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Abstract

Background: The term “plasmonic” describes the relationship between electromagnetic fields and metallic nanostructures.
Plasmon-based sensors have been used innovatively to accomplish different biomedical tasks, including detection of cancer.
Plasmonic sensors also have been used in biochip applications and biosensors and have the potential to be implemented as
implantable point-of-care devices. Many devices and methods discussed in the literature are based on surface plasmon resonance
(SPR) and localized SPR (LSPR). However, the mathematical background can be overwhelming for researchers at times.

Objective: This review article discusses the theory of SPR, simplifying the underlying physics and bypassing many equations
of SPR and LSPR. Moreover, we introduce and discuss the hybrid whispering gallery mode (WGM) sensing theory and its
applications.

Methods: A literature search in ScienceDirect was performed using keywords such as “surface plasmon resonance,” “localized
plasmon resonance,” and “whispering gallery mode/plasmonic.” The search results retrieved many articles, among which we
selected only those that presented a simple explanation of the SPR phenomena with prominent biomedical examples.

Results: SPR, LSPR, tilted fiber Bragg grating, and hybrid WGM phenomena were explained and examples on biosensing
applications were provided.

Conclusions: This minireview presents an overview of biosensor applications in the field of biomedicine and is intended for
researchers interested in starting to work in this field. The review presents the fundamental notions of plasmonic sensors and
hybrid WGM sensors, thereby allowing one to get familiar with the terminology and underlying complex formulations of linear
and nonlinear optics.

(JMIR Biomed Eng 2021;6(2):e17781)   doi:10.2196/17781
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Introduction

The term “plasmonic” describes the relationship between
electromagnetic fields and metallic nanostructures [1].
Plasmonic sensors have attracted great interest from researchers
and engineers alike. Surface plasmon resonances (SPRs) are
electromagnetic waves that are produced when a metal
nanostructure (ie, spherical or cylindrical) interacts with a

dielectric material [2,3]. The interesting optical characteristics
of surface plasmons have made many important contributions
to the field of medicine [4]. For example, highly sensitive
plasmonic sensors have been developed to detect many kinds
of cancers [5], and based on the SPR concept, a plasmonic
interferometer array–based sensor was developed for detecting
cancers [6].
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This paper discusses the physical principles in brief and
introduces several methods employing plasmonic systems such
as SPR and localized plasmon resonance. SPR methods have
attracted great interest in biomedical applications. This technique
entails observing small changes in the refractive index of the
combination of dielectric materials and metal [7]. In addition,
plasmonic nanoparticles and nanostructures have been used in
biosensing applications. These structures are typically made of
noble metals such as gold and silver [8,9]. The cytotoxicity of
these metals based on their concentrations are under
investigation and studies have shown potential biomedical
applications for these metals at certain concentrations [10,11].
These nanostructures are used in photoacoustic imaging and
phototherapy. For example, gold nanorods with varied light
absorption peaks have been used in imaging and theranostics
[12]. Plasmonic sensors also have been used in biochip
applications and biosensors [13-15]. Other techniques such as
localized plasmon resonance have also been utilized in various
biomedical applications [16]. In summary, plasmon-based
sensing methods are indispensable tools for sensing in the field
of biomedicine. Moreover, these devices have the potential to
be implemented as implantable point-of-care devices [17-19].

Methods

We performed a literature search on ScienceDirect for studies
on plasmonic and hybrid whispering gallery mode (WGM)
sensors and retrieved more than 3400 articles (both research
and review articles) published in the field of medicine and
dentistry. According to their characteristics, sensors were
grouped into 4 categories, namely, SPR, localized SPR (LSPR),
tilted fiber Bragg grating (TFBG), and hybrid WGM sensors.

The search for articles related to SPR and LSPR was
straightforward. The search results retrieved many articles,
among which we selected only those that presented a simple
explanation of the aforesaid phenomenon with prominent
biomedical examples. Within these 2 fields, a third field was
categorized (TFBG) due to the prominent presence of
biosensor-based devices that utilize the TFBG principle.

The keyword “whispering gallery mode” was associated with
the term “plasmon” and only retrieved 3 papers in the
pharmacology, toxicology, and pharmaceutical fields. Therefore,
for the latest category (ie, hybrid WGM sensors), the search
was expanded to the engineering field and eventually 35 reports
were identified. More papers were found in other fields such as
physics, astronomy, material science, and chemistry.

Results

Many papers, for example [20-33], describe the physical
principle of SPR, and provide the definitions and discuss
exemplary applications to illustrate how changing the refractive
index can be used for sensing through the plasmonic effect and
how the light is generally coupled to the biosensor. A total of
6 papers [23-27,29] illustrated that optical fibers can be used

in conjunction with SPR for sensing applications. Also, 13
papers were selected to discuss SPR-based metal nanostructures
[2,20-22,34-42].

LSPR is discussed based on 11 papers [36-39,43-49]. As before,
the physical principle and 2 representative examples are
provided to understand the main differences between LSPR and
the previous methods.

Although TFBG could be associated with the SPR-based optical
fiber sensing method, many different papers have been found
on this topic, and therefore, a separate category (ie, tilted fiber
Bragg grating) was created. Several papers are used to illustrate
the physical principle and applications.

Lastly, 20 papers were used to introduce the WGM and the
hybrid WGM sensing [34,35,40-42,50-63]. This type of sensing
methodology was not directly related to the medical literature,
but biomedical applications were proposed and the future
implementation of this method is likely to become the gold
standard in some areas. This review paper presents and discusses
the sensing techniques, including SPR, LSPR, TFBG, and hybrid
WGM, as well as their applications using representative
examples in the biomedical fields.

Discussion

Surface Plasmon Resonance
The term “plasmonic” describes the relationship between
metallic structures and dielectrics in an electric field. The
oscillations of electrons between a metal sample and a dielectric
field are referred to as SPR. The attenuated total reflection
(ATR) configuration is one of the prism coupling–based SPR
methods [20-22]. In ATR, a metal sheet is placed on top of a
light coupling substrate, such as glass (Figure 1). The light
source is then directed into a prism and a detector gathers the
resonances. Therefore, the resonance is displaced as a sharp dip
in the output spectrum due to the absorption of the surface
plasmon wave [20]. In a previous study [20], the ATR
configuration was used to monitor the refractive index of the
human skin as shown in Figure 1. Besides, this same
configuration has been used for monitoring humidity, where
the effect of the temperature on the sensor was analyzed. The
sensor consisted of a chalcogenide substrate layer, gold layer,
and buffer layer [22].

Optical fiber sensing with SPR has been used to detect different
kinds of biological targets such as antibodies. The phenomenon
of SPR occurs on the surface of the optical fiber [23]. Optical
fiber SPR methods have advantages over traditional prism
methods such as the ATR technique, which can be explained
as follows: optical sensors use remote sensing and optical fibers
have a reasonably lower cost and a more compact size. In
addition, these types of sensors provide label-free sensing with
high sensitivity [24]. In some cases, finite-element methods
were used to analyze the design of the optical fiber sensors
[25,26].
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Figure 1. Proposed SPR sensor probe setup for the determination of refractive index of human skin tissues. IB: incoming light beam; SB: sensed light
beam. Reproduced, with permission, from Elsevier [20].

Another class of optical fiber based on SPR uses photonic crystal
fibers, which have been used as alternatives to traditional optical
fibers. A notable advantage of these fibers is that they have
more controllable birefringence and therefore a better control
on light propagation and confinement directions [27]. Photonic
crystals are dielectric materials that have a periodicity (repeated
optical structure) in two or three dimensions. They are usually
fabricated by etching, which can form a photonic bandgap,
allowing to configure the light for different uses. The bandgap
depends on the structural content of the crystal, such as
refractive index and periodicity. The peak frequency shown in
the transmission spectrum depends on the shape and size of the
lattice defects [28].

Another method for SPR is the use of metallic nanostructures.
Gold and silver nanostructures have been extensively used in
past years, because they can be characterized by their size and
shape [29]. Silver nanorods are suitable for biomolecular
detection [30]. In addition, the iron oxide–gold nanoparticles
can experience both plasmonic and magnetic phenomena, which
allows for their use in different biomedical applications. One
advantage of this type of particle is that it can be moved due to
its magnetic property and still demonstrate plasmonic behavior.
This can tremendously facilitate the analysis of biological targets

[31]. In another study, a piece of portable SPR instrument was
developed using nanoparticles, which was able to detect
testosterone [32]. Another type of SPR sensor is the plasmonic
waveguide. Plasmonic waveguide designs tend to be suitable
for chipping applications. This is mainly because of their
compactness and the use of SPRs [33].

Localized Surface Plasmon Resonance
Localized SPR (LSPR) is the amplitude of oscillation of free
electrons that occurs at a certain frequency, which can be used
to detect biomolecules such as proteins in real time. In one
study, a gold nanoplasmonic sensor was used to detect cancer
markers in clinical samples. The sensor could also detect
proteins such as biotin (Figure 2). Besides, it has the potential
to detect DNA [43]. LSPR is mainly related to
nanostructure/nanoparticles such as nanorods. In addition, LSPR
does not require coupling, for example, with prims and is easy
to operate. Therefore, this method is widely used in the scientific
field [44]. The type of nanostructure used has an impact on the
strength of LSPR. For example, nanostars can be used for tuning
the sensors and promoting a strong LSPR signal. However,
structures such as nanorods and nanospheres have widely been
investigated for various imaging applications [45].
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Figure 2. Detection of protein-protein binding event on the gold nanostructure through LSPR peak shift. Licensed under Creative Commons Attribution
4.0 by the authors [43]. LSPR: localized surface plasmon resonance.

Gold nanorods have been used as plasmonic sensors for
detecting mercury. The deposition of mercury on the nanorods
was observed by monitoring the LSPR shifts using darkfield
microscopy [46]. Tao et al [47] used a gold and silver alloy
nanoplasmonic device to detect mercury concentrations. LSPR
has also been used to develop silk plasmonic absorber sensors
[36]. In this case, silk protein is used as an insulator in the
insulator–metal resonator configuration. Besides, the silk
plasmonic absorber sensor was applied as a glucose sensor,
which demonstrated a high sensitivity of 1200 nm/RIU
(refractive index unit) and high relative intensity change [36].
Metal nanoparticles have also been used for copper detection
in samples, mainly because LSPR is influenced by the
morphology and size of particles. Ding et al [37] used gold

nanoparticles to detect specific copper ions. Besides, LSPR
sensors have been integrated into optical fiber devices. Tu et al
[38] used hollow gold nanocages for LSPR optical fiber sensors.
The sensor had a sensitivity of around 1933 nm/RIU.
Furthermore, the sensitivity can be adjusted by changing the
aspect ratio of the gold nanocages. Yousuf et al [39] developed
a metal–insulator–metal configuration, which consisted of an
elliptical nanorod, rectangular nanoslabs, and a metallic grating.
Unser et al [48] developed a selective collagen gold
nanoparticle–based sensor, which works based on the plasmonic
coupling of the nanoparticles and the collagen fibrils. A redshift
(toward the right side of the spectrum) in the LSPR frequency
indicates the detection of glucose. Overall, the conjugates were
able to detect glucose and heparin (Figure 3).

Figure 3. The 2 sensing schemes addressed in this work using collagen-nanoparticle conjugates. (A) The native collagen is added before the gold
nanoparticles (AuNPs); (B) the collagen after it has been coated in AuNPs forming a collagen-nanoparticle scaffold; (C) in order to carry out biosensing
measurements of glucose, the collagen nanoparticle scaffold is crosslinked by glucose after it has been incubated at 35°C and the covalent product
glucosepane has formed; (D) lastly, the binding interactions between the collagen-nanoparticle scaffold and the heparin-coated 80-nm gold nanoparticles
are used to detect heparin. Licensed under Creative Commons Attribution 4.0 by the authors [48].
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Tilted Fiber Bragg Grating
In the configuration of TFBG, the refractive index modulation
planes are in a tilted position, which helps to measure very small
changes. These small changes can be fully analyzed by
observing the refractive index of the fiber. The tilted grating
disrupts the fiber’s symmetry, which causes some core-guided
lights to be coupled that allows the cladding mode resonances
to be observed. These resonances are observed as a comb of
sharp dips. It has been noted that these methods can greatly

increase quality factors (ie, Q values of up to 104) [64].

Therefore, this type of sensing method can be widely used for
biomedical applications in constricted spaces. Fiber optic–based
sensors allow easy sensor installation. In one study, TFBG was

used to detect the variation in protein in the urine of rats [65].
Results were obtained using a coated TFBG embedded inside
a microfluidic channel. The experiment was able to distinguish
different kinds of urine. Results demonstrated a clear
relationship between protein outflow and changes in the
refractive index of the urine. This approach showed
improvements in the detection of proteins at low concentrations
[65]. The TFBG SPR sensor has been used for the detection of
glycoprotein. Zhang et al [66] coated 10° TFBG with a 50-nm
gold film to stimulate SPR on a sensor surface as shown in
Figure 4. The sensor was able to distinguish between
nonglycoproteins and glycoproteins. The TFBG-based sensor
was also used to detect S-adenosyl-l-homocysteine (AdoHcy),
with concentrations of up to 1 nM detected [67].

Figure 4. (A) Schematic of the tilted fiber Bragg grating (TFBG)-based surface plasmon resonance (SPR) (TFBG-SPR) sensor. (B) Transmission
spectra of the sensor under P and S polarization. (C) Experimental setup. Licensed under Creative Commons Attribution 4.0 by the authors [66].

Hybrid Whispering Gallery Mode Sensors
WGM resonators have been used for different applications,
especially for high-sensitivity and resolution sensors [40,50-55].
The WGM microstructure can be made in various types of
shapes such as spheres, cylinders, and toroid [40,50-55]. The
WGMs of the resonator can be observed by coupling light to
the resonator. These electromagnetic waves circulate near the
internal edge of the resonator [54]. Therefore, the resonances
are generated by the total internal reflection of the confined
light and when the optical path of the light is a multiple integer
of the wavelength [55]. The WGM shift caused by an excitation
method can be used to determine the change in the measured
quantities [40,56]. The WGMs can be tuned by excitation

sources such as uniaxial stress and electric field. The theory is
that the WGMs propagate across the pole of the spheres. Then,
the deformation along the ends of the sphere and index of
refraction change modify the position of WGM resonances
[56,57]. WGM resonators have been developed using fused

silica. Fused silica resonators have a quality factor (Q) of 109

[58]. Silica resonators have been used, but have low sensitivity
because they exhibit high Young modulus and therefore high
resistance to any deformation. Different materials such as
polydimethylsiloxanes have been used to address the issue of
low sensitivity [59]. The WGM resonances can be observed
using different techniques. For example, a study used a
charge-coupled device camera and a spectrometer to observe
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the resonances, and therefore when doping WGM resonators
with a laser dye material, the hybrid functions as tiny lasers that
emit light under proper excitation conditions [40,50-55,67]. The
light emitted from the resonator could then be coupled into the
spectrometer using an optical lens setup [40]. Another study
discussed a novel fiber-taper coupling system that couples light
into microresonators. It has been observed that tapered optical
fibers promote high coupling efficiency to the resonators. The
experiment was completed with a silica microresonator coupled
to a tapered optical fiber [34]. In a similar study, a silica
microsphere resonator was critically coupled to a fiber taper.
The fiber taper is useful because it allows for simple focusing
and alignment of the input beam but uses the resonator as a
passive element, which limits the application due to the presence
of optical cablings [35,50].

Hybrid WGM methods have been analyzed in recent studies by
coupling a WGM resonator to metal nanoparticles [40-42]. One
study observed the effects of adding a gold nanoparticle to the
equator of a microparticle. The motivation for this hybrid
resonator was the need to rapidly detect pathogens. It works
based on the principle of creating a plasmonic effect near the
equator of the sensor, which enhances the already high-sensing
capabilities of WGM-based sensors [41]. Other studies have
used triangular gold nanoprisms coupled with WGM sensors.
In one case, a gold triangular nanoprism was placed inside a
microtoroid WGM resonator. It was shown that the tips of the
nanoprism had regions of great plasmonic enhancement. This
type of plasmonic enhancement permits the detection of larger
protein molecules with high precision as shown in Figure 5 [42].

Figure 5. Geometrical scheme of whispering gallery mode (WGM) microtoroid with a gold triangular nanoprism bound to its surface. Reproduced
from Nadgaran H, Afkhami Garaei M. Enhancement of a whispering gallery mode microtoroid resonator by plasmonic triangular gold nanoprism for
label-free biosensor applications. Journal of Applied Physics 2015 Jul 28;118(4):043101. [doi:10.1063/1.4927266], with the permission of AIP Publishing
[42].

In other studies, polymeric WGM–based spherical resonators
have been doped with metal nanoparticles to lower the energy
required to activate the sensor [40]. In this case, the plasmonic
effect enhanced light emission and lowered the energy threshold
required for the structure to lase with higher temporal duration
and more stable amplitude of the optical resonances, enabling
multiplexed capabilities [40].

Electrically controlled graphene has also been applied to
improve the performance of a hybrid silver–silica microdisk
resonator. Most notably, the Q factor (energy stored and energy
loss ratio) was improved and had a sensitivity higher than 1000
nm/RIU. Therefore, the hybrid sensor has a huge potential for
use as a refractometer [60]. In recent years, there has been a
growing interest in utilizing hybridization whispering gallery
microstructures with the plasmonic effect. The motivation for
this hybrid concept is that the single plasmonic sensing generates
low Q factors (higher losses), whereas the presence of a resonant
structure overcomes this limitation, thereby increasing the
sensitivity of these hybrid sensors [61]. One example of the

application of hybrid WGM biosensors is in the determination
of proteins. More specifically, it was used to quantify the amount
of bovine serum albumin that is absorbed by the gold
nanoparticles [62], making the hybrid sensor a perfect candidate
for combining plasmonic and high-sensitivity resonant
microstructures. In addition, Huckabay et al [63] used WGM
resonators to analyze a biomarker for ovarian cancer (CA-125)
in a buffer.

Some Other Relevant Examples of SPR/TFBG
Applications in the Biomedical Field
SPR is one of the prominent methods used for biomedical
applications. Sharma [68] used a sensor based on SPR to detect
the concentration of hemoglobin in human blood. Hemoglobin
detection is an important medical procedure that has an impact
on several clinical methods. Overall, this method of analyzing
blood using SPR will lead to its use in blood analysis. Luo et
al [69] used a plasmonic method employing gold nanoparticles,
improving detection of tumor-targeted cells during X-ray
radiotherapy (Figure 6).
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Figure 6. Schematic illustration of targeted prostate cancer radiotherapy using prostate-specific membrane antigen (PSMA)-targeted gold nanoparticles
(AuNPs) of various sizes. With permission from the Royal Society of Chemistry, 2019 [69].

Others have used gold nanorods to detect breast cancer
biomarkers [5,70]. In addition to gold and silver, a few new
plasmonic sensors based on different metals, such as
magnesium, have been developed recently [71]. TFBG-based
sensors have also been used to detect small biomarkers to
diagnose lung cancers. The sensor was able to monitor the
amplitude shift of sensitive spectrum modes of the TFBG SPR
[72]. Furthermore, an immunosensor was used to detect
biomarkers for risk stratification and prognosis of heart failure
[73]. The detection of drugs and metabolites in patients currently
remains a challenge and requires novel tools and methodologies.
One study developed a diagnostic system based on silver
nanoshells to detect metabolites in biofluids and identify whether
patients had postoperative brain infection using embedded gold
nanoparticles [74]. By contrast, ELISAs have been used to detect
disease biomarkers at ultra-low concentrations. One study used
this technique to detect HIV-2 capsid antigen p24 and
prostate-specific antigen. This type of cost-effective technique
can assist developing countries that require better methods to
detect HIV infections. Therefore, it was noted that the plasmonic
ELISA is a versatile method of detection for application in
biomedical fields [19,75]. Silver nanocubes have also been
applied for detecting lung cancer biomarkers, such as
microRNAs. microRNAs, which are known to act as tumor

suppressors, can be used for biomedical diagnosis. Zhang et al
[49] developed a plasmonic nanoprobe technique to rapidly
detect miR-21 biomarkers. miR-21 was used as a biomarker for
diagnosing lung cancer early. The technique was based on the
LSRP spectral shift that was caused by a change in the refractive
index. Plasmon-based sensors are very versatile and in the near
future it will be possible to see robust and cheap point-of-care
devices for various daily monitoring and diagnosis of different
medical conditions [19].

Conclusions and Future Prospects
In this brief review paper, different plasmonic sensing methods
and biosensing applications were discussed. Overall, biosensing
is an attractive research area and novel sensing methods are
being developed rapidly. Biosensing is a very powerful
technique and will have a substantial impact on the biomedical
community. This review summarized current methods and
results that have influenced applications based on plasmonic
biosensors. It was observed that the SPR is a notable principle
for biosensing. This method is used for different applications
such as for detection of sweat loss, biomarkers, and even
hemoglobin concentration in human blood. Plasmon-based
biosensors are versatile and will continue to be investigated and
developed with technological advancements in the future to
improve selectivity and robustness.
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Abstract

Numerous virtual reality (VR) systems have received regulatory clearance as therapeutic medical devices for in-clinic and at-home
use. These systems enable remote patient monitoring of clinician-prescribed rehabilitation exercises, although most of these
systems are nonimmersive. With the expanding availability of affordable and easy-to-use head-mounted display (HMD)-based
VR, there is growing interest in immersive VR therapies. However, HMD-based VR presents unique risks. Following standards
for medical device development, the objective of this paper is to demonstrate a risk management process for a generic immersive
VR system for remote patient monitoring of at-home therapy. Regulations, standards, and guidance documents applicable to
therapeutic VR design are reviewed to provide necessary background. Generic requirements for an immersive VR system for
home use and remote patient monitoring are identified using predicate analysis and specified for both patients and clinicians using
user stories. To analyze risk, failure modes and effects analysis, adapted for medical device risk management, is performed on
the generic user stories and a set of risk control measures is proposed. Many therapeutic applications of VR would be regulated
as a medical device if they were to be commercially marketed. Understanding relevant standards for design and risk management
early in the development process can help expedite the availability of innovative VR therapies that are safe and effective.

(JMIR Biomed Eng 2021;6(2):e26942)   doi:10.2196/26942

KEYWORDS

virtual reality; telerehabilitation; remote patient monitoring; medical device design; safety; medical device regulation; risk
assessment; failure modes and effects analysis

Introduction

Virtual Reality as a Medical Device
Therapeutic virtual reality (VR) offers tremendous potential to
provide innovative treatments in a broad range of clinical areas,
including mental health disorders [1] (eg, traumatic stress [2,3],
anxiety disorders [4], depression [5], schizophrenia [6], eating
disorders [7]), pain management [8,9], motor and cognitive
rehabilitation of neurodegenerative disorders [10,11], traumatic
brain injury [12], stroke [13,14], and cognitive disorders [15,16].

While a wide variety of approaches have been referred to as
VR in the literature, VR is popularly understood to include the
use of a wearable head-mounted display (HMD) that creates a

sense of being immersed in a virtual environment. HMD-based
immersive VR has only recently begun to approach the same
level of affordability as nonimmersive VR. The sense of
presence that immersive VR offers has considerable potential
to differentiate the impact of VR in clinical contexts, including
telerehabilitation, moving forward [17-19]. Critically, immersive
VR offers the potential for greater ecological validity in therapy,
allowing the brain to respond to stimuli similar to how it does
in the real world [20-24].

As VR interventions are developed and evaluated by clinicians
and patients—particularly in an at-home environment—it is
essential to evaluate the regulatory requirements that may restrict
the translation of such technologies to routine clinical practice.
For VR interventions that will be classified as a medical device,
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it is strongly recommended that requirements be identified early
in the design and development phase to prevent costly
reworkings of the system, software, and associated
documentation [25-27].

While VR interventions include both a hardware and software
component, many proposed VR interventions (particularly those
for at-home use) leverage off-the-shelf (OTS) VR technology.
In the most recent wave of technology, this includes the
standalone VR headsets with 6-degrees of freedom (6-DOF)
tracking, including the Vive Focus Plus, Oculus Quest, and Pico
Neo. While designed primarily for nonmedical purposes, this
does not restrict their use as a component of a medical device.
A consumer VR headset is transformed into a medical device
by virtue of the intended use of the software it is running. While
additional, built-for-purpose hardware components may be
introduced into a therapeutic VR system (eg, custom sensors,
adaptive controllers), the software component is necessary and
essential for transforming OTS VR devices into a medical
device, and thus, can be considered as part of the larger category
of software as a medical device (SaMD) [28].

While the design, development, testing, and postmarket
surveillance of therapeutic VR include many of the same
considerations, HMD-based VR presents unique challenges in
comparison to the broader category of SaMD. In addition to the
potentially hazardous situations introduced by wearing an
occlusive headset that can induce side effects ranging from
simulator sickness [29,30] to seizure, fully immersive VR
introduces novel challenges for interface design among a
population that will typically have little-to-no experience with
the technology [31-33]. Thus, it is becoming useful to discuss
the requirements of VR as a medical device (VRaMD) in their
own right.

Medical Device Quality Requirements
To understand what regulatory requirements may be for a given
VR intervention, it is important to first consider whether the
intended use is indeed classified as a “medical device” in a
particular jurisdiction. The Global Harmonization Task Force
published a guidance document toward an internationally
recognized definition of a medical device [34]. In the United
States, a medical device is defined in section 201(h) of the Food,
Drug, and Cosmetic Act [35].

The US Food and Drug Administration (FDA) has published
guidance [36] that outlines certain software functions that may
meet the definition of a medical device, but as they pose a lower
risk to the public, the FDA intends to exercise enforcement
discretion. That is, the FDA will not enforce medical device
regulatory requirements on this software. Included in the type
of software is one that “use video and video games to motivate
patients to do their physical therapy exercises at home.” With
that said, this guidance document also states that software
becomes a regulated medical device by performing
patient-specific analysis and providing patient-specific diagnosis
or treatment recommendations. Furthermore, there are specific
regulatory classifications in the United States that classify
“interactive rehabilitation exercise devices” as Class II medical
devices, providing a clear regulatory path for a VRaMD intended
to provide rehabilitation. Ultimately, manufacturers interested

in commercialization in the United States are encouraged to
contact the FDA to determine what, if any, regulatory
requirements may apply.

Assuming the intended use of a VRaMD is determined to be a
regulated medical device in a particular jurisdiction, it is
important to understand regulatory requirements early in the
device and development process. When developing a novel
medical device, those without a background in medical device
engineering may assume the burden to demonstrate the safety
and effectiveness of a medical device is the domain of clinical
investigators. However, it is important to note that the universal
expectation of regulatory bodies is that safety and effectiveness
be built into the system in early design and development stages.
In the United States, Title 21 of the Code of Federal Regulations
(CFR) [37] provides specific regulations that define the
minimum current good manufacturing practice (cGMP)
requirements for drugs, biologics, and medical devices. The
cGMP regulations, also known as the quality system regulation
(QSR), are based on the “quality-by-design” principle, which
calls for quality to be built into the product, as testing alone
cannot be relied on to ensure product quality [38].

cGMP regulations require establishment of a quality
management system (QMS). The QMS impacts an
organization’s daily activities at every level, including product
planning, design, development, testing, and change management.
Software professionals coming from a nonregulated software
development industry may find it difficult to adapt to the
planning and documentation requirements imposed by quality
requirements [39,40]. Quality requirements for medical device
software development may seem to conflict with agile software
development methodologies and impose a large amount of
overhead when developing medical device software [41]. Still,
it is critical that software professionals confront the challenge
of medical device quality requirements head on not only to be
compliant with regulations, but also to ensure medical device
software is safe and effective for its intended purpose. For
medical device software, there are clear expectations for how
to document the entire software development life cycle, from
establishing user needs through to verification, validation,
postmarket surveillance, and change management.

Quality requirements for medical devices include the integration
of risk management across the product life cycle. As a
component of risk management, a systematic risk assessment
for a device must be performed with risk controls implemented
and verified to mitigate unacceptable device hazards.
Implementing risk management as part of the requirements
analysis and design process of an SaMD can aid in improving
designs early in the development process. This can prevent the
need for reworking solutions and changing project scope late
in the development process when changes can be more costly.
In the case of home-use VRaMD, risk analysis can reveal new
system requirements that can help improve system usability and
adoption while mitigating risks to patients.

Objectives of This Paper
This paper reviews regulations, standards, guidance documents,
and technical reports that can be relevant for the design and
development of a VRaMD. To demonstrate the application of
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these standards in the design and development process, the
requirements for a generic home-use VRaMD system for
at-home therapy are specified. A risk assessment is performed
on the requirements to derive a set of risk control measures.
Methods for verifying these risk control measures are discussed.
The objectives of this paper are to:

1. Provide an overview of medical device standards that are
applicable to the development of VRaMD intended for
home use and remote patient monitoring.

2. Analyze the requirements of a generic home-use VRaMD
and demonstrate how risk management can be used to
identify and evaluate hazards, determine appropriate risk
control measures, and limit potentially hazardous situations.

Design Standards Applicable to VRaMD

General Quality Management System Requirements
Medical device regulations are the legally defined requirements
within a jurisdiction for how medical device manufacturers
must operate. Requirements for a particular medical device can
be determined by classifying the device within the risk-based
classification system of a particular jurisdiction. One of the
most fundamental requirements of a medical device organization
is implementation of a QMS [42]. A QMS is a formal system
that documents policies, procedures, and responsibility to
manage product or process quality. QMS requirements are
specified by regulatory bodies to ensure medical devices will
be safe and perform as intended. It is important to note that
while QMS regulations and standards outline a range of specific
requirements, they are typically broadly defined to allow a
variety of ways an organization can achieve their goals. Thus,
the scope and complexity of an organization’s QMS can vary
widely depending on the device type, organization size and
structure, and the nature of specific regulatory requirements.

While the requirement that a QMS be certified varies depending
on regulatory jurisdiction and device type, to achieve broad
recognition many manufacturers follow ISO 13485:2016 [43].
ISO 13485 specifies requirements for a QMS that can be used
by an organization involved in one or more stages of the life
cycle of a medical device. These stages can include design,
development, and production of a medical device, as well as
storage, distribution, installation, technical support, servicing,
decommission, and disposal. In the United States, adherence to
ISO 13485 is not required, although the US QSR is generally
aligned with this standard.

An important aspect of the QMS relevant for VRaMD
development is the concept of design controls. Design controls
are a set of policies and practices intended to ensure consistent
translation of input requirements into a product that meets those
requirements. Both ISO 13485 and FDA QSR set out a series
of requirements for design controls. Design control is an iterative
process following a structured methodology to ensure the device
under development will be safe, effective, and meet end-user
needs. The design control process is often illustrated with the
V-model [44]. Design control requirements specify a general
framework where various deliverables are generated and
approved at each stage of the design and development process

through to device verification and validation activities. These
deliverables are necessary for auditing the QMS and meeting
regulatory needs, requiring a robust system of procedures for
maintaining documentation and approvals.

While the expectations of the QMS design controls are
well-defined, there remains considerable room for how an
organization decides to carry out these objectives. As part of
QMS requirements, it is expected that an organization
establishes detailed design and development plans for each
product. These plans should specify how the development
process is carried out, including assignment of responsibilities
to adequately trained personnel and how these procedures are
aligned with regulatory requirements and appropriate standards.

Risk Management for Medical Devices
As part of fulfilling regulatory requirements, organizations must
perform risk management activities. For example, under the
2017 European Union Medical Device Regulation (EU MDR)
[45], manufacturers must have a documented risk management
plan, identify and analyze the known and foreseeable hazards
for each device, estimate and evaluate the associated risks, and
eliminate or control those risks. Risk analysis is required as part
of the US FDA’s design control requirements (21 CFR 820.30)
[46] and is a component of FDA premarket submissions. ISO
14971:2019 [47], recognized worldwide by regulatory bodies,
is widely acknowledged as the principal standard for this
purpose. As part of ISO 14971, an organization develops a risk
management plan, which includes how device risk assessments
should be conducted.

ISO 14971 describes the requirements of a risk management
process for medical device development, including 6 key stages:
risk analysis, risk evaluation, risk control, evaluation of overall
residual risk acceptability, risk management report, and
production and postproduction information. Like quality
management requirements, the details of how these processes
are carried out in practice are left to the manufacturer. To
implement ISO 14971, a company must first establish and
document how they will conduct a risk management process
that includes the required components in the standard. To
accomplish risk analysis, Annex G of ISO 14971 provides
guidance on some techniques, including preliminary hazard
analysis, fault tree analysis, and failure modes and effects
analysis (FMEA).

FMEA enables any effect or consequence of individual
components to be systematically identified and is more
appropriate as the design matures [48]. FMEA can be applied
during the design process to understand the impact of potential
defects and incorporate changes relatively early when they are
less expensive to make. Thus, safety is improved and
performance is enhanced by minimizing the probability and
severity of hazardous situations.

It is important to note that, although FMEA is a recognized risk
assessment tool specified in ISO 14971, completing FMEA
according to the FMEA standard IEC 60812:2018 [49] does not
fulfill all the requirements of ISO 14971. For example, FMEA
focuses on defects, whereas the focus of ISO 14971 is on harm.
In ISO 14971, both normal and abnormal circumstances must
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be considered, as opposed to a focus on failure situations in
FMEA. That is, even when the device is functioning as intended,
hazardous situations may still occur, which must be identified.
For example, the device may function as intended, but a specific
subset of patients may experience side effects. Patients may
also misinterpret instructions or feedback provided by the
system. Of course, hazardous situations that arise from system
malfunction, such as damage or misuse of the system leading
to degraded system performance, must also be considered.

Furthermore, FMEA can allow for low-priority defects to persist,
whereas risks in a medical device should be reduced or
eliminated as far as reasonably possible before a medical device
can be marketed. Both ISO 14971 and FMEA require the risk
parameters of occurrence and severity to be addressed, where
occurrence is the probability of occurrence of harm and severity
is the extent of its impact or consequences. However, FMEA
also considers the probability of detecting the harm before it
occurs, which is not part of ISO 14971. Harm may still happen
even if it is detected, and harms not easily detectable may
unnecessarily raise risk levels. Thus, this parameter is excluded.
Once the differences between FMEA and ISO 14971 are

understood, it is possible to adapt FMEA to meet the
requirements of ISO 14971 (Figure 1).

To conduct the risk management process, the first step is to
identify the hazards, hazardous situations, and associated harms
of a device. Hazard identification can be performed by reviewing
the medical device characteristics, such as intended use,
technologies used in the device, how the device is intended to
function in clinical procedures, what could occur if the device
is misused, and what could occur if information from the device
is misinterpreted.

Once hazards are identified, for each hazardous situation, risk
estimation is performed whereby the probability of occurrence
and severity of that harm is estimated. It is the responsibility of
the manufacturer to establish an appropriate quantitative or
qualitative method for categorizing probability of occurrence
of harm and severity of harm. Tables 1 and 2 provide example
ways of categorizing severity of harm and probability of harm
occurrence. Note that these tables are intentionally kept simple
for illustration purposes and could include greater (or fewer)
categories, as appropriate.

Figure 1. Overview of ISO 14971 risk management process requirements and how FMEA can be adapted. Redrawn and adapted from resources
developed by Gantus and Semoegy (unpublished data). FMEA: failure mode and effects analysis; ISO: International Organization for Standardization;
RPN: risk priority number.

Table 1. Example severity table.

CriteriaDescriptionRank

Loss of limb or life-threatening injury.Critical5

Severe, long-term injury; potential disability.Major4

Short-term injury or impairment requiring additional medical intervention to correct.Serious3

Slight inconvenience with little to no effect on product performance; minor injury not requiring medical intervention.Minor2

No significant risk of injury to patient.Negligible1
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Table 2. Example probability of occurrence table.

CriteriaDescriptionRank

1 in 100Frequent5

1 in 1000Probable4

1 in 10,000Occasional3

1 in 100,000Remote2

1 in 1,000,000Improbable1

Acceptable methods for estimating risks are provided in ISO
14971 and include published standards, scientific technical data,
field data from similar devices, usability tests, clinical evidence,
and expert opinion. It is often not practical to assign numerical
estimations for the likelihood of an occurrence of a particular
harm. Thus, following qualitative descriptors can provide a
reasonable method for estimating the probability of occurrence
in the absence of precise data.

The “Rank” column is included in Tables 1 and 2 so that,
following the FMEA approach, a risk priority number (RPN)
can be generated for risk evaluation. In Figure 2, a risk
evaluation matrix is generated by multiplying the probability
of occurrence ranks with the severity of harm ranks. The risk
evaluation matrix is divided into 3 risk regions to define
acceptable risks (green), borderline risks (yellow), and
unacceptable risks (red). Again, the illustrated risk regions are
provided merely as an example, and a manufacturer can establish
their own way of delineating acceptable and unacceptable risks,
as may be appropriate for their device.

Hazards that are evaluated to have an unacceptable risk level
require risk control measures. Borderline risks may also require
risk control measures upon further investigation. While not
required, risk control measures may also be desirable for
acceptable risks as these may still improve the safety and
performance of the device and lead to better end-user

satisfaction. RPNs provide a way to prioritize the allocation of
limited resources within a particular risk region.

Risk control measures defined in ISO 14971 include inherent
safety by design, protective measures in the medical device
itself or in the manufacturing process, and information for safety.
Implementation and effectiveness of risk control measures must
be verified and validated by the manufacturer. To evaluate the
effectiveness of risk control measures, it is often necessary to
conduct usability tests. For example, if information for safety
is utilized, it is important that information is perceivable,
understandable, and supports correct use of the device by the
intended user group in the context of its intended use
environment. IEC 62366-1 [50] is an international standard that
can be used with ISO 14971 to conduct these evaluations. The
US FDA has also developed their own guidance document [51].

After risk control measures are applied, any residual risk is
required to be evaluated. Residual risk that is judged not to be
acceptable requires further risk control measures. In the event
residual risk is not acceptable and further risk control is not
practicable, the manufacturer may conduct a risk–benefit
analysis by gathering and reviewing data and literature to
determine if the medical benefits of the intended use outweigh
the residual risk. Information for safety may be used by the
manufacturer to disclose risks that may outweigh the benefits
of the device.

Figure 2. Risk evaluation matrix with risk priority numbers (RPNs) generated when multiplying the severity of harm rank (Table 1) with the corresponding
probability of occurrence rank (Table 2). The risk evaluation matrix is divided into 3 risk regions, with acceptable risks in green, unacceptable risks in
red, and borderline risks in yellow.

Software Life Cycle Processes
The majority of software problems are traceable to design and
development errors, making software design control critical
[52]. In both the United States and EU, all software components
must be under design control or purchasing control, including
design validation that includes software validation and risk

analysis [53]. The EU adopted a new essential requirement
regarding software in 2007, Essential Requirement 12.1.a [54],
addressing the software life cycle. In EU MDR, safety and
performance requirements (SPRs) replace the essential
requirements and SPR 17 places greater emphasis on the entire
product life cycle, as well as introducing specific requirements
for mobile computing platforms and information security.
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Likewise, the US FDA has guidance on general validation
principles applicable to medical device software [55].

IEC 62304 [56] provides specific guidance on the processes to
be performed for the development of medical device software,
including risk management activities. IEC 62304 is an EU
harmonized standard and is recognized by the FDA as an
approved consensus standard and thus can be used as a
benchmark to comply with both markets’ regulatory
requirements. This standard provides a life cycle process
framework, with activities and tasks necessary for safe medical
development. A central theme of IEC 62304 is the need to
establish and maintain traceability between system requirements,
software requirements, software testing, and risk control
measures implemented in software [57]. Established user needs
provide the foundation from which all software requirements
are derived and must be maintained throughout the product life
cycle. It is important to note that while the V-model is often
used to illustrate these requirements, a “waterfall” approach is
not necessary. IEC 62304 clarifies incremental strategies (eg,
Agile), which acknowledge user needs may not be fully defined
or may evolve throughout the product life cycle, can still meet
the requirements specified in the standard.

Ultimately, it is the responsibility of the manufacturer to define
how user needs and system requirements are captured, refined,
and tested during product development. Numerous resources
are available to help with this process and provide a way for
manufacturers to demonstrate traceability and generate reports
necessary for regulatory compliance while benefiting from the
value of Agile practices. For example, the Association for the
Advancement of Medical Instrumentation (AAMI) has published
a technical information report (TIR)—AAMI TIR45:2012
[58]—to help provide guidance on how best to align Agile and
medical device regulatory perspectives to develop safe and
effective medical device software. AAMI TIR45 covers key
topics such as documentation, evolutionary design and
architecture, traceability, verification and validation,
management changes, and “done” criteria. While adopting the
practices recommended in AAMI TIR45 is not strictly required,
and there are certainly other sensible ways to adapt Agile
methodologies for medical device development, the US FDA
recognizes AAMI TIR45 as a consensus standard. This
recognition provides assurance that Agile practices can be
successfully adapted to meet regulatory compliance
requirements.

An important feature of AAMI TIR45 is that it provides a
framework for reconciling the user story approach [59] for
incrementally specifying product requirements with the design
input/design output framework used in medical device
development. A user story is a short, simple description of a
feature told from the perspective of the person who desires the
new capability (ie, an end user of the system or other
stakeholder). User stories are typically written following the
template: As a <type of user>, I want <some goal> so that
<some reason>. To elaborate on a story, an accompanying set
of acceptance criteria can be specified. User stories can also be
broken down into more specific user stories when necessary
and appropriate. As AAMI TIR45 explains, the goal of a user
story is to be persistent and lightweight, capturing just enough

essence of a requirement to allow for future discussions to
uncover or elaborate more when needed.

Summary of VRaMD Design and Development
Considerations
To summarize:

1. Depending on the regulatory jurisdiction and classification,
VRaMD design and development may need to be captured
in a QMS following design control requirements. This may
include use of ISO 13485 or local regulations (eg, US FDA
QSR).

2. For software development specifically, IEC 62304 provides
a standard framework. AAMI TIR45 can used as guidance
for adopting Agile practices, if desired.

3. Risk management according to ISO 14971 should be
performed during the design process. FMEA is one risk
analysis tool that can be adapted to ISO 14971.
Effectiveness of risk control measures can be evaluated in
usability tests following IEC 62366.

To demonstrate these concepts, a VRaMD for home use and
remote patient monitoring is specified using a set of generic
user stories. Applying FMEA, hazards associated with each
user story are identified and risk is evaluated based on
estimations of probability of occurrence and severity of harm.
Risk control measures are proposed, and the residual risk is
determined to demonstrate how a safe and effective VRaMD
may be designed.

Risk Management for a Generic VRaMD

Requirements Analysis
To specify the requirements for an at-home VR rehabilitation
system, it is helpful to review similar devices that are already
legally marketed. In the United States, this is a common
regulatory strategy. Demonstrating substantial equivalence to
a legally marketed device, referred to as a predicate device,
enables many devices to be cleared under the premarket
notification [510(k)] submission process. In the US FDA
medical device classification scheme, devices are classified as
Class I, II, or III based on risk level, with Class I devices
presenting the lowest risk, and Class III devices presenting the
highest risk. Within each FDA class, device types are classified
within regulations, which include special control requirements
for Class II devices. The intended use and technological
characteristics of a system obtaining 510(k) clearance are often
made publicly available as a “510(k) Summary” (21 CFR
807.92).

Over the past decade, numerous devices that included at-home
physical rehabilitation using video game technology received
510(k) clearance. This began with Jintronix (Jintronix Inc.)
[60-62] and went on to include the Recovr Rehabilitation System
(Recovr, Inc.) [63], Vera (Reflexion Health, Inc.) [64], the Yugo
System (BioGaming Ltd.), the Virtual Occupational Therapy
Application (Barron Associates, Inc., marketed as SaeboVR by
Saebo, Inc.) [65-67], Uincare Home (UINCARE Corp.) [68],
and MindMotion Go (MindMaze SA) [69]. These devices are
regulated as Class II devices in the United States. None of these
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systems utilize HMD-based VR, but rather the Microsoft Kinect
motion tracking system. Still, each system includes the intended
use of supporting physical rehabilitation of adults at-home by
providing therapy guidance for patients and remotely accessible
performance metrics for medical professionals.

By examining 510(k) Summaries for these devices, it can be
seen they generally include 3 separate applications: a
patient-facing application, a clinician-facing application, and a
cloud-based server for providing data storage and managing
communication between the 2 applications. The patient-facing
application (henceforth, patient application) prompts and
monitors patients in the performance of a therapy prescribed by
their clinicians, reports performance data to the clinician for
analysis, and provides an interface for patients to communicate
with their clinician. The clinician facing-application (henceforth,

clinician application) allows a clinician to define and update a
patient’s personal data, a patient’s therapy prescription, monitor
a patient’s performance of that therapy, and permit a clinician
to communicate with a patient. Thus, the common components
of a VR telerehabilitation system have been established. Taking
these descriptions into account, the core functionality for an
immersive VR therapy system can be specified by replacing
the Kinect with a standalone HMD-based VR system with
6-DOF tracking (Figure 3). A generic set of user stories for the
patient application can be constructed from the descriptions of
these systems (Table 3). Likewise, a generic set of user stories
for the clinician application can also be constructed (Table 4).
These generic user stories have provided a basis for designing
additional therapy systems, including one using HMD-based
VR [70,71].

Figure 3. Overview of generic VR as a medical device system for home-use and telerehabilitation. HMD: head-mounted display; VR: virtual reality.

Table 3. Overview of virtual reality system requirements—patient stories.

so that...As a patient I want...SummaryID

I know the time I spend using the system is worthwhile and will benefit
my health.

to trust that exercises I perform have clinical
utility

Trusted exerciseP1

I can effectively benefit from the system and recover independently.to feel confident I will be able to use the system
at-home with minimal assistance

Ease of useP2

I do not have to rely on transportation and scheduling and can recover on
my own.

to be able to perform therapy at homePortabilityP3

communication regarding my at-home therapy is streamlined.my clinical health care provider to have access
to my therapy data

Clinician supervi-
sion

P4

I am reminded how to properly complete these actions.to have clear instructions on how to perform
exercises

InstructionsP5

I know if I am performing exercises effectively.to have feedback as I am performing exercisesFeedbackP6

I am motivated to adhere to prescribed exercises.exercises to feel more like a video game than
homework

MotivationP7

I know if I am performing exercises effectively based on established tar-
gets.

to see the results of my exercise performancePerformance
summary

P8

I am intrinsically motivated to advance my recovery.see my progress over timeTrack progressP9

I do not forget and take longer to recover.to be reminded to do exercisesRemindersP10
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Table 4. A generic set of clinician requirements for a virtual reality as a medical device system designed for home use and remote patient monitoring.

so that...As a clinician I want...SummaryID

I know how to apply my current understanding of therapy to the system’s
functionality.

to know how system routines correspond to
clinically valid therapies

Clinical validityC1

I am confident I understand how to utilize the system and integrate it into
my practice without too much difficulty.

to be able to learn the system quickly and com-
pletely

InstructionsC2

I feel confident they will be able to utilize the system at home.to be able to quickly train patients and caregivers
on the system

Ease of useC3

I can add patients to the system.an online dashboard to manage my patientsManage patientsC4

I can customize individual patients and track their progress over time.to be able to give each patient their own profilePersonalizationC5

I can target areas where patients need improvement.to be able to specify exercises for patientsCustomizationC6

I can determine a baseline challenge level that can be used to monitor
progress.

to be able to assess patient abilityAssessmentC7

patients can be re-engaged if they are not active.to remind patients to complete therapyRemindersC8

I know if patients are adhering to recommended frequency.to know when patients complete therapyAdherence track-
ing

C9

I know if patients how much patients accomplish and whether they are
being adequately challenged.

to know how much patients complete therapyExercise trackingC10

I know how patient’s exercise and if they are using clinically valid
movements.

to know how patients perform treatmentMovement track-
ing

C11

I know a patient’s ability at a given time.to know how well patients perform exercisesProgress trackingC12

I know if the patient can progress in a therapy.to know how patient symptoms change (eg, im-
prove)

Symptom track-
ing

C13

I can communicate with patients, if necessary.a way to provide feedback to patientsRemote feedbackC14

I can share clinically interpretable data with other members of the patient’s
clinical care team and with payers.

a way to export patient performance records (eg,
through a printable report)

ExportabilityC15

I can manage protected health information responsibly.my patients’ records to be secure and protectedCybersecurityC16

Risk Analysis and Evaluation
For each user story, the adapted FMEA process can be used to
identify hazards (ie, potential sources of harm) of that feature
(Multimedia Appendix 1). Hazards can lead to hazardous
situations which may then cause harm. As part of the risk
analysis, the probability of occurrence of harm is estimated
based on a combination of the likelihood of both the hazard and
the hazardous situation. Then, the severity of the harm produced
by each hazardous situation is considered. For example, the
display screens used in HMD-based VR can be considered a
consistent hazard, which may lead to a variety of different
hazardous situations. When identifying hazardous situations, it
is important to consider both normal and abnormal use of the
device. Likewise, hazards can still cause harm without a device
failure. Even when using HMD-based VR as intended, there is
potential for side effects including eye strain, claustrophobia,
overstimulation, anxiety, and seizures. On one extreme, eye
strain may be considered a common side effect of using

HMD-based VR. However, the severity of resulting short-lasting
headaches may be considered low. Alternatively, patients with
photosensitivity may experience seizures. While the probability
of this occurrence is much lower, if the patient is using the
system independently at home, this seizure could fatal, and thus,
critically severe.

In addition to the hazardous situations related to HMD-VR
specifically, Multimedia Appendix 1 lists many hazards that
would be common to non-HMD-VR at-home therapies. For
example, data failing to properly synchronize between the
clinician and patient applications can lead to the patient not
receiving proper treatment. Hazardous situations also arise
whenever either user group is unable to properly interpret
instructions or data provided to them. This is most severe when
it leads to the patient not being able to benefit from treatment.
Thus, it can be seen how critical usability engineering can be
to ensure proper medical device function. Figure 4 summarizes
the identified risks associated with the system.
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Figure 4. Risk analysis summary for a head-mounted display-based virtual reality (HMD-VR) medical device for home use and telerehabilitation.

Risk Control Measures and Residual Risk Evaluation
ISO 14971 defines “safety” as freedom from unacceptable risk.
Based on the risk assessment and acceptability criteria defined
earlier, several unacceptable risks were identified that require
risk control measures. A variety of borderline risks were also
identified, which would require further investigation to
determine whether risk control measures are necessary. While
the remaining hazards were deemed to have an acceptable risk
level, these potential failure points highlight opportunities to
improve the system design and create greater patient and
clinician satisfaction with the system. Thus, in Multimedia
Appendix 2, risk control measures have been proposed for all
hazards.

After completing the residual risk evaluation, almost all risks
have been brought within the acceptable region. The only
remaining borderline risk is associated with the potential for
seizures in patients with photosensitivity. While the likelihood
of a patient with these issues can be reduced by prescreening
patients for a history of seizures, the harm associated with this
situation is still considered severe. Overall, an HMD-based
VRaMD can be designed to be safe for at-home use and remote
patient monitoring when risk control measures are applied.
Figure 5 summarizes the risk control measures that are
recommended.

When examining the potential sources of unacceptable risks,
important areas to consider early in the design and development
of a VRaMD can be identified. For example, one source of
unacceptable risk is related to insufficient clinician training
resources, which can lead to a clinician not understanding the
proper intended use of the system and prescribing it to

inappropriate patients; clinicians not understanding how to
properly configure the system to meet patient needs; and
clinicians not understanding how to train patients on the system.
To control for this risk, usability testing with clinicians should
verify the system’s intended use is understandable and meets
clinician needs. For clinicians to be able to utilize the system,
they must both understand how to develop individualized patient
treatment plans and interpret patient data generated by the
system. Furthermore, there should be adequate resources
available for clinicians to be able to train patients on the system,
if necessary. Likewise, usability testing with patients should
verify patient application exercise instructions are adequate to
elicit target therapeutic actions. Resources specific to VRaMD
usability evaluations should be considered [72]. System
feedback provided to patients should also be interpretable by
patients and, ideally, provide motivation so patients do not
become discouraged by their results for whatever reason.

Hazardous situations can also occur when data between the
patient and clinician applications can not properly synchronize
due to internet connectivity issues. Depending on the severity
of harm, it may be necessary for an internet connection to be
provided as part of the system to ensure data can synchronize.
This could also alleviate risk caused by patients not being able
to connect the device to their home network. However, if a
stable internet connection is available, it may be sufficient to
provide adequate instruction and have a remote provider verify
the patient has completed the necessary set up.

Finally, cybersecurity and patient privacy issues must be
addressed. Indeed, protections for these concerns are critical
for adoption of a connected health technology [73,74].
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Figure 5. Summary of risk control measures to improve safety and end-user satisfaction.

Cybersecurity and Patient Privacy Protections
Regulatory bodies generally require cybersecurity considerations
as an aspect of the device design and risk management process.
MDCG 2019-16 [75] provides guidance on how to fulfill
essential requirements regarding cybersecurity specified in
Annex I of EU MDR. Likewise, the US FDA provides guidance
regarding cybersecurity information to be included in FDA
premarket submissions [76], as well as guidance for postmarket
management of cybersecurity vulnerabilities [77]. While it is
generally up to the manufacturer to determine what
cybersecurity controls are necessary for their device, applying
recognized standards can help demonstrate implemented
capabilities are appropriate and effective.

A variety of standards for addressing medical device
cybersecurity are available to help manufacturers ensure they
are following industry best practices. Selecting which standards
to adopt can depend on the specific technologies and interfaces
used by a product (see [78] for further discussion). One starting
point is ANSI/AAMI/IEC TIR80001-2-2:2012 [79], which
presents an informative set of high-level security capabilities
that are intended to facilitate more effective communication of
security requirements with stakeholders. The Manufacturer
Disclosure Statement for Medical Device Security (MDS2)
form [80] is aligned with the security capabilities described in
TIR80001-2-2 and provides manufacturers a format for reporting
the data assets handled by a medical device, as well as the
approach taken to secure it. The MDS2 form thus provides a
way for manufacturers to disclose to health care organizations
(eg, hospitals) information necessary for them to conduct their
own cybersecurity risk analyses [81].

Once necessary security capabilities are identified through risk
management and understanding stakeholder needs, AAMI/IEC
TIR80001-2-8:2016 can be used to determine specific design
requirements from a set of common security standards. This
allows a design team to select appropriate standards, as well as
provide evidence that each of the applicable security capabilities
have been met [78].

When evaluating necessary cybersecurity capabilities (eg, data
access controls) and associated procedures (eg, notification of
patient’s data rights, notifications of detected data breaches to
appropriate stakeholders), medical device manufacturers must
understand and comply with the local legal requirements (eg,
General Data Protection Regulation [GDPR], Health Insurance
Portability and Accountability Act [HIPAA]). Regarding data
rights and governance, manufacturers may employ end user
license agreements, terms of service, and privacy policies to
establish and convey company and user data rights for
monitoring, evaluation, and distribution of collected data [73].
Additional precautions may be necessary for certain patient
populations, such as children (eg, the Children’s Online Privacy
Protection Act).

Discussion

Summary of Recommendations
HMD-based VRaMDs, depending upon their intended use, will
likely be subject to the same regulatory requirements as other
medical devices. Quality requirements such as design controls
may be unfamiliar to product designers and software
professionals coming from unregulated fields. While design
control requirements may appear to suggest a “waterfall”
approach is necessary, it is not incompatible with Agile
practices, which can be used once properly adapted.
Incorporating regulatory requirements early in the design process
is not only necessary but also helps eliminate costly reworkings
later in development. Incorporating a risk management process
will help systematically expose ways to make the product safer
and improve end-user satisfaction. A comprehensive usability
engineering plan is necessary to verify risk control measures
are effective.

Using non-HMD-based VR systems already legally marketed
in the United States for at-home therapy, a generic set of user
stories for both patients and clinicians was specified here. While
HMD-based VR introduces unique hazards to at-home therapy,
the associated risks can be mitigated with appropriate control
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measures, demonstrating that HMD-based VR can be designed
to be safe for home use and remote patient monitoring.

For clinicians, it is important they understand the proper
intended use of the system. This will enable them to prescribe
the system to appropriate patients, understand how to configure
the system to meet a particular patient’s needs, and be able to
interpret system performance metrics as intended to progress a
patient through treatment. This can be accomplished through
robust user interface design and providing clinicians with the
necessary training resources. The effectiveness of these
measures should be verified in usability testing. Finally, the
accuracy of OTS movement tracking sensors should be verified
to be within clinically relevant ranges if 3D motion data are
used in assessing patient performance. Studies have already
evaluated the accuracy of the Oculus Touch controllers [82]
and HTC VIVE motion tracking sensors [83] for clinical use in
motor rehabilitation.

Patients must understand risks associated with HMD-VR so
that they may avoid hazardous situations at home. General risks
may be avoided by properly clearing the environment of
obstacles, avoiding standing with the headset on, taking breaks
to rest, and stopping use of the device if they experience
negative effects. When instructing patients to perform
therapeutic actions, it is important they have the necessary
guidance and feedback to determine if they are performing the
therapy as intended. When providing patients with progress
data, it is important these data are easily interpretable. Ideally,
performance feedback data should not discourage the patient
from continuing treatment. To determine if system safety
information is effective, usability testing in patients’ homes is
necessary. An iterative human-centered design approach with
clinicians and patients can help guide design concepts toward
success early in development [84,85]. Assuming transmission
of data between clinicians and patients is necessary for effective
treatment, measures should be taken to verify the device is
connected to the internet upon arrival at the patient’s home.

Finally, appropriate patient privacy and cybersecurity protections
are essential. Standards can be utilized to determine necessary
security measures and how to implement them effectively.
Stakeholder needs, including relevant data privacy regulations,
will contribute to the assessment of necessary cybersecurity
capabilities. The MDS2 form provides one method for
communicating with health care providers data handled by the
system and how they are protected. End users should be
provided with a privacy notice that describes how data are
collected, used, and retained, the types of data that the product
obtains, the length of data retention, and how and by whom
information is used.

Limitations
This paper describes a generic VRaMD system, using devices
with a similar intended use as a basis. System functionality was
specified at only the highest level to provide a reasonable scope
for examination and discussion in the paper. Given a more
specific intended use, more detailed requirements will be
specified that may introduce new hazards to the system. The
probability of occurrence and severity of device harms were
roughly estimated for practical purposes.

A standalone HMD-based VR system with 6-DOF tracking was
used as the core technology. Use of other VR systems may
introduce different hazards. For example, a non-standalone
system with external sensors (eg, Oculus Rift) may require
additional set up and monitoring of sensor placement. More
expensive head-mounted augmented and mixed reality systems
(eg, Microsoft HoloLens, Magic Leap) were also not considered,
although augmented and mixed reality–based medical devices
are in development and may resolve certain hazards and
limitations associated with occlusive VRaMD [86,87].

Overall, the intention of this paper was to provide an overview
of an ISO 14971-compliant risk management process. To
accomplish this, it was necessary to review related medical
device regulations, standards, and guidance documents. While
these requirements and recommendations are applicable to a
variety of SaMD, specific devices and regulatory jurisdictions
may require additional considerations. This paper was also not
intended to be an exhaustive review of applicable standards.
For example, the IEC 60601-1 [88] series of standards for
electrical medical devices was not discussed. This was done to
keep the focus of the paper on software and implementation of
IEC 62304. However, IEC 60601-1 may be necessary for
demonstrating the safety and electromagnetic compatibility of
system hardware. More general (ie, nonmedical device specific)
standards may also be useful for the design process, such as
ISO 9241-210:2019 [89]. The IEEE Virtual Reality and
Augmented Reality Working Group is developing standards for
VR design that could be useful to apply to improve the safety,
usability, and standardization of VRaMD [90]. Ultimately, a
VRaMD manufacturer should communicate with the appropriate
regulatory bodies when developing a new product intended for
commercialization. The review provided here is intended to
help orient those new to medical device development and
provide a broad overview of regulatory requirements applicable
to a variety of jurisdictions.

Comparison With Prior Work
Recent advances in the widespread availability of VR and its
potential in therapy have led to growing interest in the
development of industry best practices for translating this
potential to a reality. For example, the Virtual Reality Clinical
Outcomes Research Experts (VR-CORE) committee has
published a framework for iterative clinical trial design for
validating VR therapies [91]. Numerous papers have also shared
the design process for various HMD-based VR interventions
[92-99]. The focus of this paper was less about the design of a
particular system, and more about demonstrating a risk
management process to develop a VRaMD safe for home use
and remote patient monitoring.

Numerous reports have examined challenges and best practices
for introducing medical device regulatory requirements, such
as design controls and risk management, into contemporary
software development practices such as Agile [39,40,100-110].
Here, Agile techniques were introduced primarily as a method
for specifying the requirements of the system through user
stories. Additional concepts were introduced as necessary to
demonstrate the risk management process. It is expected that
VR developers working on VRaMD will be coming from
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nonregulated fields (eg, video games, entertainment), and thus
it is important to provide some necessary background. While
the transition to medical device development can be challenging,
this paper describes how Agile practices can be utilized to
develop a safe and effective VRaMD. More recently, the
HMD-based REAL Immersive system obtained 510(k) clearance
for in-clinic use, providing further evidence that immersive
VRaMD can successfully meet regulatory requirements.

Conclusions
HMD-based VR offers tremendous potential for novel at-home
treatments. However, for these treatments to be successfully

translated into clinical practice, VRaMD will need to be
designed following the necessary regulatory requirements. While
regulatory requirements can appear challenging, VRaMD
designers should find it beneficial to gain an understanding of
what is required so they may adapt their design process early
in development. While medical device design controls present
a need for comprehensive documentation of device design,
incorporating risk management early in this process should help
further refine system requirements. Following these
recommendations will help make VRaMDs safe and effective,
as well as improve patient and clinician satisfaction with these
novel digital therapeutics.
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Abstract

Background: Mindfulness-based stress reduction has demonstrated some efficacy for chronic pain management. More recently,
virtual reality (VR)–guided meditation has been used to assist mindfulness-based stress reduction. Although studies have also
found electroencephalograph (EEG) changes in the brain during mindfulness meditation practices, such changes have not been
demonstrated during VR-guided meditation.

Objective: This exploratory study is designed to explore the potential for recording and analyzing EEG during VR experiences
in terms of the power of EEG waveforms, topographic mapping, and coherence. We examine how these measures changed during
a VR-guided meditation experience in participants with cancer-related chronic pain.

Methods: A total of 10 adult patients with chronic cancer pain underwent a VR-guided meditation experience while EEG signals
were recorded during the session using a BioSemi ActiveTwo system (64 channels, standard 10-20 configuration). The EEG
recording session consisted of an 8-minute resting condition (pre), a 30-minute sequence of 3 VR-guided meditation conditions
(med), and a final rest condition (post). Power spectral density (PSD) was compared between each condition using a cluster-based
permutation test and across conditions using multivariate analysis of variance. A topographic analysis, including coherence
exploration, was performed. In addition, an exploratory repeated measures correlation was used to examine possible associations
between pain scores and EEG signal power.

Results: The predominant pattern was for increased β and γ bandwidth power in the meditation condition (P<.025), compared
with both the baseline and postexperience conditions. Increased power in the δ bandwidth was evident, although not statistically
significant. The pre versus post comparison also showed changes in the θ and α bands (P=.02) located around the frontal, central,
and parietal cortices. Across conditions, multivariate analysis of variance tests identified 4 clusters with significant (P<.05) PSD
differences in the δ, θ, β, and γ bands located around the frontal, central, and parietal cortices. Topographically, 5 peak channels
were identified: AF7, FP2, FC1, CP5, and P5, and verified the changes in power in the different brain regions. Coherence changes
were observed primarily between the frontal, parietal, and occipital regions in the θ, α, and γ bands (P<.0025). No significant
associations were observed between pain scores and EEG PSD.

Conclusions: This study demonstrates the feasibility of EEG recording in exploring neurophysiological changes in brain activity
during VR-guided meditation and its effect on pain reduction. These findings suggest that distinct altered neurophysiological
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brain signals are detectable during VR-guided meditation. However, these changes were not necessarily associated with pain.
These exploratory findings may guide further studies to investigate the highlighted regions and EEG bands with respect to
VR-guided meditation.

Trial Registration: ClinicalTrials.gov NCT00102401; http://clinicaltrials.gov/ct2/show/NCT00102401

(JMIR Biomed Eng 2021;6(2):e26332)   doi:10.2196/26332

KEYWORDS

virtual reality; guided meditation; neurophysiology; electroencephalograph; EEG

Introduction

Background
Chronic pain (CP) is a common condition occurring in 1 in 5
Canadians [1], and it has limited effective treatment approaches.
Mindfulness-based stress reduction (MBSR) has shown some
evidence of efficacy in this area [2,3] and has also been used to
treat other clinical conditions, such as migraine, depression,
addiction, and substance misuse [2,4].

Mindfulness meditation encompasses a range of mental exercises
that share a common focus on regulating attention and awareness
to improve well-being [2-4]. It is described as the quality of
being completely engaged in the present moment, free from
distractions and judgments, and being aware of bodily
sensations, thoughts, and feelings without getting caught up by
them, and it is used as a therapeutic technique in MBSR [5,6].
These practices involve mental training that allows practitioners
to develop their minds in specific ways to help them deal with
stress and anxiety [7,8]. Although the clinical benefits remain
somewhat controversial, it is generally viewed as a beneficial
practice for mental well-being, stress reduction, and pain
management [9-11].

A recent trend in MBSR practice has been the use of immersive
virtual reality (VR) to help participants focus on meditative
exercise [12-16]. However, to date, neurological studies have
not been performed with VR-guided meditation practices.
Therefore, this exploratory study sought to identify any
identifiable neurological effects of VR-guided meditation
practices using electroencephalographs (EEGs).

Neurological Mindfulness Studies
Subjective reports of the benefits of mindfulness meditation
have prompted investigations into the potential corresponding
neurophysiological states. Exploration of fluctuations in brain
wave voltage amplitude (power) topography and coherence
(associated areas of activity) using EEG variations in neural
activity assessed with functional magnetic resonance imaging
and cortical evoked responses to visual and auditory stimuli
that reflect the impact of meditation on attention [4,17-26].
However, findings remain speculative. EEG studies have
previously reported modulation in α, θ, and γ band frequencies,
generally with increased power and coherence during mediation
[4,7,17,27]. Some studies theoretically conjectured how
meditative states relate to EEG bandwidths. For example, Travis
and Shear [28] suggested that focused attention (sustained
attention is focused on a given object) increases γ band power,
open monitoring (nonreactive monitoring of an ongoing

experience) increases θ, and an automatic-self-transcending
stage (transcending the procedures of the meditation) increases
α [28]. Nevertheless, a consensus on what we currently know
about how EEG forms correlate with meditation or how this
may map onto stages of mental development or specific
cognitive skills is yet to be reached [7,8].

The α frequency band lies between 8 and 12 Hz and is
predominantly located in the occipital cortex. α waves are
present in deep relaxation and sleep, usually when the eyes are
closed. θ waves are characterized by oscillations in the 4-8 Hz
band found in both cortical and subcortical structures. Increases
in θ have been described during a variety of learning and
recognition tasks, light sleep (including the rapid-eye-movement
dream state), and deep meditation. θ and α power changes have
been reported to increase in a number of meditation studies
[4,17,19,29-31]. Moreover, γ is a higher frequency range
generally regarded as between 30 and 50 Hz, although the range
reported has varied substantially between 20 and 200 Hz across
different studies [30]. This initial research suggests that γ is
associated with a number of sensory and cognitive high-level
information processing functions, such as semantic insights,
learning, and neural plasticity. Peak γ frequencies around 40
Hz in bilateral hemispheres have only been observed in highly
practiced meditators [7,30]. In addition, a posterior increase in
γ activity may be related to enhanced perceptual clarity reported
in some open monitoring (focusing on awareness itself)
meditative processes [7,17,30].

VR-Assisted Mindfulness
VR is rapidly developing as a new form of media and uses
computer-generated audio-visual displays and hand controller
user interfaces to produce a sense of immersion in a digital 3D
environment. Instead of watching an image on a typical
computer or video display, VR technologies provide an
increased sense of presence by engaging the senses (sight, sound,
and touch) in real-time stereoscopic audio-visual media where
users can move around and explore the environment as if they
were there.

VR in Pain Management
One of the most common health care applications of VR is its
use in pain management. Several studies have explored the
value of MBSR in CP management, although the reported effect
sizes for this technique have been typically mild to moderate,
and regular adherence with meditative practice is problematic
[3,32,33]. It has been suggested that combining mindfulness
meditation within a VR intervention may help support
acceptance and adherence to practice while having a synergistic
effect on pain reduction through immersive VR distraction
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[34-36]. This remains an active area of research, as adjunctive
VR strategies have been used successfully in the treatment of
acute pain [37-41] and more recently have also been explored
with CP [12,35,42,43]. The theoretical rationale behind why
VR may enhance mindfulness skills is that VR provides the
user with cognitive displacement by actively engaging in a
coping activity that provides a profound sense of through
presence in another world. Cognitive distraction is a common
strategy in pain control and relies on creating competition for
cognitive resources, that is, attention to a novel spatial
orientation, and engaging within it reduces the perception of
pain [32,33,44]. Therefore, immersive VR interventions using
stereoscopic head-mounted displays (HMDs) have been
proposed as powerful tools for providing visual, audio,
cognitive, and emotional engagement [45-47]. In MBSR, VR
experiences are typically accomplished using
computer-simulated environments, stereoscopic headsets, and
motion tracking to support a more immersive meditative
experience. This was the approach taken in this study, and an
EEG analysis was selected as a practical technique to assess
neurophysiological activity while experiencing VR.

Objectives
Overall, this inductive exploratory study sought to assess how
EEG power of waveforms, their topographic mapping, and
coherence measures altered in 3 main states during a VR-guided
meditation experience in patients with cancer-related CP: at
baseline (pre), during VR-guided meditation (med), and after
VR-guided meditation (post). Moreover, we explored whether
their pain level was associated with waveform power measures.
We were particularly interested in the power, topography, and
coherence of α, γ, and θ wave activity, and possible synchrony

with VR activity, as other researchers have reported changes in
these 3 waveforms with MBSR activities. Therefore, we were
interested in determining whether prior findings were consistent
with those observed during a VR experience. Specifically, the
questions we sought to address in this study were as follows:

1. Were there any observable or significant changes between
pre and during VR-guided meditation experiences and
between pre and post VR-guided meditation experiences
with the power, topographic changes, or EEG coherence
in specific waveforms?

2. Was there any evidence that changes in the pain experienced
by participants during a VR-guided meditation activity were
associated with observable EEG changes?

Methods

Approach
An exploratory, single-subject design study was undertaken to
compare EEG activity and pain levels before, during, and after
VR-based meditation practice. This study was reviewed and
approved by the University of British Columbia Clinical
Research Ethics Board.

Recruitment
A convenience sample of 10 participants was used and recruited
from those in an existing randomized controlled trial (RCT;
ClinicalTrials.gov: NCT 02995434) where patients with cancer
were using VR as an adjunctive therapy to help manage their
CP (Textbox 1). These participants were completing or had
completed cancer treatment and experienced a range of
cancer-related pain, including neuropathy, fibromyalgia,
postsurgical pain, or an exacerbation of pre-existing pain.

Textbox 1. Randomized controlled trial eligibility criteria.

Eligibility Criteria

• Aged ≥16 years, with a past or current diagnosis of cancer

• Prior or ongoing cancer treatment

• A chronic pain diagnosis (ongoing daily pain for ≥3 months, with a Neuropathic Pain Rating Scale of ≥4)

• Able to understand English (read and write)

• Normal stereoscopic vision

• Able to move their head up, down, left, and right and able to wear a virtual reality head-mounted display

• Sufficient fine motor control in one hand to use a game controller

• Have space at home for a computer and monitor

Participants were purposively recruited, focusing on recruiting
those from the RCT cohort who had previously responded well
to a VR-based meditation experience, with a self-reported
reduction of a Visual Analog Scale for Pain ≥1. They were
invited to participate in a single 2-hour VR-guided meditation
experience, with EEG recorded in their home or at the
university, and were offered a Can $100 (US $83) honorarium
and expenses for taking part. As an exploratory study designed
to establish methods and feasibility using a limited convenience
sample, with an unknown effect size, the power to inform the

sample size was not calculated a priori. This is acceptable for
this type of inductive study [48].

Equipment
EEG signals were recorded during the session using a BioSemi
ActiveTwo system (BioSemi) with 64 channels in a standard
10-20 configuration. This system uses a head cap system with
pin active silver chloride electrodes. The EEG ground (labeled
DRL [Driven Right Leg]) on the Biosemi system was placed
between POz and PO4, and the EEG reference (labeled CMS
[Command Mode Sense]) was placed between POz and PO3.
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The antialiasing filter was a fixed first-order analog filter with
−3 dB at 3.6 kHz, and the low-pass filter was a fifth-order
cascaded integrator-comb digital filter with −3 dB at one-fifth
the sample rate. A powerline notch filter was not applied because
the system used active electrodes, a battery power supply, and
optic fiber, greatly reducing noise from the powerline. Each
channel consisted of a 24-bit analog-to-digital converter.
Recordings were made at 1024 Hz (although one was recorded
at 2048 Hz) using ActiView software (Biosemi Instrumentation).

An HTC Vive VR system (HTC) with a Deluxe Audio Strap
fitted over the top of the EEG cap was used. This system features
a 2160×1200 resolution, 90 Hz refresh rate, and 110° field of
view. Positional tracking from 2 infrared cameras enabled
5-degrees-of-freedom motion tracking of the headset and hand
controllers. Integrated stereo headphones supported 3D audio
immersions. During the initial pilot testing, this system was
found to work effectively. Minor noise was evident in the EEG
from the VR system on rare occasions, but we were able to
remove most of this noise by careful repositioning of the
equipment.

For meditation practice, a commercially available Guided
Meditation VR application (Cubicle Ninjas) was used. As each
meditation was only 10 minutes in this app, we selected a single

sequence of 3 unique meditations, Zen 2-4, to form a 30-minute
block of meditation. In the guided meditation experience, users
were situated in the Lost Woods virtual environment with the
Calm music selected. They were able to explore a calm, forest
3D environment with running water features with soft chirping
bird and gentle wind sounds. Using a controller, participants
could move to different positions in the forest to explore or find
a particular viewpoint they liked and found most conducive to
their meditation. A narrative provided audio guidance on the
meditative practice. This environment was selected to maximize
the similarity with the participants’ prior VR experiences in the
RCT.

Both EEG recording and the VR system were run on a Dell G7
17 7790 gaming laptop (Intel Core i7-8750H, 16 GB DDR4,
RTX 2060) placed in front of the participant. During recording,
the laptop screen was arranged to display the ActiView software
and a mirror window of the Guided Meditation VR application
experience, showing the participant’s perspective in the VR
HMD. In addition, a Windows 10 (Microsoft) camera app was
used to record the video. This arrangement was recorded using
Snagit (Techsmith) screen capture software to accommodate
the time synchronization of EEG and recordings of participants’
physical movements (Figure 1).

Figure 1. Electroencephalograph recording during a virtual reality experience.
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Procedures
Participants were seated in front of the laptop, and the laptop
webcam was framed to capture the participants’ head, arms,
and upper body. Before putting on the EEG head cap,
participants were familiarized with the VR app, its controls,
and how to navigate and select meditations. The Cz, inion, and
left and right preauricular locations were marked using standard
EEG landmarking methods. These locations were used to align
the EEG head cap on the participant. The electrode paste was
then applied, and the electrode contacts were adjusted until the

electrode offsets were less than 50 µV. The VR HMD was then
placed in position over the EEG head cap, and the experience
commenced.

The overall structure of data collection used an 8-minute resting
condition, followed by the 30-minute sequence of meditations
and followed by another 8-minute rest condition (Figure 2). The
8-minute period was considered a balance between being shorter
to reduce strain and being longer for more data; this period has
been used in EEG studies in a variety of fields for baselines
[49-51].

Figure 2. (A) Diagram of equipment setup. (B) Timeline of recording, including rest and meditation conditions. (C) Diagram of desktop view. EEG:
electroencephalograph; NRS: numerical rating scale.

During the rest conditions, the participants were asked to rest
quietly and observe a small white crosshair displayed on a black
background in the VR HMD. Participants were instructed to
keep their eyes open while blinking naturally, to keep their eyes
on the crosshair, and to stay still while not thinking about
anything. During the meditation practice, participants were
instructed to engage with the guided meditation and look around
or move around the virtual environment as they liked, to find
an enjoyable perspective. Each guided meditation experience
lasted 10 minutes, and participants were instructed to begin the
next one immediately after the intervening rest condition. Pain
was assessed before and after the first rest condition, after each
10-minute guided meditation, and after the second rest condition.
Participants were asked to verbally rate their pain from 0 to 10
on the simple numerical rating scale (NRS) [52].

Analysis

Data Preprocessing
The recording sessions of the resting condition, the 3 guided
meditation conditions, and the final resting condition were
referred to as the Pre, Med1, Med2, Med3, and Post,
respectively, for the analysis. These 5 conditions were extracted
based on the time stamps acquired from the EEG video
recordings.

Figure 3 illustrates the EEG data preprocessing steps. The raw
EEG data in the Biosemi format were imported and preprocessed
using FieldTrip software (Donders Institute for Brain, Cognition
and Behaviour) [53]. As the bandwidth of interest was less than
50 Hz, the data were downsampled to 512 Hz to reduce
computing time in later processes. To prepare for downsampling,
an antialiasing sixth-order low-pass Butterworth two-pass filter
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set to 70 Hz was first applied to the data. The primary 64 EEG
channels were then re-referenced to the averaged left and right
mastoid electrodes (T7 and T8). This re-referencing process
effectively eliminated the noise introduced from the original

reference electrodes. After this process, the reference electrodes
T7 and T8 were eliminated from the data, and only 62 channels
were retained.

Figure 3. Electroencephalograph data preprocessing chart. EEG: electroencephalograph; ICA: independent component analysis.

In addition, a sixth-order high-pass Butterworth two-pass filter
with a cut-off at 1 Hz was used to remove slow drifts and to
prepare the data for independent component analysis (ICA)
[54]. The data were further notch-filtered to remove any
powerline noise and harmonics, with cut-offs set at 60, 120,
and 180 Hz. Bad channels were identified during the EEG
recording process using an EEG data browser and rejected.

These data for each condition were further segmented into
nonoverlapping epochs of 2 seconds in length to enable signal
averaging in the frequency domains [55]. A data cleaning
process was then performed using the FieldTrip automatic
artifact removal feature, which is based on a Z-transformation
and the setting of a threshold to reject bad epochs. This artifact
removal result was found to be unsatisfactory, so a manual
cleaning process was then performed. Segments with participant
movement observed in the videos were identified, and any
residual bad segments and channels were rejected. These steps
effectively eliminated the artifacts caused by head and body
movements.

Any remaining artifacts caused by eye blinks, eye movements,
and external noise were eliminated from the data using ICA.
These manual artifact removal and ICA processes were repeated
3 times during the cleaning process to ensure that all
movement-based artifacts had been captured. Finally, bad
channels were repaired [56] using the established practice of
spline interpolation of the neighborhood channels on the bad
channels [57].

Power Spectral Density Analysis
The power spectral density (PSD) [58] was computed for the
conditions using a fast Fourier transform method [59]. Hanning
taper smoothing was applied to reduce spectral leakage owing
to the discontinuity of the signal at the start and end points of
the epochs. To improve the signal-to-noise ratio, the average
PSD of the epochs was used. The PSD was further normalized
by dividing the average power across all the frequency bins in
each channel. The frequency range in the analysis was set to
2-50 Hz, which effectively covers the waveforms commonly
used in EEG analysis. The PSD results of the premeditation
experiences, during meditation experiences, and postmeditation
experiences were then plotted and shown as pre, med, and post
conditions, respectively. For med, the average PSD of the
meditation conditions was computed using the average of the
3 meditation conditions (Med1, Med2, and Med3). For a
graphical overview, a band power box and whisker plot were
created. The plot revealed the signal power over the typical
EEG frequency bands: 2-4 Hz (δ), 4-8 Hz (θ), 8-12 Hz (α),
12-30 Hz (β), and 30-50 Hz (γ) [60]. The lower boundary of 2
Hz was set to avoid any distortion introduced by the high-pass
filter at 1 Hz. The upper boundary of 50 Hz was selected to
avoid the heavy power-level drop due to the use of a 60 Hz
notch filter. In addition, 50 Hz was considered a reasonable
cut-off between the high and low γ ranges.

Topographic and Coherence Analysis
To explore the spatial properties of the signals on each EEG
channel, a topographic mapping of the PSD was plotted
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according to the traditional frequency ranges. The PSD was
plotted using a heat map visualization technique to display the
magnitude of the PSD with a 2D color representation. An
interpolation based on the MATLAB 4 grid data method was
used to smooth the topography, where a surface was fitted to
the scattered data points using a biharmonic spline interpolation
[61]. This PSD plot was used to graphically illustrate the spatial
properties associated with the pre, med, and post experiences.

A coherence analysis [62] was performed to visualize the
functional connectivity between the electrodes as an indication
of the brain areas that may be functionally integrated. Coherence
of the pre, med, and post conditions were plotted for the
frequency bands. A value between 0 and 1 was displayed for
each channel pair. A value of 1 indicates full synchronization
between the channel pair, and a value of 0 reveals that the
channel pair does not work in the synchronized condition. The
significance of the coherence difference between the conditions
was computed using the two-tailed Student t test and then
plotted.

Pain
Pain experience was measured using the NRS. Pain scores were
collected from the patients as an initial baseline at the start, and
after each condition, to explore any correlation between pain
levels and any PSD changes identified during the meditative
experience.

Statistical Analysis
For the PSD and coherence analysis, the null hypothesis set for
inferential statistical analysis was that the probability distribution
of the condition-specific averages for PSD and coherence would
be identical for all conditions.

As a cluster-based permutation test [63] can be used to
effectively resolve multiple comparisons in EEG signal
statistical analysis, this test was used in this study to examine
the overall PSD differences between the pre-med, med-post,
and pre-post conditions by identifying the clusters of electrodes
with significant changes. The tests were conducted using the
Monte Carlo method, with 128 permutations, two tails, and
α=.025 (negative and positive tails together equal .05). In

addition, for comparison of all 3 conditions together, a
multivariate analysis of variance (MANOVA) was used, with
2048 permutations, one tail, and α level set to .05.

The effect size was calculated after the cluster-based
permutation test. First, a bounded rectangular area spanning
each cluster was identified. This rectangular area was bounded
by the frequency window of the cluster and all the channels in
that cluster. The PSD in this area was then averaged. The
maximum Cohen d effect size was then computed using
FieldTrip for each of the conditions. The effect size was not
computed for the MANOVA because it requires the specification
of 2 mean groups for comparison. Generally, a Cohen d effect
size around 0.2 is considered small and around 0.8 and higher
is considered large to very large [64,65]. Finally, peak channel
tests were performed to verify the PSD changes, and post hoc
power analyses using G*Power [66] were performed to indicate
statistical power based on the effect sizes observed in the
sample.

For the coherence analysis, the Student t test was used to
examine significant coherence differences between the
conditions. Parameters were set to two-tailed, paired samples,
and α=.05, with a 10% false discovery rate (FDR) adjustment
set [67].

To explore the associations between pain scores and PSD,
repeated measures correlation [68] was conducted. Some peak
PSD channels identified with a high significance of PSD change
from the cluster topoplot were input for each condition as the
repeated independent variable, and the NRS pain score was
input as the dependent variable.

Results

Overview
A total of 10 participants were recruited (Table 1). As we went
through the data cleaning process, the data from 1 participant
(S05) were found to be excessively noisy, and on video review,
2 other participants (S08 and S09) were found not to be
following the procedures. Hence, their results were excluded,
and a sample size of 7 was used in the final analysis.

Table 1. Participant demographics.

Cancer historySexAge (years)Subject

Abdominal tumorsFemale59S01

Non-Hodgkin lymphomaMale66S02

Non-Hodgkin lymphomaMale37S03

Breast cancerFemale58S04

ChondrosarcomaFemale47S06

Colon cancerFemale50S07

Prostate cancerMale64S10

PSD Analysis
Figure 4 illustrates the average of the power spectrum of the 3
conditions to provide a general overview of the power spectrum
in the data, whereas Figure 5 shows the box and whisker plot

of band power of the pre, med, and post conditions in the 5
traditional frequency ranges. From these figures, the differences
in power in the frequency bands between the conditions were
identified. The post condition power level had the lowest median
and mean values in the δ range. The med condition changed
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from the lowest median and mean values in θ and α to the highest median and mean values in β and γ.

Figure 4. Grand average power spectrum.

Figure 5. Power level changes between the pre, med, and post conditions in different frequency ranges. Box plot shows the median and range of power
level of the participants. Line plot shows the changes in mean power.

The topographic distribution of the PSD is shown in Figure 6.
Differences in pre, med, and post conditions are shown spatially
in all bands and in different brain regions. Changes in the power
levels during meditation were observed in all frequency bands.
In δ, an increase in power level in the central occipital region
was observed, and a drop of power in the frontal-central region
was observed in the post condition. In θ, there was a drop in

the power level in the frontal cortex. In α, a decrease in power
level in the central parietal region was noted. In the β band, an
increase in power level was found in the bilateral central and
prefrontal regions during meditation. In γ, an increase in power
level was noted in the left frontal (LF) and right frontal (RF)
regions, and a slight increase in the central parietal region was
observed.
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Figure 6. Topography of power spectrum shown in different frequency ranges. Different color scales are used for the frequency ranges to reveal the
details in the central areas.

Figure 7 shows the topoplot of the two-tailed cluster-based
permutation test results. The conditions were compared in the
test, including two-tailed pre versus med, med versus post, and
pre versus post and a one-tailed MANOVA for all 3 conditions
together. The clusters of electrodes with significant differences
found in PSD changes were marked with a circle marker at the
electrodes. The color bars indicate the t values computed from
the test. For the pre versus med comparison, a cluster with a
significance of P=.02 was found in the range of 24.5-31 Hz
(high β and low γ) in the frontal cortex. For the med versus post
comparison, significance was found in the β and γ ranges. A
cluster with a significance of P=.001 was found in the range of
37-50 Hz (γ), and the cluster covered most brain regions; a
cluster with a P value of .008 was found in the range of 23-36
Hz (high β and low γ) in the frontal and central cortices. For

the pre versus post condition comparison, a cluster with P=.02
was obtained in the frontal, central, and parietal regions in the
range of 8-9.5 Hz (high θ and low α). The MANOVA
cluster-based permutation test for all the pre, med, and post
conditions returned 4 clusters with P≤.05, where the test was
one-tailed. The first cluster found has P=.002 in the range of
37.5-50 Hz (γ) in the frontal, central, and parietal cortices. The
second cluster with P=.03 was found in the range of 31-36 Hz
(low γ) in the frontal and central cortices. The third cluster with
P=.03 was found in the range of 2-5 Hz (δ and low θ) in the
frontal, central, and parietal cortices. The last cluster with P=.04
was found in the range of 24-30 Hz (high β) in the frontal and
central cortices. Table 2 shows the test results for all the clusters
of significance. The very large effect size indicated that the
permutation tests were effective in rejecting the null hypothesis.
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Figure 7. Power spectrum analysis using the cluster-based permutation test. Clusters of electrodes found with significant changes in power are marked
with a circle marker at the electrodes. The color bars show the permutation test t-value level. MANOVA: multivariate analysis of variance.

Table 2. Cluster-based permutation test results. All clusters with P≤.025 are shown for the first 3 tests, and clusters with P≤.05 are shown for the
multivariate analysis of variance test.

Effect sizeP valueComparison and cluster

Pre-med

1.252.021

Med-post

3.190.0011

1.318.0082

Pre-post

1.504.021

MANOVAa

—b.0021

—.032

—.033

—.044

aMANOVA: multivariate analysis of variance.
bNot calculated as it required to specify which 2 conditions to compare.

By inspecting the topoplots (Figures 6 and 7), 5 peak channels
with noticeable changes in the power levels between the
conditions were selected for additional analysis and for better
understanding the observed power level changes. The peak

channels selected were AF7 and Fp2 in the prefrontal region,
FC1 in the frontal region, CP5 in the left central (LC) region,
and P5 in the left parietal (LP) region. Two-tailed, paired-sample
t tests were performed to examine the overall PSD changes in
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different conditions. These tests were conducted on the pre and
med, med and post, and pre and post conditions. The resulting
P values were reported with an FDR adjusted to 10%. The t test
results were plotted graphically for ease of interpretation. For
each of the peak channels, a combined plot of the results of the
3 conditions was used.

Figure 8 shows the P values obtained in a graphical form for
the comparison of the 3 conditions. The upper shaded areas
represent P≤.025. The shaded areas above the dashed line
represent the adjusted significance with P≤.0025.

Figure 8. Graphical depiction of P values of changes in power spectral density between conditions for the selected channels. Shading indicates
significance found at the .025 level, and shading above the dashed line indicates the adjusted significance at the .0025 level (with the false discovery
rate set to 10%).

A statistical power analysis was also performed to verify the
probability of detecting a true effect in the t tests. Table 3 shows
the maximum effect size value and the respective frequency
point found for each channel and for each comparison. Table 4

shows the statistical power based on the effect sizes listed in
Table 3. It is shown that the t test results have a high power
≥0.7302 even when using the adjusted α value of .005.
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Table 3. The maximum channel effect size and the frequency at which it was located.

Pre-postMed-postPre-medChannel (N=7)

Frequency (Hz)Max effect sizeFrequency (Hz)Max effect sizeFrequency (Hz)Max effect size

17.51.561331.51.9946311.9542aAF7

9.51.468231.53.7903322.3861Fp2

9.51.9221292.988813.51.1037FC1

2.51.9937392.1765151.1651CP5

8.52.07363.52.6077401.0514P5

aItalicized values indicate where P≤.0025 was found for that frequency value.

Table 4. Power analysis for the effect size found.

Pre-post, α=.005Med-post, α=.005Pre-med, α=.005Channel

0.50730.76760.7472aAF7

0.44500.99980.9125Fp2

0.73020.98900.2225FC1

0.76720.84700.2556CP5

0.80470.95580.1962P5

aItalicized values indicate where P≤.0025 was achieved.

Topographic and Coherence Analysis
Figure 9 demonstrates the coherence detected in the α band
during meditation.

The functional connectivity level is represented by a red to blue
color scale. The red color with a value close to 1 indicates that
a channel pair is highly synchronized in the signal transfer. The
blue color with a value close to 0 indicates that the channel pair
is working independently.

Figure 10 shows the significant difference in coherence for the
comparison of the med and post conditions in the α band.
Channel pairs with P≤.025 are highlighted in green. Those with
P≤.0025 (FDR adjusted) are highlighted in yellow. For clarity,

the EEG channels were divided into regions according to their
respective locations in the brain, namely, LF, LC, LP, left
occipital, central parietal and occipital, RF, right central, right
parietal and right occipital. Table 5 summarizes the results of
a series of plots, as shown in Figure 10, for all the bands and
all 3 comparisons. The table shows the significant coherence
changes with P≤.0025 between the brain regions, where 1
denotes the pre and med comparison, 2 denotes the med and
post comparison, and 3 denotes the pre and post comparison.
The frequency band of the region pair at which a significance
was found is shown with the Greek letter of the band. The
number inside parentheses indicates the number of significant
channel pairs in the frequency band.

JMIR Biomed Eng 2021 | vol. 6 | iss. 2 |e26332 | p.43https://biomedeng.jmir.org/2021/2/e26332/
(page number not for citation purposes)

Fu et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 9. Coherence between the electroencephalograph channels during the virtual reality–guided meditation and in the α frequency range.

Figure 10. Channel pairs with significant coherence difference between the meditation and post meditation conditions in the α band. t test was used
in the analysis, and channel pairs with a P≤.025 are highlighted in green, and channel pairs with a P≤.0025 (with the false discovery rate set to 10%)
are highlighted in yellow. CPO: central parietal and occipital; LC: left central; LF: left frontal; LO: left occipital; LP: left parietal; RC: right central;
RF: right frontal; RO: right occipital; RP: right parietal.
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Table 5. False discovery rate–adjusted significant coherence changes found in the region pairs for the 3 comparisons: 1: pre versus med, 2: med versus
post, and 3: pre versus post.

ROiRPhRCgRFfCPOeLOdLPcLCbLFaRegion

✓l——————k3: θ3: δjRO

—✓1: θ2: α; 3: β2: δ2: δ2: δ(2)m——RP

——3: α (✓)1: β—————RC

———✓2: α—1: γ(2); 2: θ(2), α(5); 3: δ(2)——RF

————✓——1: α; 2: α(2)3: δ αCPO

—————✓———LO

——————✓—2: θ, α(2), βLP

———————✓—LC

————————✓LF

aLF: left frontal.
bLC: left central.
cLP: left parietal.
dLO: left occipital.
eCPO: central parietal and occipital.
fRF: right frontal.
gRC: right central.
hRP: right parietal.
iRO: right occipital.
jGreek letter indicates the frequency band of the region pair with significant change.
kThe empty cells in the upper left of the check mark diagonal show no significant channel pair was found. The cells in the lower right of the check mark
diagonal are not used, as they are just mirrored duplicates of the cells in the upper left of the check mark diagonal.
lThe checkmark indicates a region connects to the same region in the region pair.
mNumber within parentheses indicates the number of channel pairs with significant changes in that frequency band. If there is only 1 channel pair, the
number is not shown.

As shown in Table 5, significant changes were mostly found
between the frontal and parietal regions, namely, RF-LP (11
channel pairs) and LF-LP (4 channel pairs). In addition, the
most active regions were LP (related to 17 channel pairs), RF
(15 channel pairs), LF (7 channel pairs), right parietal (7 channel
pairs), and central parietal and occipital (7 channel pairs). For
the 3 comparisons overall, significant changes were mostly
found between the frontal and parietal and occipital regions,

particularly in the θ, α, and β bands in the med-post comparison.
For the pre-med comparison, the frontal-parietal region-pair
coherence changes were observed in the γ band. For the pre-post
comparison, the frontal-parietal and occipital region-pair
coherence changes were observed in the δ, α, and β bands.
Table 6 shows the effect sizes of the 2 regions of interest,
namely, RF-LP and LF-LP. Some large to very large effect sizes
(≥0.8) were found in the δ, θ, α, and γ bands.

Table 6. Effect sizes of the 2 region pairs of interest: right frontal-left parietal and left frontal-left parietal.

Region-pair LF-LPb average, effect sizeRegion-pair RF-LPa average, effect sizeBand

Pre-postMed-postPre-medPre-postMed-postPre-med

0.28620.44610.16360.8511c0.75450.2873δ

0.16100.82340.74640.14960.77380.5568θ

1.06551.77360.77420.85931.30320.5855α

0.12940.51350.27590.22110.61420.4643β

0.16330.58800.30320.22181.02200.3482γ

aRF-LP: right frontal-left parietal.
bLF-LP: left frontal-left parietal.
cItalicized values indicate large and very large effect sizes.

Table 7 shows the NRS pain scores collected immediately after
the pre, Med1, Med2, Med3, and post conditions. A repeated
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measures correlation analysis was performed on some selected
peak channels and clusters. In the test, no significant relationship

between the collected pain scores and PSD was found.

Table 7. Numerical rating scale scores collected after each condition.

NRSa scoreParticipant

PostMed3Med2Med1Pre

12224S01

10034S02

35747S03

34456S04

54565S06

42.5453S07

22233S10

aNRS: numerical rating scale.

Discussion

Principal Findings

Overview
In answer to the primary research question, there were
significant changes in EEG power and coherence among three
conditions (pre, VR-guided meditation, and post). Therefore,
the null hypothesis of no difference was rejected.

The visual inspection of the global normalized power spectrum
analyses revealed various changes in all bandwidths. The
predominant pattern was for increased δ, β, and γ bandwidth
power in the meditation condition, compared with both the pre
and post conditions. In the θ and α bandwidths, the changes in
power were more varied within the 3 conditions.

Pre Medication Versus VR-Guided Meditation
Visual inspection of the topographic distribution showed 2 main
patterns comparing meditation with the prior resting condition.
The first was an increase in power of δ (mainly in the central
and occipital areas), β (mainly in the bilateral prefrontal areas),
and γ (mainly in the frontal and bilateral prefrontal areas) during
VR-guided meditation.

The second pattern that emerged from the visual topography
map was decreased low-frequency range power of the θ (mainly
in frontal areas) and α (mainly in occipital and parietal areas)
bandwidths in the med condition compared with the pre
condition. However, these visually observed changes were not
significant in the permutation test.

Among the significant changes identified, the permutation test
showed that a cluster of increased signals occurring across the
high β and low γ range (24.5-31 Hz) in frontal areas was
significantly different in the pre condition than in the med
condition. In addition, comparison of single selective channels
between conditions showed a significant difference in this
bandwidth in the frontal areas recorded from AF7 and FP2.

β waves generally replace α waves when participants open their
eyes, and in the motor cortex, β waves are associated with

muscle motor activity [58,60]. They are normally most
prominent in the frontal and central head regions and attenuate
posteriorly. This may have been the case for the increase
observed here. β activity is also commonly associated with
drowsiness, stage nonrapid eye movement 1 sleep, and
subsequently decreases in deeper sleep, and β activity is not
affected by eye opening [60]. Interestingly, sedative medications
are also known to increase the amplitude and quantity of β
activity [69]. This finding suggests that an increase in the power
of the β range might potentially be useful as a
neurophysiological correlate of VR-guided meditation.
Nevertheless, findings regarding changes in the β band with
meditation have been inconsistent. Several studies have reported
no significant changes associated with meditation in the β range
[4,31]. However, an increase in β and θ band power was
reported in one study after a longer period of 6 weeks of
meditation compared with baseline [70]. It is possible that the
changes in β power in the meditation condition compared with
the premeditation condition here may be more specific to the
use of VR-guided meditation and the visual activity involved,
but further work is required to explore this.

In contrast, the activity of the γ band has been reported to be
associated with activation of the default mode network. The
default mode network is most frequently detected during the
resting conditions and reflects the neural activity of different
brain areas, such as the cingulate cortex, hippocampus, medial
frontal lobes, inferior parietal lobes, and temporal lobes. It is
thought to be involved in self-consciousness; self-processing;
and introspective functions, including emotional awareness and
processing [71-74]. An increase in γ band activity in the frontal
and prefrontal areas during VR-guided meditation could reflect
the activation of such introspective experiences through
meditation. The increase in γ power may also have been due to
the activation of attentional networks and visual processing of
the meditative VR environment [75].

It is also noteworthy that others have reported an increase in γ
band power related to meditation [17,75,76]. For example, one
study reported an increase in the γ band (25-45 Hz) during
meditation compared with the resting state in the temporal and
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parieto-occipital areas in mindfulness meditation practitioners
[76]. Another study reported that the proficiency level of the
meditator is associated with the increased level of the γ band
(60-110 Hz) in the parieto-occipital region in meditative states
relative to the mind-wandering state in experienced meditators
compared with healthy controls. Although it is noteworthy, in
this study, no significant difference was found between the
states of meditation and mind wandering [75].

VR-Guided Meditation Versus Post Meditation
In contrast to the pattern of increase in high β and low γ activity
in the meditation condition compared with the prior rest
condition, here, we observed a pattern of reduced β and γ power
in the post condition compared with the meditation condition
in the topographic maps. This was followed by permutation test
results in terms of 2 significant clusters of differences in the β
cluster (23-36 Hz) and γ cluster (37-50 Hz) in the post versus
med condition. These findings suggest a potential regression
back to the baseline state activity and further suggest that
changes in high β and low γ activity are associated with a VR
meditative state. Analysis of single selective channels also
supported widespread significant differences in the power of β
and γ bandwidths in the frontal, central, and parietal channels
(FP2, FC1, CP5, and P5).

As γ band oscillation has also been reported to be associated
with attention toward pain and hypervigilance [77,78], the
significant reduction in γ band activity following the VR
meditation experience could potentially show that less
attentional capacity is directed toward pain after using a
meditative VR environment. However, this is conjectural and
requires further verification.

Pre Meditation Versus Post VR-Guided Meditation
The comparison of the pre and post conditions could provide
an indication of a VR-guided meditation effect in our study.
These changes were mainly observed in the α frequency range
in terms of an increase in α power in the frontal and central
areas in the post condition compared with the pre condition.
This was accompanied by a significant cluster-based permutation
analysis finding over a cluster of channels in the frontal and
central areas (8-9.5 Hz) and significant differences in α power
in channels such as Fp2, FC1, CP5, and P5. An increase in the
θ band in the central areas and a decrease in the θ band in the
posterior occipital areas were also observed in the power
spectrum analysis; however, these changes were not found to
be significant in single-channel analysis. The posterior dominant
α rhythm is characteristically present in normal conscious EEG
recordings in the occipital region. It is a defining feature of the
normal background rhythm of the adult EEG, best observed
with the eyes closed and during mental relaxation and is
attenuated by eye opening and mental effort. θ waveforms are
characteristically observed more in drowsiness and in the early
stages of sleep, such as light sleep (the nonrapid eye movement
1 and nonrapid eye movement 2 sleep phases) [60]. Increases
in α-θ bandwidths have previously been reported to be
associated with mindfulness meditation, and the α-θ border (7-8
Hz) has also been suggested as an optimal range for indicating
visualization activity [4,79,80].

A final observation worthy of note is that there was a reduction
in the δ range power in the post condition compared with the
pre condition, which was significantly different in the LC and
parietal channels (CP5 and P5). Moreover, although changes
in the δ range were not significant in the pairwise pre-post
comparison, a cluster of channels was identified to be significant
in MANOVA. δ is seen more in deep, dreamless sleep, and
meditation activities where awareness is more detached [4,60].
Such a general pattern of reduction in δ power in the post
condition compared with the pre condition could possibly be
related to the effect of VR-guided meditation on brain activity
and would need further work to explore if this is a significant
trend.

Coherence
The significant coherence changes suggested that variations in
brain connectivity occurred between the different test conditions.
Coherence was found predominantly between the frontal and
parietal and occipital cortices and in different wave bands,
namely, in γ for the pre and med conditions; in θ, α, and β for
the med and post conditions; and in δ, α, and β for the pre and
post conditions. The γ coherence changes between the pre and
med conditions were likely associated with activity during the
VR-guided meditation. Between the med and post conditions,
it shifted to slower frequencies, possibly suggesting a
postmeditation effect. The pre-post comparison showed
coherence in the δ, α, and β ranges. The reasons for this are
unclear and could be related to the individual responses of the
participants after the VR-guided meditation.

Pain and EEG Signals
In terms of the secondary focus of the study to explore pain
changes correlated with EEG variations, we found no significant
association between pain reduction and changes in
electrophysiological signal. This could be due to the limited
sample size of this exploratory study. More electrophysiological
studies on a larger sample population could potentially identify
EEG correlates associated with pain reduction after VR-guided
meditation.

Limitations
As an exploratory study, the sample numbers were small and
not necessarily representative of the wider population of patients
with CP, which limited the power to identify differences.
Therefore, there is a need for neurophysiological studies with
larger samples to validate these results and to better explore this
phenomenon. In addition, this was a single cohort study with
no comparison group, although resting states before and after
meditation were used as a no-mindfulness within-subjects
control. Finally, the study focused on short-term
neurophysiological alterations in the electrophysiology of the
brain, and the long-term effects of meditative VR environments
are still unknown, which will require longitudinal studies.

Conclusions
These findings suggest that distinct altered neurophysiological
brain signals are detectable during VR-guided meditation,
predominantly in terms of an increase in the power of the β and
γ bands. Changes in the α and θ bands were also identified,
predominantly as a pattern in VR-guided meditation compared
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with the resting baseline, possibly reflecting the specific impact
of visual activity during VR-guided meditation. Some changes
in coherence were also observed between the frontal and parietal
and occipital cortices during VR-guided meditation. No
significant association between NRS pain scores and changes
in EEG signals was observed. Although this is an exploratory
study, the results of this work clearly demonstrate the feasibility

of EEG recording and subsequent data processing and analysis
during VR experiences in patients using modern VR HMDs.
To our knowledge, this is the first exploration of EEG alterations
in the brain’s electrophysiological signals associated with
VR-guided meditation in patients with CP and should provide
some valuable initial data to inform future work in this field.
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PSD: power spectral density
RCT: randomized controlled trial
RF: right frontal
VR: virtual reality
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Abstract

Background: Smartphone use is widely spreading in society. Their embedded functions and sensors may play an important
role in therapy monitoring and planning. However, the use of smartphones for intrapersonal behavioral and physical monitoring
is not yet fully supported by adequate studies addressing technical reliability and acceptance.

Objective: The objective of this paper is to identify and discuss technical issues that may impact on the wide use of smartphones
as clinical monitoring tools. The focus is on the quality of the data and transparency of the acquisition process.

Methods: QuantifyMyPerson is a platform for continuous monitoring of smartphone use and embedded sensors data. The
platform consists of an app for data acquisition, a backend cloud server for data storage and processing, and a web-based dashboard
for data management and visualization. The data processing aims to extract meaningful features for the description of daily life
such as phone status, calls, app use, GPS, and accelerometer data. A total of health subjects installed the app on their smartphones,
running it for 7 months. The acquired data were analyzed to assess impact on smartphone performance (ie, battery consumption
and anomalies in functioning) and data integrity. Relevance of the selected features in describing changes in daily life was assessed
through the computation of a k-nearest neighbors global anomaly score to detect days that differ from others.

Results: The effectiveness of smartphone-based monitoring depends on the acceptability and interoperability of the system as
user retention and data integrity are key aspects. Acceptability was confirmed by the full transparency of the app and the absence
of any conflicts with daily smartphone use. The only perceived issue was the battery consumption even though the trend of battery
drain with and without the app running was comparable. Regarding interoperability, the app was successfully installed and run
on several Android brands. The study shows that some smartphone manufacturers implement power-saving policies not allowing
continuous sensor data acquisition and impacting integrity. Data integrity was 96% on smartphones whose power-saving policies
do not impact the embedded sensor management and 84% overall.

Conclusions: The main technological barriers to continuous behavioral and physical monitoring (ie, battery consumption and
power-saving policies of manufacturers) may be overcome. Battery consumption increase is mainly due to GPS triangulation and
may be limited, while data missing because of power-saving policies are related only to periods of nonuse of the phone since the
embedded sensors are reactivated by any smartphone event. Overall, smartphone-based passive sensing is fully feasible and
scalable despite the Android market fragmentation.

(JMIR Biomed Eng 2021;6(2):e15417)   doi:10.2196/15417
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Introduction

Background
In 2020, smartphone users are approximately 3.5 billion people
(ie, about the 45% of the world population). Smartphones are
a widely spread resource that health care providers might
extensively use to improve the quality and timeliness of service
to the citizen at acceptable costs.

Potentialities of smartphones in health care are being widely
explored [1]. A PubMed search of “smartphone” or “mobile
phone” and “monitoring” for articles published between January
1, 2000, and September 30, 2020, found 5246 articles with
74.04% (3884/5246) published after January 1, 2015,
demonstrating a continuous increase of interest in the last few
years.

Furthermore, the growing number of available apps in the
Google and Apple stores covers an increasingly large spectrum
of services able to support most citizens’ daily activities.
However, the effective diffusion of smartphone in the clinical
practice is slowed down by social, organizational, and technical
barriers [2]. Clinical practice requires the capability of
continuously following up individuals along their care paths
(longitudinal monitoring) assessing variations in time due to
disease progression or intervention results. For this purpose, an
underlying monitoring app must be robust and reliable and able
to run on a wide base of smartphones in a totally unobtrusive
and transparent way [3,4]. This approach addresses the
ubiquitous computing paradigm that, through technologically
transparent tools, enables the integration of small connected
and inexpensive devices in the daily life of people. Transparency
and density of the technological framework lead to higher levels
of acceptability and reliability thanks to the reduced
intrusiveness and, at the same time, the improved capillarity of
the technology.

Meanwhile, the collected data must adhere to robust and
device-independent quality standards to ensure measurement
repeatability to generate clear clinical outcomes [5], while
smartphone vendor policies contribute to increasing
fragmentation due to strategic choices. Continuous monitoring
apps and in particular passive sensing smartphone-based
platforms must cope with constraints and limitations related to
manufacturer choices and policies that need to be carefully
assessed and cleared before large-scale deployment in health
care with prevention and follow-up objectives.

On the other side, the level of engagement of the end user needs
to be improved. Today, the longer the follow-up period, the
higher the chances are for dropout [6]. Attrition rates from 30%
to 70% are often reported [7-9]. Technological issues can
dramatically impact the use in a daily routine.

Reliability and robustness are the most important drivers to
ensure proper diffusion within the clinical practice; however,
studies characterizing the smartphone-based platforms from
this point of view are lacking. Many studies address the clinical
relevance of the acquired data (see Prior Work section), but
very few analyze the impact of technical issues on the scalability
of the solutions in the daily routine and their performance in a

heterogenous technical environment where hardware
characteristics and proprietary policies have a strong impact on
the quality of delivered data and calculated indexes.

Prior Work
Mental health–related studies have widely investigated the use
of smartphone-based sensing platforms to cope with the need
of unobtrusive and continuous data collection while reducing
biases in patient behavior. Dogan et al [10] provide a
comprehensive review of the current status of the technological
impact on affective disorder management. Several studies about
the correlation between affective disorders and smartphone use
are investigated, and technical problems, in particular issues
related to different operating systems, are reported as the most
common reasons for discontinuation. The use of
smartphone-embedded sensors for health monitoring systems
is analyzed by Majumder et al [11] who identify, as a main
driver for successful penetration of these technologies, the
availability of affordable apps compatible with the main mobile
operating systems and devices from different manufacturers.
Similarly, the need for apps with reduced battery drain and
standardized performances regardless of the device brand is
reported by Baig et al [12] and Yu et al [13], while Boonstra et
al [14] define performance, interoperability, and battery
consumption as the most impacting issues. Differing operating
systems are reported as the leading cause of data loss. The data
collection rate is still only 55% of the scheduled acquisition
time for Android smartphones, indicating the need for additional
development work to provide more stable and reliable tools.
Finally, Hossain and Poellabauer [15] present the challenges
encountered in building the CIMON (Crew Interactive MObile
CompanioN) system, a continuous smartphone sensing app.
This system is specifically designed for the iOS system, and
the main issues reported are energy consumption, storage, and
operational continuity. Nevertheless, because of Apple’s strict
policy development limitations and terms, the variability in
terms of technical policies between iOS devices is not even
comparable with the Android market, which is required to deal
with a broader pool of brands and proprietary management
policies.

The need for robust and reliable passive sensing systems that
exploit the smartphone as data collector is gaining relevance in
the clinical debate, and recent studies [16] show a good
correlation between behavioral data collected through
smartphones and mental health–related scores [17-19] and also
show how features calculated from smartphone data may capture
a wider set of behavior descriptors not assessed by standard
scores [20]. Other studies report strong correlations between
smartphone-related nonmedical parameters, changes in lifestyle,
and variations in mood [21]. In particular, frequency [22] and
duration [23] of calls have been correlated to the onset of
depressive symptoms.

Goal of This Study
In this paper, we identify the main issues a smartphone-based
monitoring app must resolve to be a suitable tool for longitudinal
measurement of personal behavior on a diverse and continuously
changing technological panorama.
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A testing platform, QuantifyMyPerson (QMP), has been used
for this study as it is a proprietary smartphone-based app that
allows direct access to the collected raw data. QMP uses the
embedded sensors of the smartphone itself and smartphone use
information to provide 24/7 monitoring of the user’s life in
terms of both physical and cognitive activities. The system
architecture allows remote storage and processing of acquired
data to be made available to the operator through a web-based
dashboard. By design, QMP does not provide any feedback to
the user and does not introduce any burden other than carrying
the phone to avoid influencing the user’s behavior while
unobtrusively capturing their life habits.

The aim of this study is to pinpoint the main technological issues
encountered within an operating context and identify the most
relevant aspects to be considered when a monitoring platform
is deployed. The findings of this study will inform technical
choices to reach scalable, usable, and reliable solutions that can
reach large pools of users.

Despite the fact that the acquisition of data through passive
sensing systems happens in the most transparent way, the
collected information belongs to the user’s private sphere and
there are privacy issues. Privacy and ethical issues are relevant
perceived barriers in the spread of mobile health (mHealth)
solutions and smartphone-based data collectors [24,25].
According to a recent review [26], broad consent and

pseudonymization are frequently used approaches to manage
these kinds of issues. A robust ethical framework is not yet
clearly defined, and future evolutions should consider technical
development, clinical benefits, and ethical issues together to
shape an effective implementation of passive sensing in health
care. Technical findings and outcomes of this study aim also to
contribute to the definition of this framework promoting the
use of passive data in an ethically safe and sound fashion.

Methods

Data Acquisition System
QMP is a composite system managing background acquisition
of 24/7 data related to the social use of the smartphone (through
call logs, app use, and device use) and to the user’s activity
habits (through GPS and accelerometer analysis).

The platform consists of a mobile app based on the Android
OS, a cloud backend (backend as a service model), and a
web-based dashboard (Figure 1). Data acquisition runs in the
background during daily use of the smartphone by means of a
passive motion sensor data acquisition approach. Through data
processing algorithms, selected features are extracted to describe
users’ life and behavior changes. The dashboard allows for
management of the registry of users and visualization of the
acquired data in graphical and numerical forms.

Figure 1. QuantifyMyPerson architecture consists of the user’s smartphone, a cloud backend for data storing and processing, and a web-based dashboard
for data visualization.

The monitoring app stores data locally on the smartphone and
transmits them as Wi-Fi network connectivity becomes
available. This strategy allows data collection in a variety of
wireless connectivity scenarios with the confidence that
intermittent network access does not affect the nature, quality,
or quantity of the collected data.

Acquired data are temporarily saved in a remote storage area
and processed daily to extract descriptive features. The

computed features are saved on an in-cloud database accessed
through a web-based dashboard. The dashboard, as a
management tool, makes available various means for the
management of the patient database while acquired features
may be displayed through different graph typologies on freely
selectable time windows. The use flow is described in Figure
2.
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Figure 2. QuantifyMyPerson data flow from app installation to data visualization.

The mobile app is the core element of the sensing platform.
During the study, the app was available for Android platforms
only as this operating system enables more flexibility in the
management and access to the data registries and sensors. The
mobile app uses the sensor made available by the Android
framework to interact with the inertial measurement unit sensors
embedded in the smartphone and with the social and
communication registries made available by the operating
system. The sensors to be used for collecting data and related
sampling frequencies can be set through a parametric
configuration table allowing a dynamic fine tuning of the
acquisition parameters without the need for updating the app
on users’ devices.

The following embedded sensors and registries are used as raw
data sources by the QMP mobile app:

• Accelerometer sensor
• Gyroscope sensor
• Barometer sensor

• Magnetometer sensor
• GPS sensor
• Exchanged kBs per app registry
• Calls log registry
• Short message service log registry
• Screen brightness registry

The data acquired through the sensors are locally stored on the
device as separated raw text files, one for each sensor. The raw
files are then sent through an https encrypted communication
protocol when a Wi-Fi connection is available in order to reduce
the internal memory occupation and user data plan consumption.
After the first log-in, the app runs in the background without
any intervention from the user.

Data Processing
The features extracted from the raw data are based on the main
findings reported in the literature according to a previous review
of ours [27]. Table 1 summarizes the features calculated from
raw data.
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Table 1. Behavioral features extracted by QuantifyMyPerson.

DescriptionFeature

Calls

Average duration of incoming calls (seconds)mean_incoming

Average duration of outgoing calls (seconds)mean_outgoing

Total call duration (seconds)tot_call_length

Number of calls madeoutgoing_call

Brightness

Average duration of a session of use (from screen switch on to screen switch off)mean_time_usage

Number of times screen is switched onnumber_switch_on

Seconds of phone’s use from hour n–1 to n with hourly granularity over the whole 24 hoursb_n (24)

Apps

Kilobytes consumed in social app (Facebook, Instagram, Twitter, LinkedIn)tot_kb_social

Kilobytes consumed in communication app (WhatsApp, Messenger, Telegram, Skype, Hangouts)tot_kb_communication

Kilobytes consumed in navigation app (Chrome, Firefox, proprietary browser, Google, YouTube, Tripadvisor)tot_kb_navigation

Total kilobytes consumed in a daytot_kb

GPS

Number of places visitednumber_of_clusters

Percentage of time spent outside the hometime_outside

Variability in a participant’s location calculated as location_variance = (σ2
long + σ2

lat), where σ2
long and σ2

lat

represent the variance of the longitude and latitude, respectively, of the GPS location coordinates

location_variance

Measure of how uniformly a participant spends time at different locations. Let pi denote the percentage of time
that a participant spends in location cluster i. The entropy of the participant is calculated as entropy = −(pi*log(pi))

Entropy

Latitude and longitude coordinates of the visited places according to the distance from homevisited_clusters

Activity

Average of the acceleration signal amplitude from hour n–1 to n with hourly granularity over the whole 24 hoursm_amp_n (24)

Seconds of high activity from hour n–1 to n with hourly granularity over the whole 24 hourss_a_n (24)

Seconds of low activity from hour n–1 to n with hourly granularity over the whole 24 hourss_r_n (24)

High activity/(high activity + low activity)percentage_activity

Study Design
A sample of 12 healthy people was recruited for this initial
feasibility study for a time span of 7 months. As the aim of this
study is to assess how smartphone-based passive sensing
platforms cope with heterogeneous and complex environment,
any Android user was considered eligible irrespective of the
smartphone model, connection availability, or digital literacy.
The final goal was to highlight any possible criticality that could
occur during normal use under free-living conditions.

The participants’ smartphones included 5 different smartphone
brands and 11 different models running Android operating
system versions from 4.4 to 7. The brand distribution shows a
prevalence of Samsung and Huawei devices. The mean age of
the selected participants was 39 (SD 5.4) years, the majority
were male (8/12, 67%), and the average number of days of use
was 62.

All participants were informed of the study aims and modalities
when installing and running the app. Data handling was fully

compliant with the General Data Protection Regulation. To
ensure proper awareness about the acquired and stored data and
aim of the study, an in-app communication approach was
adopted consisting of an interactive wizard that describes the
data sources used and the scope of the study. This approach
ensures proper communication about data management and
study aims through a clear description that can be understood
by everyone regardless of the digital literacy of the enrolled
subject.

Each participant’s identity was pseudoanonymized with a
random user ID, keeping the ID map separated from all other
acquired data so that data cannot be traced back to individuals.
Participant data were uploaded on a secured server using
encrypted SSL protocol to ensure they cannot be intercepted
by third parties. When people left the study, their personal data
were removed while the raw data acquired during the study and
the calculated features remain anonymously stored for scientific
research purposes.
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Results

Data Acquisition System
The system was first assessed in terms of performance with the
2-fold objective of evaluating the impact of the mobile app on
the daily use of the smartphone and quality of the acquired data.
As reported in the study description section, the device brand
distribution spanned the most relevant Android market players.
Samsung devices showed a prevalence of 33% (4/12) within
the considered sample followed by Huawei devices with 25%
(3/12), Xiaomi (8%), Asus (17%), and Honor (17%). This
population distribution is fairly aligned with the brand
fragmentation reported in the Android Fragmentation report
[28] and the most recent Statista’s global smartphone market
share [29]. Thus, the sample under analysis mirrors the Android
user population making the recruited participants a
representative sample.

During the validation phase, no issues concerning normal
smartphone functioning were reported, and the everyday use of
the smartphone was not hindered by the background activity of
the app. The app was installed on the user smartphone without
impacting the running of already installed apps. No lags or limits
in functionalities were reported during the study period.

The average battery consumption trend of the smartphones,
with and without the monitoring app on board, are compared
in Figure 3. The battery drain analysis was made comparing
performance within the same operational environments (running
apps, operative system, connection type). The two trends are
comparable with an acceptable increase in power consumption
when the app is up and running. This trend confirms the known
battery drain issues for smartphone-based passive sensing
platforms, but the battery consumption can be well managed
by tuning acquisition parameters such as sensors sample rate,
data writing frequency, and data sending frequency.

Figure 3. Comparison of the average daily battery consumption trend for the same smartphone with and without QuantifyMyPerson on board and
running.

Because of the implementation by some manufacturers of battery
consumption management policies, some commercial devices
do not allow continuous data acquisition from both the phone’s
register and embedded sensors. This aspect could negatively
influence reproducibility and scalability of smartphone-based
monitoring systems especially within the Android ecosystem
due to high level of fragmentation (brand, devices, and OS
versions) if compared with the iOS systems [28].

By analyzing the up time of each sensor within the selected
population of users during the acquisition period, we identified
two subgroups based on the behavior of their smartphone:
subgroup A consisted of 7 users for whom the specific policies
of the phone operating system do not impact on the continuity
of data; subgroup B consisted of 5 users with smartphones

whose proprietary operating system policies have a strong
impact on the continuity of acquisition (Table 2 and Figure 4).

The most widely used battery consumption management policies
switch the embedded sensors off when the phone is not used
(ie, when the screen is off for some time) and when there are
no changes in the GPS signal (when GPS is active). The phone
is woken up again when one of the two situations changes.

This behavior makes clear that data from embedded sensors are
lost mainly when the phone is still (ie, it is not used, and it is
not moved). That means that most of the lost data from sensors
might be not associated with periods of activity (assuming that
users are carrying the phone on their person). So, the related
loss of information should be not relevant, but more focused
tests are still needed to validate this first outcome.
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Table 2. Classification of user device within subgroup A and B according to the proprietary smartphone management policies.

Device brand and modelSubgroup

A

Asus Zenfone 4

Samsung S4

Samsung S6

ASUS Zenfone 2 Laser

Samsung S5

Redmi 3S

B

Honor 8

Huawei P10 Lite

Honor 7

Huawei P9 Lite

Huawei P8 Lite

Figure 4. Comparison between the integrity of acquired data between a subgroup A user and a subgroup B user. Grey bars represent the timespan in
which the brightness of the display has been detected, blue points identify GPS data collection, and the orange line comprises 5 Hz sampled embedded
sensors data.

The quality and quantity of data are the main strengths of a
continuous monitoring approach. Smartphone sensor issues,
memory leaks, poor connection quality, and smartphone use in
free-living condition have real impact on the quality of the
collected data regardless the specific brand of the smartphone.

To assess these aspects, the data integrity percentage has been
calculated using the following formula:

This measure is aimed at quantifying the percentage of data
actually acquired while the app runs. The hours of acquired data
are considered as the timespan during which the samples are
acquired without interruption greater than 1 second. This
measure provides an indirect computation of data samples lost
during an acquisition session and allows us to spot gaps in the
data.

Data integrity is a crucial parameter for the identification of the
most appropriate data processing and feature extraction

techniques. Datasets with a very low data integrity index should
be not considered for frequency-based processing techniques
or proper resampling techniques should be implemented.

This parameter might be used as a quality control parameter
before mathematically or visually analyzing data. This approach
should also be considered to ensure compliance with the medical
device regulation (EU) 2017/745 on the risk of data misuse for
clinical evidence extraction.

Within this study, the global data integrity percentage is 84%
considering the entire sample of users, but a slightly different
behavior was observed between the two subgroups of users
described in the previous section. In particular, subgroup B is
characterized by a lower value of data integrity percentage
(60%) compared with subgroup A (96%). The analysis
performed on the accelerometer, brightness, and GPS signals
reveals that the lower data integrity percentage observed for the
subgroup B of users is due to the previously described
acquisition holes during which the smartphone kills the
acquisition routine according to proprietary power-saving
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policies. At this time, no solutions have been found due to the
proprietary policies implemented that are business confidential
and differ between smartphone models and brands.

Data integrity has not been negatively impacted by poor or
absent Wi-Fi connections and in some cases all the data were
properly stored and sent even if the smartphone was not
connected to Wi-Fi for a few days (up to 3). The data transfer
protocol has proved to be efficient and capable of handling
unreliable connections.

Thus, the strategy adopted for sending large raw data files based
on file chunks periodically sent and attached to the master file
stored on the remote repository provides a reliable data exchange
protocol. This strategy allows decentralization of the
computational power needed and thus reduces the impact on
performance of the users’ smartphones. This approach is largely
used for the management of data collection through a big data
approach, and it is at the core of the edge computing paradigm
that allows the implementation of sparse technological
frameworks.

Data Processing
Even if the focus of this study is not the clinical evaluation of
the smartphone-based passive sensing platform, the collected
data have been processed with the aim of extracting the features
identified in the literature and evaluating their potentialities in
identifying behavior trends and shifts for the analyzed users.
The processing task was executed daily through an automatic
routine.

The computed features were analyzed in order to investigate
the information content and assess whether the typology and
integrity of the available data could match with the data
processing requirements for the analysis of trends and anomalies
about human behavior. First, a principal component analysis
was performed on the whole pool of features extracted with the
aim of detecting the most descriptive set of features. The
following features were identified as the most descriptive:

• GPS-related features such as movement index, location
variance, and normalized entropy

• Hourly activity features—in particular, in the timespan that
goes from 10 AM to 9 PM

• Hourly brightness features—in particular, in the timespan
that goes from 11 AM to 10 PM

Thus, the selected features were used to extract information
about the variance between each day and detect anomalous days.
This approach starts from the evidence reported by Berrouiguet
[30] on the analysis of GPS-based features and validates its
feasibility with a larger set of features than the ones investigated
here. The set of features was analyzed using a k-Nearest
Neighbor Global Anomaly Score in order to detect the days that
differ from others within the period of use of QMP (Figure 5).
This analysis showed a repeatable pattern for each user along
the period of acquisition discriminating between the nonworking
days and the working days. Public holidays instead were
detected as the most relevant outliers showing the ability of the
system to easily detect the days that differ most because of
nonstandard behavior of the user.

Figure 5. k-Nearest Neighbors Global Anomaly Score graph for a selected user. Points represent the calculated anomaly score for each day with the
red points representing days with the highest values of anomaly.
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People use their smartphones for different purposes and through
different interaction modalities regardless their of demographic
data, which has been demonstrated to not have relevant impacts
on the smartphone-related behavior [31] Smartphones are
strongly integrated in every aspect of people’s lives acting as a
reliable behavioral mirror [32] enabling the longitudinal
monitoring and indirect assessment of cognitive and physical
status. Further analyses are ongoing in order to better assess the
potentialities of identifying clinically relevant and
behavior-related trends through a wider clinical trial. The first
data analysis shows promising results for users belonging to
both subgroup A and B. However, further investigation is still
needed in order to find the best data normalization method that
takes advantage of the data integrity parameters for each of the
identified subgroups.

Discussion

Principal Findings
In this paper, we presented the results of a validation test aimed
to assess the reliability of smartphone-based passive sensor
systems and the related integrity of the acquired data. Also, a
preliminary assessment of the informative content of these data
and their correlation to real user behavior has been presented
with the aim of associating the data integrity with the capability
to extract valuable insights from data.

All participants used the system consistently and actively for
the period of the study without any kind of technological
constraint. The proposed approach proved to be able to manage
the flow of data correctly without a consistent loss of
information and provide a daily update of the calculated features.
The method used to acquire data from the embedded sensors
through a mobile app was able to work with the heterogenous
and complex technical environment ensuring a good level of
reliability and maintaining a good level of performance of the
users’smartphones without impacting the already installed apps.
The system also registered a high level of acceptability due to
the good level of integration in the normal use of the smartphone
in conjunction with an adequate level of transparency and
ubiquitousness that ensured reliable and meaningful results.
Two participants (17%) asked to interrupt the study after 1
month due to battery drain effects, but the users continued the
study when the battery drain effect was mitigated by activating
the GPS sensor only for limited time spans within the day.

The current smartphone evolution is highly focused on the
optimization of the battery consumption for the most
energy-consuming sensors such as GPS and Bluetooth as many
of the most common apps require their continuous running (eg,
COVID-19 tracking apps). Thus, the impact on battery drain is
also expected to be reduced for passive sensor platforms such
as the one used in this study. Besides, the use of monitoring
tools in the frame of a structured digital health approach will
further justify the power consumption side effect thanks to
demonstrated care benefits.

In this study, data acquisition, performed by means of the users’
own smartphones without any limitations or technological
eligibility criteria, reached a remarkable integrity of the globally

acquired data—14,970 hours of collected sample out of 17,845
hours of acquisition (84%)—that surpasses the performances
presented in previous publications [33], proving the potentialities
of passive sensing platforms. However, different behaviors
observed for subgroup A and B have some impacts on the data
integrity ratio with 96% and 60%, respectively, when kept
separately. Brand-related operating system policies still have
the most important impact on data integrity due to the observed
fragmentation of the Android services.

The availability of different sensor data allows us to describe
each subject in terms of physical activity (accelerometer data),
social interaction (calls, communications, and social network
data), and georeferenced data. This approach provides an overall
description of each user that can be used to continuously monitor
both the psychological and physical status, strengthening the
added value of this type of system which can provide a
comprehensive description of quality of life and well-being.
The wide range of data made available by monitoring platforms
can also be considered the necessary starting point for data
fusion approaches [34].

Preliminary analysis of the obtained results shows that the data
fusion between different sensors provides a valuable key to
interpret personal behavior. In particular, the demonstrated
capability of identifying anomalous days is strongly dependent
on the variability in content of the acquired data and can
represent a strong starting point for different clinical
applications. Furthermore, the habits about smartphone use
itself could be used as a valid behavioral descriptors. For
example, intrapersonal changes in frequency and duration of
smartphone daily usage or the inactivity period of the
smartphone due to the fact the user has not carried the
smartphone can be used as indirect behavioral descriptors. Thus,
the fusion between data acquired from different contexts gives
a comprehensive description considering all the aspects that
can be impacted by changing physical or psychological
condition. Also, the smartphone use parameters (eg, screen time,
battery use) can be used to normalize the calculated features,
reducing the bias due to different smartphone use that can impact
the reliability of the collected data.

Limitations
This study has been conducted on a limited number of subjects
with a focus on Android devices. A wider study should be
conducted including a wider pool of devices and subjects.
Furthermore, assessment of the approach on acute and chronic
patients is required to ensure generalizability in the clinical
application domain.

The use of mobile apps for health monitoring is still in an early
phase. To foster their acceptance at a wider level, making the
collected information routinely useful for the health care system,
clinical validations are necessary to select the best parameters
to investigate each pathological condition. However, analysis
of this aspect was outside the scope of this study, which focused
on assessment of perceived technical limitations to daily use.

Conclusion
In this paper, we present a study that contributes as an additional
step to broad distribution of smartphone-based monitoring
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platforms. We described the technical approach used to
implement a smartphone-based passive platform, its
characteristics, and the potentialities of this type of solution to
provide insights to patients and clinicians. The quality of the
acquired data and performance of the system are quite dependent
on the proprietary policies implemented by each smartphone
brand even if the acquisition through smartphone-embedded
sensors as presented in this article is able to provide a good
level of accuracy within an heterogenous pool of devices. The
preliminary analysis performed on the raw data collected
provides initial encouraging results that must be better validated
through well-structured clinical trials with the aim of
substantiating the clinical evidence of monitoring systems and
their capability of extracting indexes that could be used as
reliable descriptors and predictors of the disease path.

In the future, we will continue this work deepening the technical
validation of this type of platform to assess performance and
quality of the collected data on a wider study cohort including
the most recent Android updates and newest smartphone brands.

Furthermore, the research will focus on the assessment of the
data fusion potentialities for the extraction of valuable clinical
insights according to the characteristics of the collected data.
Additionally, as the performance of this type of monitoring
system is quite depending on the policies of each smartphone
producer, a wider discussion could address guidelines that could
match with the needs of mHealth in the near future.

Discussion about the repeatability and reliability of
smartphone-based passive sensing platforms should also drive
the debate about software as medical device and its applicability
in the current regulatory framework. This is still an open issue
[35] whose resolution will be necessary to drive the successful
use of monitoring systems as scalable and reliable supports for
the clinical practice. Also, ethical and security aspects will be
investigated to make the system as secure as possible by design.
Thus, a quantified technical characterization of the system in
terms of reproducibility and robustness of the provided
measurements will be necessary, and the proposed article could
be considered a good methodologic starting point.

 

Conflicts of Interest
None declared.

References
1. Lamonaca F, Polimeni G, Barbé K, Grimaldi D. Health parameters monitoring by smartphone for quality of life improvement.

Measurement 2015 Sep;73:82-94. [doi: 10.1016/j.measurement.2015.04.017]
2. Trossen D, Pavel D. AIRS: a mobile sensing platform for lifestyle management research and applications. ICST Trans

Mobile Comm Appl 2013 Dec 14;1(3):1-15. [doi: 10.4108/mca.1.3.e8]
3. Düking P, Fuss FK, Holmberg H, Sperlich B. Recommendations for assessment of the reliability, sensitivity, and validity

of data provided by wearable sensors designed for monitoring physical activity. JMIR Mhealth Uhealth 2018 Apr 30;6(4):e102
[FREE Full text] [doi: 10.2196/mhealth.9341] [Medline: 29712629]

4. Smets E, Rios Velazquez E, Schiavone G, Chakroun I, D'Hondt E, De Raedt W, et al. Large-scale wearable data reveal
digital phenotypes for daily-life stress detection. NPJ Digit Med 2018;1:67 [FREE Full text] [doi: 10.1038/s41746-018-0074-9]
[Medline: 31304344]

5. Cornet VP, Holden RJ. Systematic review of smartphone-based passive sensing for health and wellbeing. J Biomed Inform
2018 Jan;77:120-132. [doi: 10.1016/j.jbi.2017.12.008] [Medline: 29248628]

6. Bauer AM, Iles-Shih M, Ghomi RH, Rue T, Grover T, Kincler N, et al. Acceptability of mHealth augmentation of
collaborative care: a mixed methods pilot study. Gen Hosp Psychiatry 2017 Nov 24;51:22-29. [doi:
10.1016/j.genhosppsych.2017.11.010] [Medline: 29272712]

7. Tambs K, Rønning T, Prescott CA, Kendler KS, Reichborn-Kjennerud T, Torgersen S, et al. The Norwegian Institute of
Public Health twin study of mental health: examining recruitment and attrition bias. Twin Res Hum Genet 2009
Apr;12(2):158-168 [FREE Full text] [doi: 10.1375/twin.12.2.158] [Medline: 19335186]

8. Bjerkeset O, Nordahl HM, Larsson S, Dahl AA, Linaker O. A 4-year follow-up study of syndromal and sub-syndromal
anxiety and depression symptoms in the general population: the HUNT study. Soc Psychiatry Psychiatr Epidemiol 2008
Mar;43(3):192-199. [doi: 10.1007/s00127-007-0289-6] [Medline: 18064394]

9. Spring B, Pellegrini C, McFadden HG, Pfammatter AF, Stump TK, Siddique J, et al. Multicomponent mHealth intervention
for large, sustained change in multiple diet and activity risk behaviors: the Make Better Choices 2 randomized controlled
trial. J Med Internet Res 2018 Jun 19;20(6):e10528 [FREE Full text] [doi: 10.2196/10528] [Medline: 29921561]

10. Dogan E, Sander C, Wagner X, Hegerl U, Kohls E. Smartphone-based monitoring of objective and subjective data in
affective disorders: where are we and where are we going? Systematic review. J Med Internet Res 2017 Jul 24;19(7):e262
[FREE Full text] [doi: 10.2196/jmir.7006] [Medline: 28739561]

11. Majumder S, Deen MJ. Smartphone sensors for health monitoring and diagnosis. Sensors (Basel) 2019 May 09;19(9):1
[FREE Full text] [doi: 10.3390/s19092164] [Medline: 31075985]

12. Baig MM, GholamHosseini H, Connolly MJ. Mobile healthcare applications: system design review, critical issues and
challenges. Australas Phys Eng Sci Med 2015 Mar;38(1):23-38. [doi: 10.1007/s13246-014-0315-4] [Medline: 25476753]

13. Yu Z, Wang Z. Sensor-based behavior recognition. In: Human Behavior Analysis: Sensing and Understanding. Singapore:
Springer; 2020.

JMIR Biomed Eng 2021 | vol. 6 | iss. 2 |e15417 | p.62https://biomedeng.jmir.org/2021/2/e15417
(page number not for citation purposes)

Tonti et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://dx.doi.org/10.1016/j.measurement.2015.04.017
http://dx.doi.org/10.4108/mca.1.3.e8
https://mhealth.jmir.org/2018/4/e102/
http://dx.doi.org/10.2196/mhealth.9341
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29712629&dopt=Abstract
https://doi.org/10.1038/s41746-018-0074-9
http://dx.doi.org/10.1038/s41746-018-0074-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31304344&dopt=Abstract
http://dx.doi.org/10.1016/j.jbi.2017.12.008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29248628&dopt=Abstract
http://dx.doi.org/10.1016/j.genhosppsych.2017.11.010
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29272712&dopt=Abstract
http://europepmc.org/abstract/MED/19335186
http://dx.doi.org/10.1375/twin.12.2.158
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19335186&dopt=Abstract
http://dx.doi.org/10.1007/s00127-007-0289-6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18064394&dopt=Abstract
https://www.jmir.org/2018/6/e10528/
http://dx.doi.org/10.2196/10528
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29921561&dopt=Abstract
http://www.jmir.org/2017/7/e262/
http://dx.doi.org/10.2196/jmir.7006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28739561&dopt=Abstract
https://www.mdpi.com/resolver?pii=s19092164
http://dx.doi.org/10.3390/s19092164
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31075985&dopt=Abstract
http://dx.doi.org/10.1007/s13246-014-0315-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25476753&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


14. Boonstra TW, Nicholas J, Wong QJ, Shaw F, Townsend S, Christensen H. Using mobile phone sensor technology for
mental health research: integrated analysis to identify hidden challenges and potential solutions. J Med Internet Res 2018
Jul 30;20(7):e10131 [FREE Full text] [doi: 10.2196/10131] [Medline: 30061092]

15. Hossain C, Poellabauer C. Challenges in building continuous smartphone sensing applications. 2016 Presented at: 2016
IEEE 12th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob);
2016; New York. [doi: 10.1109/WiMOB.2016.7763202]

16. Saeb S, Zhang M, Karr CJ, Schueller SM, Corden ME, Kording KP, et al. Mobile phone sensor correlates of depressive
symptom severity in daily-life behavior: an exploratory study. J Med Internet Res 2015;17(7):e175 [FREE Full text] [doi:
10.2196/jmir.4273] [Medline: 26180009]

17. Sano, Phillips A, Yu A, McHill A, Taylor S, Jaques N, et al. Recognizing academic performance, sleep quality, stress level,
and mental health using personality traits, wearable sensors and mobile phones. Int Conf Wearable Implant Body Sens
Netw 2015 Jun:1. [doi: 10.1109/BSN.2015.7299420] [Medline: 28516162]

18. Sano A, Pickard RW. Stress recognition using wearable sensors and mobile phones. 2013 Presented at: Humaine Association
Conference on Affective Computing and Intelligent Interaction; 2013; Geneva p. 671-676. [doi: 10.1109/acii.2013.117]

19. Palmius N, Osipov M, Bilderbeck AC. A multi-sensor monitoring system for objective mental health management in
resource constrained environments. 2014 Presented at: Appropriate Healthcare Technologies for Low Resource Settings
(AHT 2014); 2014; London p. 4. [doi: 10.1049/cp.2014.0764]

20. Farhan AA, Yue C, Morillo R. Behavior vs. introspection: refining prediction of clinical depression via smartphone sensing
data. 2016 Presented at: 2016 IEEE Wireless Health (WH); 2016; Bethesda p. 1-8. [doi: 10.1109/wh.2016.7764553]

21. Gruenerbl A, Oleksy P, Bahle G. Towards smart phone based monitoring of bipolar disorder. Proc Second ACM Workshop
Mobile Syst Appl Serv Healthc 2012;3:1-6. [doi: 10.1145/2396276.2396280]

22. Wang R, Chen F, Chen Z. StudentLife: assessing mental health, academic performance and behavioral trends of college
students using smartphones. Proc 2014 ACM Int Jt Conf Pervasive Ubiquitous Comput 2014:3-14. [doi:
10.1145/2632048.2632054]

23. Farhan AA, Lu J, Bi J. Multi-view bi-clustering to identify smartphone sensing features indicative of depression. 2016
Presented at: 2016 IEEE First International Conference on Connected Health: Applications, Systems and Engineering
Technologies (CHASE); 2016; Washington p. 264-273. [doi: 10.1109/chase.2016.27]

24. Jacob C, Sanchez-Vazquez A, Ivory C. Social, organizational, and technological factors impacting clinicians' adoption of
mobile health tools: systematic literature review. JMIR Mhealth Uhealth 2020 Feb 20;8(2):e15935 [FREE Full text] [doi:
10.2196/15935] [Medline: 32130167]

25. Gurupur VP, Wan TTH. Challenges in implementing mHealth interventions: a technical perspective. Mhealth 2017;3:32
[FREE Full text] [doi: 10.21037/mhealth.2017.07.05] [Medline: 28894742]

26. Maher NA, Senders JT, Hulsbergen AFC, Lamba N, Parker M, Onnela J, et al. Passive data collection and use in healthcare:
a systematic review of ethical issues. Int J Med Inform 2019 Sep;129:242-247. [doi: 10.1016/j.ijmedinf.2019.06.015]
[Medline: 31445262]

27. Seppälä J, De Vita I, Jämsä T, Miettunen J, Isohanni M, Rubinstein K, M-RESIST Group, et al. Mobile phone and wearable
sensor-based mHealth approaches for psychiatric disorders and symptoms: systematic review. JMIR Ment Health 2019
Feb 20;6(2):e9819 [FREE Full text] [doi: 10.2196/mental.9819] [Medline: 30785404]

28. Kovach S. Android Fragmentation Report. URL: https://www.opensignal.com/sites/opensignal-com/files/data/reports/
global/data-2015-08/2015_08_fragmentation_report.pdf [accessed 2020-12-15]

29. Share of smartphone unit sales to end users by vendor from the 1st quarter of 2016 to the 4th quarter of 2020. URL: https:/
/www.statista.com/statistics/266220/global-smartphone-market-share-by-vendor-in-2007-and-2008/ [accessed 2021-04-28]

30. Berrouiguet S, Ramírez D, Barrigón ML, Moreno-Muñoz P, Carmona Camacho R, Baca-García E, et al. Combining
continuous smartphone native sensors data capture and unsupervised data mining techniques for behavioral changes
detection: a case series of the evidence-based behavior (eB2) study. JMIR Mhealth Uhealth 2018 Dec 10;6(12):e197 [FREE
Full text] [doi: 10.2196/mhealth.9472] [Medline: 30530465]

31. Falaki H, Mahanjan R, Kandula S. Diversity in smartphone usage. Proc 8th Int Conf Mobile Syst Appl Serv 2010:179-194.
[doi: 10.1145/1814433.1814453]

32. Akeret K, Vasella F, Geisseler O, Dannecker N, Ghosh A, Brugger P, et al. Time to be "smart"—opportunities arising from
smartphone-based behavioral analysis in daily patient care. Front Behav Neurosci 2018;12:303 [FREE Full text] [doi:
10.3389/fnbeh.2018.00303] [Medline: 30568582]

33. Rickard N, Arjmand H, Bakker D, Seabrook E. Development of a mobile phone app to support self-monitoring of emotional
well-being: a mental health digital innovation. JMIR Ment Health 2016 Nov 23;3(4):e49 [FREE Full text] [doi:
10.2196/mental.6202] [Medline: 27881358]

34. Kelly D, Condell J, Curran K, Caulfield B. A multimodal smartphone sensor system for behaviour measurement and health
status inference. Inf Fusion 2020 Jan;53:43-54. [doi: 10.1016/j.inffus.2019.06.008]

35. Benjamens S, Dhunnoo P, Meskó B. The state of artificial intelligence-based FDA-approved medical devices and algorithms:
an online database. NPJ Digit Med 2020;3:118 [FREE Full text] [doi: 10.1038/s41746-020-00324-0] [Medline: 32984550]

JMIR Biomed Eng 2021 | vol. 6 | iss. 2 |e15417 | p.63https://biomedeng.jmir.org/2021/2/e15417
(page number not for citation purposes)

Tonti et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://www.jmir.org/2018/7/e10131/
http://dx.doi.org/10.2196/10131
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30061092&dopt=Abstract
http://dx.doi.org/10.1109/WiMOB.2016.7763202
http://www.jmir.org/2015/7/e175/
http://dx.doi.org/10.2196/jmir.4273
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26180009&dopt=Abstract
http://dx.doi.org/10.1109/BSN.2015.7299420
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28516162&dopt=Abstract
http://dx.doi.org/10.1109/acii.2013.117
http://dx.doi.org/10.1049/cp.2014.0764
http://dx.doi.org/10.1109/wh.2016.7764553
http://dx.doi.org/10.1145/2396276.2396280
http://dx.doi.org/10.1145/2632048.2632054
http://dx.doi.org/10.1109/chase.2016.27
https://mhealth.jmir.org/2020/2/e15935/
http://dx.doi.org/10.2196/15935
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32130167&dopt=Abstract
https://doi.org/10.21037/mhealth.2017.07.05
http://dx.doi.org/10.21037/mhealth.2017.07.05
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28894742&dopt=Abstract
http://dx.doi.org/10.1016/j.ijmedinf.2019.06.015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31445262&dopt=Abstract
https://mental.jmir.org/2019/2/e9819/
http://dx.doi.org/10.2196/mental.9819
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30785404&dopt=Abstract
https://www.opensignal.com/sites/opensignal-com/files/data/reports/global/data-2015-08/2015_08_fragmentation_report.pdf
https://www.opensignal.com/sites/opensignal-com/files/data/reports/global/data-2015-08/2015_08_fragmentation_report.pdf
https://www.statista.com/statistics/266220/global-smartphone-market-share-by-vendor-in-2007-and-2008/
https://www.statista.com/statistics/266220/global-smartphone-market-share-by-vendor-in-2007-and-2008/
http://mhealth.jmir.org/2018/12/e197/
http://mhealth.jmir.org/2018/12/e197/
http://dx.doi.org/10.2196/mhealth.9472
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30530465&dopt=Abstract
http://dx.doi.org/10.1145/1814433.1814453
https://doi.org/10.3389/fnbeh.2018.00303
http://dx.doi.org/10.3389/fnbeh.2018.00303
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30568582&dopt=Abstract
http://mental.jmir.org/2016/4/e49/
http://dx.doi.org/10.2196/mental.6202
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27881358&dopt=Abstract
http://dx.doi.org/10.1016/j.inffus.2019.06.008
https://doi.org/10.1038/s41746-020-00324-0
http://dx.doi.org/10.1038/s41746-020-00324-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32984550&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


Abbreviations
CIMON: Crew Interactive MObile CompanioN
mHealth: mobile health
QMP: QuantifyMyPerson

Edited by G Eysenbach; submitted 10.07.19; peer-reviewed by S Albakri, T Silva, X Ding; comments to author 21.08.20; revised
version received 15.10.20; accepted 17.04.21; published 11.05.21.

Please cite as:
Tonti S, Marzolini B, Bulgheroni M
Smartphone-Based Passive Sensing for Behavioral and Physical Monitoring in Free-Life Conditions: Technical Usability Study
JMIR Biomed Eng 2021;6(2):e15417
URL: https://biomedeng.jmir.org/2021/2/e15417 
doi:10.2196/15417
PMID:

©Simone Tonti, Brunella Marzolini, Maria Bulgheroni. Originally published in JMIR Biomedical Engineering
(http://biomsedeng.jmir.org), 11.05.2021. This is an open-access article distributed under the terms of the Creative Commons
Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work, first published in JMIR Biomedical Engineering, is properly cited. The complete
bibliographic information, a link to the original publication on https://biomedeng.jmir.org/, as well as this copyright and license
information must be included.

JMIR Biomed Eng 2021 | vol. 6 | iss. 2 |e15417 | p.64https://biomedeng.jmir.org/2021/2/e15417
(page number not for citation purposes)

Tonti et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

https://biomedeng.jmir.org/2021/2/e15417
http://dx.doi.org/10.2196/15417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


Original Paper

A Transcranial Magnetic Stimulation Trigger System for
Suppressing Motor-Evoked Potential Fluctuation Using
Electroencephalogram Coherence Analysis: Algorithm
Development and Validation Study

Keisuke Sasaki1*, BA; Yuki Fujishige2*, BE; Yutaka Kikuchi3*, MPH; Masato Odagaki1,2,4*, PhD
1Department of Environment and Life Engineering, Graduate School of Maebashi Institute of Technology, Maebashi, Japan
2Department of Systems Life Engineering, Maebashi Institute of Technology, Maebashi, Japan
3Department of Rehabilitation for Intractable Neurological Disorders, Institute of Brain and Blood Vessels Mihara Memorial Hospital, Isesaki, Japan
4Division of Systems Life Engineering, Graduate School of Maebashi Institute of Technology, Maebashi, Japan
*all authors contributed equally

Corresponding Author:
Masato Odagaki, PhD
Department of Systems Life Engineering
Maebashi Institute of Technology
460-1 Kamisadorimachi
Maebashi, 371-0816
Japan
Phone: 81 27 265 7337
Email: odagaki@maebashi-it.ac.jp

Abstract

Background: Transcranial magnetic stimulation (TMS), when applied over the primary motor cortex, elicits a motor-evoked
potential (MEP) in electromyograms measured from peripheral muscles. MEP amplitude has often been observed to fluctuate
trial to trial, even with a constant stimulus. Many factors cause MEP fluctuations in TMS. One of the primary factors is the weak
stationarity and instability of cortical activity in the brain, from which we assumed MEP fluctuations originate. We hypothesized
that MEP fluctuations are suppressed when TMS is delivered to the primary motor cortex at a time when several
electroencephalogram (EEG) channels measured on the scalp are highly similar in the frequency domain.

Objective: We developed a TMS triggering system to suppress MEP fluctuations using EEG coherence analysis, which was
performed to detect the EEG signal similarity between the 2 channels in the frequency domain.

Methods: Seven healthy adults participated in the experiment to confirm whether the TMS trigger system works adequately,
and the mean amplitude and coefficient of the MEP variation were recorded and compared with the values obtained during the
control task. We also determined the experimental time under each condition and verified whether it was within the predicted
time.

Results: The coefficient of variation of MEP amplitude decreased in 5 of the 7 participants, and significant differences (P=.02)
were confirmed in 2 of the participants according to an F test. The coefficient of variation of the experimental time required for
each stimulus after threshold modification was less than that without threshold modification, and a significant difference (P<.001)
was confirmed by performing an F test.

Conclusions: We found that MEP could be suppressed using the system developed in this study and that the TMS trigger system
could also stabilize the experimental time by changing the triggering threshold automatically.

(JMIR Biomed Eng 2021;6(2):e28902)   doi:10.2196/28902

KEYWORDS

motor-evoked potential; transcranial magnetic stimulation; electroencephalogram; coherence; variability; fluctuation; trigger;
threshold; coefficient of variation; primary motor cortex

JMIR Biomed Eng 2021 | vol. 6 | iss. 2 |e28902 | p.65https://biomedeng.jmir.org/2021/2/e28902
(page number not for citation purposes)

Sasaki et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

mailto:odagaki@maebashi-it.ac.jp
http://dx.doi.org/10.2196/28902
http://www.w3.org/Style/XSL
http://www.renderx.com/


Introduction

Transcranial magnetic stimulation (TMS) is a noninvasive
method of stimulating cortical neurons [1]. The stimulus coil
placed on the scalp generates induced electric fields in the brain,
which then stimulate cortical neurons. TMS over the primary
motor cortex (M1) has been used to evaluate corticospinal
excitability in perioperative assessment [2]. When TMS is
delivered to the M1, the efferent signal passes through the
corticospinal tract [3]; consequently, the motor-evoked potential
(MEP) can be measured using an electromyogram (EMG) of
the peripheral muscle with a latency of approximately 20 ms
following TMS. The amplitude of the MEP in TMS is often
unstable and fluctuates even under similar conditions [4-8].
There are several possible factors that affect the variability of
MEP amplitude, which vary depending on internal and external
factors [9,10]. Furthermore, there are many factors involved,
such as changes in body temperature, blood pressure, the
atmosphere in the laboratory, and the participant’s posture. It
is thus difficult to identify the factors that affect MEP
fluctuations. If the fluctuation of the MEP amplitude can be
suppressed, this suppression method could be applied in a wide
range of fields.

We assumed that one possible factor of MEP fluctuation in
TMS was the change in the state of cortical stationarity. Cortical
excitability can be measured using an electroencephalogram
(EEG) [11]. The similarity of the measured EEG is calculated
using coherence analysis, which is a method for calculating the
correlation between 2 EEG signals in the frequency domain.
We hypothesized that the fluctuation of MEP amplitude must
be suppressed when TMS is delivered to the M1 at a time when
the electroencephalograms of 2 channels measured on the scalp
are highly similar in the frequency domain. In addition, we
surmised that the experimental time should be controlled to
maintain the accuracy of the experimental data. In this study,
we developed an online TMS trigger system for the suppression
of MEP fluctuations using EEG coherence analysis while
controlling the experimental time.

Methods

TMS Trigger System
Figure 1 shows an overview of the proposed system. This system

is composed of a single-pulse TMS device (Magstim 2002,
Magstim Co, Ltd), an EEG device (Polymate Mini AP108,
Miyuki Giken Co, Ltd,), an IW2PAD EMG (frequency
characteristics: 5.3-442 Hz, common-mode rejection ratio: 94
dB; Oisaka Electronic Equipment Ltd), a data acquisition device
(USB-6210, National Instruments), and a PC. Software for
sending the trigger signal to the TMS device under specific
EEG conditions was developed. EEG data measured from P3
and C4 of the international 10–20 system were continuously
transmitted to a PC via Bluetooth. The EEG was recorded at a
sampling rate of 500 Hz and filtered using a fourth-order
Butterworth bandpass filter with a cutoff frequency of 1 Hz to
30 Hz. The EMG results were measured using a data acquisition
device connected via a USB. An online EEG analysis was
performed during the trial. The triggering signal was sent to the
TMS device when the preset TMS condition was satisfied; the
data acquisition device then began measuring the MEP
waveform from the first dorsal interosseous muscle of the right
index finger using the EMG device. The EMG was recorded at
a sampling rate of 5 kHz.

Coherence analysis was performed to detect the EEG signal
similarity between the 2 channels in the frequency domain. The
coherence of the 2 EEG signals was calculated using the
following equation:

where PP3 and PC4 are the power spectrum densities of each
EEG waveform, and PP3-C4 is the cross-power spectrum density
of the 2 EEG waveforms. Therefore, the coherence function
indicates the similarity between 2 EEG waveforms in the
frequency domain. Coh (β), which is the area of the coherence
function between 14 Hz and 30 Hz, is defined as the average
value of coherence in the β frequency band (Figure 2).
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Figure 1. TMS trigger system using EEG coherence analysis. DAQ: data acquisition device; EEG: electroencephalogram; EMG: electromyogram;
FDI: first dorsal interosseous; TMS: transcranial magnetic stimulation.
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Figure 2. Data processing. The coherence function indicates the frequency spectrum of correlation between 2 EEG channels (P3 and C4). Coh (β) is
defined as the average value of coherence between 14 Hz and 30 Hz. The values of Coh (β) are used to determine the transcranial magnetic stimulation
trigger timing. EEG: electroencephalogram.

TMS Triggering Threshold
Prior to the experiments, we measured the participants’ EEG
for 180 seconds, analyzed the 180 data points divided into
1-second fragments, and confirmed the characteristics of Coh
(β). The system predicted that the trigger could be performed
6 times in 180 seconds under these thresholds; that is, once
every 30 seconds on average (Figure 3). Considering that the
maximum standby time was 60 seconds in the TMS device, we
assumed that TMS should be output in approximately 30
seconds, which was the median of the maximum standby time.

Figure 4 shows the flowchart of the experimental protocol. In
the proposed system, the threshold was automatically modified
to be a loose condition if there was no stimulus in 30 seconds.
Online coherence analysis was performed on the EEG data once

every second during the experiment, and the TMS trigger signal
was sent from the data acquisition device to the TMS device at
the time when the EEG coherence value of Coh (β) was greater
than the threshold value (Coh [β] ≥ threshold), and TMS was
applied to the M1 immediately.

The EEG coherence analysis was paused following TMS and
then resumed after 10 seconds. Because the maximum standby
time was 60 seconds in the TMS device, the capacitor bank in
the TMS device was manually charged if there was no TMS
over 60 seconds. If 30 seconds passed from the beginning of
the experiment, the threshold of Coh (β) was updated with a
∆threshold = –0.05 for every second until the TMS was applied.
Once the TMS trigger was output, the threshold value was set
to the initial value.
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Figure 3. Presetting of the initial threshold. We determined the initial threshold of Coh (β) under which the trigger could be performed 6 times in 180
seconds. EEG: electroencephalogram.
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Figure 4. Flowchart of one section of coherence analysis in the TMS trigger system. EEG: electroencephalogram; TMS: transcranial magnetic stimulation.

Experimental Evaluation of the TMS Trigger System
We performed an experimental evaluation of the TMS triggering
system to suppress MEP fluctuation and TMS trigger timing.
The participants for the experiment included 7 healthy adults
(6 males and 1 female; mean age 26 years, SD 8.2 years). None
of the participants had a history of physical neuropathy or
epilepsy. Prior to the experiments, written informed consent
based on the Declaration of Helsinki was obtained from all
participants for publication. All procedures used in this study
were approved by the ethics committee of the Maebashi Institute
of Technology.

The participants were asked to gaze at a single point with their
eyes open while at rest, TMS over the left M1 was applied, and
MEP caused by TMS was measured from the first dorsal
interosseous muscle of the right index finger. We applied TMS
10 times in total, and the stimulation intensity was 150% of the
resting motor threshold. The trigger condition was set as Coh

(β) ≥ threshold, and the MEP was derived using the TMS trigger
system. As the control task, TMS was applied at random
intervals between 25 and 35 seconds to stimulate M1 and derive
MEP without using the TMS trigger system.

To confirm whether the TMS system was effective, the mean
amplitude and coefficient of variation of the MEP were recorded
and compared with the values in the control task. We also
determined the experimental time under each condition and
verified whether it was within the predicted time.

Results

Table 1 summarizes the initial trigger thresholds for all 7
participants in the stimulus trigger condition of Coh (β) ≥
threshold. These threshold values were obtained from the EEG
data from 180 seconds of testing. In this experiment, we
determined the threshold for TMS output in 30 seconds.
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Table 1. Summary of initial thresholds of Coh (β) for all participants.

Coh (β)aAge (years)Sex (M/F)Participant

.66024MParticipant 1

.77025MParticipant 2

.53046MParticipant 3

.57022FParticipant 4

.69522MParticipant 5

.67122MParticipant 6

.67022MParticipant 7

aCoh (β): the area of the coherence function between 14 Hz and 30 Hz, defined as the average value of coherence in the β frequency band.

Figure 5 shows the average MEP amplitude measured under
trigger conditions and controls for each participant. The vertical
axis indicates the average MEP amplitudes in 10 trials, and the
error bars represent the SD. As evident in Figure 5, no
remarkable changes in the MEPs were observed. Table 2 shows

the coefficient of variation (CV) of the MEP amplitude. An F
test was performed to examine the significant differences. When
the trigger condition of Coh (β) ≥ threshold was fulfilled, the
CV decreased in 5 out of 7 participants, and a significant
difference of 5% was confirmed in 2 of the participants.

Figure 5. The mean of MEP amplitudes. MEP: motor-evoked potential.

Table 2. Comparison of the coefficients of variation of motor-evoked potential amplitudes (F test).

ParticipantCoefficient of variation value

7654321

0.5340.3900.1430.343b0.4670.215b0.276Coh (β)a ≥ threshold

0.4190.4100.2020.699b0.7770.436b0.196Control

aCoh (β): the area of the coherence function between 14 Hz and 30 Hz, defined as the average value of coherence in the β frequency band.
bA significant difference (P=.02) was confirmed in this participant.

Table 3 shows the recorded experimental times. It was
confirmed that the actual time without threshold modification
was longer than the predicted time in 4 out of 7 participants,
but the actual time with threshold modification was longer than
the predicted time in 1 out of 7 participants.

Table 4 shows the mean, SD, and CV of the experimental time
required for each stimulus in all participants. It was confirmed
that the CV of the experimental time required for each stimulus

with threshold modification was less than that without threshold
modification. An F test was performed to determine the
significant difference, and a significant difference of 1% was
observed.

Table 5 shows the transition of Coh (β) at the time of
stimulation. The mean value of Coh (β) for the 10 stimuli is
shown at the bottom.
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Table 3. Comparison of predicted time and actual elapsed time.

ParticipantTime

7654321

315312311311312310311Predicted time (seconds)

Actual time (seconds)

245453a356a739a174141344aWithout threshold modification

354b147159223216215251With threshold modification

aThe actual time without threshold modification was longer than the predicted time.
bThe actual time with threshold modification was longer than the predicted time.

Table 4. Mean, SD, and CVa of experimental time required for each stimulus in all participants (F test).

With threshold modificationWithout threshold modificationValue

22.435.0Mean (seconds)

13.841.1SD (seconds)

0.616b1.17bCV

aCV: coefficient of variation.
bA significant difference (P<.001) was confirmed.

Table 5. Transition of Coh (β)a at the time of stimulation. The initial triggering threshold, the transition of Coh (β) in 10 stimuli, and the average of
Coh (β) are shown for each participant.

Participant (Coh [β])Value

7654321

≥.670≥.671≥.695≥.570≥.530≥.770≥.660Initial triggering threshold

.672.672.720.635.624.856.6981st time

.341.676.937.388.632.777.557b2nd time

.557.748c.612.580.569.792.3633rd time

.271.724c.754.950.627c.786.7184th time

.606.762.962.600.551.828c.7005th time

.403.696.657.416.571.781.6616th time

.359.702.719.445.545.826.6647th time

.633.671.746.669.620.744.6848th time

.475.685.955.648.559.817.4359th time

.322.672.442.684.430.579.60710th time

.464.692.750.601.560.773.609Mean

aCoh (β): the area of the coherence function between 14 Hz and 30 Hz, defined as the average value of coherence in the β frequency band.
bItalics indicate cases where the initial triggering threshold was modified to be set lower.
cCoh (β) at the time of stimulation satisfied the initial triggering threshold even when the threshold was modified to be set lower.

Discussion

Principal Findings
The number of cases where the initial triggering threshold was
modified to be set lower were 3 or fewer in 10 stimulus
incidences in all participants except for participants 1 and 7
(Table 2). We further found that the CV decreased in all
participants except for participants 1 and 7 (Table 2). These

results indicate that the fluctuation of MEP amplitude decreased
when the modification of the initial triggering threshold of TMS
did not occur frequently. In addition, the mean values of Coh
(β) from all participants except for participants 1 and 7 (Table
5) exceeded the initial triggering threshold. This means that the
proposed system worked effectively, and the initial triggering
threshold was appropriate in these cases. Although the initial
triggering threshold was modified in participants 2, 3, and 6
(Table 5), the Coh (β) at the time of stimulation eventually
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exceeded the initial triggering threshold. Thus, it is probable
that the change in EEG was transient.

The triggering threshold was modified 4 and 9 times out of the
10 stimuli in participants 1 and 7 (Table 5), respectively.
Because the number of modifications in participants 1 and 7
was larger than that of the others, the actual time with threshold
modification for these participants was longer than that of the
others. In participant 7, it was confirmed that the actual time
was longer than the predicted time. The MEP fluctuations in
these 2 participants were not suppressed because the mean
values of Coh (β) at the stimulation in participants 1 and 7 were
smaller than the initial thresholds. This fact paradoxically
suggests that MEP fluctuations are suppressed when Coh (β) is
high. In participant 7, the system modified the initial threshold
in 9 of the 10 stimulus incidences, so it is probable that the
participant was in an unsteady state at the time of the
experiment.

Comparison With Previous Studies
Ogata et al [12] suggested that M1 excitability can be predicted
by EEG oscillations before TMS. The MEP amplitude increased
when the α band’s power was high, and the power of the β band
did not affect the MEP amplitude. In addition, several studies
have shown that β oscillations are inhibited when MEP
amplitudes increase [12-16]. Generally, the α wave decreases
and the β wave increases when the participants do not close
their eyes. Considering that the coherence analysis used in this
study quantified the similarity of EEG power and the MEP from
participants who did not close their eyes, it is probable that the
MEP fluctuation was suppressed because the β band’s power
level was high.

Interpretation of the Findings
It is suggested that the system we developed could suppress the
fluctuation of MEP amplitude under the steady state and could
also reduce the variation in the experimental time required for
each stimulus, as shown in Table 4. We concluded that avoiding
an unexpected extension of the experimental time can stabilize
the participant’s condition and contribute to improving the
accuracy of the experimental data.

Strengths and Limitations
The system developed in this study had several limitations. It
was difficult to determine the steady state of the participant and
the timing at which the MEP amplitude could be efficiently
suppressed. Owing to the specifications of the TMS device, we
set the initial triggering threshold at the time when it appeared,
approximately once every 30 seconds. There is no guarantee
that this initial value is determined while the participant is in
the steady state. If the initial value is determined while the
participant is in the unsteady state, the MEP amplitude may not
be adequately suppressed. If the triggering threshold is higher,
the MEP amplitude may be suppressed more, but considering

the burden on the participant and the accuracy of the
experimental data, we prefer to shorten the experimental time.
Therefore, we developed a system that modifies the triggering
threshold. In this system, if the initial triggering threshold is
not satisfied, it is lowered to avoid an extended experimental
time. However, if the participant remains in an unsteady state,
the triggering threshold may remain low, and eventually, the
MEP amplitude may not be suppressed. Therefore, it is difficult
to determine how high the initial triggering threshold, Coh (β),
should be, and further verification is required.

No other studies that suppressed MEP amplitude fluctuations
using EEG coherence analysis exist besides this study. The EEG
rhythm comprehensively reflects the biological response to
external and physiological factors [17-19]. This system has the
advantage that the state of the brain can be stabilized by
monitoring the EEG similarity between the left and right
hemispheres when TMS is delivered to the M1. In addition, this
system enables control of the actual experimental time as well
as the suppression of MEP amplitude fluctuations. We are
certain that this is an essential element for practical clinical use.

Future Perspectives
In clinical practice, MEP is measured to avoid nerve damage
during neurosurgery and orthopedic surgery [20]. Even under
similar conditions, the MEP amplitude often fluctuates, and it
is difficult to identify the cause immediately [4,5]. If the
fluctuation of MEP amplitude that is unrelated to the surgical
operation can be suppressed, the incidence of false positives
can be reduced, which can contribute to patient safety. During
the operation, both rapid procedures and the suppression of
MEP amplitude fluctuation are required to avoid placing a
burden on the patient.

The current system can only set the triggering threshold lower
when the actual time is longer than the predicted time. If the
system can set the triggering threshold higher or lower in
response to changes in the participant’s condition, the actual
experimental time will be closer to the predicted time and MEP
fluctuation will be significantly suppressed. In addition, if the
system can be improved in future studies and determine whether
a participant is in a steady state online while measuring the
MEP, the triggering threshold can be changed more
responsively, and the fluctuation of MEP amplitude that causes
false positives can be suppressed. It can also help avoid
perioperative complications. Thus, we will continue to improve
our system to contribute to clinical applications.

Conclusions
We developed a TMS trigger system to suppress MEP
fluctuations using feedback-type EEG coherence analysis. We
suggest that the fluctuations in MEP amplitude could be
suppressed by applying TMS to the M1 when Coh (β) is high
while controlling the experimental time.
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Abstract

Currently, nearly 6 in 10 US adults are suffering from at least one chronic condition. Wearable technology could help in controlling
the health care costs by remote monitoring and early detection of disease worsening. However, in recent years, there have been
disappointments in wearable technology with respect to reliability, lack of feedback, or lack of user comfort. One of the promising
sensor techniques for wearable monitoring of chronic disease is bioimpedance, which is a noninvasive, versatile sensing method
that can be applied in different ways to extract a wide range of health care parameters. Due to the changes in impedance caused
by either breathing or blood flow, time-varying signals such as respiration and cardiac output can be obtained with bioimpedance.
A second application area is related to body composition and fluid status (eg, pulmonary congestion monitoring in patients with
heart failure). Finally, bioimpedance can be used for continuous and real-time imaging (eg, during mechanical ventilation). In
this viewpoint, we evaluate the use of wearable bioimpedance monitoring for application in chronic conditions, focusing on the
current status, recent improvements, and challenges that still need to be tackled.

(JMIR Biomed Eng 2021;6(2):e22911)   doi:10.2196/22911
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Introduction

Chronic diseases are currently a major challenge for the global
health system [1]. Worldwide, over 70% of deaths are attributed
to noncommunicable diseases (NCDs) and mental health. In
addition, NCDs are a leading cause of morbidity and disability,
including cardiovascular disease, chronic respiratory diseases,
cancer, and diabetes [2]. Specifically in the United States,
approximately half of the overall population is suffering from
one or more chronic diseases [3]; 6 in 10 adults have at least
one chronic disease and 4 in 10 adults are suffering from two
or more chronic diseases [4]. This not only poses a huge burden
on the health care system but is also an economic burden, as
chronic diseases account for 86% of the total health care costs
in the United States [5].

Some of the main aspects attributing to these high health care
costs are the emergency room visits and hospitalizations
resulting from acute exacerbations in chronic diseases [6]. At
present, these diseases are typically managed based on a few
office visits per year [7]. Several studies have shown that more
frequent monitoring could lead to early detection of
exacerbations such as in heart failure [8] and in asthma [6]. This
indicates that continuous or frequent monitoring could also play
a role in the management of the large number of patients
suffering from chronic diseases [9].

Wearable sensor technology, possibly combined with artificial
intelligence (AI), is one of the techniques that provides this type
of monitoring. Consequently, the wearable technology market
has increased rapidly in recent years. Different wearables have
been developed, ranging from simple medical alarms (St John)
that people can press when needing help to vital sign patches
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for monitoring electrocardiogram (ECG) signals (ePatch
BioTelemetry Inc and Vista Solution VitalConnect) and
cuff-based blood pressure measurements in a watch (HeartGuide
Omron Healthcare Inc). At the same time, different AI methods
have been developed and applied to physiological data, ranging
from supervised techniques for automatic detection of sleep
apnea from the ECG [10] to unsupervised heart rate detection
with liquid states [11].

A promising sensing method is wearable bioimpedance
monitoring. In this paper, we define a wearable bioimpedance
monitoring system as an electronic device containing a
bioimpedance sensor capturing the bioimpedance of the wearer
that is worn close to or on the surface of the skin, and that allows
the wearer to move freely during daily living conditions (ie,
that is not attached to any main power supply or desktop device).
Bioimpedance is a versatile sensing technology that can be used
for a wide array of clinical and lifestyle applications, ranging
from body fluid monitoring [12] to gesture monitoring [13] and

to monitoring of hemodynamic parameters [14]. In addition,
bioimpedance is a noninvasive technology and is of relatively
low cost. Specifically, in chronic disease management,
bioimpedance has, for example, been explored to monitor
patients with asthma [15], heart failure [8], and end-stage kidney
disease (ESKD) [16]. Table 1 lists some of the commercially
available devices and their application areas as of November
2020. There are still several challenges for the full integration
of wearable bioimpedance monitoring into the clinical health
care system. Some of these challenges are specific to
bioimpedance; however, many are general to wearable
monitoring. These challenges include data reliability [17,18],
patient usage and compliance [19,20], integration into electrical
health records [21,22], actionable insights provided to the user,
and the still limited number of clinical trials demonstrating a
medical benefit [23]. Here, we discuss the versatile application
areas for wearable bioimpedance monitoring, along with the
current status, remaining challenges, and future outlook.

Table 1. Wearable bioimpedance devices currently available on the market.

MarketApplicationTechnologyCompanyProduct

ConsumerBody compositionWrist band, hand-to-hand BI-

VAa
Aura devices, Wilmington DE,
USA

Auraband

ConsumerBody compositionWrist band, hand-to-hand BIAbInbody, Seoul, KoreaInbodyband

MedicalHeart failureNecklace, thoracic
bioimpedance

ToSense (acquired by Baxter
International)

CoVa Monitoring system

ResearchRespirationModule attached with chest
strap, thoracic bioimpedance

Shimmer, Dublin, IrelandShimmer3 Ebio unit

MedicalRespirationPatch, thoracic bioimpedanceKoninklijke Philips N.V., Ams-
terdam, the Netherlands

BX100

MedicalHeart failurePatch, thoracic RFc impedance
0.5-2.5 GHz

ZOLL Medical Corporation,
Chelmsford, MA, USA

µCor3

MedicalICGdChest module, thoracic
bioimpedance

Manatec Biomedical, Poissy,
France

Physioflow

aBIVA: bioelectrical impedance vector analysis.
bBIA: bioelectrical impedance analysis.
cRF: radiofrequency.
dICG: impedance cardiography.

Basic Principle of Bioimpedance

Overview
Our aim is to address the clinical application areas for wearable
bioimpedance. The aim is not to discuss the technology in full
detail; a comprehensive description on bioimpedance is provided
elsewhere [24,25]. However, to understand the opportunities
and challenges for clinical applications, some background on
the technology is needed. Therefore, we first provide a brief
overview of the principles of bioimpedance measurements.

Bioimpedance is a method to assess the electrical properties of
a tissue. Different tissues such as the bone and fat have different
electric properties. In 1996, more than a century after the initial
work on electrical properties of biological tissues in 1872 [26],
Gabriel et al [27] reported the measurement of dielectric
properties of different biological tissues over a large frequency

range (10-20 GHz). These experiments and observations formed
the basis of subsequent bioimpedance research in various
applications.

Bioimpedance reflects the extent to which the living tissue
impedes the flow of electrical current. The electrical properties
of biological tissue are determined by the characteristics of the
extracellular fluid (ECF), cell membranes, and intracellular fluid
(ICF). To study the electrical properties, an alternating current
with a single frequency measurement or range of frequencies
is injected into the tissue and the opposition of the tissue to this
current flow (ie, the bioimpedance) is measured.

Bioimpedance measurements at any frequency are expressed
as a complex number, with the real part referred to as the
resistance and the imaginary part referred to as the reactance.
The resistance is regarded as a measure of the obstruction to an
electrical current, whereas the reactance is related to the storage
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of the electrical current. The resistance is attributed to the fluids
in the tissues (including the therein dissolved ions) and the
capacitance is attributed to the cell membrane. Since the
resistance of the cell membrane is very small, it is often
neglected (see electrical scheme in Figure 1B). At low
frequencies of the injected current, the current does not penetrate

the cells, but mainly flows through the ECF; thus, bioimpedance
measurements at low frequency can be used to gain insight into
the ECF. However, when using high frequencies for the injected
current, the current flows through the cells, and thus the
measurements provide insights into both the cellular and the
extracellular components (Figure 1A).

Figure 1. (A) Low-frequency current travels around the cell, while high frequency current can penetrate cells. (B) Electrical model of the tissue with
extracellular resistance (Re), intracellular resistance (Ri), and conductance representing the cell membrane (Cm). (C) Illustration of bioimpedance
spectroscopy data visualized in the R-Xc plane. Increasing frequencies of the injected alternating current appear counterclockwise in the plot. (D)
Tetrapolar electrode configuration in bioimpedance measurement. ECF: extracellular fluid; ETI: electrode tissue impedance; ICF: intracellular fluid;
Iinject: injected current; Vmeasred: measured voltage.

The resistance and reactance can be used to calculate the phase
angle and the magnitude. The phase angle is calculated by the
arc tangent of the ratio of reactance and resistance at a certain
frequency. The phase angle is therefore considered to be a useful
metric for cellular health, and is expected to be an indicator of
the cellular integrity, cell mass, and extracellular versus
intracellular water content. The magnitude is calculated as the
square root of the sum of the two vectors.

In general, bioimpedance has been applied to three types of
problems: (1) dynamic monitoring, applied mainly in the chest
to monitor respiration and hemodynamic parameters; (2) slowly
evolving parameters such as body composition monitoring; and
(3) electrical impedance tomography (EIT) or imaging. To
address these application areas, different types of bioimpedance
measurements have been developed. There are several
measurement methods with various numbers of electrodes,

namely 2, 3, and 4. Here, we only describe the tetrapolar
configuration with 4 electrodes since this minimizes the effect
of electrode tissue impedance (ETI), which is undesired in
real-life bioimpedance measurements. Measurements using a
tetrapolar electrode configuration and a single frequency of the
injected current are applied to assess either dynamic changes
in vital parameters or body composition. The latter
measurements are referred to as single-frequency bioimpedance
analysis (SF-BIA). A second approach to assess body
composition is through multifrequency bioimpedance
measurements, either through multifrequency bioimpedance
analysis (MF-BIA) or bioimpedance spectroscopy (BIS) [26,28].
Finally, EIT measurements are performed using either single
or multiple frequencies of the injected current and an array of
at least 8 electrodes.
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Single-Frequency Measurements for Dynamic
Monitoring
To obtain the bioimpedance of a tissue, an alternating current
is applied to the tissue. Electrodes are placed on the surface of
the skin to ensure electrical contact with the tissue. As
mentioned above, a tetrapolar electrode configuration is often
used to circumvent the effect of ETI. In such a configuration,
two electrodes are dedicated for the current injection and the
other two are used for obtaining the voltage measurement
(Figure 1D). The configuration, or positioning, of the electrodes
together with the electrical properties of the underlying tissue
will determine the current path of the injected current through
the body. For example, current injected through electrodes
positioned on the thorax will flow through part of the thorax
underlying these electrodes. Therefore, electrode positioning is
an important step in the design of the bioimpedance
measurement.

Longitudinal thoracic bioimpedance measurements can be
performed to assess respiration or hemodynamic parameters.
The measured thoracic bioimpedance signal contains a baseline
component and a dynamic component. The baseline component
is a constant bioimpedance value that is determined by the
tissues (eg, the adipose tissue) and does not change during the
measurement over several minutes. The dynamic component is
related to dynamic changes in the tissue during the measurement
(Figure 2). During a measurement of several minutes, a subject
breathes and the heart pumps blood through the thorax. Airflow
moving in and out of the body and pulsatile blood flow modulate
the electrical properties and thus the measured bioimpedance
signal. The electrode configuration, by affecting the measured
tissue volume, and the frequency of the injected current, by
affecting the current path, both influence the baseline and
dynamic components of the measurements.

Figure 2. (A) Illustration of body composition consisting of solids (eg, bone, dry cell mass) and fluids. The fluids consist of intracellular fluid (ICF)
and extracellular fluid (ECF), with the latter comprising interstitial fluid (ISF) and plasma. (B) Electrode configuration example of respiration monitoring
with the measured bioimpedance (bioZ) signal. (C) The measured bioZ signal contains a dynamic component (AC) resulting from physiological changes
such as breathing and a baseline component (DC) resulting from tissues (eg, bones, fat and/or muscle).

Body Composition Monitoring
The previous section described monitoring of dynamic changes,
or the dynamic component of the signal, whereas body
composition monitoring is related to the baseline component
of the measurement. Body composition parameters obtained
through bioimpedance measurements include fat percentage
and total body water (TBW) content or the hydration status.
TBW is the sum of the extracellular water (ECW) and
intracellular water (ICW) content. Reference methods for
estimating TBW, ECW, and ICW, such as dilution of radioactive
deuterium, bromide, and radioactive potassium, are invasive
and expensive. These methods also must be applied under
clinical supervision and are not suitable for frequent or
ambulatory monitoring.

The simplest method for bioimpedance body composition
monitoring is SF-BIA, which is used to estimate TBW, ECW,
ICW, and fat free mass (FFM) using statistical analysis. The
frequency of the current is set to 50 kHz. SF-BIA is applicable
for normal hydrated subjects [29], which uses the inversely
proportional relationship between assessed bioimpedance and

TBW. SF-BIA first predicts the TBW and FFM using two
statistically derived equations [29], and then estimates the ECW
and ICW to be 75% and 25% of the TBW, respectively. To
improve the body composition estimation, bioimpedance vector
analysis (BIVA) was introduced, which also uses
single-frequency bioimpedance measurement, mainly at 50 kHz,
but the data are normalized to the length of the subject. BIVA
provides information about changes in both tissue hydration
and soft-tissue mass. However, similar to SF-BIA, BIVA does
not provide any quantitative estimate of tissue mass (in
kilograms) or fluid volumes (in liters). Therefore, MF-BIA was
developed to exploit the frequency dependence of the different
tissues. MF-BIA uses a similar approach to SF-BIA, except that
it applies a spectrum of frequencies to the body tissue and
performs multivariate statistical analysis to estimate TBW,
ECW, ICW, and FFM. In contrast, BIS predicts ECW and TBW
by determining the resistance at zero frequency (R0) and infinity
frequency (Rinf). BIS provides quantitative results on TBW, as
well as on ECW and ICW. Typically, a larger number of
different frequencies is used in BIS measurements compared
to MF-BIA. The measured response at these frequencies is
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displayed in the R-Xc plane (plotting resistance vs reactance),
as shown in Figure 1C.

Several empirical electrical models have been developed to
analyze these measurements. Over the years, different variations
of these empirical models have been presented [30,31]. Although
these models can describe the data, they are not a true
representation of the underlying physiology. One of the earliest
models is the Fricke and Morse model [32], which consists of
two resistors, ECF resistance and ICF resistance, and a resistor
in parallel with a capacitor, which represents the cell membrane.
This model has a direct physical interpretation. The most widely
used model is the Cole-Cole model [33]. To account for the
nonideal capacitive behavior of cell membranes, an additional
parameter (α) was added to this model. Although this improved
the accuracy of the fit, the interpretability of the model was
reduced. The resistance values at infinitely low Ro and high Rinf

are easily derived from the analysis and relate to ECF and TBW.

EIT Measurements
EIT originates from the 1970s [34] and is an imaging technique
with relatively low resolution when compared with traditional
imaging techniques such as magnetic resonance imaging (MRI)
or computed tomography (CT). However, EIT has the advantage
of low costs, low power, no radiation, a high temporal solution,
and the potential to be wearable [35].

EIT estimates the conductivity distribution within a given
volume. The measurement exploits the fact that different tissues
vary in their electrical properties. To assess the conductivity
distribution, EIT uses electrical alternating currents injected
from the surface area of the volume. Toward this end, electrodes
are placed around the surface of the volume of interest (eg, the
thorax). Currently, EIT systems often consist of 8 to 16
electrodes per ring of electrodes. The electrodes used for current
injection and voltage measuring are continuously changed in
specific patterns. The measured voltages are used in the
reconstruction of the image, which is an ill-posed nonlinear
inverse problem. Two types of images can be derived from EIT
measurements: a difference or an absolute image. Difference
images are created by measuring the same volume multiple
times and then subtracting and dividing by a reference dataset.
The reference dataset can be generated with the same
measurement setting, but the data are collected at a different
moment in time (time-difference EIT) or with a different
frequency of the injected current (frequency-difference EIT).
The reconstruction will lead to the difference image, which may
be relevant during respiration monitoring. The absolute image
shows the absolute properties of the area of interest. Several
groups have developed solutions for image reconstruction,
including the freely available software EIDORS [36,37].
Initially, image reconstruction was performed in a 2D manner
using a single ring of electrodes. Subsequent methods have been
developed for 2.5D or 3D reconstruction using multiple rings
of electrodes covering a volume [38].

Application Areas of Bioimpedance
Monitoring for Chronic Conditions

Applications of Focus
Owing to its versatile nature, wearable bioimpedance can be
used for a wide range of clinical and lifestyle applications, which
include body composition monitoring, monitoring of
hemodynamic parameters, respiratory monitoring, and imaging.
Here, we focus on the use of wearable bioimpedance monitoring
in chronic diseases. This section is divided in three parts:
monitoring dynamic parameters, slowly evolving parameters,
and imaging.

Dynamic Parameters in the Chest

Overview
Dynamic changes in thoracic impedance consist of two parts:
a respiratory and a hemodynamic or cardiac contribution.
Impedance pneumography monitors the changes induced by
respiration in the impedance of the thorax, whereas impedance
cardiography measures the changes due to the cardiac
contribution. In measuring either component, the other is
typically regarded as a disturbance of the signal.

Impedance Pneumography
Currently, respiratory status is assessed in clinical practice in
patients with chronic obstructive pulmonary disease (COPD),
asthma, and sleep apnea. In patients with COPD and asthma, a
spirometer is used to assess respiratory function. Spirometer
tests require a face mask or mouthpiece and trained medical
personnel to perform the test well. These prerequisites make
the test obtrusive and unsuitable for ambulatory monitoring.
Similarly, sleep apnea is diagnosed in a sleep lab using
polysomnography with many cables, requiring a complex set
up. For these reasons, less invasive methods are being
investigated that can provide continuous and ambulatory
monitoring in a comfortable and unobtrusive manner. Impedance
pneumography is being studied as one such a technology.

During the impedance pneumography measurement, electrodes
are placed on the chest to obtain the thoracic bioimpedance
(Figure 3). These electrodes can be attached with lead wires to
a device or integrated in a patch. The dynamic component of
the measured signal relates to the varying electrical properties
in the chest, encompassing breathing. In the measurement, an
aggregate signal is measured of the underlying tissue. This
volume comprises not only the lungs but also other tissues of
the thorax, such as the muscles and the fat. To determine the
applicability of the signal, it is necessary to understand the
different contributions to, or the origin of, the signal. Some
studies have investigated the contributions of the underlying
tissue to the measured bioimpedance signal using either animal
models or computer simulations [39-43]. Animal studies from
the 1960s and 1970s focused on the contributions of chest
movement and respiratory volume to the bioimpedance signal
[42,43]. Subsequent studies in human subjects showed that
during normal breathing, the relation between volume and
bioimpedance appeared to be linear [44-48]. However, during
abnormal breathing, the relation between volume and
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bioimpedance appeared nonlinear, indicating the contribution
of additional components to the signal. These contributions can
be seen during sleep apnea events monitored with bioimpedance
[49]. Recently, Blanco-Almazan et al [50] showed that both
respiratory volume and chest movement contribute to the

bioimpedance signal during normal breathing and during
inspiratory loading conditions, with the contribution of chest
movement becoming more important when muscle activity was
the highest.

Figure 3. Example of a wearable device (imec the Netherlands, Eindhoven, the Netherlands). (B) Example impedance pneumography data. The figure
shows the similarity between bioimpedance and spirometer data for an increasing respiratory volume protocol.

Another topic of research has been the effect of electrode
positioning, which has been studied using computational
modeling and data collection in volunteers. The electrode
positioning influences the volume that is being investigated.
Finite element models of (part of) the thorax have been
constructed, in which the electrode position was varied to
optimize the measurement location for monitoring the lung area
[39-41]. Using this approach, positions were compared in terms
of sensitivity (percentage contribution of the lung tissue to the
measured bioimpedance signal) and specificity (the amplitude
of the lung contribution). The simulations showed that the
electrode locations around the middle of the thorax reflect
impedance changes in the lung region. Data were collected on
human volunteers using different electrode configurations and
were compared against those obtained using a reference device
(eg, a spirometer) [45,46,48,51]. This comparison also showed
that the locations around the middle of the thorax were able to
accurately capture respiration.

Several studies have assessed the applicability of impedance
pneumography for respiration monitoring in chronic conditions.
In children, nocturnal impedance pneumography measurements
can be used to monitor the increased tidal flow variability as
associated with childhood asthma risk [52]. In addition, it was
shown that impedance pneumography and direct
pneumotachograph measurements had a similar relation with
lung function in infants with respiratory symptoms. However,
in infants with clinically observed airway obstruction, the
measured tidal breathing flow parameters differed between
impedance pneumography and direct pneumotachograph [15],

which further support that factors other than volume contribute
to the bioimpedance measurement.

In adults, impedance pneumography has been applied in patients
with COPD and sleep apnea. In patients with COPD,
bioimpedance measurements were combined with
electromyography and mechanomyography measurements
assessing muscle activity [53], showing the applicability of
noninvasive multimodal respiratory assessment. Regarding
sleep apnea, recent work evaluated a shirt with ECG and
bioimpedance for monitoring in healthy volunteers [54]. In
addition, in patients with sleep apnea, a wearable bioimpedance
device was able to detect apnea events, which opens
opportunities for unobtrusive screening, diagnostics, and
treatment monitoring in sleep apnea [49]. Finally, in the hospital
setting, impedance pneumography is currently available for
respiratory monitoring, although typically in a nonwearable
form. An example is the ExSpiron Minute Ventilation System
(Respiratory Motion Inc), which has been tested in the
postanesthesia care unit and the intensive care unit [55,56].

Impedance Cardiography
Cardiac output is related to how much blood the heart delivers
to the body, which is measured to assess the status of the heart,
relevant in many chronic conditions such as heart failure.
Cardiac output can be assessed with several technologies such
as Doppler echocardiography and intracardiac catherization.
Echocardiography is time-consuming and requires trained
medical personnel, whereas catherization is invasive. Impedance
cardiography has been proposed as a noninvasive and potentially
ambulatory method to assess hemodynamic parameters such as
cardiac output. The possibility to measure hemodynamic
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parameters noninvasively with impedance has been studied for
a long time [14]. In general, 4 electrodes are used for the
impedance measurement to assess changes in thoracic
bioimpedance related to the cardiac cycle. The ECG signal is
collected simultaneously to time the cardiac events. Different
electrode configurations have been proposed to measure the
impedance cardiography signal. Initially, four band electrodes
were used, with two electrodes positioned around the neck and

two around the abdomen. These band electrodes were
subsequently replaced by round electrodes [57] (see Figure 4).
Alternative electrode configurations have been evaluated. For
example, one configuration positions one electrode on the
forehead, the lowest one above the leading edge of the heart,
and the remaining two in between [58]. Desktop devices are
typically used for these measurements, but some studies have
also investigated wearable devices [59-62].

Figure 4. Left: Electrode configurations for impedance cardiography (ICG) measurement, using either red electrodes or yellow electrodes, with current
injection electrodes (I) and voltage electrodes (V). Right: electrocardiogram (ECG) and ICG signals showing characteristic morphology with the B
point as an example.

The measured impedance signal (Z) varies with the contraction
of the heart. In the derivative of the signal (dZ/dt), different
points have been shown to correspond with different parts of
the cardiac cycle, such as the B-point with the opening of the
aortic valve. The measured impedance and its derivative are
used in formulas for an approximation of stroke volume. The
first such model was presented by Kubicek, which was modified
in subsequent studies [63]. All models to derive stroke volume
use assumptions such as those related to the shape of the thorax
(cylinder or truncated cone), current path, blood resistance, and
origin of the pulsatile impedance changes. To fully understand
the signal and its applicability for clinical monitoring, the origin
of the signal needs to first be understood; however, the origin
of this signal seems to be complicated and has led to controversy
in the field. Recently, de Sitter et al [64] compared different
mathematical models that aim to understand the underlying
physiological signals that contribute to the change in
bioimpedance used in impedance cardiography in a systematic
review. This comparison showed no consensus in the origin of
the change in the bioimpedance signal, highlighting the
complexity and the controversy around this topic.

At the same time, many studies have tried to validate this
technique on different clinical use cases. A portion of these
studies showed good results in the comparison of impedance
cardiography with standard clinical methods such as the invasive
thermodilution pulmonary artery catheter [65-67], whereas other
studies showed insufficient agreement between the
measurements [68-70]. In addition to validation studies, the
potential role of impedance cardiography in disease diagnosis
and disease management has been evaluated. For disease
management, not only absolute values are of interest but also

relative changes in stroke volume or cardiac output. For
example, in stable heart failure patients, regular impedance
cardiography measurements have been shown to have predictive
value for near-term recurrent decompensation [71].

Stroke volume and cardiac output monitoring are of substantial
interest for many diseases. The use of impedance cardiography
to assess these parameters has gained interest because of its
advantages of noninvasiveness, relatively low cost, and relative
simplicity. However, there is still no consensus on the origin
of the signal. In addition, the results for absolute monitoring
are inconsistent. Many studies have assessed validation in
different use cases and the applicability for different diseases,
with mixed results. Therefore, further work is needed to fully
understand the signal and its applicability for chronic disease.

Slowly Evolving Parameters
Besides monitoring dynamic parameters, bioimpedance is used
for monitoring more slowly evolving parameters such as body
composition and fluid status. Measurements related to body
composition are reflected by the baseline component of the
bioimpedance measurement. These measurements are often
performed with benchtop devices measuring total body
impedance from the hand to foot, using models (eg, the
Cole-Cole model as explained in the Principle of Bioimpedance
section above) to convert the impedance values into body
composition parameters. In the domain of chronic diseases,
these measurements have been used to assess malnutrition or
body fluids, such as overhydration, dehydration, or local fluid
buildup (eg, pulmonary edema). Early attempts to evaluate
pulmonary edema in patients with bioimpedance originate from
the 1970s [72]. More recently, wearable bioimpedance has been
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used for fluid monitoring such as in patients with congestive
heart failure and those with ESKD undergoing hemodialysis
treatment [16,73].

Hemodialysis is a life-saving treatment for patients with ESKD.
However, in these patients, mortality levels are high and many
patients suffer from cardiovascular complications. The nature
of hemodialysis treatment (three 4-hour treatments per week)
results in large fluid changes in the patient. Fluid builds up
during the interdialytic period and is rapidly extracted during
the 4-hour hemodialysis treatment. In patients with ESKD, fluid
overload in the interdialytic period is associated with a higher
cardiovascular risk, disease progression, and a rise in
cardiovascular morbidity and overall mortality [74-76].
Maintaining optimal fluid balance in the body of a patient with
ESKD is still a challenge. In current clinical practice, treatment
is based on the dry weight of a patient, but objective dry weight
assessment is currently lacking in clinical routine practice.
Bioimpedance monitoring could play a role in maintaining fluid
balance in patients with ESKD and has been associated with
improvement of cardiovascular parameters [12,77,78] in studies
using benchtop devices. Being able to unobtrusively and
continuously monitor the fluid status could provide even larger
value. Studies have shown that local wearable thoracic
bioimpedance measurements can be used to accurately track
fluid and weight loss during hemodialysis [16,79], but future
work is needed, including exploring the potential for monitoring
at home.

At the same time, studies have focused on wearable
bioimpedance fluid monitoring in patients with congestive heart
failure. In these patients, the pumping capability of the heart is
reduced, and fluid can build up in the lungs or the extremities.
Bioimpedance monitoring has also been used to assess
pulmonary congestion. Several studies have shown the benefit
of daily and continuous monitoring in patients with congestive
heart failure in the form of portable benchtop devices [80,81],
wearables [73,82-84], or even implantables [85,86]. Wearable
bioimpedance monitoring predicted decompensation and
hospitalizations [8,87]. Moreover, wearable bioimpedance
monitoring was shown to be a useful marker for 30-day
mortality and rehospitalization after diuretic treatment during
hospitalization in patients with congestive heart failure treated
with diuretic therapy [84].

Bioimpedance measurements, in combination with empirical
models, have also been frequently used to study body
composition in terms of muscle mass and body fat content, and
are available in clinical settings through devices such as Maltron
BodyScan 920-II (Maltron International Ltd) and Fresenius
Body Composition Monitor (Fresenius Medical Care Pte Ltd).
These measurements have also been used to assess malnutrition
[88]. However, since slowly evolving processes underly these
applications, they have mainly been studied with benchtop
devices.

Imaging Using EIT
Medical imaging enables gaining a view of the inside of the
body. There are many imaging modalities currently available,
such as MRI, radiography, ultrasound, and functional
near-infrared spectroscopy. Some of these modalities use

radiation (such as radiography), expensive equipment (such as
MRI), or trained personnel. Therefore, some of these techniques
only allow for obtaining a snapshot of the status of the patient.
Imaging using EIT has the advantage of being continuous, low
cost, low power, and with wearable potential, but the spatial
resolution of the image of this modality is relatively low in
comparison with that of other imaging modalities such as CT
and MRI. Currently, the main use of EIT is during mechanical
ventilation, which is used to monitor the ventilation of both
lungs to protect the patient from lung damage caused by the
ventilator. With respect to chronic conditions, the use of EIT
in other application areas shows potential but requires more
research. In patients with pulmonary conditions such as COPD,
EIT could provide the spatial distribution of the pulmonary
function to enable tracking regional lung function over time or
after an intervention such as respiratory muscle training or the
use of a bronchodilator [89]. It was suggested that monitoring
spatial differences could improve patient phenotyping,
monitoring disease and treatment effects, and predicting clinical
outcomes [37,89]. EIT could also bring value to other chronic
diseases such as epileptic monitoring and stroke. Being able to
continuously monitor brain activity could help in locating the
regions of the brain involved in epileptic seizures [90]. Hand
gesture recognition could aid in physical disabilities such as
those present after stroke [13].

One of the potential benefits of EIT is that it could be wearable.
Currently, there are no wearable EIT systems on the market,
but several research prototypes have been developed [13,91-94].
These wearable systems have been shown to capture respiration
[92,93]. Another system combines EIT with multilead ECG in
a vest, thereby opening up the possibility to measure respiration
and impedance changes from the cardiac region [91]. In a very
different application area, Zhang et al [13] used EIT for hand
gesture monitoring.

To date, besides during mechanical ventilation, EIT has mainly
been applied in controlled laboratory settings. Before wearable
EIT can be applied for the monitoring of chronic conditions,
further steps in development and validation need to be taken,
such as in handling the imaging during daily living conditions.
Finally, the added clinical value needs to be demonstrated for
the different application areas before the technology will be
widely adopted.

Challenges and Outlook

Hurdles for Broad Application
Electrical principles have long been used in the medical field,
and bioimpedance measurements have been explored for many
decades. Initially, these measurements were performed with
large benchtop devices, but more recently have been assessed
in wearable form with consideration of many different
applications, ranging from respiratory volume to cardiac output
and from body composition monitoring to imaging. The
relatively low cost of the system and its noninvasiveness make
bioimpedance an interesting sensor technology for wearable
monitoring of chronic conditions. However, there are still
several hurdles to be overcome before bioimpedance will be
widely adopted in clinical practice. Some of these hurdles apply
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to wearable bioimpedance, while others do not solely apply to
bioimpedance monitoring but should be considered in the
broader context of all wearable monitoring techniques. Here,
we will discuss both aspects.

Challenges and Limitations of Wearable Bioimpedance
As indicated in the preceding sections, wearable bioimpedance
is a promising technique owing to its advantages of low cost,
wearability potential, and noninvasiveness. However, like all
technologies, wearable bioimpedance has some disadvantages.
First, bioimpedance measurements, as is the case for many
wearable measurements, are prone to motion artifacts. Collecting
data in a real-world environment is prone to activities leading
to these artifacts. Corrupted data can lead to misinterpretation
of the state of a patient; therefore, solutions to either prevent or
remove these artifacts are crucial. To prevent motion artifacts,
one might ask the subject to sit still during a measurement to
capture slowly evolving parameters, which may be performed
once a day for approximately 1 minute, such as for measuring
body composition. Alternatively, measurements could be
triggered or filtered at certain postures or activity levels [95,96].
However, this is not suitable for ambulatory monitoring of
dynamic parameters such as respiration monitoring, when one
is interested in respiration throughout the day. The two main
strategies to handle corrupted data in impedance pneumography
are so-called “quality indicators” that exclude corrupted data
or to try to salvage corrupted data by using motion artifact
reduction techniques. Motion artifact reduction is often applied
to ECG and photoplethysmography signals [97-100], but to a
lesser extend to impedance pneumography signals. For example,
Ansari et al [101] compared different methods for different
types of movement. Regarding the so-called quality indicators,
Charlton et al [102] reviewed the methods of obtaining quality
indicators for respiratory signals and concluded that further
research is needed to design powerful quality indicator
algorithms for different applications [102]. Recently, they also
published a quality assessment method for impedance
pneumography signals [103]. Similar to impedance
pneumography, artifact handling is relevant for impedance
cardiography measurements, including both absolute and relative
measures. Artifacts in the impedance cardiography signal make
it more difficult to detect the fiducials such as the B-point in
the signal, resulting in less accurate estimates of stroke volume
and cardiac output. Three approaches for artifact handling have
been used in the analysis of impedance cardiography signals:
artifact detection [104], artifact reduction [105-107], and posthoc
outlier removal from estimated parameters [108].

As mentioned above, the electrode positioning influences the
measured volume. As such, changing the electrode position
slightly will lead to a change in the measured volume and thus
changes the measured impedance value. This is relevant when
looking at small changes over measurements that require exact
electrode repositioning, but is not important when looking at
derived metrics that are not related to the signal amplitude such
as the respiratory rate. To circumvent the effect of electrode
positioning on the absolute measured value, algorithmic
solutions should be developed to correct for these differences
or electrode position, and independent metrics should be
developed.

In addition, measurements that do not require device or electrode
reattachment are subject to change. The condition of the skin
can change over time as can the adhesive capability of the
electrodes. Adhesive materials for electrodes are optimized for
their maximal comfort and endurance.

Finally, bioimpedance is affected by body composition.
Depending on the body composition, the current path through
the body will differ. In the case of obesity, the current would
need to penetrate a larger layer of fat before reaching the
underlying tissues, which will affect the measured impedance
values. Since there are many different body shapes,
personalization of the measurements could circumvent this
issue.

General Challenges for Wearables and Wearable
Bioimpedance-Based Devices
Although there are some wearable devices on the market for
clinical use, such as Holter devices and cardiac rhythm
monitoring patches, most wearables have not yet been approved
for medical use. Their use has mainly been studied in the
research domain thus far [17]. Tests in a controlled or laboratory
environment may not represent use in the real world, and
validation in resting conditions may not represent (daily life)
motion situations [18]. Therefore, there is a need to collect
real-word evidence. There is also variability between devices
[17], indicating the need for standardization of evaluation of
wearables in the assessment of reliability, sensitivity, and
validity of the data [18], further signaling the necessity to collect
real-word evidence.

Dinh-Le et al [22] reviewed the integration of wearable
technology from electronic health records. One associated
challenge with this approach is related to the large streams of
data that must comply with all privacy and security standards.
In addition, patients fear misuse of their data, potentially leading
to discrimination and changes in coverage by insurance
companies. Therefore, patients should be well informed on the
data collection and handling procedures. In addition, proprietary
and closed systems pose difficulties with regard to system
interoperability and connectivity.

The data streams generated by wearable devices that are often
worn 24/7 present another challenge. The current health systems
are not prepared for handling such high volumes of rapidly
accumulating data [109]. Besides data storage, the vast amount
of data is another major challenge, as the data also need to be
analyzed. Clinical decision support systems have been
implemented that generate false alarms in some cases such as
drug interactions or elevated blood pressure. Reliability of these
alarms is crucial, since health care providers could experience
alarm fatigue due to the large number of false alarms [110,111].
AI is believed to have great potential in the field of clinical data
analytics [112]. Regarding bioimpedance monitoring, AI has
been shown to be able to detect sleep apnea events [49] and to
estimate dry weight in pediatric patients on chronic hemodialysis
[113]. However, these algorithms should not stop at
classification but should further lead to actionable insights for
the health care provider or the patient. Integration of these
algorithms on the devices could help in achieving the ultimate
goal of developing closed-loop care-providing wearables [112].
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As indicated above, the use of many wearables for clinical
applications is currently limited to the research domain. It is
widely acknowledged that for further acceptance and integration
into clinical practice, the proof of medical benefit of wearables
through dedicated medical trials is needed [9,18,22,23,112].
Additionally, health care cost should be evaluated for the long
and the short term. Wearables are often proposed as a solution
against rising health care costs [9,114]. However, there are also
examples that show an increase of health care resource
utilization with wearables [20].

Interestingly, the view of patients has been less well studied
from these aspects. Tran et al [19] explored the perspectives of
patients on wearable devices and AI in health care in France.
Their study showed that half of the patients felt that digital
technology and AI techniques are an important opportunity.
However, the study also showed that the patients are not ready
for fully automated care. One out of three patients refused one
of the devices or AI systems, and patients highlighted the risks
regarding privacy and data misusage, the absence of a human
interaction and relations, and uncertainty of reliability.

The role of the patient has also been highlighted in studies using
technology showing low compliance and large dropouts
[115,116]. Nevertheless, other studies have shown good
compliance [117]. Interestingly, studies have indicated that
patients can experience monitoring as obtrusive and undesired,

and that it can even lead to higher depression scores [118].
Several studies have focused on increasing the comfort level
and decreasing the obtrusiveness of wearables to circumvent
these problems, looking at the possibility to integrate
bioimpedance measurements in clothing [54], the use of flexible
and stretchable materials [119], and to increase battery life [82].
In some use cases, “nearables” could be used as an alternative
to wearables, leading to invisible and effortless methods. One
such example is the integration of bioimpedance measurements
in chairs or beds via capacitively coupled bioimpedance [120].

Summary and Prospects

Although bioimpedance monitoring is not a new concept,
wearable bioimpedance monitoring for chronic conditions is a
relatively new field. In this viewpoint, we have shown the
potential of bioimpedance monitoring in application areas such
as respiration, cardiac, body composition, and fluid monitoring,
as well as the remaining challenges that need to be addressed
before it can be widely adopted in the medical field.
Nevertheless, wearable bioimpedance monitoring has large
potential to change monitoring and disease management for
patients suffering from chronic diseases such as respiratory,
cardiac, or kidney disease by enabling low-cost and low-power
home-monitoring solutions. These developments can further
have an impact on health care costs and quality of life of patients
with chronic diseases.
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Abstract

Background: Ultrasound-based radiomic features to differentiate between benign and malignant breast lesions with the help
of machine learning is currently being researched. The mean echogenicity ratio has been used for the diagnosis of malignant
breast lesions. However, gray scale intensity histogram values as a single radiomic feature for the detection of malignant breast
lesions using machine learning algorithms have not been explored yet.

Objective: This study aims to assess the utility of a simple convolutional neural network in classifying benign and malignant
breast lesions using gray scale intensity values of the lesion.

Methods: An open-access online data set of 200 ultrasonogram breast lesions were collected, and regions of interest were drawn
over the lesions. The gray scale intensity values of the lesions were extracted. An input file containing the values and an output
file consisting of the breast lesions’ diagnoses were created. The convolutional neural network was trained using the files and
tested on the whole data set.

Results: The trained convolutional neural network had an accuracy of 94.5% and a precision of 94%. The sensitivity and
specificity were 94.9% and 94.1%, respectively.

Conclusions: Simple neural networks, which are cheap and easy to use, can be applied to diagnose malignant breast lesions
with gray scale intensity values obtained from ultrasonogram images in low-resource settings with minimal personnel.

(JMIR Biomed Eng 2021;6(2):e23808)   doi:10.2196/23808
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Introduction

Breast cancer is the most common cancer in Indian women with
a prevalence of 25.8 per 100,000. Lack of adequate breast cancer
screening, diagnosis at a later stage, and unavailability of
resources are quoted as the main reasons for the increase in
mortality in patients with breast cancer in India [1]. The breast
cancer mortality in South Asia increased from 6.12 to 9.14 per
100,000 according to a 25-year study [2]. Multiple imaging

modalities like ultrasonogram, x-ray mammography, computed
tomography, positron emission tomography, and magnetic
resonance imaging are being used to screen, diagnose, and
evaluate breast cancer.

Ultrasound is one of the basic radiological imaging modalities
available in hospitals and it is the imaging modality of choice
in suspicious breast lesions in young women and pregnant
women. Ultrasound has higher accuracy and sensitivity in the
detection of malignant lesions compared to x-ray mammography
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[3]. Even with higher accuracy of ultrasonograms, the presence
of significant interobserver variability is a notable disadvantage
of ultrasonograms. This problem can be solved using
radiomics-based diagnostic methods since it standardizes the
substantial amount of data available for diagnosis [4].

Application of artificial intelligence for image recognition and
classification is an upcoming method and can be implemented
in areas with resource and personnel limitations, as it is
suggested that neural network–based differentiation of breast
lesions has the capacity to substantially reduce unnecessary
biopsies and can perform equivalent to trained human
radiologists [5,6]. In this study, we are evaluating the efficiency
of convolutional neural networks (CNNs) in classifying
malignant and benign breast ultrasonogram images downloaded
from an online data set based on their gray scale intensity
histograms.

Methods

This study is a machine learning–based retrospective diagnostic
classification. Ultrasound images of 100 malignant and 100
benign breast lesions were downloaded from an open-access
repository [7]. The images were in bitmap format, and the size
ranged from 7 to 33 kB (Figure 1).

The images were then loaded in ImageJ software (Wayne
Rasband). The image despeckling was done to improve the

contrast resolution of the images because ultrasonogram images
are known to have speckle noise [8]. 

The region of interest (ROI) was drawn over the breast lesions
in all 200 images by a board-certified radiologist, and the gray
scale intensity histogram values were extracted (Figure 2).

The values were entered in a data sheet and were imported to
the MATLAB R2020b software (MathWorks).

A total of 200 histograms values were divided by automated
randomization available in the software into a training set
containing 70% (n=140) of the total images, a validation set
containing 15% (n=30) of the total images, and a test set
containing 15% (n=30) of the total images.

The in-built application of MATLAB R2020b named neural
net pattern recognition was used. It is a two-layer feed-forward
network with sigmoid hidden and softmax output neurons. The
network was trained with scaled conjugate backpropagation
available in the software. In our study, we used 30 hidden
neurons (Figure 3) [9]. An input file containing the gray scale
intensity histogram values (256 values) was fed to the neural
network, and a target file containing the output as either
malignant or benign was loaded. Supervised training was
initiated, and the results were obtained. The flowchart of the
methodology is given in Figure 4.

Figure 1. Ultrasound image (bitmap format) showing hypoechoic malignant breast lesion.
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Figure 2. Despeckled ultrasound image of a hypoechoic malignant breast lesion. The image shows the freehand region of interest drawn over the lesion
using ImageJ software. Gray scale intensity histogram (red arrow) of the lesion showing the mean, median, and SD values.

Figure 3. Graphical diagram of the neural network in MATLAB 2020b used for the study with algorithms used for training and performance.
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Figure 4. Flowchart describing the workflow of the CNN training and testing performed in the study. CNN: convolutional neural network; ROI: region
of interest.

Results

The supervised training was completed in ~1 second. The
training of the CNN took 20 iterations (1 iteration=1 epoch in
our study) with 6 validation checks.

The performance of the CNN was measured using cross entropy
as a parameter, and the best validation performance was
0.073783, achieved at the 14th epoch (Figure 5).

The error histogram exhibiting the number of errors committed
by the CNN during the training in each set was acquired (Figure
6).

The results of the training were derived, and the trained neural
network was tested using the same data set. The confusion

matrix and ROC of the results achieved by the trained neural
network was plotted.

The following describes the values useful for the clinicians in
making the diagnostic decision. During training, the CNN on
the testing data set showed a sensitivity of 80.0% and a
specificity of 93.3%. The accuracy and precision were 86.7%
and 92.3%, respectively. The trained neural network, which
was tested on the whole data set, showed good results. The
sensitivity was 94.9% and the specificity was 94.1%. The
negative predictive value and precision of the trained CNN were
95% and 94%, respectively, with an accuracy of 94.5% (Figure
7). The receiver operating curves of the CNN on various data
sets during training and the trained CNN, with class 1 as benign
breast lesion and class 2 as malignant breast lesion, plotted in
the x-axis as the false-positive rate and y-axis as true-positive
rate are shown (Figure 8).
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Figure 5. Performance graph of the convolutional neural network training (x-axis: epoch; y-axis: cross-entropy). The best validation performance
achieved was 0.0737829 at the 14th epoch. The mean performance was 0.1381, and the median was 0.08445. The red graph shows the performance of
the test data set (70% of the data).

Figure 6. Error histogram with 20 bins (x-axis: error values; y-axis: instances). The histogram shows that zero error lies between the two bins with
center error values –0.04756 and 0.04756. The bins with center error values –0.04756 and 0.04756 show the majority of the data fed to the convolutional
neural network having error values in that range followed by bins with center error values –0.1427 and 0.1427.
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Figure 7. A) Confusion matrices obtained by training the convolutional neural network (CNN) of the training data, validation data, test data, and all
the data sets combined. B) Confusion matrix of the trained CNN exhibiting an accuracy of 94.5% and precision of 94%.

Figure 8. A) ROCs of the training set, validation set, test set, and all sets combined (Class 1: benign; Class 2: malignant). B) ROC of the trained
convolutional neural network showing excellent performance with detection rate. ROC: receiver operating curve.
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Discussion

Ultrasonograms can be used to define the morphological features
of a lesion, and the lesion is reported with details of shape,
margin, echo pattern, location, and posterior acoustic
characteristics [10]. Terms used for reporting echo findings are
subjective and qualitative. In a study conducted by Rahbar et
al [11], malignancy was detected in 67% of the lesions with
spiculated margins. Of all the lesions, 71% of the hypoechoic
lesions and 100% of the hyperechoic lesions turned out to be
benign. The US Breast Imaging Reporting and Data System
was created to standardize breast US reporting and thereby
categorizing breast lesions based on their risk of being a
malignancy [12]. Positive predictive values of US
features—spiculated margin and irregular shape—were 86%
and 62%, respectively, in a study conducted with 403 patients,
among which 35% had malignancy. Hyperechoic patterns were
not present in any of the malignant lesions in this study [13].
Histogram analysis of gray scale intensity is a quantitative
measure of the echo pattern in a lesion, hence can provide
objective assessment of the lesion. Erol et al [14] used lesion
echogenicity ratios to differentiate between malignant and
benign lesions. The mean lesion echogenicity ratio values for
benign lesions was 1.63 (SD 0.41) and for malignant lesions
was 3.1 (SD 0.87), and the study showed statistically significant
difference between malignant and benign lesions.

Machine learning algorithms to diagnose malignant lesions is
a highly pursued research topic. A study using a fuzzy support
vector machine analyzed eight textural features, three fractal
dimensions, and two histogram-based features in identifying a

malignant breast lesion in 87 cases reported an accuracy,
sensitivity, specificity, precision predictive value, and negative
predictive value of 94.25%, 91.67%, 96.08%, 94.29%, and
94.23%, respectively [15]. They analyzed mean, variance,
skewness, kurtosis, energy, and entropy of the histogram values
using stepwise regression and found out that variance and
entropy were the two histogram-based optimal variables that
will be useful in diagnosing malignancy. A study by Wang et
al [16] used a multi-view CNN and had a sensitivity of 88.6%
and specificity of 87.6% in detecting malignancy in
ultrasonogram images of 316 breast lesions in two views.

Gray scale intensity values as a sole predictor of malignancy
with the help of neural networks was explored in this study.
Our study showed an extraordinary performance with an
accuracy of 94.5% and precision of 94%, which is slightly
higher than in the study by Shi et al [15]. The advantages of our
study were that only gray scale histogram values were used to
diagnose malignancy, which is easy and convenient to collect,
making it easier to reproduce, and that a simple neural network
was used with a training duration of ~1 second, making it a
viable option in low-resource settings with limited professionals.

The limitations of this study were that US acquisition parameters
were not mentioned in the data set, which makes it difficult to
standardize the protocol to the general population since US
imaging parameters might vary from place to place, and ROIs
drawn by different people can vary, which can affect the
histogram values, but the effect will be minimal since CNN
analyzes the skewness, entropy, variance, kurtosis, and energy
of the gray scale intensity values.
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Abstract

Background: Clinical decision support systems (CDSS) have the potential to lower the patient mortality and morbidity rates.
However, signal artifacts present in physiological data affect the reliability and accuracy of the CDSS. Moreover, patient monitors
and other medical devices generate false alarms while processing physiological data, further leading to alarm fatigue because of
increased noise levels, staff disruption, and staff desensitization in busy critical care environments. This adversely affects the
quality of care at the patient bedside. Hence, artifact detection (AD) algorithms play a crucial role in assessing the quality of
physiological data and mitigating the impact of these artifacts.

Objective: The aim of this study is to evaluate a novel AD framework for integrating AD algorithms with CDSS. We designed
the framework with features that support real-time implementation within critical care. In this study, we evaluated the framework
and its features in a false alarm reduction study. We developed static framework component models, followed by dynamic
framework compositions to formulate four CDSS. We evaluated these formulations using neonatal patient data and validated the
six framework features: flexibility, reusability, signal quality indicator standardization, scalability, customizability, and real-time
implementation support.

Methods: We developed four exemplar static AD components with standardized requirements and provisions interfaces that
facilitate the interoperability of framework components. These AD components were mixed and matched into four different AD
compositions to mitigate the artifacts’ effects. We developed a novel static clinical event detection component that is integrated
with each AD composition to formulate and evaluate a dynamic CDSS for peripheral oxygen saturation (SpO2) alarm generation.
This study collected data from 11 patients with diverse pathologies in the neonatal intensive care unit. Collected data streams
and corresponding alarms include pulse rate and SpO2 measured from a pulse oximeter (Masimo SET SmartPod) integrated with
an Infinity Delta monitor and the heart rate derived from electrocardiography leads attached to a second Infinity Delta monitor.

Results: A total of 119 SpO2 alarms were evaluated. The lowest achievable SpO2 false alarm rate was 39%, with a sensitivity
of 80%. This demonstrates the framework’s utility in identifying the best possible dynamic composition to serve the clinical need
for false SpO2 alarm reduction and subsequent alarm fatigue, given the limitations of a small sample size.

Conclusions: The framework features, including reusability, signal quality indicator standardization, scalability, and
customizability, allow the evaluation and comparison of novel CDSS formulations. The optimal solution for a CDSS can then
be hard-coded and integrated within clinical workflows for real-time implementation. The flexibility to serve different clinical
needs and standardized component interoperability of the framework supports the potential for a real-time clinical implementation
of AD.

(JMIR Biomed Eng 2021;6(2):e23495)   doi:10.2196/23495
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Introduction

Clinical Decision Support Systems
Clinical decision support systems (CDSS) are computerized
health care analytic systems that have the functionality to
integrate patient data for their analyses and detect clinically
significant patient events. CDSS has the potential to lower
patient mortality and morbidity rates when integrated into
critical care workflows [1-5]. Clinical event detection (CED)
algorithms that identify clinically significant events and early
onset indicators of various pathophysiological diseases may be
integrated into the CDSS to further exploit this potential [6-10].
Similarly, parameter derivation algorithms that extract clinically
useful low-frequency parameters from high-frequency input
data are also essential for clinical decision making [11-14].
However, the inherent presence of signal artifacts in
physiological data impacts the reliability and accuracy of the
analytical results produced by such algorithms [15]. Moreover,
commercial physiologic patient monitors used in clinical settings
are built using relatively simplistic proprietary algorithms for
preprocessing artifacts [16-18]. This results in an unacceptably
high rate of false alarms generated by these patient monitors
[19]. Such alarms, termed as nuisance or false alarms, result in
increased noise levels, staff disruption, and staff desensitization
in busy critical care environments [20-22]. False alarms need
to be typically silenced or overridden by staff, which leads to
alarm fatigue, causing an even bigger hazard of missed alarms
and compromising the quality of care at the patient bedside
[21,23,24]. The Emergency Care Research Institute, a
Pennsylvania-based patient safety organization, issued an annual
report of the top 10 health technology hazards. Leading up to
and including 2019, the Emergency Care Research Institute has
reported medical device alarms to be among the top 10 hazards.
The literature has reported false alarm rates (FAR) greater than
70% [25]. The integrity and quality of data are crucial to the
success of any analytic system. Therefore, it is important to
design and implement CDSS for assessing the quality of data
and issue relevant alarms with a high specificity and low FARs.
A recent study suggested behavioral methods to reduce false
alarms and alarm fatigue in the neonatal intensive care unit
(NICU) [26]. The study was conducted in an NICU in a
low-income country (India) [26], whereas our study was
conducted in a high-income country (Canada) where the
recommended behavioral changes have already been
implemented [27].

Artifact Detection
Research groups have published several artifact detection (AD)
algorithms to assess the quality of physiologic data and minimize
the impact of artifacts before analyzing these data for CED.
However, a methodological literature review by the authors
conveys common limitations in the application of a vast majority
of AD algorithms [28]. In this review, we synthesized more
than 80 state-of-the-art AD algorithms and discovered the

following six shortcomings: most AD algorithms (1) are
designed for one specific type of critical care patient population,
(2) are validated on data harvested from a single monitor model,
(3) generate signal quality indicators (SQIs) that are not yet
standardized for useful integration in clinical workflows, (4)
operate either in standalone mode or are tightly coupled with
other CDSS applications, (5) are rarely evaluated in the real
time, and (6) are not implemented in clinical practice [28]. A
more recent review on the initiatives to manage and improve
alarm systems taken by means of human, organizational, and
technical factors for an improved quality of health care also
supports our findings [20]. The review reveals gaps between
alarm-related standards and how those standards are translated
into practice, especially in a clinical environment that uses
multiple alarming medical devices from different manufacturers
[20]. This suggests standardization across devices from the same
and different manufacturers and the use of machine learning to
improve the alarm safety [20].

AD Framework
To address the six shortcomings (1)-(6) that are listed above,
we designed and developed a novel, multivariate,
component-based, standardized AD framework [29]. For the
reader’s convenience, the Methods section provides the
background on framework development, including the design
of its components and interfaces by developing a common
reference model (CRM). The objective is to facilitate the
integration of AD and CED algorithms within the CDSS in a
standardized manner. To achieve this, we leveraged six
framework features f1 to f6, which are listed in then Methods
section. We designed the AD framework as a test bed to
formulate and evaluate multiple combinations of independently
developed AD and CED components. Once a combination of
AD and CED is affirmed to satisfy clinical needs through offline
testing, then that combination can be evaluated in a real-time
environment using the middleware technology. In this way, the
transition to real-time clinical implementation and validation
can be facilitated by using this framework.

For the reader’s convenience, this section summarizes the
development of the AD framework, as in a previous study [29].
This section comprises the development of the components and
interfaces that provide the framework’s end-to-end functionality,
a CRM for the standardized communication between
components across their interfaces and the framework’s features.

Components and Interfaces
A framework comprises components that interact with each
other and with the system through one or more interfaces to
realize the system goals. An interface is defined as a means of
communicating with or accessing a component [30]. Clearly
defined uniform interfaces enable components to make their
own functional requirements explicit as well as to enable
specifications of other collaborating components. Interfaces
stipulate prerequisites, provisions, and constraints of component
operations. A component can have one or more interfaces,
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selectively instantiated at the runtime depending on the
component’s role in a particular composition. As described in
a previous study [31], an interface can be categorized as (1)
requirement, (2) provision, and (3) configuration. Each
component has its own operational requirements, specified by
its requirement interface, which defines what the system or other
components in the system must provide for the component to
function [30]. The provision interface makes explicit what a
component can provide either to another component or as a
contribution to the system output. The configuration interface
incorporates a user-defined functionality, further allowing the
user to define the runtime parameters for a particular application.
A configuration interface can be part of the user interface
designed for a clinician to interact with the system settings.

The AD framework comprises the following components: (1)
patient data acquisition (PDA), (2) AD, and (3) CED. Each
component is composed of low-level code and the following
three interfaces: (1) requirement, (2) provision, and (3)
configuration. Framework components can interface as either
standalone algorithms or in cascade with the same or different
types of components.

Common Reference Model
The standardization of interfaces is key for achieving the system
goals. This involves defining unambiguous formalisms with
semantics that are commonly understood by all components
within the framework. A novel CRM was developed to
standardize the definitions for these interfaces to facilitate
component interoperability within the AD framework [29].
Multiple medical ontologies are in existence to address the
measurement of medical parameters such as LOINC (Logical
Observation Identifiers Names and Codes), which is a database
and universal standard for identifying medical laboratory
observations; Systematized Nomenclature of Human
Medicine (SNOMED), which is a multiaxial nomenclature for
indexing medical records; and the Fast Healthcare
Interoperability Resources which is an interoperability standard
created by the standards development organization Health Level
7 to enable health data, including clinical and administrative
data, to be quickly and efficiently exchanged across medical
devices. The CRM interfaces designed as a part of our
framework are easily customizable to match any of these
standards. CRM comprises metadata that are intended to
establish a common understanding of the meaning or semantics
of the data exchanged between component interfaces. This
allows all framework components to communicate, regardless
of their underlying low-level logic. For example, CRM
facilitates interfacing a variety of AD algorithms for different
types, frequencies, and quality of physiologic data that are
commonly processed by CDSS. In particular, the standardization
of SQIs is a novel contribution to the development of CRM.
The CRM metadata comprise the following layered schema:
PatientData (PatientID, DeviceID, Data (Type, TimeStamp,

Value, SQI (SQType and SQValue))). PatientData represents
the patient data exchanged between the components. Its schema
consists of three properties, as shown in Figure 1 (PatientID,
DeviceID, and Data). PatientID identifies the patients with
whom the data are associated. It can be any type of patient
identifier, such as the patient’s admission reference number.
DeviceID represents the hospital or original equipment
manufacturer (OEM) identifier for the patient monitor or other
devices from which the data are being acquired. The more
complex Data property has the following four attributes: Type,
TimeStamp, Value, and SQI. Type is a string variable from a
controlled schema, naming the physiological data stream.
TimeStamp is the time at which each datum is logged. A
component may have specific data exchange and processing
rates, which require data at specific frequencies. Therefore,
TimeStamp can be used to (1) derive the frequency of data, (2)
align multiple data streams for fusion, and (3) annotate events
in real time. Value contains the numeric or string value of each
datum. An SQI may also be associated with each datum. This
measure of signal quality is provided by the monitor (via a PDA
component) or derived by one or more AD algorithms. The SQI
for each datum is further described by two attributes: SQType
and SQValue. SQType is a string variable from a controlled
schema, for example, “binary,” “rank,” “categorical,” or “null.”
New strings can be introduced in this set in the future. “Null”
implies there is no SQI available for that particular data type.
SQValue depends on SQType. For example, if SQType is
“binary,” then SQValue belongs to a set of 0 or 1. This schema
is extensible when needed for newer CDSS formulations. Our
preliminary research demonstrates the instantiation of CRM
using XML [32].

At runtime, the PDA component inputs patient data and
conforms them to the CRM, which are then consumed by the
AD and CED components that comprise the CDSS. AD and
CED algorithms, published in the past or future, whether
standalone or tightly coupled, may be used in CDSS
formulations with modifications as needed. The framework is
a unique test bed with features of reusability and scalability.
These features allow for the creation of new AD configurations
by mixing and matching independently developed or decoupled
AD components and integrating those components with CED
components to serve varying clinical needs. The AD
configuration most suited to a clinical need can then be
hard-coded and integrated into the clinical workflow for
real-time implementation. For example, some recently developed
AD algorithms leverage sensor fusion for motion artifact
removal while deriving the heart rate (HR) [33-37]. The
implementation of these AD and CED algorithms within the
framework simply requires modifying their interfaces to comply
with the CRM. This would allow for these algorithms to be
tested, compared, or combined with extant or newer algorithms
to advance research in the field of signal quality and physiologic
monitoring.
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Figure 1. Common reference model schema consisting of the patient data metadata used by each component’s requirement and provision interfaces at
input and output. SQ: signal quality; SQI: signal quality indicator.

Framework Features
To address the six shortcomings (1)-(6) identified in
state-of-the-art AD algorithms in a previous study [28], we
developed an AD framework with the following six features f1
to f6 The framework design supports: (f1) flexibility to serve
the needs of patient populations from different types of critical
care units through generalization and customizability, (f2)
reusability across multiple types of physiological data harvested
by different OEM monitors, (f3) standardized definitions of SQI
that promote interoperability and comparison between
independently developed components, (f4) reusability and
scalability by mixing and matching several AD and CED
components in various combinations, (f5) customizability to
evaluate and compare the performance of multiple combinations
of independently developed components on offline and
potentially real-time patient data when integrated with clinical
workflow, and (f6) standardized component interfaces that can
potentially support real-time clinical implementation of AD.
This study validates the six framework features f1 to f6.

Research Contribution
The main contribution of this paper is the dynamic evaluation
of the AD framework as a test bed, given the clinical context
of false alarm reduction in medical devices. In this study, we
first developed a catalog of several exemplar AD components
and a single CED component. The interfaces of all these
components comply with the CRM, such that they can be
integrated within the AD framework. Given the motivation for
false alarm reduction, we designed a novel CED component
that can generate peripheral oxygen saturation (SpO2) alarms.
We then created four unique CDSS configurations by mixing
and matching different AD components from the catalog with
the same SpO2 alarm generation CED component. The Methods
section describes the research methodology, including the
development of the framework component catalog and the four
CDSS formulations used for evaluating the framework and its
features. This section demonstrates how the framework
leverages existing AD algorithms by incorporating them with

the SpO2 alarm–generating CED component. The four
configurations are designed and evaluated based on the results
and recommendations in the state-of-the-art research linked to
the reduction of false alarms generated by OEM monitors.
Although CRM has been developed after an extensive review
of the literature that summarizes the requirements, provisions,
and configurations for many existing AD algorithms, it is
expected that the CRM will continue to evolve because a wide
variety of new AD and CED algorithms with differing data
needs are implemented as components within this framework.
For example, a new OEM alarm management system, Philips
Care Event, was evaluated along with the optimization of the
clinical workflow in the NICU [25]. The OEM system delay
time for saturation-related alarms was increased from 10 to 20
seconds, and the averaging time was decreased from 10 to 4
seconds without changing the standard alarm settings. This
strategy led to a reduction in the number of SpO2≤80% alarms
and an increase in nurses’ response to alarms [25]. This is an
exemplar state-of-the-art CED strategy that can be easily
accommodated and evaluated in combination with various AD
techniques using our framework to further reduce false alarms
and subsequent alarm fatigue. In this way, the framework can
facilitate the discovery of optimal CDSS formulations through
the mixing and matching of new AD and CED components
supported by an evolving CRM.

Methods section describes the framework evaluation
methodology comprising the data collection method and
performance evaluation metrics of sensitivity (Sn) and FAR.
For framework validation, we used real patient data collected
from 11 neonates during a clinical study at the NICU of the
Children’s Hospital of Eastern Ontario (CHEO), Ottawa,
Ontario, Canada. Harvested data streams include HR, pulse rate
(PR), SpO2, and their corresponding alarms from physiologic
patient monitors. Several conditions, such as hypothermia
(peripheral vasoconstriction), edema (increased thickness and,
therefore, diffusion distance for oxygen), increased skin
pigmentation, and shock, are known to decrease the clinical
reliability of SpO2. None of the patients in this study had any
such condition.
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Results section provides the performance evaluation results in
terms of Sn and FAR of the SpO2 alarms generated by each of
the four CDSS formulations. Once a CDSS formulation is
affirmed to satisfy clinical needs through offline testing by
applying this methodology, the optimal combination can be
evaluated in a real-time environment using the middleware
technology. This will facilitate the real-time implementation of
the optimal CDSS formulation through hard-coded integration
within clinical workflows.

It should be noted that all four CDSS formulations deploy the
same CED component for SpO2 alarm generation. Hence, the
sensitivity of the CED component to the error profiles and the
impact of errors remain controlled or constant across all
experiments. Therefore, the reported Sn and FAR values reflect
the performance of the four different AD configurations,
regardless of the performance of the CED component. In other
words, the framework evaluation reported here remains
independent of the performance of the CED component. This
validates the use of the framework as a test bed to discover the
optimal combination of AD components with a CED component
that is designed for a specific clinical problem. In the future,
the framework can be similarly deployed with another CED
component for different clinical problems.

Discussion section discusses the research contributions and
provides a detailed discussion on the validation of the six
framework features (f1) to (f6). Section 7 concludes the paper
and suggests directions for future work.

Methods

Overview
According to Larsen [30], beyond designing and building a
component-based framework, its evaluation requires static
models that illustrate component structures as well as dynamic
models that illustrate component collaboration. This paper first
develops a catalog of static PDA, AD, and CED components.
Subsequently, four dynamic compositions of these components
were formulated and evaluated using real patient data. Each of
the AD components processes physiological data streams in the
form of numeric or string values, and the CED component
generates alarms on the SpO2 data stream. The requirements
and provision interfaces of all components comply with the
CRM, such that they can be integrated within the AD
framework. Each configuration is integrated with PDA and
CED components to formulate a CDSS that generates SpO2

alarms at its output.

The following subsections expand upon this research
methodology: Components Catalog develops a catalog of

framework components; CDSS Formulations mixes and matches
these components to build and evaluate four different CDSS
formulations; and the Evaluation subsection uses real patient
data to evaluate the performance of each CDSS formulation,
thereby validating the use of the framework as a test bed; and
determining the optimal CDSS formulation for SpO2 alarm
generation. Once a combination is affirmed to satisfy clinical
needs through offline testing by applying this method, the
optimal combination can be evaluated in a real-time environment
using the middleware technology. This will facilitate the
real-time implementation of the optimal CDSS formulation
through hard-coded integration within clinical workflows.

Components Catalog
In this subsection, we develop a catalog of framework
components comprising an original PDA component, four AD
components, and one novel CED component. The catalog
represents a model instantiation of the framework comprising
the original PDA and CED components designed in
collaboration with our clinical partners. The catalog is not meant
to represent an exhaustive or particularly novel set of AD
components; rather, it tailors the interfaces of existing AD
algorithms to comply with the CRM.

PDA Component
As defined in our earlier research, the PDA component inputs
patient data from sources that include, but are not limited to,
OEM patient monitors, clinical data entry, lab results,
physician’s order, and patient demographics from electronic
health records [29]. In this research, the PDA inputs the
physiological data and alarm streams from the OEM monitors
and translates these data to the schema defined by the CRM. It
then feeds these data to one or more AD components, as shown
in the CDSS flowcharts in Figure 2. In these workflows, the
hardware and software requirements are factored in the PDA
component. The hardware comprises the Digi International
Edgeport4 (Digi International), which consists of the Eltima
Port Monitor Professional Edition Software v4.x (Eltima
Software) for data logging with additional customized software
written in JAVA to conform the OEM-generated data streams
to the CRM. Specifically, the Data.Type (SpO2, HR, PR, and
alarm status) and corresponding Data.Values were extracted
from each interleaved OEM data packet. Each packet was
produced by the monitor at 0.5 Hz. The low-level code of the
PDA component interpolated and synchronized the data streams
at 1 Hz. As the OEM monitors fail to provide an explicit SQI
stream for any of the data types, a default SQI stream with a
SQType=“binary” and SQValue=1 is generated by the PDA
component for each data type using MATLAB (MathWorks).
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Figure 2. Low-level component code for clinical event detection and generation of peripheral oxygen saturation alarms. SpO2: peripheral oxygen
saturation; SQI: signal quality indicator.

AD Components
We surveyed a wide variety of techniques used by AD
algorithms to detect, mitigate, and suppress physiological
artifacts that are found in clinical settings [28]. To demonstrate
the framework composition, we developed four AD components
exemplifying the following diverse AD functionalities: (1) data
and SQI deinterlacing, (2) SQI fusion, (3) data fusion, and (4)

data smoothing. Although each exemplar component differs in
its low-level code, all components conform to the CRM. The
low-level code and configuration interfaces for each functional
group of the components are described as follows.

ADDIL DeInterlace Component
Some monitors produce a single output stream, which is, in fact,
interlaced with the data and SQI. The ADDIL component is
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designed to deinterlace (DIL) these two information streams by
allowing the user to define a set of symbols (artSyms) to be
associated with the corresponding SQI values. Typically,
artSyms is a list of artifact indicators specified by the
manufacturer, which could be either numeric or string values
that replace the value of the datum. For example, for Infinity
monitors (Dräger Medical Systems), the set of artSyms would
include {NaN,^^,5}, where Not-a-number (NaN) is substituted
for any missing datum, ^^ is an artifact indicator, and 5 is an
alarm state (ie, part of the alarms stream) indicating a lead
disconnection. Therefore, a data segment interlaced with artifacts
is logged with the corresponding artSyms value. In a different
example, Philips Intellivue MP70 monitors (Philips) generate
a value of “2” in the alarms data stream in case of leads
disconnection. However, with the alarm data stream connected
to the input of the ADDIL component, the value “2” can be
identified by the component as an artSyms. In such a way, the
component can deinterlace the alarms stream and generate a
corresponding binary SQI stream, where the value “2” would
be replaced by a 0. The low-level code for ADDIL is given by
equation (1).

i f  ( D a t a . Va l u e ( i )  a r t S y m s ) ;
SQIout(i)=SQIMatch(Data.Value(i)); end (1)

The configuration interface of the ADDIL component specifies
the Data.Type to be examined, artSyms, and the corresponding
set of SQValue (SQIMatch). This AD component produces a
“rank” SQType, with “binary” being a special case of “rank,”
where SQIMatch=0. Multiple instances of this component were
cascaded in the AD framework in this validation study.

ADFuseSQI Fuse SQI Component
The ADFuseSQI component accepts more than one data stream
at its requirements interface, along with the respective SQI of
each stream. This component combines N incoming SQI inputs
to generate a single fused SQI (FuseSQI). The fused SQI value
is equal to the operator, that is, the minimum, maximum, or
average SQI value from all the input SQI data at any given
instant. This requires all the input SQTypes to be the same. The
low-level code for ADFuseSQI is shown in equation (2).

SQIout(i)=operator (SQI1, SQI2,..., SQIN) (2)

The configuration interface of the ADFuseSQI component defines
N, the required input SQType (same as output), and the operator
(min, max, and avg) to be applied to all input SQI values. In
addition, the configuration interface can specify which data
types to forward at the provision interface, as only a subset of
the input streams may be required beyond this component.
Equation (2) is a relatively simple depiction of data fusion. Data
can be fused at different levels of abstraction, requiring a more
complex combination of operators and weighting [38].

ADDiff Differential Component
The ADDiff component calculates an absolute differential error
function between two input data streams, Data1 and Data2. This
error value was then compared with a configured threshold. The
input “binary” SQI streams are examined such that if either
stream has a poor signal quality, then the output SQValue=0.

This component can be used in the case where two independent
measurements of the same physiological parameter are provided;
then, this component will derive an SQI by exploiting data
fusion. The configuration interface specifies the output SQType
to be produced; the Data.Type of Data1 and Data2; the number
of SQI thresholds, nThresh, to be applied to the difference; the
ordered set of thresholds (SQThreshj;j=1:nThresh); and the set
of nThresh+1 SQValues (SQIj) corresponding to each threshold
with the additional SQValue for the default case (SQIdefault). The
configuration interface can specify which data types to forward
at the provision interface. The low-level code for this component
is illustrated in equation (3), as follows:

SQIout (i)=SQIdefault;

i f  (Data1 .SQI.SQValue( i )==0)  | |
(Data2.SQI.SQValue(i)==0);

return; diff=|Data1.Value(i)−Data2.Value(i)|;

for j=1: nThresh

{if (diff ≤ SQThreshj){SQIout(i)=SQIj;break;}}end
(3)

The ADDiff component can derive a “rank” SQType stream from
HR and PR streams by configuring the component to have
output SQType set to “rank”; the Data.Type of Data1=HR and
Data2=PR; nThresh=3; SQThresh={6,12,18}; and SQIj={3,2,1,0},
where the SQIdefault=0. This configuration of the ADDiff

component was used in the validation study.

For example, consider the work on wearable devices and
systems published by He et al [39]. Their study synchronously
collected the data of ballistocardiogram, electrocardiography
(ECG), and photoplethysmography. Their study suggests
checking if all three physiological signals measure the same
values for HR so that this information can be used to ensure
that the acquired data are not corrupted. However, their study
did not demonstrate whether and how it checks for data quality.
Such a system would benefit from using the ADDiff component.

ADMedFilt Median Filter Component
The ADMedFilt component implements a median filter (MedFilt).
It is used for smoothing a stream of data to mediate abrupt
transient artifacts. The configuration interface defines the size
of the sliding window MedWW for use while computing the
median value. Its requirement interface inputs a single data type
and its corresponding SQI stream. Each datum in the output
data stream was equal to the median of the past MedWW input
data samples. Only a subset of these MedWW may actually be
used in computing the median because the ADMedFilt component
only includes the data within the sliding window for which the
input SQI is acceptable. The SQI stream passed through this
component and remained unchanged. By comparing the filtered
and unfiltered data using an ADDiff component, one can compute
an SQI proportional to the degree of smoothing applied to each
point. The ADMedFilt component was used in CDSS formulations
in this study.
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CED Component
In this subsection, we develop a novel CED component that
generates SpO2 alarms. By discussing and reaching consensus
with our clinical collaborators at CHEO, we translated clinical
rules into low-level logic to create a CED component with a
requirements interface that conforms to the CRM. Alarm
generation studies suggest these two approaches to reduce the
FAR: (1) modifying or adjusting the alarm thresholds and (2)
introducing alarm annunciation delays, that is, a delay between
when an alarm threshold is crossed and when the alert is sounded
or displayed [25,40-43]. These studies test alarm annunciation
delays anywhere from 5 to 120 seconds for a variety of
physiological data types. However, none of these studies
quantify the trade-off between Sn and FAR resulting from their
suggested alarm generation algorithms. In our study, the CED
component incorporates both approaches described above to
reduce FAR. Its low-level code allows for adjusting the alarm
thresholds by reduction in the lower SpO2 alarm threshold and
increment in the upper SpO2 alarm threshold. During evaluation,
both limits were adjusted by 3%, which corresponds to the
manufacturer-specified margin of error in the accuracy of the
pulse oximeter reading. Therefore, the low alarm threshold,
ThreshLo, is breached if the SpO2 value is lower than the alarm
threshold of the OEM monitor by at least 3%, and the upper
alarm threshold ThreshHi is breached if the SpO2 value is higher
than the alarm threshold of the OEM monitor by at least 3%.
Incorporating the second approach, the low-level code of the
CED allows for tuning the alarm annunciation delays (CEDDT)
between 5 and 60 seconds.

Figure 2 shows a flowchart of the low-level source code of the
CED component. In this case, the user is an expert who
composes the CDSS in collaboration with the clinician. The
user can set tunable parameters at the configuration interface,
including values for ThreshLo, ThreshHi, DTLO, DTHI, and Floor.
Floor is an absolute minimum SpO2 value determined by

clinicians, typically in the range of 50%-75%. We set a Floor
value below because SpO2 sensors are unable to calibrate at
such low values; hence, the true state of the patient can no longer
be determined, and the CED must alarm to alert the clinician
to come and check the patient. The CED continuously compares
the SpO2 value with the lower and upper limits, ThreshLo and
ThreshHi, respectively. A history of threshold breaches gets
stored in circular buffers, errorLo and errorHi. These breaches
are summed over a sliding window such that the total error is
a function of both the magnitude and duration of the threshold
breaches. The integrated error is continuously compared with
the tunable lower and upper decision thresholds, DTLO and
DTHI. These decision thresholds are set proportional to the
CEDDT value, which is set at the configuration interface of the
CED component. Specifically, DTLO is set equal to CEDDT, and
DTHI is set to twice the CEDDT because high SpO2 alarms are
not clinically deemed to be as dangerous as low SpO2 alarms.
Therefore, the CED waits twice as long to generate a high SpO2

alarm as compared with a low SpO2 alarm. The decision to
generate an alarm is based on three conditions, as shown in
Figure 2. The CED generates an alarm if the incoming SpO2

value is less than or equal to the set value of Floor and the
incoming SQI is not zero, or if the integrated errors, namely
errorLo or errorHi, exceed DTLO or DTHI, respectively. Here, we
configured parameters suitable for the neonatal population.
Users may tune the parameters specific to other patient
populations.

CDSS Formulations
This section describes the dynamic framework compositions of
the four CDSS formulations. MATLAB was used for the
dynamic framework modeling. Table 1 lists the requirements,
provisions, and configuration interfaces for each AD component
deployed in the four CDSS formulations.
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Table 1. Artifact detection component interfaces used in clinical decision support systems formulations.

InterfaceADa component

ConfigurationProvisionsRequirements

CDSSb #1 and CDSS #2

artSymse{NaNf,^^,5}[SpO2Alarms, SQI][SpO2
c Alarms, SQId]ADDil

artSyms{NaN,^^,5}[SpO2, SQI][SpO2, SQI]ADDil

N=2; operator (min); SQTypeg=“binary”[SpO2, SQI][SpO2 Alarms, SQI]; [SpO2,
SQI]

ADFuseSQI

CDSS #2 ( additional component )

Med WW
h ={5,10,20,25,30,35,60}[SpO2Med, SQI][SpO2, SQI]ADMedFilt

CDSS # 3 and CDSS #4

artSyms{NaN,^^,5}[HR, SQI][HRi, SQI]ADDil

artSyms{NaN,^^,5}[PR, SQI][PRj, SQI]ADDil

artSyms{NaN,^^,5}[SpO2, SQI][SpO2, SQI]ADDil

artSyms{NaN,^^,5}[SpO2 Alarms, SQI][SpO2Alarms, SQI]ADDil

N=2;operator(min); SQType=“binary”[SpO2, SQI][SpO2Alarms, SQI]; [SpO2, SQI]ADFuseSQI

Data1.Type=“HR”;Data2.Type=“PR”;SQ-
Type=“binary”;
SQThresh={6,12,18};SQIdefault=0

[PR, SQI][HR, SQI]; [PR, SQI]ADDiff

N=2; operator(min); SQType=“binary”[SpO2, SQI];[SpO2, SQI]; [PR, SQI]ADFuseSQI

CDSS # 4 ( additional component)

Med WW ={5,10,20,25,30,35,60}[SpO2Med, SQI][SpO2, SQI]ADMedFilt

aAD: artifact detection.
bCDSS: clinical decision support systems.
cSpO2: peripheral oxygen saturation.
dSQI: signal quality indicator.
eartSyms: a list of artifact indicators with corresponding values of SQI specified by the manufacturer.
fNaN: Not-a-number.
gSQType: a string variable from a controlled schema with corresponding types of SQI.
hMedWW: size of the sliding window of the median filter.
iHR: heart rate.
jPR: pulse rate.

CDSS #1
CDSS #1 constitutes the simplest of the four compositions
designed for this study. A flowchart for CDSS #1 is shown in
Figure 3. This flowchart has three functional horizontal swim
lanes, depicting the PDA, AD, and CED components of the
integrated CDSS. Each data stream is represented by a tuple
with both data and SQI information. The input data stream is
sourced only by the SpO2 sensor comprising two data types,
namely, SpO2 and SpO2 alarm status (SpO2Alarm). The
low-level logic of the PDA component maps the incoming
values to its respective data type (SpO2 or SpO2Alarm) and
assigns a default SQValue of 1 to each datum of each Data.Type
because an SQI value is not provided by the OEM monitor in
this case.

The AD composition pipeline in CDSS #1 consists of two
ADDILs and one ADFuseSQI component. The ADDIL component
deinterlaces the OEM-generated artifacts, whereas the ADFuseSQI

component combines the SQI streams from the two ADDIL

components. The PDA provides SpO2 and its associated SQI
stream to one instantiation of ADDIL while providing SpO2Alarm
and its SQI stream to the second instantiation of ADDIL. The
low-level code of the ADDIL component deinterlaces the
OEM-specified artifact values. Here, the user-set configuration
interface includes artSyms={NaN,^^,5} and SQIMatch=0. The
“NaN” string implies missing data, and the “^^” symbol
represents OEM-specified artifact values in the SpO2 stream,
whereas “5” is interlaced within the SpO2Alarm to imply that
the SpO2 sensor is off. Hence, the use of the two ADDIL

components would provide the original data streams of
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Data.TypeSpO2 and SpO2Alarm, along with their respective
SQI streams, with SQValue=0 wherever the Data.Value is equal
to any one of the artSyms. These 2 data streams and their
associated SQI streams are then input to the requirements
interface of an ADFuseSQI component. The low-level code of the
ADFuseSQI component fuses two or more incoming SQI inputs

to generate a single fused SQI value. In this formulation, the
operator is set to min; hence, it provides an output SQValue that
is the minimum of the 2 input SQValue for which
SQType=“binary.” As shown in Figure 3, this output SQI stream
is associated with the original SpO2 stream that is required by
the CED component.

Figure 3. Flowchart showing the patient data acquisition, artifact detection, and clinical event detection components in clinical decision support systems
CDSS # 1 and 2 formulations. CDSS: clinical decision support systems; ECG: electrocardiography; HR: heart rate; PDA: patient data acquisition; PPG:
photoplethysmography; PR: pulse rate; SpO2: peripheral oxygen saturation; SQI: signal quality indicator.

CDSS #2
CDSS #2 extends the CDSS #1 formulation by adding an
ADMedFilt component to process the SpO2 data stream through
a median filter for reducing transient artifacts. This extension
is labeled CDSS #2 in Figure 3. The low-level code of the
ADMedFilt configuration interface comprises a tunable parameter
MedWW={5,10,20,25,30,35,60}, and the component produces a
median filtered SpO2Med data stream and its associated SQI
stream, which are then passed to the requirements interface of
the CED component.

CDSS #3
CDSS #3 leverages data fusion to derive an estimate of the
signal quality for SpO2. Here, an ADDiff component computes
the difference between the PR and HR. Physiologically, PR and
HR are equal, representing the mechanical and electrical

pumping rates of the heart, respectively. Therefore, any
difference between PR and HR serves as a proxy for signal
quality measurements. In this study, HR is considered as the
gold standard. Therefore, a large difference between the
instantaneous PR and HR values indicates that the PR has
deviated and is not reliable. In this case, a low SQI is assigned
to both PR and SpO2 because both are sourced from the same
sensor. Figure 4 shows the PDA, AD, and CED components in
the flowchart for CDSS #3. The low-level code of the ADDiff

component computes the difference between the instantaneous
HR and PR values. By comparing that difference to a threshold,
a “binary” SQType is generated, which is then passed to the
requirements interface of the CED component. The
configuration interface was set with a single threshold to produce
a “binary” SQType. The SQI threshold (SQThresh) is varied in
the range {6,12,18} to examine its effect, and the results are
reported separately for each.
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Figure 4. Flowchart showing the patient data acquisition, artifact detection, and clinical event detection components in clinical decision support systems
CDSS # 3and 4 formulations. CDSS: clinical decision support systems; ECG: electrocardiography; HR: heart rate; PDA: patient data acquisition; PPG:
photoplethysmography; PR: pulse rate; SpO2: peripheral oxygen saturation; SQI: signal quality indicator.

CDSS #4
CDSS #4 builds on the composition of CDSS #3, as depicted
in Figure 4. Here, an ADMedFilt component is added such that
the SpO2 data stream can be median filtered to produce SpO2Med

data and SQI streams, which are then fed to the requirements
interface of the CED component. The tuned values of MedWW

include {5,10,20,25,30,35,60}.

Evaluation

Clinical Data Collection
Data were collected during a clinical study conducted in the
CHEO NICU. The study was approved by the hospital’s
Research Ethics Board. In total, 11 neonatal patients with diverse
pathologies were enrolled in this study. The following
time-stamped data streams and corresponding alarms were
collected simultaneously from each infant at a frequency of one
reading every 2 seconds (0.5 Hz): PR and SpO2 from a pulse
oximeter (Masimo SET SmartPod Model # MS16356, Masimo
Corp) integrated with an Infinity Delta monitor (Dräger Medical
Systems) as well as HR derived from ECG leads attached to a
second Infinity Delta monitor. HR and PR are parameters that
estimate the rate at which the heart beats per min (bpm).

Although HR and PR are acquired independent of each other,
they essentially represent the exact same functionality of the
heart, albeit in electrical and mechanical contexts, respectively.
HR is acquired through ECG leads, which are electrical sensors,
and PR is acquired using optical sensors attached to the pulse
oximeter. Moreover, the pulse oximeter derives SpO2 using the
same optical sensor data. This implies that the quality of the PR
data stream reflects the quality of the SpO2 data stream.
Therefore, to evaluate the framework as a CDSS that generates
SpO2 alarms, we selected the HR as the gold standard for
comparison with the quality of the PR data stream. The reason
for selecting the HR patient data acquired from the Infinity
Delta monitor as the gold standard is that these monitors are
used for continuous patient monitoring at the research site
(CHEO); therefore, clinicians depend on the vital sign data
displayed by these monitors to routinely assess the patients.
Second, we evaluated the SpO2 alarm generation performance
of the framework as compared with the Masimo SET SmartPod
pulse oximeter. Again, this pulse oximeter was selected for
comparison because it is routinely used for continuous patient
monitoring at the CHEO. RS232 serial ports on both Infinity
Delta monitors were connected through Digi International
Edgeport4 (Digi International) hardware to a USB port on a
computer. Eltima Port Monitor Professional Edition Software
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v4.x (Eltima Software) was installed on the same computer to
read and log data transmitted by each monitor in real time. Thus,
a total of 79,200 data points from each physiologic data type
were used for analysis. To synchronize data collected from the
2 OEM monitors, these samples were interpolated to obtain one
sample every second, resulting in 158,400 data points from each
data type. Information regarding patient demographics, inclusion
and exclusion criteria, and the detailed methods of data
acquisition and data annotation can be found in the author’s
earlier research on this data set [44]. A previous study manually
counted and categorized patient monitoring alarms [44].
Clinicians, including bedside nurses and neonatologists,
validated and categorized the alarms generated by patient
monitors. However, manual counting introduces the likelihood
of human error. To minimize this likelihood, the process of
counting and categorizing the alarms was automated by running
the data through a computerized script. This resulted in the
identification and categorization of 119 alarms generated by
the Masimo pulse oximeter across all 11 patients. These alarms
were validated against the clinicians’ original validation and
categorization criteria from [44]. The Sn and FAR of the
Masimo pulse oximeter were found to be 85% and 46%,
respectively.

Evaluation Metrics
Data from all 11 patients were used as an input to evaluate each
of the four integrated formulations, CDSS #1-4. Leave-one-out
cross-validation was used to compute two performance metrics,
Sn and FAR. Data from a set of 10 patients were used to tune
the components and from the remaining patients to generate
alarms. This was repeated 11 times, each time changing the
patient for whom the data were left out as a test case.

We then compared the alarm generation performance of each
CDSS composition with that of the OEM monitor. Using the
OEM monitor’s Sn of 85% and FAR of 46%, we formulated

equations (4) and (5) to measure the difference between the Sn
and FAR values of the CDSS formulations and the OEM
monitor and report that as a percent change. Negative values of
percentage change indicate reduction, and positive values
indicate increments in Sn and/or FAR. These are reported as
(% change in Sn) and (% change in FAR) by equations 4 and
5, respectively.

Results

Overview
This section presents the performance evaluation results for all
four formulations CDSS #1-4 in terms of Sn and FAR, which
are averaged across all 11 cross-validation trials. Tables 2 and
3 summarize the pooled results for achieved Sn values of >75%
and >80%, respectively. These Sn thresholds were chosen
arbitrarily, and other threshold values may be chosen depending
on the clinical needs. These tables show the best achievable
results expressed as (Sn [% change in Sn], FAR [% change in
FAR]) in all four CDSS formulations. The formulations were
tabulated based on the inclusion of the ADMedFilt and ADDiff

components. Figure 5 shows the graphical results from all four
CDSS formulations as linear plots of Sn (%) and corresponding
FAR (%) achieved by tuning the parameters MedWW, CEDDT,
and SQThresh, where applicable to a CDSS. As the
configuration parameters of the AD and CED components are
varied (tuned), the total number of alarms that are generated
also varies. By reporting the performance metrics of Sn and
FAR in terms of percentages, we can compare the results across
the four CDSS formulations. Here, we compare the best results
achieved and tabulated in Tables 2 and 3.

Table 2. The best possible (Sn [% change in Sn], FAR ([% change in FAR]) achieved in clinical decision support systems #1-4, where sensitivity≥75%.
Tunable parameters are specified for each case.

ADDiff
bADMedFilt

a

Yes •• CDSS #2CDSSc #4
• MedWW=15, CEDDT=12: (75 [−11.7%], 32 [−30.4%])• MedWW

d=10, CEDDT
e=15,

• SQThreshf=18: (76 [−10.5%], 36 [−21.7%])

No •• CDSS #1CDSS #3
• •CEDDT=20, SQThreshf=18: (78 [−8.2%], 47 [21.7%]) CEDDT=15: (76 [−10.5%], 40 [−15%])

aADMedFilt: AD median filter component.
bADDiff: AD differential filter component.
cCDSS: clinical decision support systems.
dMedWW: size of the sliding window of the median filter.
eCEDDT: alarm annunciation delay.
fSQThresh: the ordered set of thresholds.
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Table 3. The best possible (Sn [% change in Sn], FAR [% change in FAR]) achieved in clinical decision support systems #1-4, where sensitivity ≥80%.
Tunable parameters are specified for each case.

ADDiffADMedFilt

NoYes

Yes •• CDSS #2CDSSa #4
• MedWW=10, CEDDT=10: (80 [−5.8%], 39 [−15.2%])• MedWW

b=10, CEDDT
c=5, SQThreshd=18: (80

[−5.8%], 44 [−4.3%])

No •• CDSS #1CDSS #3
• •CEDDT=12, SQThresh=12: (82 [−3.5%], 50 [8.6%]) CEDDT=12: (80 [−5.8%], 41 [−10.8%])

aCDSS: clinical decision support systems.
bMedWW: size of the sliding window of the median filter.
cCEDDT: alarm annunciation delay.
dSQThresh: the ordered set of thresholds.

Figure 5. Results of sensitivity (%) and false alarm rate (%) plotted against the relevant tunable parameters CEDDT and MedWW for (a) clinical decision
support system CDSS #1, (b) clinical decision support system CDSS #2, (c) clinical decision support system CDSS #3 with SQThresh=18, and (d)
clinical decision support system CDSS #4 with SQThresh=18. FAR: false alarm rate.

CDSS #1
The best achievable result for CDSS #1 is (Sn, FAR)=(80, 41)
and is obtained when CEDDT=12, where Sn≥80%. If Sn is only
required to be ≥75%, then the best achievable performance
becomes (Sn, FAR)=(76, 40) when CEDDT=15. The FAR (40%)

was 15% less than that of the OEM’s FAR (46%). This is
achieved at the cost of decreasing Sn (76%) by 10.5% than the
Sn of the OEM (85%).
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CDSS #2
Table 2 shows that the best achievable result for CDSS #2 is
(Sn, FAR)=(80, 39) when MedWW=10 and CEDDT=10, where
Sn≥80%. In this formulation, Sn≥80% was achievable only
when MedWW≤10. If Sn is allowed to be ≥75%, then the best
achievable performance becomes (Sn, FAR)=(75, 32) when
MedWW=15 and CEDDT=12.

CDSS #3
In CDSS #3, with the ADDiff component configured with
SQThresh=6, the best achievable result for (Sn, FAR)=(86, 52)
with CEDDT=5. The CDSS performance was worse for all other
CEDDT thresholds at SQThresh=6. Although this CDSS
performs with an improved Sn (86%) as compared with the
OEM’s Sn (85%), the cost is an increase of 13% in the FAR
(52%) as compared with the OEM’s FAR (46%).

With the ADDiff component configured with SQThresh=12, the
best achievable (Sn, FAR) is (82, 50) when CEDDT=12 for both
values of the required Sn≥80% and Sn≥75%. The CDSS
performance was worse for all other CEDDT thresholds at
SQThresh=12. When the ADDiff component is configured with
SQThresh=18, the best achievable result for (Sn, FAR)=(80,
50), with CEDDT=12 with a threshold of Sn≥80%, and the best
achievable result for (Sn, FAR) is (78, 47), with CEDDT=20
while maintaining Sn≥75%. Thus, CDSS #3 was not able to
beat the OEM monitor’s FAR (46%) at any of the parameter
settings that were tested.

CDSS #4
When the ADDiff component of CDSS #4 is configured with
SQThresh=6 and the sensitivity requirement is ≥80%, the best
achievable result for (Sn, FAR)=(84, 52) when MedWW=5 and
CEDDT=5. When Sn≥75%, the best achievable (Sn, FAR)=(75,
40) when MedWW=10 and CEDDT=12. MedWW>10 resulted in
lower (Sn, FAR) values, where Sn<75. If the ADDiff component
is configured with SQThresh=12 and Sn≥80%, then the best
achievable result for (Sn, FAR)=(82, 49) with MedWW=5 and
CEDDT=12. When Sn≥75%, the best achievable (Sn, FAR)=(75,
37) is obtained when MedWW=12 and CEDDT=12. MedWW>12
resulted in lower (Sn, FAR) values, where Sn<75. Table 3 shows
the results from CDSS #4, where the ADDiff component is
configured with SQThresh=18 and Sn≥80%, and the best
achievable result (Sn, FAR)=(80, 44) is obtained when
MedWW=10 and CEDDT=5. When Sn≥75%, the best achievable
result (Sn, FAR)=(76, 36) is obtained when MedWW=10 and
CEDDT=15. MedWW>12 resulted in lower (Sn, FAR) values,
where Sn<75.

Discussion

Principal Findings
The overarching contribution of this study is the illustration of
dynamic framework models and their evaluation using clinical
data. In this section, we also discuss how this evaluation leads
to the validation of the six framework features (f1) to (f6).

Framework Evaluation
As described in the Evaluation section, the data set used in this
evaluation contained 119 alarms across all 11 patients in this
study. This data set represents a unique and valuable resource
because it includes the detailed annotations of artifacts, alarms,
clinical events, clinical interventions, and observations. The
patients in our study represented a neonatal population with
varying disease severity, weight, and gestational age. Although
such a wide range of patients provides for the development of
widely applicable rules, as discussed above, many decision
thresholds are required to be patient centric. For example, one
patient was far more ill than the other 10 patients, with 32% of
the associated clinical events. Other limitations of the data set
include a possible ambiguity in categorizing alarms as true
versus false, especially in cases where the SpO2 reading hovers
around the OEM monitor’s alarm threshold setting. In this study,
such indeterminate alarms were categorized as false alarms.
The study sample size was limited because of hospital logistics
and resources. In the future, a larger sample size could facilitate
subgroup analyses with division based on clinical characteristics,
weight, and gestational and chronological age of infants.

From the evaluation results presented in Table 2 under the
criterion that Sn≥75%, we infer that CDSS #2 results in the best
achievable performance of (Sn, FAR)=(75,32) when MedWW=15
and CEDDT=12. Although a considerable reduction in Sn was
observed (11.7%), this parameter combination resulted in a
significant reduction in FAR (30.4%). From Table 3, we
conclude that CDSS #2 also gives the best possible performance
of Sn=80% and FAR=39%, representing percentage reductions
of 5.8% and 15.2% for Sn and FAR, respectively. Therefore,
CDSS #2 is considered the optimal formulation out of all four
CDSS because of the largest reduction in FAR while maintaining
Sn≥80%. The optimal parameters for this formulation were
MedWW=10 and CEDDT=10.

The results of CDSS #1 illustrate the effects of varying the CED
decision threshold (CEDDT) on the performance of CDSS. By
adjusting this threshold, the system could be made more
conservative or permissive, leading to an explicit trade-off
between Sn and FAR. This CEDDT is patient-centered and may
be adjusted depending on the severity of disease and clinical
resources available, for example, the nurse-to-patient ratio may
differ in the NICU versus that in the general ward. A comparison
of the results from CDSS #1 and #2 indicates that the use of
ADMedFilt significantly improved both the Sn and FAR of the
CDSS. As expected, increasing the median filter width reduced
both Sn and FAR because the median filter smoothed out
transient SpO2 values. The range of median filter widths was
evaluated in combination with a range of CEDDT values seeking
the combination that provided the greatest decrease in FAR
while maintaining a Sn≥80% or ≥75%. Although these Sn
thresholds were somewhat arbitrary, they reflect the need to
detect the majority of true clinical events.

CDSS #3 and #4 leveraged data fusion via an ADDiff component
to identify periods of low signal quality. Clifford et al [45]
recommended that an SQI be generated for each datum when
a known error rate is available for calibration. Following this,
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we hypothesized that by computing the error rate from the
combined information from two different sensor modalities, PR
from SpO2 and HR from ECG, an SQI signal could be generated
and increased performance would be achievable. The results
for three different ADDiff threshold values failed to demonstrate
an improved performance. In fact, the frequency of all three
types of alarms, namely, true, missed, and false, increased with
the use of ADDiff. A close inspection of the generated alarms
revealed the fragmentation of previously contiguous alarms into
more alarms of shorter duration. This was due to the
instantaneous masking of individual SpO2 values because of
transient disparities between HR and PR, which are not
necessarily associated with prolonged periods of low signal
quality. We observe that an incremental trend in SQThresh
values, that is, from 6 to 12 to 18, demonstrates a decreasing
trend in Sn and FAR percentages in both CDSS #3 and #4. In
future work, the CED algorithm may be modified to process
the SQI in a variety of ways that may lead to improved
performance. Suggestions for future exploration include either
retaining the previous alarm state during periods of low signal
quality or appraising cumulative SQI values instead of
instantaneous ones.

In summary, dynamic framework modeling showed that the
lowest achievable FAR was 39% at a sensitivity of 80%, when
compared across all four CDSS formulations.

Framework Features
The four dynamic CDSS formulations serve to validate the 6
framework features (f1) to (f6) as follows:

(f1) Flexible in serving the differing needs of patient populations
from different types of critical care units through generalization
and customizability. The CRM includes several fields to
generalize and customize each component, for example,
Data.Type and Data.SQType. Although the data in this
validation study were collected at the NICU, the inherent
flexibility of the framework can accommodate various types of
data streams acquired from other types of critical care units.
Similarly, the component-based nature of this framework allows
for the creation of CED components relevant to different clinical
domains and for their integration with the most appropriate
available AD components. As a result, the components catalog,
dynamic framework models, and analyses are not restricted in
application to the NICU. This could be demonstrated using
future experiments based on data from other units, whether
gathered specifically for this research or taken from repositories
such as Physio Net [46].

(f2) Reusable across multiple types of physiological data
harvested by different OEM monitors: The configuration
interface of each component permits the setting of OEM-specific
and Data.Type-specific values such that the same component
may be applied to various physiological data types arising from
different OEM monitors. For example, the artSyms configuration
parameter allows the ADDIL component to identify artifacts
flagged by different OEM monitors. AD components selected
from the catalog were used to process different physiological
streams acquired by different OEM monitors in various
experiments. For example, the ADDIL component is used to

process the HR from the Dräger OEM monitor and SpO2 and
PR from the Masimo OEM pulse oximeter. This validates the
reusability of the framework and its components across multiple
types of physiological data harvested by different OEM
monitors.

(f3) Standardized definitions of SQI that promote interoperability
between independently developed components: The CRM
defines standardized types of SQI, such as, “continuous,” “rank,”
and “binary.” These experiments used multiple components to
generate the SQI. These components were developed based on
the current algorithms identified in the literature review. For
example, the ADDiff component is derived from the work of Yu
et al [47] and applied to the HR and PR streams in experiments
3 and 4, whereas the CED component leverages the ideas of
threshold modification and alarm annunciation delays that were
introduced in previous studies [40-43]. These experiments
demonstrate the integration of components that were developed
independently and whose interoperability is facilitated through
the use of standardized SQI, as defined in the framework’s
CRM.

(f4) Reusability and scalability by cascading, mixing, and
matching several AD and CED components in various
combinations: By requiring all component interfaces to conform
to the standardized CRM, interoperability is promoted, allowing
for component reuse and the creation of highly complex
pipelines leveraging simple and well-tested components. Each
of the four models represented a different component
composition. The analyses in each composition vary in scale
through the reuse and cascading of components. This mixing
and matching are made possible by the adherence of each
component to the CRM. Comparing the flowcharts in Figures
3 and 4, there is an increase in the number of instantiations of
the ADDIL component from 2 to 4 between CDSS #1 and #3.
This demonstrates that the framework supports reusability and
scalability by cascading, mixing, and matching several
components.

(f5) Customizability to evaluate and compare the performance
of multiple combinations of independently developed
components on offline and potentially real-time patient data
when integrated with clinical workflows: A literature review
reveals that AD algorithms are typically developed and validated
in offline environments [28]. This study illustrates the dynamic
framework evaluation using real patient data offline. This
validates the use of the framework as a test bed for multiple
combinations of independently developed components. Once
a combination is affirmed to satisfy clinical needs through
offline testing, that combination can then be evaluated in a
real-time environment using the middleware technology. In this
way, the transition to real-time clinical implementation and
validation is facilitated. A number of studies have suggested
the introduction of delays in alarm annunciation to reduce FARs.
This strategy is expected to reduce the FAR. However, there is
a lack of quantitative evaluation in terms of the impact of such
a strategy on Sn and FAR. The framework developed here
promotes and enables such a quantitative study design, as
demonstrated by the experiments developed here. In fact, it was
found that such strategies failed to suppress false alarms while
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maintaining a sufficiently high Sn. This shows that the
customizability of the framework allows for performance
evaluation and comparison of multiple combinations of
independently developed components on offline and potentially
real-time patient data when integrated with clinical workflows.

(f6) Standardized component interfaces that can potentially
support real-time clinical implementation of AD: If independent
research and OEM groups choose to implement their algorithms
within the context of the framework, that is, adhering to the
CRM, then it is more likely that these algorithms will reach
clinical implementation because the CRM supports
interoperability between all components. Furthermore, the
framework simplifies information technology (IT) requirements
for hospitals because it provides a unified functional
environment in which all AD and CED components required
by multiple critical care units can be supported and executed.
Finally, the framework facilitates the testing and validation of
new algorithms across different clinical settings, populations,
critical care units, and pathologies. This will make the system
more robust and therefore more likely to be adopted [48]. There
is a paucity of CDSS for real-time clinical implementation. One
hurdle to their clinical adoption is the requirement to transform
complex algorithms for real-time implementation. By
implementing the required algorithms within the framework,
the algorithms will be made suitable for execution in real time.
The four experiments were implicitly designed to run the
framework components in a real-time streaming environment.
The composition of the analysis in each experiment was
evaluated using a simulated real-time environment. As a result,
with negligible reformulation, the optimal framework
composition resulting from this evaluation can be integrated
within clinical workflows. Therefore, we conclude that the

standardized component interface design warranted by the CRM
supports real-time clinical implementation of AD within CDSS.

Conclusions
This research evaluated a novel AD framework that standardizes
the interoperability of AD and CED algorithms for integration
within the CDSS. The framework provides a unique test bed
with the ability to create and integrate new AD compositions
by mixing and matching independently developed or decoupled
AD components with CED components that are designed to
deliver specific clinical outcomes. This study validates the use
of the AD framework in a clinical study using real patient data
from the NICU. Several combinations of AD and CED
components were evaluated, thereby illustrating the validity of
the six framework features, namely, f1-f6, including flexibility,
reusability, standardization of SQI, scalability, customizability,
and support for real-time implementation.

Future work will include the implementation of a wide range
of AD and CED components to further leverage the
interoperability provided by the CRM. Although the CRM has
been developed following an extensive review of the literature
that summarizes the requirements, provisions, and configurations
for many existing AD algorithms, it is expected that the CRM
will continue to evolve as a wide variety of new AD and CED
algorithms with differing data needs are implemented as
components within this framework. Further validation of the
framework can be conducted by independent research groups.
The clinical benefits of this research will be broadly realized
through the integration of the framework in real-time CDSS to
enhance the quality of data analytics. In this way, framework
implementation within clinical workflows offers the potential
to improve the quality of care for patients and clinicians in
critical care.

 

Acknowledgments
SN thanks the research collaborators at CHEO, Kim Greenwood, Dr JoAnn Harrold, and Dr Nick Barrowman, for facilitating
the clinical study and dedicating many hours to discuss the engineering, clinical, and statistical aspects. SN thanks fellow scientists
and engineers, Amna Basharat, Maryam Kaka, Aly Khedr, and Mohamed Hozayen, for computing and illustration support. Natural
Sciences and Engineering Research Council of Canada funded this research.

Authors' Contributions
SN completed her postdoctoral research fellowship at the IBM Centre for Advanced Studies, Ottawa. She conducted her postdoctoral
research project at CHEO, Ottawa, for which she received the Best Project Outcomes award at IBM, CASCON, Markham,
Ontario, Canada 2017. She received the Best Women in Engineering Paper Award at IEEE Intl. The Symposium on Medical
Measurements and Applications was held at the Mayo Clinic in Rochester, Minnesota, United States, in 2017. She received a
patent for a patient monitoring system invention (US patent #10,297,143 issued in May 2019) with IBM as an assignee. CMAM
is a Professor and Canada Research Chair (Alumni) in the Faculty of Business and IT, University of Ontario Institute of Technology,
and a professor in the School of Software, Faculty of Engineering and IT, University of Technology Sydney. CMAM has led
pioneering research in big data analytics, real-time stream processing, artificial intelligence, temporal data mining, patient journey
modeling, and cloud computing. She now progresses this research within the context of critical care medicine, mental health,
astronaut health, and military and civilian tactical training. She has received many awards for her research, including, most
recently, the Best Paper at the 2017 IEEE Life Science Conference, Sydney, Australia. JRG is a professor at the Department of
Systems and Computer Engineering, Carleton University, Ottawa, Canada. His current research interests include pattern classification
challenges within biomedical informatics, patient monitoring, computational acceleration of scientific computing, and the design
of novel assistive devices.

JMIR Biomed Eng 2021 | vol. 6 | iss. 2 |e23495 | p.115https://biomedeng.jmir.org/2021/2/e23495
(page number not for citation purposes)

Nizami et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Conflicts of Interest
None declared.

References
1. Stehlik P, Bahmanpour A, Sekercioglu YA, Darzin P, Marriott JL. Fundamental elements identified for success of disease

state management clinical decision support systems. Electron J Heal Informatics 2015;9(1):e6 [FREE Full text]
2. Minutolo A, Esposito M, de Pietro G. A pattern-based approach for representing condition-action clinical rules into DSSs.

In: Elleithy K, Sobh T, editors. Innovations and Advanced Techniques in Systems, Computing Sciences and Software
Engineering. New York, USA: Springer; 2013:777-789.

3. Pryor M, White D, Potter B, Traill R. Evaluating online diagnostic decision support tools for the clinical setting. Stud Health
Technol Inform 2012;178:180-185. [Medline: 22797039]

4. Horsky J, Schiff GD, Johnston D, Mercincavage L, Bell D, Middleton B. Interface design principles for usable decision
support: a targeted review of best practices for clinical prescribing interventions. J Biomed Inform 2012 Dec;45(6):1202-1216
[FREE Full text] [doi: 10.1016/j.jbi.2012.09.002] [Medline: 22995208]

5. Drummond WH. Neonatal informatics--dream of a paperless NICU: part four: integrating caregiving, automated process
management, and clinical decision support. NeoReviews 2010 Apr 01;11(4):174-183. [doi: 10.1542/neo.11-4-e174]

6. Ruminski CM, Clark MT, Lake DE, Kitzmiller RR, Keim-Malpass J, Robertson MP, et al. Impact of predictive analytics
based on continuous cardiorespiratory monitoring in a surgical and trauma intensive care unit. J Clin Monit Comput 2019
Aug 18;33(4):703-711. [doi: 10.1007/s10877-018-0194-4] [Medline: 30121744]

7. Fairchild KD, Nagraj VP, Sullivan BA, Moorman JR, Lake DE. Oxygen desaturations in the early neonatal period predict
development of bronchopulmonary dysplasia. Pediatr Res 2019 Jun 29;85(7):987-993 [FREE Full text] [doi:
10.1038/s41390-018-0223-5] [Medline: 30374050]

8. Percival J, McGregor C, Percival N, James A. Enabling the integration of clinical event and physiological data for real-time
and retrospective analysis. Inf Syst E-Bus Manage 2014 Jan 20;13(4):693-711. [doi: 10.1007/s10257-014-0232-9]

9. Thommandram A, Pugh JE, Eklund JM, McGregor C, James AG. Classifying neonatal spells using real-time temporal
analysis of physiological data streams: algorithm development. Point-of-Care Healthcare Technologies (PHT) IEEE
2013:240-243. [doi: 10.1109/pht.2013.6461329]

10. Nizami S, Green JR, Eklund M, McGregor C. Heart disease classification through HRV analysis using parallel cascade
identification and fast orthogonal search. In: Proceedings of the IEEE International Workshop on Medical Measurements
and Applications. 2010 Presented at: IEEE International Workshop on Medical Measurements and Applications; April
30-May 1, 2010; Ottawa, Ontario, Canada p. 134-139. [doi: 10.1109/memea.2010.5480217]

11. Lázaro J, Gil E, Bailón R, Mincholé A, Laguna P. Deriving respiration from photoplethysmographic pulse width. Med Biol
Eng Comput 2013 Feb 21;51(1-2):233-242. [doi: 10.1007/s11517-012-0954-0] [Medline: 22996834]

12. Mestek M, Addison P, Neitenbach A, Bergese S, Kelley S. Accuracy of continuous noninvasive respiratory rate derived
from pulse oximetry in congestive heart failure patients. Chest 2012 Oct;142(4):113A. [doi: 10.1378/chest.1390275]

13. Addison PS, Watson JN, Mestek ML, Mecca RS. Developing an algorithm for pulse oximetry derived respiratory rate
(RR(oxi)): a healthy volunteer study. J Clin Monit Comput 2012 Feb 10;26(1):45-51 [FREE Full text] [doi:
10.1007/s10877-011-9332-y] [Medline: 22231359]

14. Li Q, Mark RG, Clifford GD. Artificial arterial blood pressure artifact models and an evaluation of a robust blood pressure
and heart rate estimator. BioMed Eng OnLine 2009;8(1):13. [doi: 10.1186/1475-925x-8-13]

15. McShea M, Holl R, Badawi O, Riker R, Silfen E. The eICU Research Institute - a collaboration between industry, health-care
providers, and academia. IEEE Eng Med Biol Mag 2010 Mar;29(2):18-25. [doi: 10.1109/memb.2009.935720]

16. Raymer KE, Bergström J, Nyce JM. Anaesthesia monitor alarms: a theory-driven approach. Ergonomics 2012 Sep
25;55(12):1487-1501. [doi: 10.1080/00140139.2012.722695] [Medline: 23009678]

17. Schmid F, Goepfert MS, Kuhnt D, Eichhorn V, Diedrichs S, Reichenspurner H, et al. The wolf is crying in the operating
room. Anesth Analg 2011;112(1):78-83. [doi: 10.1213/ane.0b013e3181fcc504]

18. Takla G, Petre JH, Doyle DJ, Horibe M, Gopakumaran B. The problem of artifacts in patient monitor data during surgery:
a clinical and methodological review. Anesth Analg 2006 Nov;103(5):1196-1204. [doi: 10.1213/01.ane.0000247964.47706.5d]
[Medline: 17056954]

19. Li D, Jeyaprakash V, Foreman S, Groves AM. Comparing oxygen targeting in preterm infants between the Masimo and
Philips pulse oximeters. Arch Dis Child Fetal Neonatal Ed 2012 Jul 13;97(4):311-312. [doi:
10.1136/fetalneonatal-2011-301395] [Medline: 22415392]

20. Bach TA, Berglund L, Turk E. Managing alarm systems for quality and safety in the hospital setting. BMJ Open Qual 2018
Jul 25;7(3):e000202 [FREE Full text] [doi: 10.1136/bmjoq-2017-000202] [Medline: 30094341]

21. Garber MD. Monitor alarm fatigue. AAP Grand Rounds 2015 Sep 01;34(3):27. [doi: 10.1542/gr.34-3-27]
22. Solet JM, Barach PR. Managing alarm fatigue in cardiac care. Prog Pediatr Cardiol 2012 Jan;33(1):85-90. [doi:

10.1016/j.ppedcard.2011.12.014]

JMIR Biomed Eng 2021 | vol. 6 | iss. 2 |e23495 | p.116https://biomedeng.jmir.org/2021/2/e23495
(page number not for citation purposes)

Nizami et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

https://www.researchgate.net/publication/279752418_Fundamental_Elements_Identified_for_Success_of_Disease_State_Management_Clinical_Decision_Support_Systems
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22797039&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(12)00149-9
http://dx.doi.org/10.1016/j.jbi.2012.09.002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22995208&dopt=Abstract
http://dx.doi.org/10.1542/neo.11-4-e174
http://dx.doi.org/10.1007/s10877-018-0194-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30121744&dopt=Abstract
http://europepmc.org/abstract/MED/30374050
http://dx.doi.org/10.1038/s41390-018-0223-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30374050&dopt=Abstract
http://dx.doi.org/10.1007/s10257-014-0232-9
http://dx.doi.org/10.1109/pht.2013.6461329
http://dx.doi.org/10.1109/memea.2010.5480217
http://dx.doi.org/10.1007/s11517-012-0954-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22996834&dopt=Abstract
http://dx.doi.org/10.1378/chest.1390275
http://europepmc.org/abstract/MED/22231359
http://dx.doi.org/10.1007/s10877-011-9332-y
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22231359&dopt=Abstract
http://dx.doi.org/10.1186/1475-925x-8-13
http://dx.doi.org/10.1109/memb.2009.935720
http://dx.doi.org/10.1080/00140139.2012.722695
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23009678&dopt=Abstract
http://dx.doi.org/10.1213/ane.0b013e3181fcc504
http://dx.doi.org/10.1213/01.ane.0000247964.47706.5d
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17056954&dopt=Abstract
http://dx.doi.org/10.1136/fetalneonatal-2011-301395
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22415392&dopt=Abstract
https://bmjopenquality.bmj.com/lookup/pmidlookup?view=long&pmid=30094341
http://dx.doi.org/10.1136/bmjoq-2017-000202
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30094341&dopt=Abstract
http://dx.doi.org/10.1542/gr.34-3-27
http://dx.doi.org/10.1016/j.ppedcard.2011.12.014
http://www.w3.org/Style/XSL
http://www.renderx.com/


23. Chopra V, McMahon LF. Redesigning hospital alarms for patient safety: alarmed and potentially dangerous. J Am Med
Assoc 2014 Mar 26;311(12):1199-1200. [doi: 10.1001/jama.2014.710] [Medline: 24590296]

24. Berner ES. Clinical decision support systems: state of the art. Agency for Healthcare Research and Quality U.S. Department
of Health and Human Services. 2009. URL: https://digital.ahrq.gov/sites/default/files/docs/page/09-0069-EF_1.pdf [accessed
2021-05-20]

25. Varisco G, van de Mortel H, Cabrera-Quiros L, Atallah L, Hueske-Kraus D, Long X, et al. Optimisation of clinical workflow
and monitor settings safely reduces alarms in the NICU. Acta Paediatr 2021 Apr;110(4):1141-1150 [FREE Full text] [doi:
10.1111/apa.15615] [Medline: 33048364]

26. Sahoo T, Joshi M, Madathil S, Verma A, Sankar M, Thukral A. Quality improvement initiative for reduction of false alarms
from multiparameter monitors in neonatal intensive care unit. J Educ Health Promot 2019;8:203 [FREE Full text] [doi:
10.4103/jehp.jehp_226_19] [Medline: 31807593]

27. Armbruster J, Schmidt B, Poets CF, Bassler D. Nurses' compliance with alarm limits for pulse oximetry: qualitative study.
J Perinatol 2010 Aug;30(8):531-534 [FREE Full text] [doi: 10.1038/jp.2009.189] [Medline: 20010614]

28. Nizami S, Green JR, McGregor C. Implementation of artifact detection in critical care: a methodological review. IEEE Rev
Biomed Eng 2013;6:127-142. [doi: 10.1109/rbme.2013.2243724]

29. Nizami S, Green JR, McGregor C. An artifact detection framework for clinical decision support systems. In: Proceedings
of the World Congress on Medical Physics and Biomedical Engineering. 2015 Presented at: World Congress on Medical
Physics and Biomedical Engineering; June 7-12, 2015; Toronto, ON, Canada p. 1393-1396. [doi:
10.1007/978-3-319-19387-8_339]

30. Larsen G. Component-based enterprise frameworks. Commun ACM 2000 Oct;43(10):24-26. [doi: 10.1145/352183.352196]
31. De Cesare S, Lycett M, Macredie R. The Development of Component-based Information Systems. Armonk, NY: M. E.

Sharpe; 2006:1-240.
32. Nizami S, Green JR, McGregor C. Service oriented architecture to support real-time implementation of artifact detection

in critical care monitoring. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine
and Biology Society. 2011 Presented at: Annual International Conference of the IEEE Engineering in Medicine and Biology
Society; Aug. 30 - Sept. 3, 2011; Boston, MA, USA. [doi: 10.1109/iembs.2011.6091221]

33. Jarchi D, Casson AJ. Towards photoplethysmography-based estimation of instantaneous heart rate during physical activity.
IEEE Trans Biomed Eng 2017 Sep;64(9):2042-2053. [doi: 10.1109/tbme.2017.2668763]

34. Khan E, Hossain FA, Uddin SZ, Alam SK, Hasan MK. A robust heart rate monitoring scheme using photoplethysmographic
signals corrupted by intense motion artifacts. IEEE Trans Biomed Eng 2016 Mar;63(3):550-562. [doi:
10.1109/tbme.2015.2466075]

35. Dao D, Salehizadeh SM, Noh Y, Chong JW, Cho CH, McManus D, et al. A robust motion artifact detection algorithm for
accurate detection of heart rates from photoplethysmographic signals using time–frequency spectral features. IEEE J Biomed
Health Inform 2017 Sep;21(5):1242-1253. [doi: 10.1109/jbhi.2016.2612059]

36. Pu L, Chacon PJ, Wu H, Choi J. Novel tailoring algorithm for abrupt motion artifact removal in photoplethysmogram
signals. Biomed Eng Lett 2017 Nov 9;7(4):299-304 [FREE Full text] [doi: 10.1007/s13534-017-0037-0] [Medline: 30603179]

37. Borges G, Brusamarello V. Sensor fusion methods for reducing false alarms in heart rate monitoring. J Clin Monit Comput
2016 Dec 6;30(6):859-867. [doi: 10.1007/s10877-015-9786-4] [Medline: 26439831]

38. Chan A, Englehart K, Hudgins B, Lovely D. Multiexpert automatic speech recognition using acoustic and myoelectric
signals. IEEE Trans Biomed Eng 2006 Apr;53(4):676-685. [doi: 10.1109/tbme.2006.870224]

39. He DD, Winokur ES, Sodini CG. An ear-worn vital signs monitor. IEEE Trans Biomed Eng 2015 Nov;62(11):2547-2552.
[doi: 10.1109/tbme.2015.2459061]

40. Burgess LP, Herdman TH, Berg BW, Feaster WW, Hebsur S. Alarm limit settings for early warning systems to identify
at-risk patients. J Adv Nurs 2009 Sep;65(9):1844-1852. [doi: 10.1111/j.1365-2648.2009.05048.x] [Medline: 19694847]

41. Taenzer AH, Pyke JB, McGrath SP, Blike GT. Impact of pulse oximetry surveillance on rescue events and intensive care
unit transfers. Anesthesiology 2010 Feb;112(2):282-287. [doi: 10.1097/aln.0b013e3181ca7a9b]

42. Welch J. An evidence-based approach to reduce nuisance alarms and alarm fatigue. Biomed Instrum Technol
2011;Suppl:46-52. [doi: 10.2345/0899-8205-45.s1.46] [Medline: 21599481]

43. Welch J, Kanter B, Skora B, McCombie S, Henry I, McCombie D, et al. Multi-parameter vital sign database to assist in
alarm optimization for general care units. J Clin Monit Comput 2016 Dec 6;30(6):895-900 [FREE Full text] [doi:
10.1007/s10877-015-9790-8] [Medline: 26439830]

44. Nizami S, Greenwood K, Barrowman N, Harrold J. Performance evaluation of new-generation pulse oximeters in the NICU:
observational study. Cardiovasc Eng Technol 2015 Sep 9;6(3):383-391. [doi: 10.1007/s13239-015-0229-7] [Medline:
26577369]

45. Clifford G, Long W, Moody G, Szolovits P. Robust parameter extraction for decision support using multimodal intensive
care data. Philos Trans A Math Phys Eng Sci 2009 Jan 28;367(1887):411-429 [FREE Full text] [doi: 10.1098/rsta.2008.0157]
[Medline: 18936019]

JMIR Biomed Eng 2021 | vol. 6 | iss. 2 |e23495 | p.117https://biomedeng.jmir.org/2021/2/e23495
(page number not for citation purposes)

Nizami et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://dx.doi.org/10.1001/jama.2014.710
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24590296&dopt=Abstract
https://digital.ahrq.gov/sites/default/files/docs/page/09-0069-EF_1.pdf
http://europepmc.org/abstract/MED/33048364
http://dx.doi.org/10.1111/apa.15615
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33048364&dopt=Abstract
http://www.jehp.net/article.asp?issn=2277-9531;year=2019;volume=8;issue=1;spage=203;epage=203;aulast=Sahoo
http://dx.doi.org/10.4103/jehp.jehp_226_19
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31807593&dopt=Abstract
https://doi.org/10.1038/jp.2009.189
http://dx.doi.org/10.1038/jp.2009.189
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20010614&dopt=Abstract
http://dx.doi.org/10.1109/rbme.2013.2243724
http://dx.doi.org/10.1007/978-3-319-19387-8_339
http://dx.doi.org/10.1145/352183.352196
http://dx.doi.org/10.1109/iembs.2011.6091221
http://dx.doi.org/10.1109/tbme.2017.2668763
http://dx.doi.org/10.1109/tbme.2015.2466075
http://dx.doi.org/10.1109/jbhi.2016.2612059
http://europepmc.org/abstract/MED/30603179
http://dx.doi.org/10.1007/s13534-017-0037-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30603179&dopt=Abstract
http://dx.doi.org/10.1007/s10877-015-9786-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26439831&dopt=Abstract
http://dx.doi.org/10.1109/tbme.2006.870224
http://dx.doi.org/10.1109/tbme.2015.2459061
http://dx.doi.org/10.1111/j.1365-2648.2009.05048.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19694847&dopt=Abstract
http://dx.doi.org/10.1097/aln.0b013e3181ca7a9b
http://dx.doi.org/10.2345/0899-8205-45.s1.46
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21599481&dopt=Abstract
http://europepmc.org/abstract/MED/26439830
http://dx.doi.org/10.1007/s10877-015-9790-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26439830&dopt=Abstract
http://dx.doi.org/10.1007/s13239-015-0229-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26577369&dopt=Abstract
http://europepmc.org/abstract/MED/18936019
http://dx.doi.org/10.1098/rsta.2008.0157
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18936019&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


46. Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, Mark RG, et al. PhysioBank, PhysioToolkit, and PhysioNet:
components of a new research resource for complex physiologic signals. Circulation 2000 Jun 13;101(23):215-220. [doi:
10.1161/01.cir.101.23.e215] [Medline: 10851218]

47. Yu C, Liu Z, McKenna T, Reisner AT, Reifman J. A method for automatic identification of reliable heart rates calculated
from ECG and PPG waveforms. J Am Med Informatics Assoc 2006 May 01;13(3):309-320. [doi: 10.1197/jamia.m1925]

48. Crnkovic I, Larsson M. Building Reliable Component-Based Software Systems. Boston, MA: Artech House; 2002:1-454.

Abbreviations
AD: artifact detection
CDSS: clinical decision support systems
CED: clinical event detection
CHEO: Children’s Hospital of Eastern Ontario
CRM: common reference model
DIL: designed to deinterlace
ECG: electrocardiography
FAR: false alarm rate
HR: heart rate
IT: information technology
NaN: Not-a-number
NICU: neonatal intensive care unit
OEM: original equipment manufacturer
PDA: patient data acquisition
PR: pulse rate
SpO2: peripheral oxygen saturation
SQI: signal quality indicator

Edited by G Eysenbach; submitted 13.08.20; peer-reviewed by T Sagi, A James; comments to author 16.11.20; revised version received
23.02.21; accepted 04.04.21; published 27.05.21.

Please cite as:
Nizami S, McGregor AM C, Green JR
Integrating Physiological Data Artifacts Detection With Clinical Decision Support Systems: Observational Study
JMIR Biomed Eng 2021;6(2):e23495
URL: https://biomedeng.jmir.org/2021/2/e23495 
doi:10.2196/23495
PMID:

©Shermeen Nizami, Carolyn McGregor AM, James Robert Green. Originally published in JMIR Biomedical Engineering
(http://biomsedeng.jmir.org), 27.05.2021. This is an open-access article distributed under the terms of the Creative Commons
Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work, first published in JMIR Biomedical Engineering, is properly cited. The complete
bibliographic information, a link to the original publication on https://biomedeng.jmir.org/, as well as this copyright and license
information must be included.

JMIR Biomed Eng 2021 | vol. 6 | iss. 2 |e23495 | p.118https://biomedeng.jmir.org/2021/2/e23495
(page number not for citation purposes)

Nizami et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://dx.doi.org/10.1161/01.cir.101.23.e215
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10851218&dopt=Abstract
http://dx.doi.org/10.1197/jamia.m1925
https://biomedeng.jmir.org/2021/2/e23495
http://dx.doi.org/10.2196/23495
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


Publisher:
JMIR Publications
130 Queens Quay East.
Toronto, ON, M5A 3Y5
Phone: (+1) 416-583-2040
Email: support@jmir.org

https://www.jmirpublications.com/

XSL•FO
RenderX

mailto:support@jmir.org
http://www.w3.org/Style/XSL
http://www.renderx.com/

