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Abstract

Currently, nearly 6 in 10 US adults are suffering from at least one chronic condition. Wearable technology could help in controlling
the health care costs by remote monitoring and early detection of disease worsening. However, in recent years, there have been
disappointments in wearable technology with respect to reliability, lack of feedback, or lack of user comfort. One of the promising
sensor techniques for wearable monitoring of chronic disease is bioimpedance, which is a noninvasive, versatile sensing method
that can be applied in different ways to extract a wide range of health care parameters. Due to the changes in impedance caused
by either breathing or blood flow, time-varying signals such as respiration and cardiac output can be obtained with bioimpedance.
A second application area is related to body composition and fluid status (eg, pulmonary congestion monitoring in patients with
heart failure). Finally, bioimpedance can be used for continuous and real-time imaging (eg, during mechanical ventilation). In
this viewpoint, we evaluate the use of wearable bioimpedance monitoring for application in chronic conditions, focusing on the
current status, recent improvements, and challenges that still need to be tackled.

(JMIR Biomed Eng 2021;6(2):e22911)   doi:10.2196/22911
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Introduction

Chronic diseases are currently a major challenge for the global
health system [1]. Worldwide, over 70% of deaths are attributed
to noncommunicable diseases (NCDs) and mental health. In
addition, NCDs are a leading cause of morbidity and disability,
including cardiovascular disease, chronic respiratory diseases,
cancer, and diabetes [2]. Specifically in the United States,
approximately half of the overall population is suffering from
one or more chronic diseases [3]; 6 in 10 adults have at least
one chronic disease and 4 in 10 adults are suffering from two
or more chronic diseases [4]. This not only poses a huge burden
on the health care system but is also an economic burden, as
chronic diseases account for 86% of the total health care costs
in the United States [5].

Some of the main aspects attributing to these high health care
costs are the emergency room visits and hospitalizations
resulting from acute exacerbations in chronic diseases [6]. At
present, these diseases are typically managed based on a few
office visits per year [7]. Several studies have shown that more
frequent monitoring could lead to early detection of
exacerbations such as in heart failure [8] and in asthma [6]. This
indicates that continuous or frequent monitoring could also play
a role in the management of the large number of patients
suffering from chronic diseases [9].

Wearable sensor technology, possibly combined with artificial
intelligence (AI), is one of the techniques that provides this type
of monitoring. Consequently, the wearable technology market
has increased rapidly in recent years. Different wearables have
been developed, ranging from simple medical alarms (St John)
that people can press when needing help to vital sign patches
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for monitoring electrocardiogram (ECG) signals (ePatch
BioTelemetry Inc and Vista Solution VitalConnect) and
cuff-based blood pressure measurements in a watch (HeartGuide
Omron Healthcare Inc). At the same time, different AI methods
have been developed and applied to physiological data, ranging
from supervised techniques for automatic detection of sleep
apnea from the ECG [10] to unsupervised heart rate detection
with liquid states [11].

A promising sensing method is wearable bioimpedance
monitoring. In this paper, we define a wearable bioimpedance
monitoring system as an electronic device containing a
bioimpedance sensor capturing the bioimpedance of the wearer
that is worn close to or on the surface of the skin, and that allows
the wearer to move freely during daily living conditions (ie,
that is not attached to any main power supply or desktop device).
Bioimpedance is a versatile sensing technology that can be used
for a wide array of clinical and lifestyle applications, ranging
from body fluid monitoring [12] to gesture monitoring [13] and

to monitoring of hemodynamic parameters [14]. In addition,
bioimpedance is a noninvasive technology and is of relatively
low cost. Specifically, in chronic disease management,
bioimpedance has, for example, been explored to monitor
patients with asthma [15], heart failure [8], and end-stage kidney
disease (ESKD) [16]. Table 1 lists some of the commercially
available devices and their application areas as of November
2020. There are still several challenges for the full integration
of wearable bioimpedance monitoring into the clinical health
care system. Some of these challenges are specific to
bioimpedance; however, many are general to wearable
monitoring. These challenges include data reliability [17,18],
patient usage and compliance [19,20], integration into electrical
health records [21,22], actionable insights provided to the user,
and the still limited number of clinical trials demonstrating a
medical benefit [23]. Here, we discuss the versatile application
areas for wearable bioimpedance monitoring, along with the
current status, remaining challenges, and future outlook.

Table 1. Wearable bioimpedance devices currently available on the market.

MarketApplicationTechnologyCompanyProduct

ConsumerBody compositionWrist band, hand-to-hand BI-

VAa
Aura devices, Wilmington DE,
USA

Auraband

ConsumerBody compositionWrist band, hand-to-hand BIAbInbody, Seoul, KoreaInbodyband

MedicalHeart failureNecklace, thoracic
bioimpedance

ToSense (acquired by Baxter
International)

CoVa Monitoring system

ResearchRespirationModule attached with chest
strap, thoracic bioimpedance

Shimmer, Dublin, IrelandShimmer3 Ebio unit

MedicalRespirationPatch, thoracic bioimpedanceKoninklijke Philips N.V., Ams-
terdam, the Netherlands

BX100

MedicalHeart failurePatch, thoracic RFc impedance
0.5-2.5 GHz

ZOLL Medical Corporation,
Chelmsford, MA, USA

µCor3

MedicalICGdChest module, thoracic
bioimpedance

Manatec Biomedical, Poissy,
France

Physioflow

aBIVA: bioelectrical impedance vector analysis.
bBIA: bioelectrical impedance analysis.
cRF: radiofrequency.
dICG: impedance cardiography.

Basic Principle of Bioimpedance

Overview
Our aim is to address the clinical application areas for wearable
bioimpedance. The aim is not to discuss the technology in full
detail; a comprehensive description on bioimpedance is provided
elsewhere [24,25]. However, to understand the opportunities
and challenges for clinical applications, some background on
the technology is needed. Therefore, we first provide a brief
overview of the principles of bioimpedance measurements.

Bioimpedance is a method to assess the electrical properties of
a tissue. Different tissues such as the bone and fat have different
electric properties. In 1996, more than a century after the initial
work on electrical properties of biological tissues in 1872 [26],
Gabriel et al [27] reported the measurement of dielectric
properties of different biological tissues over a large frequency

range (10-20 GHz). These experiments and observations formed
the basis of subsequent bioimpedance research in various
applications.

Bioimpedance reflects the extent to which the living tissue
impedes the flow of electrical current. The electrical properties
of biological tissue are determined by the characteristics of the
extracellular fluid (ECF), cell membranes, and intracellular fluid
(ICF). To study the electrical properties, an alternating current
with a single frequency measurement or range of frequencies
is injected into the tissue and the opposition of the tissue to this
current flow (ie, the bioimpedance) is measured.

Bioimpedance measurements at any frequency are expressed
as a complex number, with the real part referred to as the
resistance and the imaginary part referred to as the reactance.
The resistance is regarded as a measure of the obstruction to an
electrical current, whereas the reactance is related to the storage
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of the electrical current. The resistance is attributed to the fluids
in the tissues (including the therein dissolved ions) and the
capacitance is attributed to the cell membrane. Since the
resistance of the cell membrane is very small, it is often
neglected (see electrical scheme in Figure 1B). At low
frequencies of the injected current, the current does not penetrate

the cells, but mainly flows through the ECF; thus, bioimpedance
measurements at low frequency can be used to gain insight into
the ECF. However, when using high frequencies for the injected
current, the current flows through the cells, and thus the
measurements provide insights into both the cellular and the
extracellular components (Figure 1A).

Figure 1. (A) Low-frequency current travels around the cell, while high frequency current can penetrate cells. (B) Electrical model of the tissue with
extracellular resistance (Re), intracellular resistance (Ri), and conductance representing the cell membrane (Cm). (C) Illustration of bioimpedance
spectroscopy data visualized in the R-Xc plane. Increasing frequencies of the injected alternating current appear counterclockwise in the plot. (D)
Tetrapolar electrode configuration in bioimpedance measurement. ECF: extracellular fluid; ETI: electrode tissue impedance; ICF: intracellular fluid;
Iinject: injected current; Vmeasred: measured voltage.

The resistance and reactance can be used to calculate the phase
angle and the magnitude. The phase angle is calculated by the
arc tangent of the ratio of reactance and resistance at a certain
frequency. The phase angle is therefore considered to be a useful
metric for cellular health, and is expected to be an indicator of
the cellular integrity, cell mass, and extracellular versus
intracellular water content. The magnitude is calculated as the
square root of the sum of the two vectors.

In general, bioimpedance has been applied to three types of
problems: (1) dynamic monitoring, applied mainly in the chest
to monitor respiration and hemodynamic parameters; (2) slowly
evolving parameters such as body composition monitoring; and
(3) electrical impedance tomography (EIT) or imaging. To
address these application areas, different types of bioimpedance
measurements have been developed. There are several
measurement methods with various numbers of electrodes,

namely 2, 3, and 4. Here, we only describe the tetrapolar
configuration with 4 electrodes since this minimizes the effect
of electrode tissue impedance (ETI), which is undesired in
real-life bioimpedance measurements. Measurements using a
tetrapolar electrode configuration and a single frequency of the
injected current are applied to assess either dynamic changes
in vital parameters or body composition. The latter
measurements are referred to as single-frequency bioimpedance
analysis (SF-BIA). A second approach to assess body
composition is through multifrequency bioimpedance
measurements, either through multifrequency bioimpedance
analysis (MF-BIA) or bioimpedance spectroscopy (BIS) [26,28].
Finally, EIT measurements are performed using either single
or multiple frequencies of the injected current and an array of
at least 8 electrodes.

JMIR Biomed Eng 2021 | vol. 6 | iss. 2 | e22911 | p.4https://biomedeng.jmir.org/2021/2/e22911
(page number not for citation purposes)

Groenendaal et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Single-Frequency Measurements for Dynamic
Monitoring
To obtain the bioimpedance of a tissue, an alternating current
is applied to the tissue. Electrodes are placed on the surface of
the skin to ensure electrical contact with the tissue. As
mentioned above, a tetrapolar electrode configuration is often
used to circumvent the effect of ETI. In such a configuration,
two electrodes are dedicated for the current injection and the
other two are used for obtaining the voltage measurement
(Figure 1D). The configuration, or positioning, of the electrodes
together with the electrical properties of the underlying tissue
will determine the current path of the injected current through
the body. For example, current injected through electrodes
positioned on the thorax will flow through part of the thorax
underlying these electrodes. Therefore, electrode positioning is
an important step in the design of the bioimpedance
measurement.

Longitudinal thoracic bioimpedance measurements can be
performed to assess respiration or hemodynamic parameters.
The measured thoracic bioimpedance signal contains a baseline
component and a dynamic component. The baseline component
is a constant bioimpedance value that is determined by the
tissues (eg, the adipose tissue) and does not change during the
measurement over several minutes. The dynamic component is
related to dynamic changes in the tissue during the measurement
(Figure 2). During a measurement of several minutes, a subject
breathes and the heart pumps blood through the thorax. Airflow
moving in and out of the body and pulsatile blood flow modulate
the electrical properties and thus the measured bioimpedance
signal. The electrode configuration, by affecting the measured
tissue volume, and the frequency of the injected current, by
affecting the current path, both influence the baseline and
dynamic components of the measurements.

Figure 2. (A) Illustration of body composition consisting of solids (eg, bone, dry cell mass) and fluids. The fluids consist of intracellular fluid (ICF)
and extracellular fluid (ECF), with the latter comprising interstitial fluid (ISF) and plasma. (B) Electrode configuration example of respiration monitoring
with the measured bioimpedance (bioZ) signal. (C) The measured bioZ signal contains a dynamic component (AC) resulting from physiological changes
such as breathing and a baseline component (DC) resulting from tissues (eg, bones, fat and/or muscle).

Body Composition Monitoring
The previous section described monitoring of dynamic changes,
or the dynamic component of the signal, whereas body
composition monitoring is related to the baseline component
of the measurement. Body composition parameters obtained
through bioimpedance measurements include fat percentage
and total body water (TBW) content or the hydration status.
TBW is the sum of the extracellular water (ECW) and
intracellular water (ICW) content. Reference methods for
estimating TBW, ECW, and ICW, such as dilution of radioactive
deuterium, bromide, and radioactive potassium, are invasive
and expensive. These methods also must be applied under
clinical supervision and are not suitable for frequent or
ambulatory monitoring.

The simplest method for bioimpedance body composition
monitoring is SF-BIA, which is used to estimate TBW, ECW,
ICW, and fat free mass (FFM) using statistical analysis. The
frequency of the current is set to 50 kHz. SF-BIA is applicable
for normal hydrated subjects [29], which uses the inversely
proportional relationship between assessed bioimpedance and

TBW. SF-BIA first predicts the TBW and FFM using two
statistically derived equations [29], and then estimates the ECW
and ICW to be 75% and 25% of the TBW, respectively. To
improve the body composition estimation, bioimpedance vector
analysis (BIVA) was introduced, which also uses
single-frequency bioimpedance measurement, mainly at 50 kHz,
but the data are normalized to the length of the subject. BIVA
provides information about changes in both tissue hydration
and soft-tissue mass. However, similar to SF-BIA, BIVA does
not provide any quantitative estimate of tissue mass (in
kilograms) or fluid volumes (in liters). Therefore, MF-BIA was
developed to exploit the frequency dependence of the different
tissues. MF-BIA uses a similar approach to SF-BIA, except that
it applies a spectrum of frequencies to the body tissue and
performs multivariate statistical analysis to estimate TBW,
ECW, ICW, and FFM. In contrast, BIS predicts ECW and TBW
by determining the resistance at zero frequency (R0) and infinity
frequency (Rinf). BIS provides quantitative results on TBW, as
well as on ECW and ICW. Typically, a larger number of
different frequencies is used in BIS measurements compared
to MF-BIA. The measured response at these frequencies is
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displayed in the R-Xc plane (plotting resistance vs reactance),
as shown in Figure 1C.

Several empirical electrical models have been developed to
analyze these measurements. Over the years, different variations
of these empirical models have been presented [30,31]. Although
these models can describe the data, they are not a true
representation of the underlying physiology. One of the earliest
models is the Fricke and Morse model [32], which consists of
two resistors, ECF resistance and ICF resistance, and a resistor
in parallel with a capacitor, which represents the cell membrane.
This model has a direct physical interpretation. The most widely
used model is the Cole-Cole model [33]. To account for the
nonideal capacitive behavior of cell membranes, an additional
parameter (α) was added to this model. Although this improved
the accuracy of the fit, the interpretability of the model was
reduced. The resistance values at infinitely low Ro and high Rinf

are easily derived from the analysis and relate to ECF and TBW.

EIT Measurements
EIT originates from the 1970s [34] and is an imaging technique
with relatively low resolution when compared with traditional
imaging techniques such as magnetic resonance imaging (MRI)
or computed tomography (CT). However, EIT has the advantage
of low costs, low power, no radiation, a high temporal solution,
and the potential to be wearable [35].

EIT estimates the conductivity distribution within a given
volume. The measurement exploits the fact that different tissues
vary in their electrical properties. To assess the conductivity
distribution, EIT uses electrical alternating currents injected
from the surface area of the volume. Toward this end, electrodes
are placed around the surface of the volume of interest (eg, the
thorax). Currently, EIT systems often consist of 8 to 16
electrodes per ring of electrodes. The electrodes used for current
injection and voltage measuring are continuously changed in
specific patterns. The measured voltages are used in the
reconstruction of the image, which is an ill-posed nonlinear
inverse problem. Two types of images can be derived from EIT
measurements: a difference or an absolute image. Difference
images are created by measuring the same volume multiple
times and then subtracting and dividing by a reference dataset.
The reference dataset can be generated with the same
measurement setting, but the data are collected at a different
moment in time (time-difference EIT) or with a different
frequency of the injected current (frequency-difference EIT).
The reconstruction will lead to the difference image, which may
be relevant during respiration monitoring. The absolute image
shows the absolute properties of the area of interest. Several
groups have developed solutions for image reconstruction,
including the freely available software EIDORS [36,37].
Initially, image reconstruction was performed in a 2D manner
using a single ring of electrodes. Subsequent methods have been
developed for 2.5D or 3D reconstruction using multiple rings
of electrodes covering a volume [38].

Application Areas of Bioimpedance
Monitoring for Chronic Conditions

Applications of Focus
Owing to its versatile nature, wearable bioimpedance can be
used for a wide range of clinical and lifestyle applications, which
include body composition monitoring, monitoring of
hemodynamic parameters, respiratory monitoring, and imaging.
Here, we focus on the use of wearable bioimpedance monitoring
in chronic diseases. This section is divided in three parts:
monitoring dynamic parameters, slowly evolving parameters,
and imaging.

Dynamic Parameters in the Chest

Overview
Dynamic changes in thoracic impedance consist of two parts:
a respiratory and a hemodynamic or cardiac contribution.
Impedance pneumography monitors the changes induced by
respiration in the impedance of the thorax, whereas impedance
cardiography measures the changes due to the cardiac
contribution. In measuring either component, the other is
typically regarded as a disturbance of the signal.

Impedance Pneumography
Currently, respiratory status is assessed in clinical practice in
patients with chronic obstructive pulmonary disease (COPD),
asthma, and sleep apnea. In patients with COPD and asthma, a
spirometer is used to assess respiratory function. Spirometer
tests require a face mask or mouthpiece and trained medical
personnel to perform the test well. These prerequisites make
the test obtrusive and unsuitable for ambulatory monitoring.
Similarly, sleep apnea is diagnosed in a sleep lab using
polysomnography with many cables, requiring a complex set
up. For these reasons, less invasive methods are being
investigated that can provide continuous and ambulatory
monitoring in a comfortable and unobtrusive manner. Impedance
pneumography is being studied as one such a technology.

During the impedance pneumography measurement, electrodes
are placed on the chest to obtain the thoracic bioimpedance
(Figure 3). These electrodes can be attached with lead wires to
a device or integrated in a patch. The dynamic component of
the measured signal relates to the varying electrical properties
in the chest, encompassing breathing. In the measurement, an
aggregate signal is measured of the underlying tissue. This
volume comprises not only the lungs but also other tissues of
the thorax, such as the muscles and the fat. To determine the
applicability of the signal, it is necessary to understand the
different contributions to, or the origin of, the signal. Some
studies have investigated the contributions of the underlying
tissue to the measured bioimpedance signal using either animal
models or computer simulations [39-43]. Animal studies from
the 1960s and 1970s focused on the contributions of chest
movement and respiratory volume to the bioimpedance signal
[42,43]. Subsequent studies in human subjects showed that
during normal breathing, the relation between volume and
bioimpedance appeared to be linear [44-48]. However, during
abnormal breathing, the relation between volume and
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bioimpedance appeared nonlinear, indicating the contribution
of additional components to the signal. These contributions can
be seen during sleep apnea events monitored with bioimpedance
[49]. Recently, Blanco-Almazan et al [50] showed that both
respiratory volume and chest movement contribute to the

bioimpedance signal during normal breathing and during
inspiratory loading conditions, with the contribution of chest
movement becoming more important when muscle activity was
the highest.

Figure 3. Example of a wearable device (imec the Netherlands, Eindhoven, the Netherlands). (B) Example impedance pneumography data. The figure
shows the similarity between bioimpedance and spirometer data for an increasing respiratory volume protocol.

Another topic of research has been the effect of electrode
positioning, which has been studied using computational
modeling and data collection in volunteers. The electrode
positioning influences the volume that is being investigated.
Finite element models of (part of) the thorax have been
constructed, in which the electrode position was varied to
optimize the measurement location for monitoring the lung area
[39-41]. Using this approach, positions were compared in terms
of sensitivity (percentage contribution of the lung tissue to the
measured bioimpedance signal) and specificity (the amplitude
of the lung contribution). The simulations showed that the
electrode locations around the middle of the thorax reflect
impedance changes in the lung region. Data were collected on
human volunteers using different electrode configurations and
were compared against those obtained using a reference device
(eg, a spirometer) [45,46,48,51]. This comparison also showed
that the locations around the middle of the thorax were able to
accurately capture respiration.

Several studies have assessed the applicability of impedance
pneumography for respiration monitoring in chronic conditions.
In children, nocturnal impedance pneumography measurements
can be used to monitor the increased tidal flow variability as
associated with childhood asthma risk [52]. In addition, it was
shown that impedance pneumography and direct
pneumotachograph measurements had a similar relation with
lung function in infants with respiratory symptoms. However,
in infants with clinically observed airway obstruction, the
measured tidal breathing flow parameters differed between
impedance pneumography and direct pneumotachograph [15],

which further support that factors other than volume contribute
to the bioimpedance measurement.

In adults, impedance pneumography has been applied in patients
with COPD and sleep apnea. In patients with COPD,
bioimpedance measurements were combined with
electromyography and mechanomyography measurements
assessing muscle activity [53], showing the applicability of
noninvasive multimodal respiratory assessment. Regarding
sleep apnea, recent work evaluated a shirt with ECG and
bioimpedance for monitoring in healthy volunteers [54]. In
addition, in patients with sleep apnea, a wearable bioimpedance
device was able to detect apnea events, which opens
opportunities for unobtrusive screening, diagnostics, and
treatment monitoring in sleep apnea [49]. Finally, in the hospital
setting, impedance pneumography is currently available for
respiratory monitoring, although typically in a nonwearable
form. An example is the ExSpiron Minute Ventilation System
(Respiratory Motion Inc), which has been tested in the
postanesthesia care unit and the intensive care unit [55,56].

Impedance Cardiography
Cardiac output is related to how much blood the heart delivers
to the body, which is measured to assess the status of the heart,
relevant in many chronic conditions such as heart failure.
Cardiac output can be assessed with several technologies such
as Doppler echocardiography and intracardiac catherization.
Echocardiography is time-consuming and requires trained
medical personnel, whereas catherization is invasive. Impedance
cardiography has been proposed as a noninvasive and potentially
ambulatory method to assess hemodynamic parameters such as
cardiac output. The possibility to measure hemodynamic
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parameters noninvasively with impedance has been studied for
a long time [14]. In general, 4 electrodes are used for the
impedance measurement to assess changes in thoracic
bioimpedance related to the cardiac cycle. The ECG signal is
collected simultaneously to time the cardiac events. Different
electrode configurations have been proposed to measure the
impedance cardiography signal. Initially, four band electrodes
were used, with two electrodes positioned around the neck and

two around the abdomen. These band electrodes were
subsequently replaced by round electrodes [57] (see Figure 4).
Alternative electrode configurations have been evaluated. For
example, one configuration positions one electrode on the
forehead, the lowest one above the leading edge of the heart,
and the remaining two in between [58]. Desktop devices are
typically used for these measurements, but some studies have
also investigated wearable devices [59-62].

Figure 4. Left: Electrode configurations for impedance cardiography (ICG) measurement, using either red electrodes or yellow electrodes, with current
injection electrodes (I) and voltage electrodes (V). Right: electrocardiogram (ECG) and ICG signals showing characteristic morphology with the B
point as an example.

The measured impedance signal (Z) varies with the contraction
of the heart. In the derivative of the signal (dZ/dt), different
points have been shown to correspond with different parts of
the cardiac cycle, such as the B-point with the opening of the
aortic valve. The measured impedance and its derivative are
used in formulas for an approximation of stroke volume. The
first such model was presented by Kubicek, which was modified
in subsequent studies [63]. All models to derive stroke volume
use assumptions such as those related to the shape of the thorax
(cylinder or truncated cone), current path, blood resistance, and
origin of the pulsatile impedance changes. To fully understand
the signal and its applicability for clinical monitoring, the origin
of the signal needs to first be understood; however, the origin
of this signal seems to be complicated and has led to controversy
in the field. Recently, de Sitter et al [64] compared different
mathematical models that aim to understand the underlying
physiological signals that contribute to the change in
bioimpedance used in impedance cardiography in a systematic
review. This comparison showed no consensus in the origin of
the change in the bioimpedance signal, highlighting the
complexity and the controversy around this topic.

At the same time, many studies have tried to validate this
technique on different clinical use cases. A portion of these
studies showed good results in the comparison of impedance
cardiography with standard clinical methods such as the invasive
thermodilution pulmonary artery catheter [65-67], whereas other
studies showed insufficient agreement between the
measurements [68-70]. In addition to validation studies, the
potential role of impedance cardiography in disease diagnosis
and disease management has been evaluated. For disease
management, not only absolute values are of interest but also

relative changes in stroke volume or cardiac output. For
example, in stable heart failure patients, regular impedance
cardiography measurements have been shown to have predictive
value for near-term recurrent decompensation [71].

Stroke volume and cardiac output monitoring are of substantial
interest for many diseases. The use of impedance cardiography
to assess these parameters has gained interest because of its
advantages of noninvasiveness, relatively low cost, and relative
simplicity. However, there is still no consensus on the origin
of the signal. In addition, the results for absolute monitoring
are inconsistent. Many studies have assessed validation in
different use cases and the applicability for different diseases,
with mixed results. Therefore, further work is needed to fully
understand the signal and its applicability for chronic disease.

Slowly Evolving Parameters
Besides monitoring dynamic parameters, bioimpedance is used
for monitoring more slowly evolving parameters such as body
composition and fluid status. Measurements related to body
composition are reflected by the baseline component of the
bioimpedance measurement. These measurements are often
performed with benchtop devices measuring total body
impedance from the hand to foot, using models (eg, the
Cole-Cole model as explained in the Principle of Bioimpedance
section above) to convert the impedance values into body
composition parameters. In the domain of chronic diseases,
these measurements have been used to assess malnutrition or
body fluids, such as overhydration, dehydration, or local fluid
buildup (eg, pulmonary edema). Early attempts to evaluate
pulmonary edema in patients with bioimpedance originate from
the 1970s [72]. More recently, wearable bioimpedance has been
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used for fluid monitoring such as in patients with congestive
heart failure and those with ESKD undergoing hemodialysis
treatment [16,73].

Hemodialysis is a life-saving treatment for patients with ESKD.
However, in these patients, mortality levels are high and many
patients suffer from cardiovascular complications. The nature
of hemodialysis treatment (three 4-hour treatments per week)
results in large fluid changes in the patient. Fluid builds up
during the interdialytic period and is rapidly extracted during
the 4-hour hemodialysis treatment. In patients with ESKD, fluid
overload in the interdialytic period is associated with a higher
cardiovascular risk, disease progression, and a rise in
cardiovascular morbidity and overall mortality [74-76].
Maintaining optimal fluid balance in the body of a patient with
ESKD is still a challenge. In current clinical practice, treatment
is based on the dry weight of a patient, but objective dry weight
assessment is currently lacking in clinical routine practice.
Bioimpedance monitoring could play a role in maintaining fluid
balance in patients with ESKD and has been associated with
improvement of cardiovascular parameters [12,77,78] in studies
using benchtop devices. Being able to unobtrusively and
continuously monitor the fluid status could provide even larger
value. Studies have shown that local wearable thoracic
bioimpedance measurements can be used to accurately track
fluid and weight loss during hemodialysis [16,79], but future
work is needed, including exploring the potential for monitoring
at home.

At the same time, studies have focused on wearable
bioimpedance fluid monitoring in patients with congestive heart
failure. In these patients, the pumping capability of the heart is
reduced, and fluid can build up in the lungs or the extremities.
Bioimpedance monitoring has also been used to assess
pulmonary congestion. Several studies have shown the benefit
of daily and continuous monitoring in patients with congestive
heart failure in the form of portable benchtop devices [80,81],
wearables [73,82-84], or even implantables [85,86]. Wearable
bioimpedance monitoring predicted decompensation and
hospitalizations [8,87]. Moreover, wearable bioimpedance
monitoring was shown to be a useful marker for 30-day
mortality and rehospitalization after diuretic treatment during
hospitalization in patients with congestive heart failure treated
with diuretic therapy [84].

Bioimpedance measurements, in combination with empirical
models, have also been frequently used to study body
composition in terms of muscle mass and body fat content, and
are available in clinical settings through devices such as Maltron
BodyScan 920-II (Maltron International Ltd) and Fresenius
Body Composition Monitor (Fresenius Medical Care Pte Ltd).
These measurements have also been used to assess malnutrition
[88]. However, since slowly evolving processes underly these
applications, they have mainly been studied with benchtop
devices.

Imaging Using EIT
Medical imaging enables gaining a view of the inside of the
body. There are many imaging modalities currently available,
such as MRI, radiography, ultrasound, and functional
near-infrared spectroscopy. Some of these modalities use

radiation (such as radiography), expensive equipment (such as
MRI), or trained personnel. Therefore, some of these techniques
only allow for obtaining a snapshot of the status of the patient.
Imaging using EIT has the advantage of being continuous, low
cost, low power, and with wearable potential, but the spatial
resolution of the image of this modality is relatively low in
comparison with that of other imaging modalities such as CT
and MRI. Currently, the main use of EIT is during mechanical
ventilation, which is used to monitor the ventilation of both
lungs to protect the patient from lung damage caused by the
ventilator. With respect to chronic conditions, the use of EIT
in other application areas shows potential but requires more
research. In patients with pulmonary conditions such as COPD,
EIT could provide the spatial distribution of the pulmonary
function to enable tracking regional lung function over time or
after an intervention such as respiratory muscle training or the
use of a bronchodilator [89]. It was suggested that monitoring
spatial differences could improve patient phenotyping,
monitoring disease and treatment effects, and predicting clinical
outcomes [37,89]. EIT could also bring value to other chronic
diseases such as epileptic monitoring and stroke. Being able to
continuously monitor brain activity could help in locating the
regions of the brain involved in epileptic seizures [90]. Hand
gesture recognition could aid in physical disabilities such as
those present after stroke [13].

One of the potential benefits of EIT is that it could be wearable.
Currently, there are no wearable EIT systems on the market,
but several research prototypes have been developed [13,91-94].
These wearable systems have been shown to capture respiration
[92,93]. Another system combines EIT with multilead ECG in
a vest, thereby opening up the possibility to measure respiration
and impedance changes from the cardiac region [91]. In a very
different application area, Zhang et al [13] used EIT for hand
gesture monitoring.

To date, besides during mechanical ventilation, EIT has mainly
been applied in controlled laboratory settings. Before wearable
EIT can be applied for the monitoring of chronic conditions,
further steps in development and validation need to be taken,
such as in handling the imaging during daily living conditions.
Finally, the added clinical value needs to be demonstrated for
the different application areas before the technology will be
widely adopted.

Challenges and Outlook

Hurdles for Broad Application
Electrical principles have long been used in the medical field,
and bioimpedance measurements have been explored for many
decades. Initially, these measurements were performed with
large benchtop devices, but more recently have been assessed
in wearable form with consideration of many different
applications, ranging from respiratory volume to cardiac output
and from body composition monitoring to imaging. The
relatively low cost of the system and its noninvasiveness make
bioimpedance an interesting sensor technology for wearable
monitoring of chronic conditions. However, there are still
several hurdles to be overcome before bioimpedance will be
widely adopted in clinical practice. Some of these hurdles apply
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to wearable bioimpedance, while others do not solely apply to
bioimpedance monitoring but should be considered in the
broader context of all wearable monitoring techniques. Here,
we will discuss both aspects.

Challenges and Limitations of Wearable Bioimpedance
As indicated in the preceding sections, wearable bioimpedance
is a promising technique owing to its advantages of low cost,
wearability potential, and noninvasiveness. However, like all
technologies, wearable bioimpedance has some disadvantages.
First, bioimpedance measurements, as is the case for many
wearable measurements, are prone to motion artifacts. Collecting
data in a real-world environment is prone to activities leading
to these artifacts. Corrupted data can lead to misinterpretation
of the state of a patient; therefore, solutions to either prevent or
remove these artifacts are crucial. To prevent motion artifacts,
one might ask the subject to sit still during a measurement to
capture slowly evolving parameters, which may be performed
once a day for approximately 1 minute, such as for measuring
body composition. Alternatively, measurements could be
triggered or filtered at certain postures or activity levels [95,96].
However, this is not suitable for ambulatory monitoring of
dynamic parameters such as respiration monitoring, when one
is interested in respiration throughout the day. The two main
strategies to handle corrupted data in impedance pneumography
are so-called “quality indicators” that exclude corrupted data
or to try to salvage corrupted data by using motion artifact
reduction techniques. Motion artifact reduction is often applied
to ECG and photoplethysmography signals [97-100], but to a
lesser extend to impedance pneumography signals. For example,
Ansari et al [101] compared different methods for different
types of movement. Regarding the so-called quality indicators,
Charlton et al [102] reviewed the methods of obtaining quality
indicators for respiratory signals and concluded that further
research is needed to design powerful quality indicator
algorithms for different applications [102]. Recently, they also
published a quality assessment method for impedance
pneumography signals [103]. Similar to impedance
pneumography, artifact handling is relevant for impedance
cardiography measurements, including both absolute and relative
measures. Artifacts in the impedance cardiography signal make
it more difficult to detect the fiducials such as the B-point in
the signal, resulting in less accurate estimates of stroke volume
and cardiac output. Three approaches for artifact handling have
been used in the analysis of impedance cardiography signals:
artifact detection [104], artifact reduction [105-107], and posthoc
outlier removal from estimated parameters [108].

As mentioned above, the electrode positioning influences the
measured volume. As such, changing the electrode position
slightly will lead to a change in the measured volume and thus
changes the measured impedance value. This is relevant when
looking at small changes over measurements that require exact
electrode repositioning, but is not important when looking at
derived metrics that are not related to the signal amplitude such
as the respiratory rate. To circumvent the effect of electrode
positioning on the absolute measured value, algorithmic
solutions should be developed to correct for these differences
or electrode position, and independent metrics should be
developed.

In addition, measurements that do not require device or electrode
reattachment are subject to change. The condition of the skin
can change over time as can the adhesive capability of the
electrodes. Adhesive materials for electrodes are optimized for
their maximal comfort and endurance.

Finally, bioimpedance is affected by body composition.
Depending on the body composition, the current path through
the body will differ. In the case of obesity, the current would
need to penetrate a larger layer of fat before reaching the
underlying tissues, which will affect the measured impedance
values. Since there are many different body shapes,
personalization of the measurements could circumvent this
issue.

General Challenges for Wearables and Wearable
Bioimpedance-Based Devices
Although there are some wearable devices on the market for
clinical use, such as Holter devices and cardiac rhythm
monitoring patches, most wearables have not yet been approved
for medical use. Their use has mainly been studied in the
research domain thus far [17]. Tests in a controlled or laboratory
environment may not represent use in the real world, and
validation in resting conditions may not represent (daily life)
motion situations [18]. Therefore, there is a need to collect
real-word evidence. There is also variability between devices
[17], indicating the need for standardization of evaluation of
wearables in the assessment of reliability, sensitivity, and
validity of the data [18], further signaling the necessity to collect
real-word evidence.

Dinh-Le et al [22] reviewed the integration of wearable
technology from electronic health records. One associated
challenge with this approach is related to the large streams of
data that must comply with all privacy and security standards.
In addition, patients fear misuse of their data, potentially leading
to discrimination and changes in coverage by insurance
companies. Therefore, patients should be well informed on the
data collection and handling procedures. In addition, proprietary
and closed systems pose difficulties with regard to system
interoperability and connectivity.

The data streams generated by wearable devices that are often
worn 24/7 present another challenge. The current health systems
are not prepared for handling such high volumes of rapidly
accumulating data [109]. Besides data storage, the vast amount
of data is another major challenge, as the data also need to be
analyzed. Clinical decision support systems have been
implemented that generate false alarms in some cases such as
drug interactions or elevated blood pressure. Reliability of these
alarms is crucial, since health care providers could experience
alarm fatigue due to the large number of false alarms [110,111].
AI is believed to have great potential in the field of clinical data
analytics [112]. Regarding bioimpedance monitoring, AI has
been shown to be able to detect sleep apnea events [49] and to
estimate dry weight in pediatric patients on chronic hemodialysis
[113]. However, these algorithms should not stop at
classification but should further lead to actionable insights for
the health care provider or the patient. Integration of these
algorithms on the devices could help in achieving the ultimate
goal of developing closed-loop care-providing wearables [112].
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As indicated above, the use of many wearables for clinical
applications is currently limited to the research domain. It is
widely acknowledged that for further acceptance and integration
into clinical practice, the proof of medical benefit of wearables
through dedicated medical trials is needed [9,18,22,23,112].
Additionally, health care cost should be evaluated for the long
and the short term. Wearables are often proposed as a solution
against rising health care costs [9,114]. However, there are also
examples that show an increase of health care resource
utilization with wearables [20].

Interestingly, the view of patients has been less well studied
from these aspects. Tran et al [19] explored the perspectives of
patients on wearable devices and AI in health care in France.
Their study showed that half of the patients felt that digital
technology and AI techniques are an important opportunity.
However, the study also showed that the patients are not ready
for fully automated care. One out of three patients refused one
of the devices or AI systems, and patients highlighted the risks
regarding privacy and data misusage, the absence of a human
interaction and relations, and uncertainty of reliability.

The role of the patient has also been highlighted in studies using
technology showing low compliance and large dropouts
[115,116]. Nevertheless, other studies have shown good
compliance [117]. Interestingly, studies have indicated that
patients can experience monitoring as obtrusive and undesired,

and that it can even lead to higher depression scores [118].
Several studies have focused on increasing the comfort level
and decreasing the obtrusiveness of wearables to circumvent
these problems, looking at the possibility to integrate
bioimpedance measurements in clothing [54], the use of flexible
and stretchable materials [119], and to increase battery life [82].
In some use cases, “nearables” could be used as an alternative
to wearables, leading to invisible and effortless methods. One
such example is the integration of bioimpedance measurements
in chairs or beds via capacitively coupled bioimpedance [120].

Summary and Prospects

Although bioimpedance monitoring is not a new concept,
wearable bioimpedance monitoring for chronic conditions is a
relatively new field. In this viewpoint, we have shown the
potential of bioimpedance monitoring in application areas such
as respiration, cardiac, body composition, and fluid monitoring,
as well as the remaining challenges that need to be addressed
before it can be widely adopted in the medical field.
Nevertheless, wearable bioimpedance monitoring has large
potential to change monitoring and disease management for
patients suffering from chronic diseases such as respiratory,
cardiac, or kidney disease by enabling low-cost and low-power
home-monitoring solutions. These developments can further
have an impact on health care costs and quality of life of patients
with chronic diseases.

 

Conflicts of Interest
None declared.

References
1. Yach D, Hawkes C, Gould CL, Hofman KJ. The global burden of chronic diseases: overcoming impediments to prevention

and control. JAMA 2004 Jun 02;291(21):2616-2622. [doi: 10.1001/jama.291.21.2616] [Medline: 15173153]
2. Third UN high-level meeting on noncommunicable diseases. 2018 Sep 27. URL: https://www.un.org/pga/73/event/

prevention-of-non-communicable-diseases/ [accessed 2020-01-03]
3. Milani RV, Lavie CJ. Health care 2020: reengineering health care delivery to combat chronic disease. Am J Med 2015

Apr;128(4):337-343. [doi: 10.1016/j.amjmed.2014.10.047] [Medline: 25460529]
4. About chronic diseases. Centers for Disease Control and Prevention. URL: https://www.cdc.gov/chronicdisease/about/

index.htm [accessed 2020-07-21]
5. Multiple Chronic Conditions Chartbook. Agency for Healthcare Research and Quality. URL: https://www.ahrq.gov/sites/

default/files/wysiwyg/professionals/prevention-chronic-care/decision/mcc/mccchartbook.pdf [accessed 2020-01-03]
6. Finkelstein J, Jeong IC. Machine learning approaches to personalize early prediction of asthma exacerbations. Ann N Y

Acad Sci 2017 Jan;1387(1):153-165 [FREE Full text] [doi: 10.1111/nyas.13218] [Medline: 27627195]
7. Milani RV, Bober RM, Lavie CJ. The role of technology in chronic disease care. Prog Cardiovasc Dis 2016;58(6):579-583.

[doi: 10.1016/j.pcad.2016.01.001] [Medline: 26772623]
8. Cuba Gyllensten I, Bonomi AG, Goode KM, Reiter H, Habetha J, Amft O, et al. Early indication of decompensated heart

failure in patients on home-telemonitoring: a comparison of prediction algorithms based on daily weight and noninvasive
transthoracic bio-impedance. JMIR Med Inform 2016 Feb 18;4(1):e3 [FREE Full text] [doi: 10.2196/medinform.4842]
[Medline: 26892844]

9. Joshi M, Ashrafian H, Aufegger L, Khan S, Arora S, Cooke G, et al. Wearable sensors to improve detection of patient
deterioration. Expert Rev Med Devices 2019 Feb;16(2):145-154. [doi: 10.1080/17434440.2019.1563480] [Medline:
30580650]

10. Varon C, Caicedo A, Testelmans D, Buyse B, Van Huffel S. A novel algorithm for the automatic detection of sleep apnea
from single-lead ECG. IEEE Trans Biomed Eng 2015 Sep;62(9):2269-2278. [doi: 10.1109/TBME.2015.2422378] [Medline:
25879836]

JMIR Biomed Eng 2021 | vol. 6 | iss. 2 | e22911 | p.11https://biomedeng.jmir.org/2021/2/e22911
(page number not for citation purposes)

Groenendaal et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://dx.doi.org/10.1001/jama.291.21.2616
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15173153&dopt=Abstract
https://www.un.org/pga/73/event/prevention-of-non-communicable-diseases/
https://www.un.org/pga/73/event/prevention-of-non-communicable-diseases/
http://dx.doi.org/10.1016/j.amjmed.2014.10.047
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25460529&dopt=Abstract
https://www.cdc.gov/chronicdisease/about/index.htm
https://www.cdc.gov/chronicdisease/about/index.htm
https://www.ahrq.gov/sites/default/files/wysiwyg/professionals/prevention-chronic-care/decision/mcc/mccchartbook.pdf
https://www.ahrq.gov/sites/default/files/wysiwyg/professionals/prevention-chronic-care/decision/mcc/mccchartbook.pdf
http://europepmc.org/abstract/MED/27627195
http://dx.doi.org/10.1111/nyas.13218
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27627195&dopt=Abstract
http://dx.doi.org/10.1016/j.pcad.2016.01.001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26772623&dopt=Abstract
https://medinform.jmir.org/2016/1/e3/
http://dx.doi.org/10.2196/medinform.4842
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26892844&dopt=Abstract
http://dx.doi.org/10.1080/17434440.2019.1563480
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30580650&dopt=Abstract
http://dx.doi.org/10.1109/TBME.2015.2422378
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25879836&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


11. Das A, Pradhapan P, Groenendaal W, Adiraju P, Rajan RT, Catthoor F, et al. Unsupervised heart-rate estimation in wearables
with Liquid states and a probabilistic readout. Neural Netw 2018 Mar;99:134-147. [doi: 10.1016/j.neunet.2017.12.015]
[Medline: 29414535]

12. Hur E, Usta M, Toz H, Asci G, Wabel P, Kahvecioglu S, et al. Effect of fluid management guided by bioimpedance
spectroscopy on cardiovascular parameters in hemodialysis patients: a randomized controlled trial. Am J Kidney Dis 2013
Jun;61(6):957-965. [doi: 10.1053/j.ajkd.2012.12.017] [Medline: 23415416]

13. Zhang Y, Harrison C. Tomo: wearable, low-cost electrical impedance tomography for hand gesture recognition. 2015
Presented at: UIST 2015. 28th Annual ACM Symposium on User Interface Software & Technology; November 2015;
Charlotte, NC URL: https://dl.acm.org/doi/abs/10.1145/2807442.2807480 [doi: 10.1145/2815585]

14. Kubicek WG, Patterson RP, Witsoe DA. Impedance cardiography as a noninvasive method of monitoring cardiac function
and other parameters of the cardiovascular system. Ann NY Acad Sci 1970 Jul;170(2 International):724-732. [doi:
10.1111/j.1749-6632.1970.tb17735.x]

15. Malmberg LP, Seppä VP, Kotaniemi-Syrjänen A, Malmström K, Kajosaari M, Pelkonen AS, et al. Measurement of tidal
breathing flows in infants using impedance pneumography. Eur Respir J 2017 Feb 19;49(2):1600926 [FREE Full text] [doi:
10.1183/13993003.00926-2016] [Medline: 28182566]

16. Anand I, Doan A, Ma K, Toth J, Geyen K, Otterness S, et al. Monitoring changes in fluid status with a wireless multisensor
monitor: results from the Fluid Removal During Adherent Renal Monitoring (FARM) study. Congest Heart Fail
2012;18(1):32-36. [doi: 10.1111/j.1751-7133.2011.00271.x] [Medline: 22277175]

17. Piwek L, Ellis DA, Andrews S, Joinson A. The rise of consumer health wearables: promises and barriers. PLoS Med 2016
Feb;13(2):e1001953 [FREE Full text] [doi: 10.1371/journal.pmed.1001953] [Medline: 26836780]

18. Düking P, Fuss FK, Holmberg H, Sperlich B. Recommendations for assessment of the reliability, sensitivity, and validity
of data provided by wearable sensors designed for monitoring physical activity. JMIR Mhealth Uhealth 2018 Apr 30;6(4):e102
[FREE Full text] [doi: 10.2196/mhealth.9341] [Medline: 29712629]

19. Tran V, Riveros C, Ravaud P. Patients' views of wearable devices and AI in healthcare: findings from the ComPaRe e-cohort.
NPJ Digit Med 2019 Jun 14;2(1):53. [doi: 10.1038/s41746-019-0132-y] [Medline: 31304399]

20. Steinhubl SR, Waalen J, Edwards AM, Ariniello LM, Mehta RR, Ebner GS, et al. Effect of a home-based wearable continuous
ECG monitoring patch on detection of undiagnosed atrial fibrillation: The mSToPS randomized clinical trial. JAMA 2018
Jul 10;320(2):146-155 [FREE Full text] [doi: 10.1001/jama.2018.8102] [Medline: 29998336]

21. Phillips SM, Cadmus-Bertram L, Rosenberg D, Buman MP, Lynch BM. Wearable technology and physical activity in
chronic disease: opportunities and challenges. Am J Prev Med 2018 Jan;54(1):144-150 [FREE Full text] [doi:
10.1016/j.amepre.2017.08.015] [Medline: 29122356]

22. Dinh-Le C, Chuang R, Chokshi S, Mann D. Wearable health technology and electronic health record integration: scoping
review and future directions. JMIR Mhealth Uhealth 2019 Sep 11;7(9):e12861 [FREE Full text] [doi: 10.2196/12861]
[Medline: 31512582]

23. Bianchi MT. Sleep devices: wearables and nearables, informational and interventional, consumer and clinical. Metabolism
2018 Jul;84:99-108. [doi: 10.1016/j.metabol.2017.10.008] [Medline: 29080814]

24. Lukaski HC. Evolution of bioimpedance: a circuitous journey from estimation of physiological function to assessment of
body composition and a return to clinical research. Eur J Clin Nutr 2013 Jan 9;67(Suppl 1):S2-S9. [doi:
10.1038/ejcn.2012.149] [Medline: 23299867]

25. Grimnes S, Martinsen O. Bioimpedance and Bioelectricity Basics - 2nd Edition. Cambridge, MA: Academic Press; Mar
03, 2008.

26. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gómez JM, Composition of the ESPEN Working Group.
Bioelectrical impedance analysis--part I: review of principles and methods. Clin Nutr 2004 Oct;23(5):1226-1243. [doi:
10.1016/j.clnu.2004.06.004] [Medline: 15380917]

27. Gabriel S, Lau RW, Gabriel C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10
Hz to 20 GHz. Phys Med Biol 1996 Nov 01;41(11):2251-2269. [doi: 10.1088/0031-9155/41/11/002] [Medline: 8938025]

28. Piccoli A, Rossi B, Pillon L, Bucciante G. A new method for monitoring body fluid variation by bioimpedance analysis:
the RXc graph. Kidney Int 1994 Aug;46(2):534-539 [FREE Full text] [doi: 10.1038/ki.1994.305] [Medline: 7967368]

29. Khalil S, Mohktar M, Ibrahim F. The theory and fundamentals of bioimpedance analysis in clinical status monitoring and
diagnosis of diseases. Sensors (Basel) 2014 Jun 19;14(6):10895-10928 [FREE Full text] [doi: 10.3390/s140610895]
[Medline: 24949644]

30. Pethig R. Dielectric properties of body tissues. Clin Phys Physiol Meas 1987 Feb 14;8(Suppl 4A):5-12. [doi:
10.1088/0143-0815/8/4a/002] [Medline: 3568571]

31. Jonscher AK. Dielectric relaxation in solids. J Phys D Appl Phys 1999 Jan 01;32(14):R57-R70. [doi:
10.1088/0022-3727/32/14/201]

32. Fricke H, Morse S. The electric resistance and capacity of blood for frequencies between 800 and 4(1/2) million cycles. J
Gen Physiol 1925 Nov 20;9(2):153-167 [FREE Full text] [doi: 10.1085/jgp.9.2.153] [Medline: 19872239]

33. Cole KS, Cole RH. Dispersion and absorption in dielectrics I. Alternating current characteristics. J Chem Physics 1941
Apr;9(4):341-351. [doi: 10.1063/1.1750906]

JMIR Biomed Eng 2021 | vol. 6 | iss. 2 | e22911 | p.12https://biomedeng.jmir.org/2021/2/e22911
(page number not for citation purposes)

Groenendaal et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://dx.doi.org/10.1016/j.neunet.2017.12.015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29414535&dopt=Abstract
http://dx.doi.org/10.1053/j.ajkd.2012.12.017
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23415416&dopt=Abstract
https://dl.acm.org/doi/abs/10.1145/2807442.2807480
http://dx.doi.org/10.1145/2815585
http://dx.doi.org/10.1111/j.1749-6632.1970.tb17735.x
http://erj.ersjournals.com/cgi/pmidlookup?view=long&pmid=28182566
http://dx.doi.org/10.1183/13993003.00926-2016
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28182566&dopt=Abstract
http://dx.doi.org/10.1111/j.1751-7133.2011.00271.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22277175&dopt=Abstract
https://dx.plos.org/10.1371/journal.pmed.1001953
http://dx.doi.org/10.1371/journal.pmed.1001953
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26836780&dopt=Abstract
https://mhealth.jmir.org/2018/4/e102/
http://dx.doi.org/10.2196/mhealth.9341
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29712629&dopt=Abstract
http://dx.doi.org/10.1038/s41746-019-0132-y
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31304399&dopt=Abstract
http://europepmc.org/abstract/MED/29998336
http://dx.doi.org/10.1001/jama.2018.8102
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29998336&dopt=Abstract
http://europepmc.org/abstract/MED/29122356
http://dx.doi.org/10.1016/j.amepre.2017.08.015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29122356&dopt=Abstract
https://mhealth.jmir.org/2019/9/e12861/
http://dx.doi.org/10.2196/12861
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31512582&dopt=Abstract
http://dx.doi.org/10.1016/j.metabol.2017.10.008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29080814&dopt=Abstract
http://dx.doi.org/10.1038/ejcn.2012.149
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23299867&dopt=Abstract
http://dx.doi.org/10.1016/j.clnu.2004.06.004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15380917&dopt=Abstract
http://dx.doi.org/10.1088/0031-9155/41/11/002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8938025&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S0085-2538(15)58586-4
http://dx.doi.org/10.1038/ki.1994.305
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=7967368&dopt=Abstract
https://www.mdpi.com/resolver?pii=s140610895
http://dx.doi.org/10.3390/s140610895
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24949644&dopt=Abstract
http://dx.doi.org/10.1088/0143-0815/8/4a/002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=3568571&dopt=Abstract
http://dx.doi.org/10.1088/0022-3727/32/14/201
https://rupress.org/jgp/article-lookup/doi/10.1085/jgp.9.2.153
http://dx.doi.org/10.1085/jgp.9.2.153
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19872239&dopt=Abstract
http://dx.doi.org/10.1063/1.1750906
http://www.w3.org/Style/XSL
http://www.renderx.com/


34. Henderson RP, Webster JG. An impedance camera for spatially specific measurements of the thorax. IEEE Trans Biomed
Eng 1978 May;BME-25(3):250-254. [doi: 10.1109/tbme.1978.326329]

35. Adler A, Boyle A. Electrical impedance tomography: tissue properties to image measures. IEEE Trans Biomed Eng 2017
Nov;64(11):2494-2504. [doi: 10.1109/TBME.2017.2728323] [Medline: 28715324]

36. Adler A, Lionheart WRB. Uses and abuses of EIDORS: an extensible software base for EIT. Physiol Meas 2006
May;27(5):S25-S42. [doi: 10.1088/0967-3334/27/5/S03] [Medline: 16636416]

37. Frerichs I, Amato MBP, van Kaam AH, Tingay DG, Zhao Z, Grychtol B, TREND study group. Chest electrical impedance
tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the
TRanslational EIT developmeNt stuDy group. Thorax 2017 Jan 05;72(1):83-93 [FREE Full text] [doi:
10.1136/thoraxjnl-2016-208357] [Medline: 27596161]

38. Metherall P, Barber DC, Smallwood RH, Brown BH. Three-dimensional electrical impedance tomography. Nature 1996
Apr 11;380(6574):509-512. [doi: 10.1038/380509a0] [Medline: 8606768]

39. Yang F, Patterson RP. A simulation study on the effect of thoracic conductivity inhomogeneities on sensitivity distributions.
Ann Biomed Eng 2008 May 26;36(5):762-768. [doi: 10.1007/s10439-008-9469-0] [Medline: 18299989]

40. Yang F, Patterson RP. The contribution of the lungs to thoracic impedance measurements: a simulation study based on a
high resolution finite difference model. Physiol Meas 2007 Jul;28(7):S153-S161. [doi: 10.1088/0967-3334/28/7/S12]
[Medline: 17664633]

41. Beckmann L, van Riesen RD, Leonhardt S. Optimal electrode placement and frequency range selection for the detection
of lung water using Bioimpedance Spectroscopy. 2007 Presented at: 29th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society; 2007; Lyon, France p. 2685-2688. [doi: 10.1109/iembs.2007.4352882]

42. Baker LE, Geddes LA, Hoff HE, Chaput CJ. Physiological factors underlying transthoracic impedance variations in
respiration. J Appl Physiol 1966 Sep;21(5):1491-1499. [doi: 10.1152/jappl.1966.21.5.1491] [Medline: 5332246]

43. Kawakami K, Watanabe A, Ikeda K, Kanno R, Kira S. An analysis of the relationship between transthoracic impedance
variations and thoracic diameter changes. Med Biol Eng 1974 Jul;12(4):446-453. [doi: 10.1007/BF02478600] [Medline:
4465560]

44. Grenvik A, Ballou S, McGinley E, Millen JE, Cooley WL, Safar P. Impedance pneumography. Comparison between chest
impedance changes and respiratory volumines in 11 healthy volunteers. Chest 1972 Oct;62(4):439-443. [doi:
10.1378/chest.62.4.439] [Medline: 5077999]

45. Seppä V, Viik J, Naveed A, Väisänen J, Hyttinen J. Signal waveform agreement between spirometerimpedance pneumography
of six chest band electrode configurations. Berlin Heidelberg: Springer; 2009 Presented at: World Congress on Medical
Physics and Biomedical Engineering; September 7-12, 2009; Munich, Germany p. 689-692. [doi:
10.1007/978-3-642-03885-3_191]

46. Seppa V, Viik J, Hyttinen J. Assessment of pulmonary flow using impedance pneumography. IEEE Trans Biomed Eng
2010 Sep;57(9):2277-2285. [doi: 10.1109/tbme.2010.2051668]

47. Koivumäki T, Vauhkonen M, Kuikka JT, Hakulinen MA. Bioimpedance-based measurement method for simultaneous
acquisition of respiratory and cardiac gating signals. Physiol Meas 2012 Aug 20;33(8):1323-1334. [doi:
10.1088/0967-3334/33/8/1323] [Medline: 22813948]

48. Blanco-Almazan D, Groenendaal W, Catthoor F, Jane R. Wearable bioimpedance measurement for respiratory monitoring
during inspiratory loading. IEEE Access 2019;7:89487-89496. [doi: 10.1109/access.2019.2926841]

49. Van Steenkiste T, Groenendaal W, Dreesen P, Lee S, Klerkx S, de Francisco R, et al. Portable detection of apnea and
hypopnea events using bio-impedance of the chest and deep learning. IEEE J Biomed Health Inform 2020
Sep;24(9):2589-2598. [doi: 10.1109/jbhi.2020.2967872]

50. Blanco-Almazán D, Groenendaal W, Catthoor F, Jané R. Chest movement and respiratory volume both contribute to thoracic
bioimpedance during loaded breathing. Sci Rep 2019 Dec 27;9(1):20232. [doi: 10.1038/s41598-019-56588-4] [Medline:
31882841]

51. Seppä VP, Hyttinen J, Uitto M, Chrapek W, Viik J. Novel electrode configuration for highly linear impedance pneumography.
Biomed Tech (Berl) 2013 Feb;58(1):35-38. [doi: 10.1515/bmt-2012-0068] [Medline: 23348215]

52. Seppä VP, Pelkonen AS, Kotaniemi-Syrjänen A, Viik J, Mäkelä MJ, Malmberg LP. Tidal flow variability measured by
impedance pneumography relates to childhood asthma risk. Eur Respir J 2016 Jun;47(6):1687-1696 [FREE Full text] [doi:
10.1183/13993003.00989-2015] [Medline: 26989106]

53. Blanco-Almazan D, Groenendaal W, Lozano-Garcia M, Estrada-Petrocelli L, Lijnen L, Smeets C, et al. Combining
bioimpedance and myographic signals for the assessment of COPD during loaded breathing. IEEE Trans Biomed Eng 2021
Jan;68(1):298-307. [doi: 10.1109/tbme.2020.2998009]

54. Mirmohamadsadeghi L, Fallet S, Buttu A, Saugy J, Rupp T, Heinzer R, et al. Sleep apnea detection using features from
the respiration and the ecg recorded with smart-shirts. 2014 Presented at: IEEE Biomedical Circuits and Systems Conference
(BioCAS); 2014; Lausanne, Switzerland p. 61-64. [doi: 10.1109/biocas.2014.6981645]

55. Galvagno SM, Brayanov J, Corneille MG, Voscopoulos CJ, Sordo S, Ladd D, et al. Non-invasive respiratory volume
monitoring in patients with traumatic thoracic injuries. Trauma 2014 Oct 29;17(3):219-223. [doi: 10.1177/1460408614551977]

JMIR Biomed Eng 2021 | vol. 6 | iss. 2 | e22911 | p.13https://biomedeng.jmir.org/2021/2/e22911
(page number not for citation purposes)

Groenendaal et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://dx.doi.org/10.1109/tbme.1978.326329
http://dx.doi.org/10.1109/TBME.2017.2728323
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28715324&dopt=Abstract
http://dx.doi.org/10.1088/0967-3334/27/5/S03
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16636416&dopt=Abstract
http://thorax.bmj.com/lookup/pmidlookup?view=long&pmid=27596161
http://dx.doi.org/10.1136/thoraxjnl-2016-208357
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27596161&dopt=Abstract
http://dx.doi.org/10.1038/380509a0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8606768&dopt=Abstract
http://dx.doi.org/10.1007/s10439-008-9469-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18299989&dopt=Abstract
http://dx.doi.org/10.1088/0967-3334/28/7/S12
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17664633&dopt=Abstract
http://dx.doi.org/10.1109/iembs.2007.4352882
http://dx.doi.org/10.1152/jappl.1966.21.5.1491
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=5332246&dopt=Abstract
http://dx.doi.org/10.1007/BF02478600
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=4465560&dopt=Abstract
http://dx.doi.org/10.1378/chest.62.4.439
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=5077999&dopt=Abstract
http://dx.doi.org/10.1007/978-3-642-03885-3_191
http://dx.doi.org/10.1109/tbme.2010.2051668
http://dx.doi.org/10.1088/0967-3334/33/8/1323
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22813948&dopt=Abstract
http://dx.doi.org/10.1109/access.2019.2926841
http://dx.doi.org/10.1109/jbhi.2020.2967872
http://dx.doi.org/10.1038/s41598-019-56588-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31882841&dopt=Abstract
http://dx.doi.org/10.1515/bmt-2012-0068
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23348215&dopt=Abstract
http://erj.ersjournals.com/cgi/pmidlookup?view=long&pmid=26989106
http://dx.doi.org/10.1183/13993003.00989-2015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26989106&dopt=Abstract
http://dx.doi.org/10.1109/tbme.2020.2998009
http://dx.doi.org/10.1109/biocas.2014.6981645
http://dx.doi.org/10.1177/1460408614551977
http://www.w3.org/Style/XSL
http://www.renderx.com/


56. Voscopoulos C, MacNabb C, Freeman J, Galvagno S, Ladd D, George E. Continuous noninvasive respiratory volume
monitoring for the identification of patients at risk for opioid-induced respiratory depression and obstructive breathing
patterns. J Trauma Acute Care Surg 2014 Sep;77(3 Suppl 2):S208-S215. [doi: 10.1097/TA.0000000000000400] [Medline:
25159358]

57. Woltjer HH, Bogaard HJ, de Vries PMJM. The technique of impedance cardiography. Eur Heart J 1997 Sep
01;18(9):1396-1403. [doi: 10.1093/oxfordjournals.eurheartj.a015464] [Medline: 9458444]

58. Meijer J, Elbertse E, Boesveldt S, Berendse H, Verdaasdonk R. Using the initial systolic time interval to assess cardiac
autonomic nervous function in Parkinson's disease. J Electr Bioimpedance 2011;2(1):98-101. [doi: 10.5617/jeb.216]

59. Panfili G, Piccini L, Maggi L, Parini S, Andreoni G. A wearable device for continuous monitoring of heart mechanical
function based on Impedance CardioGraphy. 2006 Presented at: International Conference the IEEE Engineering Medical
and Biology Society (EMBC); August 31-September 3, 2006; New York City, NY p. 5968-5971. [doi:
10.1109/iembs.2006.260250]

60. Marquez J, Rempfler M, Seoane F, Lindecrantz K. Textrode-enabled transthoracic electrical bioimpedance measurements
towards wearable applications of impedance cardiography. J Electr Bioimpedance 2013;4(1):45-50. [doi: 10.5617/jeb.542]

61. Murali S, Rincon F, Atienza D. A wearable device for physical and emotional health monitoring. : IEEE; 2015 Presented
at: Computing in Cardiology Conference (CinC); 2015; Nice, France. [doi: 10.1109/cic.2015.7408601]

62. Yazdanian H, Mahnam A, Edrisi M, Esfahani M. Design and implementation of a portable impedance cardiography system
for noninvasive stroke volume monitoring. J Med Signals Sens 2016;6(1):47-56. [doi: 10.4103/2228-7477.175871]

63. Bernstein DP, Lemmens HJM. Stroke volume equation for impedance cardiography. Med Biol Eng Comput 2005
Aug;43(4):443-450. [doi: 10.1007/bf02344724]

64. de Sitter A, Verdaasdonk RM, Faes TJC. Do mathematical model studies settle the controversy on the origin of cardiac
synchronous trans-thoracic electrical impedance variations? A systematic review. Physiol Meas 2016 Aug 17;37(9):R88-R108.
[doi: 10.1088/0967-3334/37/9/r88]

65. Louvaris Z, Spetsioti S, Andrianopoulos V, Chynkiamis N, Habazettl H, Wagner H, et al. Cardiac output measurement
during exercise in COPD: A comparison of dye dilution and impedance cardiography. Clin Respir J 2019 Apr;13(4):222-231.
[doi: 10.1111/crj.13002] [Medline: 30724023]

66. Scherhag A, Kaden JJ, Kentschke E, Sueselbeck T, Borggrefe M. Comparison of impedance cardiography and
thermodilution-derived measurements of stroke volume and cardiac output at rest and during exercise testing. Cardiovasc
Drugs Ther 2005 Mar;19(2):141-147. [doi: 10.1007/s10557-005-1048-0] [Medline: 16025233]

67. Cotter G, Moshkovitz Y, Kaluski E, Cohen AJ, Miller H, Goor D, et al. Accurate, noninvasive continuous monitoring of
cardiac output by whole-body electrical bioimpedance. Chest 2004 Apr;125(4):1431-1440. [doi: 10.1378/chest.125.4.1431]
[Medline: 15078756]

68. McIntyre JP, Ellyett KM, Mitchell EA, Quill GM, Thompson JM, Stewart AW, Maternal Sleep in Pregnancy Study Group.
Validation of thoracic impedance cardiography by echocardiography in healthy late pregnancy. BMC Pregnancy Childbirth
2015 Mar 28;15(1):70 [FREE Full text] [doi: 10.1186/s12884-015-0504-5] [Medline: 25886289]

69. Panagiotou M, Vogiatzis I, Jayasekera G, Louvaris Z, Mackenzie A, Mcglinchey N, et al. Validation of impedance
cardiography in pulmonary arterial hypertension. Clin Physiol Funct Imaging 2018 Mar 06;38(2):254-260. [doi:
10.1111/cpf.12408] [Medline: 28168802]

70. Engoren M, Barbee D. Comparison of cardiac output determined by bioimpedance, thermodilution, and the Fick method.
Am J Crit Care 2005 Jan;14(1):40-45. [Medline: 15608107]

71. Packer M, Abraham WT, Mehra MR, Yancy CW, Lawless CE, Mitchell JE, Prospective EvaluationIdentification of Cardiac
Decompensation by ICG Test (PREDICT) Study InvestigatorsCoordinators. Utility of impedance cardiography for the
identification of short-term risk of clinical decompensation in stable patients with chronic heart failure. J Am Coll Cardiol
2006 Jun 06;47(11):2245-2252 [FREE Full text] [doi: 10.1016/j.jacc.2005.12.071] [Medline: 16750691]

72. Fein A, Grossman RF, Jones JG, Goodman PC, Murray JF. Evaluation of transthoracic electrical impedance in the diagnosis
of pulmonary edema. Circulation 1979 Nov;60(5):1156-1160. [doi: 10.1161/01.cir.60.5.1156] [Medline: 487548]

73. Cuba-Gyllensten I, Gastelurrutia P, Riistama J, Aarts R, Nuñez J, Lupon J, et al. A novel wearable vest for tracking
pulmonary congestion in acutely decompensated heart failure. Int J Cardiol 2014 Nov 15;177(1):199-201. [doi:
10.1016/j.ijcard.2014.09.041] [Medline: 25499378]

74. Hung S, Kuo K, Peng C, Wu C, Lien Y, Wang Y, et al. Volume overload correlates with cardiovascular risk factors in
patients with chronic kidney disease. Kidney Int 2014 Mar;85(3):703-709 [FREE Full text] [doi: 10.1038/ki.2013.336]
[Medline: 24025647]

75. Chazot C, Wabel P, Chamney P, Moissl U, Wieskotten S, Wizemann V. Importance of normohydration for the long-term
survival of haemodialysis patients. Nephrol Dial Transplant 2012 Jun 17;27(6):2404-2410. [doi: 10.1093/ndt/gfr678]
[Medline: 22253067]

76. Tsai Y, Tsai J, Chen S, Chiu Y, Hwang S, Hung C, et al. Association of fluid overload with kidney disease progression in
advanced CKD: a prospective cohort study. Am J Kidney Dis 2014 Jan;63(1):68-75. [doi: 10.1053/j.ajkd.2013.06.011]
[Medline: 23896483]

JMIR Biomed Eng 2021 | vol. 6 | iss. 2 | e22911 | p.14https://biomedeng.jmir.org/2021/2/e22911
(page number not for citation purposes)

Groenendaal et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://dx.doi.org/10.1097/TA.0000000000000400
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25159358&dopt=Abstract
http://dx.doi.org/10.1093/oxfordjournals.eurheartj.a015464
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9458444&dopt=Abstract
http://dx.doi.org/10.5617/jeb.216
http://dx.doi.org/10.1109/iembs.2006.260250
http://dx.doi.org/10.5617/jeb.542
http://dx.doi.org/10.1109/cic.2015.7408601
http://dx.doi.org/10.4103/2228-7477.175871
http://dx.doi.org/10.1007/bf02344724
http://dx.doi.org/10.1088/0967-3334/37/9/r88
http://dx.doi.org/10.1111/crj.13002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30724023&dopt=Abstract
http://dx.doi.org/10.1007/s10557-005-1048-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16025233&dopt=Abstract
http://dx.doi.org/10.1378/chest.125.4.1431
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15078756&dopt=Abstract
https://bmcpregnancychildbirth.biomedcentral.com/articles/10.1186/s12884-015-0504-5
http://dx.doi.org/10.1186/s12884-015-0504-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25886289&dopt=Abstract
http://dx.doi.org/10.1111/cpf.12408
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28168802&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15608107&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S0735-1097(06)00609-7
http://dx.doi.org/10.1016/j.jacc.2005.12.071
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16750691&dopt=Abstract
http://dx.doi.org/10.1161/01.cir.60.5.1156
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=487548&dopt=Abstract
http://dx.doi.org/10.1016/j.ijcard.2014.09.041
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25499378&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S0085-2538(15)56222-4
http://dx.doi.org/10.1038/ki.2013.336
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24025647&dopt=Abstract
http://dx.doi.org/10.1093/ndt/gfr678
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22253067&dopt=Abstract
http://dx.doi.org/10.1053/j.ajkd.2013.06.011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23896483&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


77. Onofriescu M, Mardare NG, Segall L, Voroneanu L, Cuşai C, Hogaş S, et al. Randomized trial of bioelectrical impedance
analysis versus clinical criteria for guiding ultrafiltration in hemodialysis patients: effects on blood pressure, hydration
status, and arterial stiffness. Int Urol Nephrol 2012 Apr 19;44(2):583-591. [doi: 10.1007/s11255-011-0022-y] [Medline:
21688195]

78. Moissl U, Arias-Guillén M, Wabel P, Fontseré N, Carrera M, Campistol JM, et al. Bioimpedance-guided fluid management
in hemodialysis patients. Clin J Am Soc Nephrol 2013 Sep;8(9):1575-1582 [FREE Full text] [doi: 10.2215/CJN.12411212]
[Medline: 23949235]

79. Schoutteten MK, Vranken J, Lee S, Smeets CJP, De Cannière H, Van Hoof C, et al. Towards personalized fluid monitoring
in haemodialysis patients: thoracic bioimpedance signal shows strong correlation with fluid changes, a cohort study. BMC
Nephrol 2020 Jul 11;21(1):264 [FREE Full text] [doi: 10.1186/s12882-020-01922-6] [Medline: 32652949]

80. Shochat M, Charach G, Meyler S, Meisel S, Weintraub M, Mengeritsky G, et al. Prediction of cardiogenic pulmonary
edema onset by monitoring right lung impedance. Intensive Care Med 2006 Aug;32(8):1214-1221. [doi:
10.1007/s00134-006-0237-z] [Medline: 16775717]

81. Shochat MK, Shotan A, Blondheim DS, Kazatsker M, Dahan I, Asif A, et al. Non-invasive lung impedence-guided preemptive
treatment in chronic heart failure patients: a randomized controlled trial (IMPEDANCE-HF Trial). J Card Fail 2016
Sep;22(9):713-722. [doi: 10.1016/j.cardfail.2016.03.015] [Medline: 27058408]

82. Lee S, Polito S, Agell C, Mitra S, Firat Yazicioglu R, Riistama J, et al. A low-power and compact-sized wearable
bio-impedance monitor with wireless connectivity. In: Journal of Physics: Conference Series. 2013 Apr 18 Presented at:
International Conference on Electrical Bio-Impedence (ICBEI) and XIV Conference on Electrical Impedence Tomography
(EIT); April 22-25, 2013; Heilbad Heiligenstadst, Germany p. 012013. [doi: 10.1088/1742-6596/434/1/012013]

83. Gastelurrutia P, Cuba-Gyllensten I, Lupon J, Zamora E, Llibre C, Caballero, et al. Wearable vest for pulmonary congestion
tracking and prognosis in heart failure: A pilot study. Int J Cardiol 2016 Jul 15;215:77-79. [doi: 10.1016/j.ijcard.2016.04.024]
[Medline: 27111163]

84. Smeets CJP, Lee S, Groenendaal W, Squillace G, Vranken J, De Cannière H, et al. The added value of in-hospital tracking
of the efficacy of decongestion therapy and prognostic value of a wearable thoracic impedance sensor in acutely
decompensated heart failure with volume overload: prospective cohort study. JMIR Cardio 2020 Mar 18;4(1):e12141
[FREE Full text] [doi: 10.2196/12141] [Medline: 32186520]

85. Yu C, Wang L, Chau E, Chan RH, Kong S, Tang M, et al. Intrathoracic impedance monitoring in patients with heart failure:
correlation with fluid status and feasibility of early warning preceding hospitalization. Circulation 2005 Aug
09;112(6):841-848. [doi: 10.1161/CIRCULATIONAHA.104.492207] [Medline: 16061743]

86. van Veldhuisen DJ, Braunschweig F, Conraads V, Ford I, Cowie MR, Jondeau G, DOT-HF Investigators. Intrathoracic
impedance monitoring, audible patient alerts, and outcome in patients with heart failure. Circulation 2011 Oct
18;124(16):1719-1726. [doi: 10.1161/CIRCULATIONAHA.111.043042] [Medline: 21931078]

87. Khandwalla RM, Birkeland K, Zimmer R, Banet M, Pede S, Kedan I. Predicting heart failure events with home monitoring:
use of a novel, wearable necklace to measure stroke volume, cardiac output and thoracic impedance. J Am Coll Cardiol
2016 Apr;67(13):1296. [doi: 10.1016/s0735-1097(16)31297-9]

88. Trtovac D, Lee J. The use of technology in identifying hospital malnutrition: scoping review. JMIR Med Inform 2018 Jan
19;6(1):e4 [FREE Full text] [doi: 10.2196/medinform.7601] [Medline: 29351894]

89. Vogt B, Zhao Z, Zabel P, Weiler N, Frerichs I. Regional lung response to bronchodilator reversibility testing determined
by electrical impedance tomography in chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol 2016
Jul 01;311(1):L8-L19 [FREE Full text] [doi: 10.1152/ajplung.00463.2015] [Medline: 27190067]

90. Witkowska-Wrobel A, Aristovich K, Faulkner M, Avery J, Holder D. Feasibility of imaging epileptic seizure onset with
EIT and depth electrodes. Neuroimage 2018 Jun;173:311-321 [FREE Full text] [doi: 10.1016/j.neuroimage.2018.02.056]
[Medline: 29499314]

91. Rapin M, Braun F, Adler A, Wacker J, Frerichs I, Vogt B, et al. Wearable sensors for frequency-multiplexed EIT and
multilead ECG data acquisition. IEEE Trans Biomed Eng 2019 Mar;66(3):810-820. [doi: 10.1109/tbme.2018.2857199]

92. Hong S, Lee J, Bae J, Yoo H. A 10.4 mW electrical impedance tomography SoC for portable real-time lung ventilation
monitoring system. IEEE J Solid-State Circuits 2015 Nov;50(11):2501-2512. [doi: 10.1109/jssc.2015.2464705]

93. Kim M, Jang J, Kim H, Lee J, Lee J, Lee J, et al. A 1.4-m Ω-sensitivity 94-dB dynamic-range electrical impedance
tomography SoC and 48-channel Hub-SoC for 3-D lung ventilation monitoring system. IEEE J Solid-State Circuits 2017
Nov;52(11):2829-2842. [doi: 10.1109/jssc.2017.2753234]

94. Huang J, Hung Y, Wang J, Lin B. Design of wearable and wireless electrical impedance tomography system. Measurement
2016 Jan;78:9-17. [doi: 10.1016/j.measurement.2015.09.031]

95. Lee S, Squillace G, Smeets C, Vandecasteele M, Grieten L, de Francisco R, et al. Congestive heart failure patient monitoring
using wearable bio-impedance sensor technology. : IEEE; 2015 Presented at: 37th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC); 2015; Milan, Italy. [doi: 10.1109/embc.2015.7318393]

96. Demura S, Yamaji S, Goshi F, Nagasawa Y. The influence of posture change on measurements of relative body fat in the
bioimpedance analysis method. J Physiol Anthropol Appl Human Sci 2001 Jan;20(1):29-35 [FREE Full text] [doi:
10.2114/jpa.20.29] [Medline: 11320777]

JMIR Biomed Eng 2021 | vol. 6 | iss. 2 | e22911 | p.15https://biomedeng.jmir.org/2021/2/e22911
(page number not for citation purposes)

Groenendaal et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://dx.doi.org/10.1007/s11255-011-0022-y
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21688195&dopt=Abstract
https://cjasn.asnjournals.org/cgi/pmidlookup?view=long&pmid=23949235
http://dx.doi.org/10.2215/CJN.12411212
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23949235&dopt=Abstract
https://www.biomedcentral.com/1471-2369/21/264
http://dx.doi.org/10.1186/s12882-020-01922-6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32652949&dopt=Abstract
http://dx.doi.org/10.1007/s00134-006-0237-z
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16775717&dopt=Abstract
http://dx.doi.org/10.1016/j.cardfail.2016.03.015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27058408&dopt=Abstract
http://dx.doi.org/10.1088/1742-6596/434/1/012013
http://dx.doi.org/10.1016/j.ijcard.2016.04.024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27111163&dopt=Abstract
https://cardio.jmir.org/2020/1/e12141/
http://dx.doi.org/10.2196/12141
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32186520&dopt=Abstract
http://dx.doi.org/10.1161/CIRCULATIONAHA.104.492207
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16061743&dopt=Abstract
http://dx.doi.org/10.1161/CIRCULATIONAHA.111.043042
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21931078&dopt=Abstract
http://dx.doi.org/10.1016/s0735-1097(16)31297-9
https://medinform.jmir.org/2018/1/e4/
http://dx.doi.org/10.2196/medinform.7601
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29351894&dopt=Abstract
https://journals.physiology.org/doi/10.1152/ajplung.00463.2015?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dpubmed
http://dx.doi.org/10.1152/ajplung.00463.2015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27190067&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1053-8119(18)30163-0
http://dx.doi.org/10.1016/j.neuroimage.2018.02.056
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29499314&dopt=Abstract
http://dx.doi.org/10.1109/tbme.2018.2857199
http://dx.doi.org/10.1109/jssc.2015.2464705
http://dx.doi.org/10.1109/jssc.2017.2753234
http://dx.doi.org/10.1016/j.measurement.2015.09.031
http://dx.doi.org/10.1109/embc.2015.7318393
http://joi.jlc.jst.go.jp/JST.JSTAGE/jpa/20.29?from=PubMed
http://dx.doi.org/10.2114/jpa.20.29
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11320777&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


97. Van Helleputte N, Konijnenburg M, Pettine J, Jee D, Kim H, Morgado A, et al. A 345 µW multi-sensor biomedical SoC
with bio-impedance, 3-channel ECG, motion artifact reduction, and integrated DSP. IEEE J Solid-State Circuits 2015
Jan;50(1):230-244. [doi: 10.1109/jssc.2014.2359962]

98. Zhang Y, Song S, Vullings R, Biswas D, Simões-Capela N, van Helleputte N, et al. Motion artifact reduction for wrist-worn
photoplethysmograph sensors based on different wavelengths. Sensors (Basel) 2019 Feb 07;19(3):673 [FREE Full text]
[doi: 10.3390/s19030673] [Medline: 30736395]

99. Zhang Z, Pi Z, Liu B. TROIKA: a general framework for heart rate monitoring using wrist-type photoplethysmographic
signals during intensive physical exercise. IEEE Trans Biomed Eng 2015 Feb;62(2):522-531. [doi:
10.1109/TBME.2014.2359372] [Medline: 25252274]

100. Lee H, Chung H, Lee J. Motion artifact cancellation in wearable photoplethysmography using gyroscope. IEEE Sensors J
2019 Feb 1;19(3):1166-1175. [doi: 10.1109/jsen.2018.2879970]

101. Ansari S, Ward KR, Najarian K. Motion artifact suppression in impedance pneumography signal for portable monitoring
of respiration: an adaptive approach. IEEE J Biomed Health Inform 2017 Mar;21(2):387-398. [doi:
10.1109/jbhi.2016.2524646]

102. Charlton PH, Birrenkott DA, Bonnici T, Pimentel MAF, Johnson AEW, Alastruey J, et al. Breathing rate estimation from
the electrocardiogram and photoplethysmogram: a review. IEEE Rev Biomed Eng 2018;11:2-20. [doi:
10.1109/rbme.2017.2763681]

103. Charlton PH, Bonnici T, Tarassenko L, Clifton DA, Beale R, Watkinson PJ, et al. An impedance pneumography signal
quality index: Design, assessment and application to respiratory rate monitoring. Biomed Signal Proces 2021 Mar;65:102339.
[doi: 10.1016/j.bspc.2020.102339]

104. Forouzanfar M, Baker F, Colrain I, de ZM. Automatic artifact detection in impedance cardiogram using pulse similarity
index. : IEEE; 2019 Presented at: 41st Annual International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC); 2019; Berlin, Germany. [doi: 10.1109/embc.2019.8856542]

105. Riese H, Groot PFC, van den Berg M, Kupper NHM, Magnee EHB, Rohaan EJ, et al. Large-scale ensemble averaging of
ambulatory impedance cardiograms. Behav Res Methods Instrum Comput 2003 Aug;35(3):467-477. [doi:
10.3758/bf03195525] [Medline: 14587556]

106. Pandey V, Pandey P. Cancellation of respiratory artifact in impedance cardiography. : IEEE; 2005 Presented at: 27th Annual
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 2005; Shanghai, China. [doi:
10.1109/iembs.2005.1615729]

107. Cieslak M, Ryan WS, Babenko V, Erro H, Rathbun ZM, Meiring W, et al. Quantifying rapid changes in cardiovascular
state with a moving ensemble average. Psychophysiology 2018 Apr 03;55(4):e13018. [doi: 10.1111/psyp.13018] [Medline:
28972674]

108. Forouzanfar M, Baker FC, de Zambotti M, McCall C, Giovangrandi L, Kovacs GTA. Toward a better noninvasive assessment
of preejection period: A novel automatic algorithm for B-point detection and correction on thoracic impedance cardiogram.
Psychophysiology 2018 Aug;55(8):e13072 [FREE Full text] [doi: 10.1111/psyp.13072] [Medline: 29512163]

109. Kalid N, Zaidan AA, Zaidan BB, Salman OH, Hashim M, Muzammil H. Based real time remote health monitoring systems:
a review on patients prioritization and related "big data" using body sensors information and communication technology.
J Med Syst 2017 Dec 29;42(2):30. [doi: 10.1007/s10916-017-0883-4] [Medline: 29288419]

110. Ramirez M, Maranon R, Fu J, Chon J, Chen K, Mangione C, et al. Primary care provider adherence to an alert for
intensification of diabetes blood pressure medications before and after the addition of a "chart closure" hard stop. J Am
Med Inform Assoc 2018 Sep 01;25(9):1167-1174 [FREE Full text] [doi: 10.1093/jamia/ocy073] [Medline: 30060013]

111. Kesselheim AS, Cresswell K, Phansalkar S, Bates DW, Sheikh A. Clinical decision support systems could be modified to
reduce 'alert fatigue' while still minimizing the risk of litigation. Health Aff (Millwood) 2011 Dec;30(12):2310-2317. [doi:
10.1377/hlthaff.2010.1111] [Medline: 22147858]

112. Dunn J, Runge R, Snyder M. Wearables and the medical revolution. Per Med 2018 Sep;15(5):429-448 [FREE Full text]
[doi: 10.2217/pme-2018-0044] [Medline: 30259801]

113. Niel O, Bastard P, Boussard C, Hogan J, Kwon T, Deschênes G. Artificial intelligence outperforms experienced nephrologists
to assess dry weight in pediatric patients on chronic hemodialysis. Pediatr Nephrol 2018 Oct 9;33(10):1799-1803. [doi:
10.1007/s00467-018-4015-2] [Medline: 29987454]

114. Koydemir HC, Ozcan A. Wearable and implantable sensors for biomedical applications. Annu Rev Anal Chem 2018 Jun
12;11(1):127-146. [doi: 10.1146/annurev-anchem-061417-125956] [Medline: 29490190]

115. Radin J, Steinhubl S, Su A, Bhargava H, Greenberg B, Bot B, et al. The healthy pregnancy research program: transforming
pregnancy research through a ResearchKit app. NPJ Digit Med 2018;1:45. [doi: 10.1038/s41746-018-0052-2] [Medline:
31304325]

116. McConnell MV, Shcherbina A, Pavlovic A, Homburger JR, Goldfeder RL, Waggot D, et al. Feasibility of obtaining measures
of lifestyle from a smartphone app: the MyHeart Counts Cardiovascular Health Study. JAMA Cardiol 2017 Jan 01;2(1):67-76.
[doi: 10.1001/jamacardio.2016.4395] [Medline: 27973671]

JMIR Biomed Eng 2021 | vol. 6 | iss. 2 | e22911 | p.16https://biomedeng.jmir.org/2021/2/e22911
(page number not for citation purposes)

Groenendaal et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://dx.doi.org/10.1109/jssc.2014.2359962
https://www.mdpi.com/resolver?pii=s19030673
http://dx.doi.org/10.3390/s19030673
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30736395&dopt=Abstract
http://dx.doi.org/10.1109/TBME.2014.2359372
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25252274&dopt=Abstract
http://dx.doi.org/10.1109/jsen.2018.2879970
http://dx.doi.org/10.1109/jbhi.2016.2524646
http://dx.doi.org/10.1109/rbme.2017.2763681
http://dx.doi.org/10.1016/j.bspc.2020.102339
http://dx.doi.org/10.1109/embc.2019.8856542
http://dx.doi.org/10.3758/bf03195525
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=14587556&dopt=Abstract
http://dx.doi.org/10.1109/iembs.2005.1615729
http://dx.doi.org/10.1111/psyp.13018
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28972674&dopt=Abstract
http://europepmc.org/abstract/MED/29512163
http://dx.doi.org/10.1111/psyp.13072
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29512163&dopt=Abstract
http://dx.doi.org/10.1007/s10916-017-0883-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29288419&dopt=Abstract
http://europepmc.org/abstract/MED/30060013
http://dx.doi.org/10.1093/jamia/ocy073
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30060013&dopt=Abstract
http://dx.doi.org/10.1377/hlthaff.2010.1111
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22147858&dopt=Abstract
https://www.futuremedicine.com/doi/abs/10.2217/pme-2018-0044?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dpubmed
http://dx.doi.org/10.2217/pme-2018-0044
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30259801&dopt=Abstract
http://dx.doi.org/10.1007/s00467-018-4015-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29987454&dopt=Abstract
http://dx.doi.org/10.1146/annurev-anchem-061417-125956
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29490190&dopt=Abstract
http://dx.doi.org/10.1038/s41746-018-0052-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31304325&dopt=Abstract
http://dx.doi.org/10.1001/jamacardio.2016.4395
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27973671&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


117. Evans J, Papadopoulos A, Silvers CT, Charness N, Boot WR, Schlachta-Fairchild L, et al. Remote health monitoring for
older adults and those with heart failure: adherence and system usability. Telemed J E Health 2016 Jun;22(6):480-488
[FREE Full text] [doi: 10.1089/tmj.2015.0140] [Medline: 26540369]

118. O'Kane MJ, Bunting B, Copeland M, Coates VE, ESMON study group. Efficacy of self monitoring of blood glucose in
patients with newly diagnosed type 2 diabetes (ESMON study): randomised controlled trial. BMJ 2008 May
24;336(7654):1174-1177 [FREE Full text] [doi: 10.1136/bmj.39534.571644.BE] [Medline: 18420662]

119. van den Brand J, de Kok M, Sridhar A, Cauwe M, Verplancke R, Bossuyt F, et al. Flexible and stretchable electronics for
wearable healthcare. : IEEE; 2014 Presented at: 44th European Solid State Device Research Conference (ESSDERC);
2014; Venice Lido, Italy p. 206-209. [doi: 10.1109/essderc.2014.6948796]

120. Castro I, Patel A, Torfs T, Puers R, Van Hoof C. Capacitive multi-electrode array with real-time electrode selection for
unobtrusive ECG BIOZ monitoring. 2019 Presented at: 41st Annual International Conference of the IEEE Engineering and
Medical Biology Society (EMBC); 2019; Berlin, Germany p. 5621-5624. [doi: 10.1109/embc.2019.8857150]

Abbreviations
AI: artificial intelligence
BIS: bioimpedance spectroscopy
BIVA: bioelectrical impedance vector analysis
COPD: chronic obstructive pulmonary disease
CT: computed tomography
ECF: extracellular fluid
ECG: electrocardiogram
ECW: extracellular water
EIT: electrical impedance tomography
ESKD: end-stage kidney disease
ETI: electrode tissue impedance
FFM: fat free mass
ICF: intracellular fluid
ICW: intracellular water
MF-BIA: multifrequency bioimpedance analysis
MRI: magnetic resonance imaging
NCD: noncommunicable disease
SF-BIA: single-frequency bioimpedance analysis
TBW: total body water

Edited by G Eysenbach; submitted 27.07.20; peer-reviewed by IC Jeong, H Zhang; comments to author 01.11.20; revised version
received 01.03.21; accepted 06.04.21; published 11.05.21.

Please cite as:
Groenendaal W, Lee S, van Hoof C
Wearable Bioimpedance Monitoring: Viewpoint for Application in Chronic Conditions
JMIR Biomed Eng 2021;6(2):e22911
URL: https://biomedeng.jmir.org/2021/2/e22911 
doi:10.2196/22911
PMID:

©Willemijn Groenendaal, Seulki Lee, Chris van Hoof. Originally published in JMIR Biomedical Engineering
(http://biomsedeng.jmir.org), 11.05.2021. This is an open-access article distributed under the terms of the Creative Commons
Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work, first published in JMIR Biomedical Engineering, is properly cited. The complete
bibliographic information, a link to the original publication on https://biomedeng.jmir.org/, as well as this copyright and license
information must be included.

JMIR Biomed Eng 2021 | vol. 6 | iss. 2 | e22911 | p.17https://biomedeng.jmir.org/2021/2/e22911
(page number not for citation purposes)

Groenendaal et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://europepmc.org/abstract/MED/26540369
http://dx.doi.org/10.1089/tmj.2015.0140
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26540369&dopt=Abstract
http://europepmc.org/abstract/MED/18420662
http://dx.doi.org/10.1136/bmj.39534.571644.BE
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18420662&dopt=Abstract
http://dx.doi.org/10.1109/essderc.2014.6948796
http://dx.doi.org/10.1109/embc.2019.8857150
https://biomedeng.jmir.org/2021/2/e22911
http://dx.doi.org/10.2196/22911
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


Original Paper

Smartphone-Based Passive Sensing for Behavioral and Physical
Monitoring in Free-Life Conditions: Technical Usability Study

Simone Tonti1*, MSc; Brunella Marzolini1, MSc; Maria Bulgheroni1*, MSc
Ab.Acus srl, Milano, Italy
*these authors contributed equally

Corresponding Author:
Maria Bulgheroni, MSc
Ab.Acus srl
Via Francesco Caracciolo 77
Milano, 20155
Italy
Phone: 39 02 89693979
Email: mariabulgheroni@ab-acus.com

Abstract

Background: Smartphone use is widely spreading in society. Their embedded functions and sensors may play an important
role in therapy monitoring and planning. However, the use of smartphones for intrapersonal behavioral and physical monitoring
is not yet fully supported by adequate studies addressing technical reliability and acceptance.

Objective: The objective of this paper is to identify and discuss technical issues that may impact on the wide use of smartphones
as clinical monitoring tools. The focus is on the quality of the data and transparency of the acquisition process.

Methods: QuantifyMyPerson is a platform for continuous monitoring of smartphone use and embedded sensors data. The
platform consists of an app for data acquisition, a backend cloud server for data storage and processing, and a web-based dashboard
for data management and visualization. The data processing aims to extract meaningful features for the description of daily life
such as phone status, calls, app use, GPS, and accelerometer data. A total of health subjects installed the app on their smartphones,
running it for 7 months. The acquired data were analyzed to assess impact on smartphone performance (ie, battery consumption
and anomalies in functioning) and data integrity. Relevance of the selected features in describing changes in daily life was assessed
through the computation of a k-nearest neighbors global anomaly score to detect days that differ from others.

Results: The effectiveness of smartphone-based monitoring depends on the acceptability and interoperability of the system as
user retention and data integrity are key aspects. Acceptability was confirmed by the full transparency of the app and the absence
of any conflicts with daily smartphone use. The only perceived issue was the battery consumption even though the trend of battery
drain with and without the app running was comparable. Regarding interoperability, the app was successfully installed and run
on several Android brands. The study shows that some smartphone manufacturers implement power-saving policies not allowing
continuous sensor data acquisition and impacting integrity. Data integrity was 96% on smartphones whose power-saving policies
do not impact the embedded sensor management and 84% overall.

Conclusions: The main technological barriers to continuous behavioral and physical monitoring (ie, battery consumption and
power-saving policies of manufacturers) may be overcome. Battery consumption increase is mainly due to GPS triangulation and
may be limited, while data missing because of power-saving policies are related only to periods of nonuse of the phone since the
embedded sensors are reactivated by any smartphone event. Overall, smartphone-based passive sensing is fully feasible and
scalable despite the Android market fragmentation.

(JMIR Biomed Eng 2021;6(2):e15417)   doi:10.2196/15417
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Introduction

Background
In 2020, smartphone users are approximately 3.5 billion people
(ie, about the 45% of the world population). Smartphones are
a widely spread resource that health care providers might
extensively use to improve the quality and timeliness of service
to the citizen at acceptable costs.

Potentialities of smartphones in health care are being widely
explored [1]. A PubMed search of “smartphone” or “mobile
phone” and “monitoring” for articles published between January
1, 2000, and September 30, 2020, found 5246 articles with
74.04% (3884/5246) published after January 1, 2015,
demonstrating a continuous increase of interest in the last few
years.

Furthermore, the growing number of available apps in the
Google and Apple stores covers an increasingly large spectrum
of services able to support most citizens’ daily activities.
However, the effective diffusion of smartphone in the clinical
practice is slowed down by social, organizational, and technical
barriers [2]. Clinical practice requires the capability of
continuously following up individuals along their care paths
(longitudinal monitoring) assessing variations in time due to
disease progression or intervention results. For this purpose, an
underlying monitoring app must be robust and reliable and able
to run on a wide base of smartphones in a totally unobtrusive
and transparent way [3,4]. This approach addresses the
ubiquitous computing paradigm that, through technologically
transparent tools, enables the integration of small connected
and inexpensive devices in the daily life of people. Transparency
and density of the technological framework lead to higher levels
of acceptability and reliability thanks to the reduced
intrusiveness and, at the same time, the improved capillarity of
the technology.

Meanwhile, the collected data must adhere to robust and
device-independent quality standards to ensure measurement
repeatability to generate clear clinical outcomes [5], while
smartphone vendor policies contribute to increasing
fragmentation due to strategic choices. Continuous monitoring
apps and in particular passive sensing smartphone-based
platforms must cope with constraints and limitations related to
manufacturer choices and policies that need to be carefully
assessed and cleared before large-scale deployment in health
care with prevention and follow-up objectives.

On the other side, the level of engagement of the end user needs
to be improved. Today, the longer the follow-up period, the
higher the chances are for dropout [6]. Attrition rates from 30%
to 70% are often reported [7-9]. Technological issues can
dramatically impact the use in a daily routine.

Reliability and robustness are the most important drivers to
ensure proper diffusion within the clinical practice; however,
studies characterizing the smartphone-based platforms from
this point of view are lacking. Many studies address the clinical
relevance of the acquired data (see Prior Work section), but
very few analyze the impact of technical issues on the scalability
of the solutions in the daily routine and their performance in a

heterogenous technical environment where hardware
characteristics and proprietary policies have a strong impact on
the quality of delivered data and calculated indexes.

Prior Work
Mental health–related studies have widely investigated the use
of smartphone-based sensing platforms to cope with the need
of unobtrusive and continuous data collection while reducing
biases in patient behavior. Dogan et al [10] provide a
comprehensive review of the current status of the technological
impact on affective disorder management. Several studies about
the correlation between affective disorders and smartphone use
are investigated, and technical problems, in particular issues
related to different operating systems, are reported as the most
common reasons for discontinuation. The use of
smartphone-embedded sensors for health monitoring systems
is analyzed by Majumder et al [11] who identify, as a main
driver for successful penetration of these technologies, the
availability of affordable apps compatible with the main mobile
operating systems and devices from different manufacturers.
Similarly, the need for apps with reduced battery drain and
standardized performances regardless of the device brand is
reported by Baig et al [12] and Yu et al [13], while Boonstra et
al [14] define performance, interoperability, and battery
consumption as the most impacting issues. Differing operating
systems are reported as the leading cause of data loss. The data
collection rate is still only 55% of the scheduled acquisition
time for Android smartphones, indicating the need for additional
development work to provide more stable and reliable tools.
Finally, Hossain and Poellabauer [15] present the challenges
encountered in building the CIMON (Crew Interactive MObile
CompanioN) system, a continuous smartphone sensing app.
This system is specifically designed for the iOS system, and
the main issues reported are energy consumption, storage, and
operational continuity. Nevertheless, because of Apple’s strict
policy development limitations and terms, the variability in
terms of technical policies between iOS devices is not even
comparable with the Android market, which is required to deal
with a broader pool of brands and proprietary management
policies.

The need for robust and reliable passive sensing systems that
exploit the smartphone as data collector is gaining relevance in
the clinical debate, and recent studies [16] show a good
correlation between behavioral data collected through
smartphones and mental health–related scores [17-19] and also
show how features calculated from smartphone data may capture
a wider set of behavior descriptors not assessed by standard
scores [20]. Other studies report strong correlations between
smartphone-related nonmedical parameters, changes in lifestyle,
and variations in mood [21]. In particular, frequency [22] and
duration [23] of calls have been correlated to the onset of
depressive symptoms.

Goal of This Study
In this paper, we identify the main issues a smartphone-based
monitoring app must resolve to be a suitable tool for longitudinal
measurement of personal behavior on a diverse and continuously
changing technological panorama.
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A testing platform, QuantifyMyPerson (QMP), has been used
for this study as it is a proprietary smartphone-based app that
allows direct access to the collected raw data. QMP uses the
embedded sensors of the smartphone itself and smartphone use
information to provide 24/7 monitoring of the user’s life in
terms of both physical and cognitive activities. The system
architecture allows remote storage and processing of acquired
data to be made available to the operator through a web-based
dashboard. By design, QMP does not provide any feedback to
the user and does not introduce any burden other than carrying
the phone to avoid influencing the user’s behavior while
unobtrusively capturing their life habits.

The aim of this study is to pinpoint the main technological issues
encountered within an operating context and identify the most
relevant aspects to be considered when a monitoring platform
is deployed. The findings of this study will inform technical
choices to reach scalable, usable, and reliable solutions that can
reach large pools of users.

Despite the fact that the acquisition of data through passive
sensing systems happens in the most transparent way, the
collected information belongs to the user’s private sphere and
there are privacy issues. Privacy and ethical issues are relevant
perceived barriers in the spread of mobile health (mHealth)
solutions and smartphone-based data collectors [24,25].
According to a recent review [26], broad consent and

pseudonymization are frequently used approaches to manage
these kinds of issues. A robust ethical framework is not yet
clearly defined, and future evolutions should consider technical
development, clinical benefits, and ethical issues together to
shape an effective implementation of passive sensing in health
care. Technical findings and outcomes of this study aim also to
contribute to the definition of this framework promoting the
use of passive data in an ethically safe and sound fashion.

Methods

Data Acquisition System
QMP is a composite system managing background acquisition
of 24/7 data related to the social use of the smartphone (through
call logs, app use, and device use) and to the user’s activity
habits (through GPS and accelerometer analysis).

The platform consists of a mobile app based on the Android
OS, a cloud backend (backend as a service model), and a
web-based dashboard (Figure 1). Data acquisition runs in the
background during daily use of the smartphone by means of a
passive motion sensor data acquisition approach. Through data
processing algorithms, selected features are extracted to describe
users’ life and behavior changes. The dashboard allows for
management of the registry of users and visualization of the
acquired data in graphical and numerical forms.

Figure 1. QuantifyMyPerson architecture consists of the user’s smartphone, a cloud backend for data storing and processing, and a web-based dashboard
for data visualization.

The monitoring app stores data locally on the smartphone and
transmits them as Wi-Fi network connectivity becomes
available. This strategy allows data collection in a variety of
wireless connectivity scenarios with the confidence that
intermittent network access does not affect the nature, quality,
or quantity of the collected data.

Acquired data are temporarily saved in a remote storage area
and processed daily to extract descriptive features. The

computed features are saved on an in-cloud database accessed
through a web-based dashboard. The dashboard, as a
management tool, makes available various means for the
management of the patient database while acquired features
may be displayed through different graph typologies on freely
selectable time windows. The use flow is described in Figure
2.
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Figure 2. QuantifyMyPerson data flow from app installation to data visualization.

The mobile app is the core element of the sensing platform.
During the study, the app was available for Android platforms
only as this operating system enables more flexibility in the
management and access to the data registries and sensors. The
mobile app uses the sensor made available by the Android
framework to interact with the inertial measurement unit sensors
embedded in the smartphone and with the social and
communication registries made available by the operating
system. The sensors to be used for collecting data and related
sampling frequencies can be set through a parametric
configuration table allowing a dynamic fine tuning of the
acquisition parameters without the need for updating the app
on users’ devices.

The following embedded sensors and registries are used as raw
data sources by the QMP mobile app:

• Accelerometer sensor
• Gyroscope sensor
• Barometer sensor

• Magnetometer sensor
• GPS sensor
• Exchanged kBs per app registry
• Calls log registry
• Short message service log registry
• Screen brightness registry

The data acquired through the sensors are locally stored on the
device as separated raw text files, one for each sensor. The raw
files are then sent through an https encrypted communication
protocol when a Wi-Fi connection is available in order to reduce
the internal memory occupation and user data plan consumption.
After the first log-in, the app runs in the background without
any intervention from the user.

Data Processing
The features extracted from the raw data are based on the main
findings reported in the literature according to a previous review
of ours [27]. Table 1 summarizes the features calculated from
raw data.
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Table 1. Behavioral features extracted by QuantifyMyPerson.

DescriptionFeature

Calls

Average duration of incoming calls (seconds)mean_incoming

Average duration of outgoing calls (seconds)mean_outgoing

Total call duration (seconds)tot_call_length

Number of calls madeoutgoing_call

Brightness

Average duration of a session of use (from screen switch on to screen switch off)mean_time_usage

Number of times screen is switched onnumber_switch_on

Seconds of phone’s use from hour n–1 to n with hourly granularity over the whole 24 hoursb_n (24)

Apps

Kilobytes consumed in social app (Facebook, Instagram, Twitter, LinkedIn)tot_kb_social

Kilobytes consumed in communication app (WhatsApp, Messenger, Telegram, Skype, Hangouts)tot_kb_communication

Kilobytes consumed in navigation app (Chrome, Firefox, proprietary browser, Google, YouTube, Tripadvisor)tot_kb_navigation

Total kilobytes consumed in a daytot_kb

GPS

Number of places visitednumber_of_clusters

Percentage of time spent outside the hometime_outside

Variability in a participant’s location calculated as location_variance = (σ2
long + σ2

lat), where σ2
long and σ2

lat

represent the variance of the longitude and latitude, respectively, of the GPS location coordinates

location_variance

Measure of how uniformly a participant spends time at different locations. Let pi denote the percentage of time
that a participant spends in location cluster i. The entropy of the participant is calculated as entropy = −(pi*log(pi))

Entropy

Latitude and longitude coordinates of the visited places according to the distance from homevisited_clusters

Activity

Average of the acceleration signal amplitude from hour n–1 to n with hourly granularity over the whole 24 hoursm_amp_n (24)

Seconds of high activity from hour n–1 to n with hourly granularity over the whole 24 hourss_a_n (24)

Seconds of low activity from hour n–1 to n with hourly granularity over the whole 24 hourss_r_n (24)

High activity/(high activity + low activity)percentage_activity

Study Design
A sample of 12 healthy people was recruited for this initial
feasibility study for a time span of 7 months. As the aim of this
study is to assess how smartphone-based passive sensing
platforms cope with heterogeneous and complex environment,
any Android user was considered eligible irrespective of the
smartphone model, connection availability, or digital literacy.
The final goal was to highlight any possible criticality that could
occur during normal use under free-living conditions.

The participants’ smartphones included 5 different smartphone
brands and 11 different models running Android operating
system versions from 4.4 to 7. The brand distribution shows a
prevalence of Samsung and Huawei devices. The mean age of
the selected participants was 39 (SD 5.4) years, the majority
were male (8/12, 67%), and the average number of days of use
was 62.

All participants were informed of the study aims and modalities
when installing and running the app. Data handling was fully

compliant with the General Data Protection Regulation. To
ensure proper awareness about the acquired and stored data and
aim of the study, an in-app communication approach was
adopted consisting of an interactive wizard that describes the
data sources used and the scope of the study. This approach
ensures proper communication about data management and
study aims through a clear description that can be understood
by everyone regardless of the digital literacy of the enrolled
subject.

Each participant’s identity was pseudoanonymized with a
random user ID, keeping the ID map separated from all other
acquired data so that data cannot be traced back to individuals.
Participant data were uploaded on a secured server using
encrypted SSL protocol to ensure they cannot be intercepted
by third parties. When people left the study, their personal data
were removed while the raw data acquired during the study and
the calculated features remain anonymously stored for scientific
research purposes.
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Results

Data Acquisition System
The system was first assessed in terms of performance with the
2-fold objective of evaluating the impact of the mobile app on
the daily use of the smartphone and quality of the acquired data.
As reported in the study description section, the device brand
distribution spanned the most relevant Android market players.
Samsung devices showed a prevalence of 33% (4/12) within
the considered sample followed by Huawei devices with 25%
(3/12), Xiaomi (8%), Asus (17%), and Honor (17%). This
population distribution is fairly aligned with the brand
fragmentation reported in the Android Fragmentation report
[28] and the most recent Statista’s global smartphone market
share [29]. Thus, the sample under analysis mirrors the Android
user population making the recruited participants a
representative sample.

During the validation phase, no issues concerning normal
smartphone functioning were reported, and the everyday use of
the smartphone was not hindered by the background activity of
the app. The app was installed on the user smartphone without
impacting the running of already installed apps. No lags or limits
in functionalities were reported during the study period.

The average battery consumption trend of the smartphones,
with and without the monitoring app on board, are compared
in Figure 3. The battery drain analysis was made comparing
performance within the same operational environments (running
apps, operative system, connection type). The two trends are
comparable with an acceptable increase in power consumption
when the app is up and running. This trend confirms the known
battery drain issues for smartphone-based passive sensing
platforms, but the battery consumption can be well managed
by tuning acquisition parameters such as sensors sample rate,
data writing frequency, and data sending frequency.

Figure 3. Comparison of the average daily battery consumption trend for the same smartphone with and without QuantifyMyPerson on board and
running.

Because of the implementation by some manufacturers of battery
consumption management policies, some commercial devices
do not allow continuous data acquisition from both the phone’s
register and embedded sensors. This aspect could negatively
influence reproducibility and scalability of smartphone-based
monitoring systems especially within the Android ecosystem
due to high level of fragmentation (brand, devices, and OS
versions) if compared with the iOS systems [28].

By analyzing the up time of each sensor within the selected
population of users during the acquisition period, we identified
two subgroups based on the behavior of their smartphone:
subgroup A consisted of 7 users for whom the specific policies
of the phone operating system do not impact on the continuity
of data; subgroup B consisted of 5 users with smartphones

whose proprietary operating system policies have a strong
impact on the continuity of acquisition (Table 2 and Figure 4).

The most widely used battery consumption management policies
switch the embedded sensors off when the phone is not used
(ie, when the screen is off for some time) and when there are
no changes in the GPS signal (when GPS is active). The phone
is woken up again when one of the two situations changes.

This behavior makes clear that data from embedded sensors are
lost mainly when the phone is still (ie, it is not used, and it is
not moved). That means that most of the lost data from sensors
might be not associated with periods of activity (assuming that
users are carrying the phone on their person). So, the related
loss of information should be not relevant, but more focused
tests are still needed to validate this first outcome.
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Table 2. Classification of user device within subgroup A and B according to the proprietary smartphone management policies.

Device brand and modelSubgroup

A

Asus Zenfone 4

Samsung S4

Samsung S6

ASUS Zenfone 2 Laser

Samsung S5

Redmi 3S

B

Honor 8

Huawei P10 Lite

Honor 7

Huawei P9 Lite

Huawei P8 Lite

Figure 4. Comparison between the integrity of acquired data between a subgroup A user and a subgroup B user. Grey bars represent the timespan in
which the brightness of the display has been detected, blue points identify GPS data collection, and the orange line comprises 5 Hz sampled embedded
sensors data.

The quality and quantity of data are the main strengths of a
continuous monitoring approach. Smartphone sensor issues,
memory leaks, poor connection quality, and smartphone use in
free-living condition have real impact on the quality of the
collected data regardless the specific brand of the smartphone.

To assess these aspects, the data integrity percentage has been
calculated using the following formula:

This measure is aimed at quantifying the percentage of data
actually acquired while the app runs. The hours of acquired data
are considered as the timespan during which the samples are
acquired without interruption greater than 1 second. This
measure provides an indirect computation of data samples lost
during an acquisition session and allows us to spot gaps in the
data.

Data integrity is a crucial parameter for the identification of the
most appropriate data processing and feature extraction

techniques. Datasets with a very low data integrity index should
be not considered for frequency-based processing techniques
or proper resampling techniques should be implemented.

This parameter might be used as a quality control parameter
before mathematically or visually analyzing data. This approach
should also be considered to ensure compliance with the medical
device regulation (EU) 2017/745 on the risk of data misuse for
clinical evidence extraction.

Within this study, the global data integrity percentage is 84%
considering the entire sample of users, but a slightly different
behavior was observed between the two subgroups of users
described in the previous section. In particular, subgroup B is
characterized by a lower value of data integrity percentage
(60%) compared with subgroup A (96%). The analysis
performed on the accelerometer, brightness, and GPS signals
reveals that the lower data integrity percentage observed for the
subgroup B of users is due to the previously described
acquisition holes during which the smartphone kills the
acquisition routine according to proprietary power-saving
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policies. At this time, no solutions have been found due to the
proprietary policies implemented that are business confidential
and differ between smartphone models and brands.

Data integrity has not been negatively impacted by poor or
absent Wi-Fi connections and in some cases all the data were
properly stored and sent even if the smartphone was not
connected to Wi-Fi for a few days (up to 3). The data transfer
protocol has proved to be efficient and capable of handling
unreliable connections.

Thus, the strategy adopted for sending large raw data files based
on file chunks periodically sent and attached to the master file
stored on the remote repository provides a reliable data exchange
protocol. This strategy allows decentralization of the
computational power needed and thus reduces the impact on
performance of the users’ smartphones. This approach is largely
used for the management of data collection through a big data
approach, and it is at the core of the edge computing paradigm
that allows the implementation of sparse technological
frameworks.

Data Processing
Even if the focus of this study is not the clinical evaluation of
the smartphone-based passive sensing platform, the collected
data have been processed with the aim of extracting the features
identified in the literature and evaluating their potentialities in
identifying behavior trends and shifts for the analyzed users.
The processing task was executed daily through an automatic
routine.

The computed features were analyzed in order to investigate
the information content and assess whether the typology and
integrity of the available data could match with the data
processing requirements for the analysis of trends and anomalies
about human behavior. First, a principal component analysis
was performed on the whole pool of features extracted with the
aim of detecting the most descriptive set of features. The
following features were identified as the most descriptive:

• GPS-related features such as movement index, location
variance, and normalized entropy

• Hourly activity features—in particular, in the timespan that
goes from 10 AM to 9 PM

• Hourly brightness features—in particular, in the timespan
that goes from 11 AM to 10 PM

Thus, the selected features were used to extract information
about the variance between each day and detect anomalous days.
This approach starts from the evidence reported by Berrouiguet
[30] on the analysis of GPS-based features and validates its
feasibility with a larger set of features than the ones investigated
here. The set of features was analyzed using a k-Nearest
Neighbor Global Anomaly Score in order to detect the days that
differ from others within the period of use of QMP (Figure 5).
This analysis showed a repeatable pattern for each user along
the period of acquisition discriminating between the nonworking
days and the working days. Public holidays instead were
detected as the most relevant outliers showing the ability of the
system to easily detect the days that differ most because of
nonstandard behavior of the user.

Figure 5. k-Nearest Neighbors Global Anomaly Score graph for a selected user. Points represent the calculated anomaly score for each day with the
red points representing days with the highest values of anomaly.
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People use their smartphones for different purposes and through
different interaction modalities regardless their of demographic
data, which has been demonstrated to not have relevant impacts
on the smartphone-related behavior [31] Smartphones are
strongly integrated in every aspect of people’s lives acting as a
reliable behavioral mirror [32] enabling the longitudinal
monitoring and indirect assessment of cognitive and physical
status. Further analyses are ongoing in order to better assess the
potentialities of identifying clinically relevant and
behavior-related trends through a wider clinical trial. The first
data analysis shows promising results for users belonging to
both subgroup A and B. However, further investigation is still
needed in order to find the best data normalization method that
takes advantage of the data integrity parameters for each of the
identified subgroups.

Discussion

Principal Findings
In this paper, we presented the results of a validation test aimed
to assess the reliability of smartphone-based passive sensor
systems and the related integrity of the acquired data. Also, a
preliminary assessment of the informative content of these data
and their correlation to real user behavior has been presented
with the aim of associating the data integrity with the capability
to extract valuable insights from data.

All participants used the system consistently and actively for
the period of the study without any kind of technological
constraint. The proposed approach proved to be able to manage
the flow of data correctly without a consistent loss of
information and provide a daily update of the calculated features.
The method used to acquire data from the embedded sensors
through a mobile app was able to work with the heterogenous
and complex technical environment ensuring a good level of
reliability and maintaining a good level of performance of the
users’smartphones without impacting the already installed apps.
The system also registered a high level of acceptability due to
the good level of integration in the normal use of the smartphone
in conjunction with an adequate level of transparency and
ubiquitousness that ensured reliable and meaningful results.
Two participants (17%) asked to interrupt the study after 1
month due to battery drain effects, but the users continued the
study when the battery drain effect was mitigated by activating
the GPS sensor only for limited time spans within the day.

The current smartphone evolution is highly focused on the
optimization of the battery consumption for the most
energy-consuming sensors such as GPS and Bluetooth as many
of the most common apps require their continuous running (eg,
COVID-19 tracking apps). Thus, the impact on battery drain is
also expected to be reduced for passive sensor platforms such
as the one used in this study. Besides, the use of monitoring
tools in the frame of a structured digital health approach will
further justify the power consumption side effect thanks to
demonstrated care benefits.

In this study, data acquisition, performed by means of the users’
own smartphones without any limitations or technological
eligibility criteria, reached a remarkable integrity of the globally

acquired data—14,970 hours of collected sample out of 17,845
hours of acquisition (84%)—that surpasses the performances
presented in previous publications [33], proving the potentialities
of passive sensing platforms. However, different behaviors
observed for subgroup A and B have some impacts on the data
integrity ratio with 96% and 60%, respectively, when kept
separately. Brand-related operating system policies still have
the most important impact on data integrity due to the observed
fragmentation of the Android services.

The availability of different sensor data allows us to describe
each subject in terms of physical activity (accelerometer data),
social interaction (calls, communications, and social network
data), and georeferenced data. This approach provides an overall
description of each user that can be used to continuously monitor
both the psychological and physical status, strengthening the
added value of this type of system which can provide a
comprehensive description of quality of life and well-being.
The wide range of data made available by monitoring platforms
can also be considered the necessary starting point for data
fusion approaches [34].

Preliminary analysis of the obtained results shows that the data
fusion between different sensors provides a valuable key to
interpret personal behavior. In particular, the demonstrated
capability of identifying anomalous days is strongly dependent
on the variability in content of the acquired data and can
represent a strong starting point for different clinical
applications. Furthermore, the habits about smartphone use
itself could be used as a valid behavioral descriptors. For
example, intrapersonal changes in frequency and duration of
smartphone daily usage or the inactivity period of the
smartphone due to the fact the user has not carried the
smartphone can be used as indirect behavioral descriptors. Thus,
the fusion between data acquired from different contexts gives
a comprehensive description considering all the aspects that
can be impacted by changing physical or psychological
condition. Also, the smartphone use parameters (eg, screen time,
battery use) can be used to normalize the calculated features,
reducing the bias due to different smartphone use that can impact
the reliability of the collected data.

Limitations
This study has been conducted on a limited number of subjects
with a focus on Android devices. A wider study should be
conducted including a wider pool of devices and subjects.
Furthermore, assessment of the approach on acute and chronic
patients is required to ensure generalizability in the clinical
application domain.

The use of mobile apps for health monitoring is still in an early
phase. To foster their acceptance at a wider level, making the
collected information routinely useful for the health care system,
clinical validations are necessary to select the best parameters
to investigate each pathological condition. However, analysis
of this aspect was outside the scope of this study, which focused
on assessment of perceived technical limitations to daily use.

Conclusion
In this paper, we present a study that contributes as an additional
step to broad distribution of smartphone-based monitoring
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platforms. We described the technical approach used to
implement a smartphone-based passive platform, its
characteristics, and the potentialities of this type of solution to
provide insights to patients and clinicians. The quality of the
acquired data and performance of the system are quite dependent
on the proprietary policies implemented by each smartphone
brand even if the acquisition through smartphone-embedded
sensors as presented in this article is able to provide a good
level of accuracy within an heterogenous pool of devices. The
preliminary analysis performed on the raw data collected
provides initial encouraging results that must be better validated
through well-structured clinical trials with the aim of
substantiating the clinical evidence of monitoring systems and
their capability of extracting indexes that could be used as
reliable descriptors and predictors of the disease path.

In the future, we will continue this work deepening the technical
validation of this type of platform to assess performance and
quality of the collected data on a wider study cohort including
the most recent Android updates and newest smartphone brands.

Furthermore, the research will focus on the assessment of the
data fusion potentialities for the extraction of valuable clinical
insights according to the characteristics of the collected data.
Additionally, as the performance of this type of monitoring
system is quite depending on the policies of each smartphone
producer, a wider discussion could address guidelines that could
match with the needs of mHealth in the near future.

Discussion about the repeatability and reliability of
smartphone-based passive sensing platforms should also drive
the debate about software as medical device and its applicability
in the current regulatory framework. This is still an open issue
[35] whose resolution will be necessary to drive the successful
use of monitoring systems as scalable and reliable supports for
the clinical practice. Also, ethical and security aspects will be
investigated to make the system as secure as possible by design.
Thus, a quantified technical characterization of the system in
terms of reproducibility and robustness of the provided
measurements will be necessary, and the proposed article could
be considered a good methodologic starting point.
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Abstract

Background: The term “plasmonic” describes the relationship between electromagnetic fields and metallic nanostructures.
Plasmon-based sensors have been used innovatively to accomplish different biomedical tasks, including detection of cancer.
Plasmonic sensors also have been used in biochip applications and biosensors and have the potential to be implemented as
implantable point-of-care devices. Many devices and methods discussed in the literature are based on surface plasmon resonance
(SPR) and localized SPR (LSPR). However, the mathematical background can be overwhelming for researchers at times.

Objective: This review article discusses the theory of SPR, simplifying the underlying physics and bypassing many equations
of SPR and LSPR. Moreover, we introduce and discuss the hybrid whispering gallery mode (WGM) sensing theory and its
applications.

Methods: A literature search in ScienceDirect was performed using keywords such as “surface plasmon resonance,” “localized
plasmon resonance,” and “whispering gallery mode/plasmonic.” The search results retrieved many articles, among which we
selected only those that presented a simple explanation of the SPR phenomena with prominent biomedical examples.

Results: SPR, LSPR, tilted fiber Bragg grating, and hybrid WGM phenomena were explained and examples on biosensing
applications were provided.

Conclusions: This minireview presents an overview of biosensor applications in the field of biomedicine and is intended for
researchers interested in starting to work in this field. The review presents the fundamental notions of plasmonic sensors and
hybrid WGM sensors, thereby allowing one to get familiar with the terminology and underlying complex formulations of linear
and nonlinear optics.

(JMIR Biomed Eng 2021;6(2):e17781)   doi:10.2196/17781

KEYWORDS

plasmonic; whispering gallery mode, microlasers, biomedical; sensors

Introduction

The term “plasmonic” describes the relationship between
electromagnetic fields and metallic nanostructures [1].
Plasmonic sensors have attracted great interest from researchers
and engineers alike. Surface plasmon resonances (SPRs) are
electromagnetic waves that are produced when a metal
nanostructure (ie, spherical or cylindrical) interacts with a

dielectric material [2,3]. The interesting optical characteristics
of surface plasmons have made many important contributions
to the field of medicine [4]. For example, highly sensitive
plasmonic sensors have been developed to detect many kinds
of cancers [5], and based on the SPR concept, a plasmonic
interferometer array–based sensor was developed for detecting
cancers [6].
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This paper discusses the physical principles in brief and
introduces several methods employing plasmonic systems such
as SPR and localized plasmon resonance. SPR methods have
attracted great interest in biomedical applications. This technique
entails observing small changes in the refractive index of the
combination of dielectric materials and metal [7]. In addition,
plasmonic nanoparticles and nanostructures have been used in
biosensing applications. These structures are typically made of
noble metals such as gold and silver [8,9]. The cytotoxicity of
these metals based on their concentrations are under
investigation and studies have shown potential biomedical
applications for these metals at certain concentrations [10,11].
These nanostructures are used in photoacoustic imaging and
phototherapy. For example, gold nanorods with varied light
absorption peaks have been used in imaging and theranostics
[12]. Plasmonic sensors also have been used in biochip
applications and biosensors [13-15]. Other techniques such as
localized plasmon resonance have also been utilized in various
biomedical applications [16]. In summary, plasmon-based
sensing methods are indispensable tools for sensing in the field
of biomedicine. Moreover, these devices have the potential to
be implemented as implantable point-of-care devices [17-19].

Methods

We performed a literature search on ScienceDirect for studies
on plasmonic and hybrid whispering gallery mode (WGM)
sensors and retrieved more than 3400 articles (both research
and review articles) published in the field of medicine and
dentistry. According to their characteristics, sensors were
grouped into 4 categories, namely, SPR, localized SPR (LSPR),
tilted fiber Bragg grating (TFBG), and hybrid WGM sensors.

The search for articles related to SPR and LSPR was
straightforward. The search results retrieved many articles,
among which we selected only those that presented a simple
explanation of the aforesaid phenomenon with prominent
biomedical examples. Within these 2 fields, a third field was
categorized (TFBG) due to the prominent presence of
biosensor-based devices that utilize the TFBG principle.

The keyword “whispering gallery mode” was associated with
the term “plasmon” and only retrieved 3 papers in the
pharmacology, toxicology, and pharmaceutical fields. Therefore,
for the latest category (ie, hybrid WGM sensors), the search
was expanded to the engineering field and eventually 35 reports
were identified. More papers were found in other fields such as
physics, astronomy, material science, and chemistry.

Results

Many papers, for example [20-33], describe the physical
principle of SPR, and provide the definitions and discuss
exemplary applications to illustrate how changing the refractive
index can be used for sensing through the plasmonic effect and
how the light is generally coupled to the biosensor. A total of
6 papers [23-27,29] illustrated that optical fibers can be used

in conjunction with SPR for sensing applications. Also, 13
papers were selected to discuss SPR-based metal nanostructures
[2,20-22,34-42].

LSPR is discussed based on 11 papers [36-39,43-49]. As before,
the physical principle and 2 representative examples are
provided to understand the main differences between LSPR and
the previous methods.

Although TFBG could be associated with the SPR-based optical
fiber sensing method, many different papers have been found
on this topic, and therefore, a separate category (ie, tilted fiber
Bragg grating) was created. Several papers are used to illustrate
the physical principle and applications.

Lastly, 20 papers were used to introduce the WGM and the
hybrid WGM sensing [34,35,40-42,50-63]. This type of sensing
methodology was not directly related to the medical literature,
but biomedical applications were proposed and the future
implementation of this method is likely to become the gold
standard in some areas. This review paper presents and discusses
the sensing techniques, including SPR, LSPR, TFBG, and hybrid
WGM, as well as their applications using representative
examples in the biomedical fields.

Discussion

Surface Plasmon Resonance
The term “plasmonic” describes the relationship between
metallic structures and dielectrics in an electric field. The
oscillations of electrons between a metal sample and a dielectric
field are referred to as SPR. The attenuated total reflection
(ATR) configuration is one of the prism coupling–based SPR
methods [20-22]. In ATR, a metal sheet is placed on top of a
light coupling substrate, such as glass (Figure 1). The light
source is then directed into a prism and a detector gathers the
resonances. Therefore, the resonance is displaced as a sharp dip
in the output spectrum due to the absorption of the surface
plasmon wave [20]. In a previous study [20], the ATR
configuration was used to monitor the refractive index of the
human skin as shown in Figure 1. Besides, this same
configuration has been used for monitoring humidity, where
the effect of the temperature on the sensor was analyzed. The
sensor consisted of a chalcogenide substrate layer, gold layer,
and buffer layer [22].

Optical fiber sensing with SPR has been used to detect different
kinds of biological targets such as antibodies. The phenomenon
of SPR occurs on the surface of the optical fiber [23]. Optical
fiber SPR methods have advantages over traditional prism
methods such as the ATR technique, which can be explained
as follows: optical sensors use remote sensing and optical fibers
have a reasonably lower cost and a more compact size. In
addition, these types of sensors provide label-free sensing with
high sensitivity [24]. In some cases, finite-element methods
were used to analyze the design of the optical fiber sensors
[25,26].
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Figure 1. Proposed SPR sensor probe setup for the determination of refractive index of human skin tissues. IB: incoming light beam; SB: sensed light
beam. Reproduced, with permission, from Elsevier [20].

Another class of optical fiber based on SPR uses photonic crystal
fibers, which have been used as alternatives to traditional optical
fibers. A notable advantage of these fibers is that they have
more controllable birefringence and therefore a better control
on light propagation and confinement directions [27]. Photonic
crystals are dielectric materials that have a periodicity (repeated
optical structure) in two or three dimensions. They are usually
fabricated by etching, which can form a photonic bandgap,
allowing to configure the light for different uses. The bandgap
depends on the structural content of the crystal, such as
refractive index and periodicity. The peak frequency shown in
the transmission spectrum depends on the shape and size of the
lattice defects [28].

Another method for SPR is the use of metallic nanostructures.
Gold and silver nanostructures have been extensively used in
past years, because they can be characterized by their size and
shape [29]. Silver nanorods are suitable for biomolecular
detection [30]. In addition, the iron oxide–gold nanoparticles
can experience both plasmonic and magnetic phenomena, which
allows for their use in different biomedical applications. One
advantage of this type of particle is that it can be moved due to
its magnetic property and still demonstrate plasmonic behavior.
This can tremendously facilitate the analysis of biological targets

[31]. In another study, a piece of portable SPR instrument was
developed using nanoparticles, which was able to detect
testosterone [32]. Another type of SPR sensor is the plasmonic
waveguide. Plasmonic waveguide designs tend to be suitable
for chipping applications. This is mainly because of their
compactness and the use of SPRs [33].

Localized Surface Plasmon Resonance
Localized SPR (LSPR) is the amplitude of oscillation of free
electrons that occurs at a certain frequency, which can be used
to detect biomolecules such as proteins in real time. In one
study, a gold nanoplasmonic sensor was used to detect cancer
markers in clinical samples. The sensor could also detect
proteins such as biotin (Figure 2). Besides, it has the potential
to detect DNA [43]. LSPR is mainly related to
nanostructure/nanoparticles such as nanorods. In addition, LSPR
does not require coupling, for example, with prims and is easy
to operate. Therefore, this method is widely used in the scientific
field [44]. The type of nanostructure used has an impact on the
strength of LSPR. For example, nanostars can be used for tuning
the sensors and promoting a strong LSPR signal. However,
structures such as nanorods and nanospheres have widely been
investigated for various imaging applications [45].
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Figure 2. Detection of protein-protein binding event on the gold nanostructure through LSPR peak shift. Licensed under Creative Commons Attribution
4.0 by the authors [43]. LSPR: localized surface plasmon resonance.

Gold nanorods have been used as plasmonic sensors for
detecting mercury. The deposition of mercury on the nanorods
was observed by monitoring the LSPR shifts using darkfield
microscopy [46]. Tao et al [47] used a gold and silver alloy
nanoplasmonic device to detect mercury concentrations. LSPR
has also been used to develop silk plasmonic absorber sensors
[36]. In this case, silk protein is used as an insulator in the
insulator–metal resonator configuration. Besides, the silk
plasmonic absorber sensor was applied as a glucose sensor,
which demonstrated a high sensitivity of 1200 nm/RIU
(refractive index unit) and high relative intensity change [36].
Metal nanoparticles have also been used for copper detection
in samples, mainly because LSPR is influenced by the
morphology and size of particles. Ding et al [37] used gold

nanoparticles to detect specific copper ions. Besides, LSPR
sensors have been integrated into optical fiber devices. Tu et al
[38] used hollow gold nanocages for LSPR optical fiber sensors.
The sensor had a sensitivity of around 1933 nm/RIU.
Furthermore, the sensitivity can be adjusted by changing the
aspect ratio of the gold nanocages. Yousuf et al [39] developed
a metal–insulator–metal configuration, which consisted of an
elliptical nanorod, rectangular nanoslabs, and a metallic grating.
Unser et al [48] developed a selective collagen gold
nanoparticle–based sensor, which works based on the plasmonic
coupling of the nanoparticles and the collagen fibrils. A redshift
(toward the right side of the spectrum) in the LSPR frequency
indicates the detection of glucose. Overall, the conjugates were
able to detect glucose and heparin (Figure 3).

Figure 3. The 2 sensing schemes addressed in this work using collagen-nanoparticle conjugates. (A) The native collagen is added before the gold
nanoparticles (AuNPs); (B) the collagen after it has been coated in AuNPs forming a collagen-nanoparticle scaffold; (C) in order to carry out biosensing
measurements of glucose, the collagen nanoparticle scaffold is crosslinked by glucose after it has been incubated at 35°C and the covalent product
glucosepane has formed; (D) lastly, the binding interactions between the collagen-nanoparticle scaffold and the heparin-coated 80-nm gold nanoparticles
are used to detect heparin. Licensed under Creative Commons Attribution 4.0 by the authors [48].

JMIR Biomed Eng 2021 | vol. 6 | iss. 2 | e17781 | p.33https://biomedeng.jmir.org/2021/2/e17781
(page number not for citation purposes)

Manzo et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Tilted Fiber Bragg Grating
In the configuration of TFBG, the refractive index modulation
planes are in a tilted position, which helps to measure very small
changes. These small changes can be fully analyzed by
observing the refractive index of the fiber. The tilted grating
disrupts the fiber’s symmetry, which causes some core-guided
lights to be coupled that allows the cladding mode resonances
to be observed. These resonances are observed as a comb of
sharp dips. It has been noted that these methods can greatly

increase quality factors (ie, Q values of up to 104) [64].

Therefore, this type of sensing method can be widely used for
biomedical applications in constricted spaces. Fiber optic–based
sensors allow easy sensor installation. In one study, TFBG was

used to detect the variation in protein in the urine of rats [65].
Results were obtained using a coated TFBG embedded inside
a microfluidic channel. The experiment was able to distinguish
different kinds of urine. Results demonstrated a clear
relationship between protein outflow and changes in the
refractive index of the urine. This approach showed
improvements in the detection of proteins at low concentrations
[65]. The TFBG SPR sensor has been used for the detection of
glycoprotein. Zhang et al [66] coated 10° TFBG with a 50-nm
gold film to stimulate SPR on a sensor surface as shown in
Figure 4. The sensor was able to distinguish between
nonglycoproteins and glycoproteins. The TFBG-based sensor
was also used to detect S-adenosyl-l-homocysteine (AdoHcy),
with concentrations of up to 1 nM detected [67].

Figure 4. (A) Schematic of the tilted fiber Bragg grating (TFBG)-based surface plasmon resonance (SPR) (TFBG-SPR) sensor. (B) Transmission
spectra of the sensor under P and S polarization. (C) Experimental setup. Licensed under Creative Commons Attribution 4.0 by the authors [66].

Hybrid Whispering Gallery Mode Sensors
WGM resonators have been used for different applications,
especially for high-sensitivity and resolution sensors [40,50-55].
The WGM microstructure can be made in various types of
shapes such as spheres, cylinders, and toroid [40,50-55]. The
WGMs of the resonator can be observed by coupling light to
the resonator. These electromagnetic waves circulate near the
internal edge of the resonator [54]. Therefore, the resonances
are generated by the total internal reflection of the confined
light and when the optical path of the light is a multiple integer
of the wavelength [55]. The WGM shift caused by an excitation
method can be used to determine the change in the measured
quantities [40,56]. The WGMs can be tuned by excitation

sources such as uniaxial stress and electric field. The theory is
that the WGMs propagate across the pole of the spheres. Then,
the deformation along the ends of the sphere and index of
refraction change modify the position of WGM resonances
[56,57]. WGM resonators have been developed using fused

silica. Fused silica resonators have a quality factor (Q) of 109

[58]. Silica resonators have been used, but have low sensitivity
because they exhibit high Young modulus and therefore high
resistance to any deformation. Different materials such as
polydimethylsiloxanes have been used to address the issue of
low sensitivity [59]. The WGM resonances can be observed
using different techniques. For example, a study used a
charge-coupled device camera and a spectrometer to observe
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the resonances, and therefore when doping WGM resonators
with a laser dye material, the hybrid functions as tiny lasers that
emit light under proper excitation conditions [40,50-55,67]. The
light emitted from the resonator could then be coupled into the
spectrometer using an optical lens setup [40]. Another study
discussed a novel fiber-taper coupling system that couples light
into microresonators. It has been observed that tapered optical
fibers promote high coupling efficiency to the resonators. The
experiment was completed with a silica microresonator coupled
to a tapered optical fiber [34]. In a similar study, a silica
microsphere resonator was critically coupled to a fiber taper.
The fiber taper is useful because it allows for simple focusing
and alignment of the input beam but uses the resonator as a
passive element, which limits the application due to the presence
of optical cablings [35,50].

Hybrid WGM methods have been analyzed in recent studies by
coupling a WGM resonator to metal nanoparticles [40-42]. One
study observed the effects of adding a gold nanoparticle to the
equator of a microparticle. The motivation for this hybrid
resonator was the need to rapidly detect pathogens. It works
based on the principle of creating a plasmonic effect near the
equator of the sensor, which enhances the already high-sensing
capabilities of WGM-based sensors [41]. Other studies have
used triangular gold nanoprisms coupled with WGM sensors.
In one case, a gold triangular nanoprism was placed inside a
microtoroid WGM resonator. It was shown that the tips of the
nanoprism had regions of great plasmonic enhancement. This
type of plasmonic enhancement permits the detection of larger
protein molecules with high precision as shown in Figure 5 [42].

Figure 5. Geometrical scheme of whispering gallery mode (WGM) microtoroid with a gold triangular nanoprism bound to its surface. Reproduced
from Nadgaran H, Afkhami Garaei M. Enhancement of a whispering gallery mode microtoroid resonator by plasmonic triangular gold nanoprism for
label-free biosensor applications. Journal of Applied Physics 2015 Jul 28;118(4):043101. [doi:10.1063/1.4927266], with the permission of AIP Publishing
[42].

In other studies, polymeric WGM–based spherical resonators
have been doped with metal nanoparticles to lower the energy
required to activate the sensor [40]. In this case, the plasmonic
effect enhanced light emission and lowered the energy threshold
required for the structure to lase with higher temporal duration
and more stable amplitude of the optical resonances, enabling
multiplexed capabilities [40].

Electrically controlled graphene has also been applied to
improve the performance of a hybrid silver–silica microdisk
resonator. Most notably, the Q factor (energy stored and energy
loss ratio) was improved and had a sensitivity higher than 1000
nm/RIU. Therefore, the hybrid sensor has a huge potential for
use as a refractometer [60]. In recent years, there has been a
growing interest in utilizing hybridization whispering gallery
microstructures with the plasmonic effect. The motivation for
this hybrid concept is that the single plasmonic sensing generates
low Q factors (higher losses), whereas the presence of a resonant
structure overcomes this limitation, thereby increasing the
sensitivity of these hybrid sensors [61]. One example of the

application of hybrid WGM biosensors is in the determination
of proteins. More specifically, it was used to quantify the amount
of bovine serum albumin that is absorbed by the gold
nanoparticles [62], making the hybrid sensor a perfect candidate
for combining plasmonic and high-sensitivity resonant
microstructures. In addition, Huckabay et al [63] used WGM
resonators to analyze a biomarker for ovarian cancer (CA-125)
in a buffer.

Some Other Relevant Examples of SPR/TFBG
Applications in the Biomedical Field
SPR is one of the prominent methods used for biomedical
applications. Sharma [68] used a sensor based on SPR to detect
the concentration of hemoglobin in human blood. Hemoglobin
detection is an important medical procedure that has an impact
on several clinical methods. Overall, this method of analyzing
blood using SPR will lead to its use in blood analysis. Luo et
al [69] used a plasmonic method employing gold nanoparticles,
improving detection of tumor-targeted cells during X-ray
radiotherapy (Figure 6).
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Figure 6. Schematic illustration of targeted prostate cancer radiotherapy using prostate-specific membrane antigen (PSMA)-targeted gold nanoparticles
(AuNPs) of various sizes. With permission from the Royal Society of Chemistry, 2019 [69].

Others have used gold nanorods to detect breast cancer
biomarkers [5,70]. In addition to gold and silver, a few new
plasmonic sensors based on different metals, such as
magnesium, have been developed recently [71]. TFBG-based
sensors have also been used to detect small biomarkers to
diagnose lung cancers. The sensor was able to monitor the
amplitude shift of sensitive spectrum modes of the TFBG SPR
[72]. Furthermore, an immunosensor was used to detect
biomarkers for risk stratification and prognosis of heart failure
[73]. The detection of drugs and metabolites in patients currently
remains a challenge and requires novel tools and methodologies.
One study developed a diagnostic system based on silver
nanoshells to detect metabolites in biofluids and identify whether
patients had postoperative brain infection using embedded gold
nanoparticles [74]. By contrast, ELISAs have been used to detect
disease biomarkers at ultra-low concentrations. One study used
this technique to detect HIV-2 capsid antigen p24 and
prostate-specific antigen. This type of cost-effective technique
can assist developing countries that require better methods to
detect HIV infections. Therefore, it was noted that the plasmonic
ELISA is a versatile method of detection for application in
biomedical fields [19,75]. Silver nanocubes have also been
applied for detecting lung cancer biomarkers, such as
microRNAs. microRNAs, which are known to act as tumor

suppressors, can be used for biomedical diagnosis. Zhang et al
[49] developed a plasmonic nanoprobe technique to rapidly
detect miR-21 biomarkers. miR-21 was used as a biomarker for
diagnosing lung cancer early. The technique was based on the
LSRP spectral shift that was caused by a change in the refractive
index. Plasmon-based sensors are very versatile and in the near
future it will be possible to see robust and cheap point-of-care
devices for various daily monitoring and diagnosis of different
medical conditions [19].

Conclusions and Future Prospects
In this brief review paper, different plasmonic sensing methods
and biosensing applications were discussed. Overall, biosensing
is an attractive research area and novel sensing methods are
being developed rapidly. Biosensing is a very powerful
technique and will have a substantial impact on the biomedical
community. This review summarized current methods and
results that have influenced applications based on plasmonic
biosensors. It was observed that the SPR is a notable principle
for biosensing. This method is used for different applications
such as for detection of sweat loss, biomarkers, and even
hemoglobin concentration in human blood. Plasmon-based
biosensors are versatile and will continue to be investigated and
developed with technological advancements in the future to
improve selectivity and robustness.
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