (k +
1)-dimensional candidate subspaces. Based on prior studies
[21], we chose the Midpts to be in the range from 8 to 128 (with

five steps) and the ε–neighborhood to be from 0.01 to 0.25 (with
nine steps). For this study, the initial Midpts value was set to 8
and increased by 30 after each run until it reached 128. The
ε–neighborhood value was initially set to 0.01 and was increased
by 0.03 until a maximum of 0.25.

Cell-Based Approach
Cell-based clustering is centered on cell estimate of the data
space. The width of the cells is parametrized by w. A cluster R
contains a set of cells, and each cell contains at least τ number
of data points. One of the popular cell-based methods is the
MineClus algorithm, which describes each of these cells as the
objects of the cluster by a hypercube with width w. These
hypercubes are arbitrarily positioned to define a region with
frequent data patterns.

A cell-based subspace cluster (O, S) is defined with respect to
the minimum number of objectives τ in cells CS of w width
specified by intervals Ii per dimension ∀i ∈ S. Each interval is
part of the common domain Ii = [li…ui] ⊆ [0…v] with lower
and upper bounds li and ui. For all irrelevant dimensions ∀j ∈
D\S, the interval is the full domain Ij = [0…v], and the cluster
objects O = {o|o ∈ DB ∩ CS} fulfill |O| ≥ τ [21].

Clustering-Oriented Approach
Clustering-oriented approaches focus on the clustering result R
by specifying objective functions. PROCLUS [22], one of the
first top-down subspace clustering algorithms, forms the clusters
first and iteratively improves the clustering model. In the
PROCLUS algorithm, the number of clusters and the average
dimensionality are used as parameters, and data are partitioned
into k clusters with the average dimension being l. A
clustering-oriented approach is defined with respect to objective
function f(R), which is based on the entire clustering result R,
and an optimal value parameter optF is a result set R with f(R)
= optF.

In this case study, we adapted the aforementioned subspace
clustering techniques to analyze the PROTECT III data set.
Analyses were performed using OpenSubspace [21,23], an
open-source framework that extends the WEKA platform
[24,25]. All laboratory values were normalized to a scale
between 0 and 10 before applying the algorithms.

Evaluation
Evaluation of unsupervised learning methods, such as cluster
analysis, is typically informed by domain expertise. For this
work, two clinicians (coauthors of this work [BF and JR])
independently evaluated the results and validated the clusters
based on their experiences in the clinical management of TBI
as well as clinical research in neurotrauma. The informatician
on the team (VS) coordinated the clinician validation process.
Mechanistic interpretations for potential markers or associations
indicated by clusters were offered based on clinical expertise.
To demonstrate alignment of subclustering solutions to a clinical
outcome, mortality at 6 months after injury was examined.

Additional evaluation metrics used in this study included F1
score, entropy, coverage, average dimension, and accuracy of
classification. The F1 value, a common metric for evaluating
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clustering algorithms, is defined as the harmonic mean of
precision and recall. Entropy is a metric that accounts for clarity
of clustering [26]. Coverage characterizes how clusters cover
the input data space. Average dimension is the average of
number of dimensions that the clusters cover in each run.
Accuracy of classification compares the patterns detected in the
model in relation to labeled data, such as outcome. Here, the
mortality status of TBI patients was used as the outcome.
Finally, the performance of subspace clustering algorithms was
compared to traditional k-means clustering, which partitions n
data points into k clusters, placing each observation in one of
the clusters with neared mean representation. While k-means
rely on distance metrics and proximity of observations within
individual clusters, subspace methods group data points based
on their lower-dimensional subspaces. Given these distinct
algorithmic differences between subspace and k-means

clustering in formulation of the clustering problem, a direct
comparison of the clusters formed and interpretation of clusters
may not be appropriate. Instead, we report performance metrics
for comparison purposes.

Results

Subject Characteristics
Of the 882 study subjects in the parent PROTECT III trial, 643
subjects met the inclusion criteria for this study. Table 1 shows
the characteristics of these study subjects at baseline. Ten
different laboratory results were used in this study, including
blood serum chemistry and hematology results at baseline (Table
2). Coagulation tests, such as the international normalized ratio
(INR) and activated partial thromboplastin time, were also
included.

Table 1. Patient characteristics.

Value (N=643)Characteristic

34 (17-93)Age (years), mean (range)

475 (73.9)Male sex, n (%)

105 (16.3)Black people, n (%)

97 (15.1)Hispanic people, n (%)

Cause of injury, n (%)

242 (37.7)Motor vehicle accident

121 (18.8)Motorcycle or scooter accident

78 (12.1)Pedestrian struck by a moving vehicle

202 (31.4)Other

Table 2. Laboratory results.

Value, mean (range)Laboratory parameter

151.6 (68-554)Glucose, mg/dL

1.015 (0.3-4.2)Creatinine, mg/dL

3.667 (1.5-5.8)Potassium, mmol/L

139.8 (125-157)Sodium, mmol/L

105.4 (88-130)Chloride, mmol/L

22.77 (8.0-34.0)Bicarbonate, mmol/L

13.66 (4.9-18.6)Hemoglobin, g/dL

40.31 (14.6-54.2)Hematocrit, %

14.85 (3.2-41.40)Total white blood cell count, ×109/L

249.7 (51-700)Platelet count, ×103/mm3

Application of Subspace Clustering Algorithms to
PROTECT III Data
All three types of subspace clustering algorithms (density-based
[SUBCLU], cell-based [MineClus], and clustering-oriented
[PROCLUS] algorithms) were applied to the PROTECT III
data set. The INR, which characterizes the clotting tendency of
blood, was identified as one of the distinct clusters. This could
represent coagulopathy, a marker of secondary insult in TBI

patients [27]. For example, coagulopathy is associated with
increased risk of ongoing bleeding and expansion of any
intracranial traumatic hemorrhage. One of the clinicians also
noted that progressive coagulopathy, which is resistant to
correction, is further associated with worse outcomes in TBI
patients.

The clustering models also showed a strong relation among
INR, chloride, and creatinine. Both clinicians noted and agreed
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that elevations in chloride levels are often related to fluid
administration for treatment of intracranial hypertension or a
shock (hypoperfusion) state. Therefore, elevations in these
parameters may also be indicators that the clinical team needed
to treat a sicker patient more aggressively. Creatinine may be
elevated at baseline in patients with chronic illness or may
indicate that secondary kidney failure may impact outcome as
a complication of TBI. One of the clinicians noted that there is

a further relationship between elevated chloride and subsequent
elevation in creatinine, though a wide variety of insults may
lead to elevations in creatinine. Finally, in models with higher
dimensions, a relationship between the hemoglobin level and
hematocrit percentage was noted. This relationship is quite
intuitive, given that both measure similar properties. These
observations are demonstrated in Figure 1 and Figure 2.

Figure 1.

Figure 2.

The performances of different subspace clustering methods as
well as the traditional k-means algorithm on the PROTECT III
data set were compared using various evaluation metrics and
the mortality status as the outcome (Table 3). The density-based
algorithm (SUBCLU) had higher F1 and coverage. The
cell-based algorithm (MineClus) had good performance on the

F1 measure while having lower number of clusters. The
clustering-oriented algorithm (PROCLUS) performed reasonably
in terms of accuracy and entropy, while it had the lowest F1
compared to other models. K-means, given its simplicity, was
the fastest algorithm, but performed worst in all other metrics.
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Table 3. Comparison of subspace clustering algorithms.

K-means, min-maxClustering-oriented algorithm
(PROCLUS), min-max

Cell-based algorithm
(MineClus), min-max

Density-based algorithm (SUBCLUa),
min-max

Evaluation metric

0.21-0.300.36-0.440.42-0.640.45-0.69F1

0.51-0.530.48-0.630.44-0.550.45-0.59Entropy

0.11-10.43-0.820.78-0.970.9-1Coverage

2-328-326-646-1024Number of clusters

122-93.2-6.12.3-9Average dimensions

51-6388-8888-8881-88Accuracy (%)

0.07155-40258-194367-745,785Runtime (s)

aSUBCLU: density-connected subspace clustering.

Discussion

Currently, clinical data used to predict outcomes after TBI come
from modeling and validation performed across two older
clinical studies in TBI encompassing more than 15,000 patients
[28,29]. The covariates that were significant in these prior
regression models included glucose and hemoglobin, in addition
to clinical predictors such as age and clinical examination.
However, the area under the curve of these models is
suboptimal. Clusters of data may also incorporate clinical
knowledge such as the observation that the combination of lactic
acidosis, hypothermia, and coagulopathy at presentation after
major trauma imparts poor prognosis. Furthermore, many of
these patients do not survive the 72 hours required for inclusion
in the current analysis.

Lack of access to multiple data sources has limited further
external validation of the proposed methods. Nonetheless,
clinician validation is important to inform analyses of data from
ongoing observational studies and provide valuable insights

into the development of clinically relevant tools for TBI
management. This case study serves as a demonstration for such
applications. As a next step, focus on temporal data and methods
for time-series analyses are warranted.

Conclusion
This study explored the application and feasibility of subspace
clustering techniques for a specific clinical condition, TBI, using
clinical data from a randomized clinical trial. The analyses
showed the following three clusters of laboratory physiological
data: (1) INR, (2) INR, chloride, and creatinine, and (3)
hemoglobin and hematocrit. While all subclustering algorithms
had a reasonable accuracy in classifying patients by mortality
status, the density-based algorithm had a higher F1 score and
coverage. Clustering approaches serve as an important step for
phenotype definition and validation in clinical domains, such
as TBI, where patient and injury heterogeneity are among the
major reasons for failure of clinical trials. Results from this
study also provide a foundation to develop scalable clustering
algorithms for further research and validation.
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