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Abstract

Background: Smartphone use is widely spreading in society. Their embedded functions and sensors may play an important
role in therapy monitoring and planning. However, the use of smartphones for intrapersonal behavioral and physical monitoring
is not yet fully supported by adequate studies addressing technical reliability and acceptance.

Objective: The objective of this paper is to identify and discuss technical issues that may impact on the wide use of smartphones
as clinical monitoring tools. The focus is on the quality of the data and transparency of the acquisition process.

Methods: QuantifyMyPerson is a platform for continuous monitoring of smartphone use and embedded sensors data. The
platform consists of an app for data acquisition, a backend cloud server for data storage and processing, and a web-based dashboard
for data management and visualization. The data processing aims to extract meaningful features for the description of daily life
such as phone status, calls, app use, GPS, and accelerometer data. A total of health subjects installed the app on their smartphones,
running it for 7 months. The acquired data were analyzed to assess impact on smartphone performance (ie, battery consumption
and anomalies in functioning) and data integrity. Relevance of the selected features in describing changes in daily life was assessed
through the computation of a k-nearest neighbors global anomaly score to detect days that differ from others.

Results: The effectiveness of smartphone-based monitoring depends on the acceptability and interoperability of the system as
user retention and data integrity are key aspects. Acceptability was confirmed by the full transparency of the app and the absence
of any conflicts with daily smartphone use. The only perceived issue was the battery consumption even though the trend of battery
drain with and without the app running was comparable. Regarding interoperability, the app was successfully installed and run
on several Android brands. The study shows that some smartphone manufacturers implement power-saving policies not allowing
continuous sensor data acquisition and impacting integrity. Data integrity was 96% on smartphones whose power-saving policies
do not impact the embedded sensor management and 84% overall.

Conclusions: The main technological barriers to continuous behavioral and physical monitoring (ie, battery consumption and
power-saving policies of manufacturers) may be overcome. Battery consumption increase is mainly due to GPS triangulation and
may be limited, while data missing because of power-saving policies are related only to periods of nonuse of the phone since the
embedded sensors are reactivated by any smartphone event. Overall, smartphone-based passive sensing is fully feasible and
scalable despite the Android market fragmentation.

(JMIR Biomed Eng 2021;6(2):e15417) doi: 10.2196/15417
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Introduction

Background
In 2020, smartphone users are approximately 3.5 billion people
(ie, about the 45% of the world population). Smartphones are
a widely spread resource that health care providers might
extensively use to improve the quality and timeliness of service
to the citizen at acceptable costs.

Potentialities of smartphones in health care are being widely
explored [1]. A PubMed search of “smartphone” or “mobile
phone” and “monitoring” for articles published between January
1, 2000, and September 30, 2020, found 5246 articles with
74.04% (3884/5246) published after January 1, 2015,
demonstrating a continuous increase of interest in the last few
years.

Furthermore, the growing number of available apps in the
Google and Apple stores covers an increasingly large spectrum
of services able to support most citizens’ daily activities.
However, the effective diffusion of smartphone in the clinical
practice is slowed down by social, organizational, and technical
barriers [2]. Clinical practice requires the capability of
continuously following up individuals along their care paths
(longitudinal monitoring) assessing variations in time due to
disease progression or intervention results. For this purpose, an
underlying monitoring app must be robust and reliable and able
to run on a wide base of smartphones in a totally unobtrusive
and transparent way [3,4]. This approach addresses the
ubiquitous computing paradigm that, through technologically
transparent tools, enables the integration of small connected
and inexpensive devices in the daily life of people. Transparency
and density of the technological framework lead to higher levels
of acceptability and reliability thanks to the reduced
intrusiveness and, at the same time, the improved capillarity of
the technology.

Meanwhile, the collected data must adhere to robust and
device-independent quality standards to ensure measurement
repeatability to generate clear clinical outcomes [5], while
smartphone vendor policies contribute to increasing
fragmentation due to strategic choices. Continuous monitoring
apps and in particular passive sensing smartphone-based
platforms must cope with constraints and limitations related to
manufacturer choices and policies that need to be carefully
assessed and cleared before large-scale deployment in health
care with prevention and follow-up objectives.

On the other side, the level of engagement of the end user needs
to be improved. Today, the longer the follow-up period, the
higher the chances are for dropout [6]. Attrition rates from 30%
to 70% are often reported [7-9]. Technological issues can
dramatically impact the use in a daily routine.

Reliability and robustness are the most important drivers to
ensure proper diffusion within the clinical practice; however,
studies characterizing the smartphone-based platforms from
this point of view are lacking. Many studies address the clinical
relevance of the acquired data (see Prior Work section), but
very few analyze the impact of technical issues on the scalability
of the solutions in the daily routine and their performance in a

heterogenous technical environment where hardware
characteristics and proprietary policies have a strong impact on
the quality of delivered data and calculated indexes.

Prior Work
Mental health–related studies have widely investigated the use
of smartphone-based sensing platforms to cope with the need
of unobtrusive and continuous data collection while reducing
biases in patient behavior. Dogan et al [10] provide a
comprehensive review of the current status of the technological
impact on affective disorder management. Several studies about
the correlation between affective disorders and smartphone use
are investigated, and technical problems, in particular issues
related to different operating systems, are reported as the most
common reasons for discontinuation. The use of
smartphone-embedded sensors for health monitoring systems
is analyzed by Majumder et al [11] who identify, as a main
driver for successful penetration of these technologies, the
availability of affordable apps compatible with the main mobile
operating systems and devices from different manufacturers.
Similarly, the need for apps with reduced battery drain and
standardized performances regardless of the device brand is
reported by Baig et al [12] and Yu et al [13], while Boonstra et
al [14] define performance, interoperability, and battery
consumption as the most impacting issues. Differing operating
systems are reported as the leading cause of data loss. The data
collection rate is still only 55% of the scheduled acquisition
time for Android smartphones, indicating the need for additional
development work to provide more stable and reliable tools.
Finally, Hossain and Poellabauer [15] present the challenges
encountered in building the CIMON (Crew Interactive MObile
CompanioN) system, a continuous smartphone sensing app.
This system is specifically designed for the iOS system, and
the main issues reported are energy consumption, storage, and
operational continuity. Nevertheless, because of Apple’s strict
policy development limitations and terms, the variability in
terms of technical policies between iOS devices is not even
comparable with the Android market, which is required to deal
with a broader pool of brands and proprietary management
policies.

The need for robust and reliable passive sensing systems that
exploit the smartphone as data collector is gaining relevance in
the clinical debate, and recent studies [16] show a good
correlation between behavioral data collected through
smartphones and mental health–related scores [17-19] and also
show how features calculated from smartphone data may capture
a wider set of behavior descriptors not assessed by standard
scores [20]. Other studies report strong correlations between
smartphone-related nonmedical parameters, changes in lifestyle,
and variations in mood [21]. In particular, frequency [22] and
duration [23] of calls have been correlated to the onset of
depressive symptoms.

Goal of This Study
In this paper, we identify the main issues a smartphone-based
monitoring app must resolve to be a suitable tool for longitudinal
measurement of personal behavior on a diverse and continuously
changing technological panorama.
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A testing platform, QuantifyMyPerson (QMP), has been used
for this study as it is a proprietary smartphone-based app that
allows direct access to the collected raw data. QMP uses the
embedded sensors of the smartphone itself and smartphone use
information to provide 24/7 monitoring of the user’s life in
terms of both physical and cognitive activities. The system
architecture allows remote storage and processing of acquired
data to be made available to the operator through a web-based
dashboard. By design, QMP does not provide any feedback to
the user and does not introduce any burden other than carrying
the phone to avoid influencing the user’s behavior while
unobtrusively capturing their life habits.

The aim of this study is to pinpoint the main technological issues
encountered within an operating context and identify the most
relevant aspects to be considered when a monitoring platform
is deployed. The findings of this study will inform technical
choices to reach scalable, usable, and reliable solutions that can
reach large pools of users.

Despite the fact that the acquisition of data through passive
sensing systems happens in the most transparent way, the
collected information belongs to the user’s private sphere and
there are privacy issues. Privacy and ethical issues are relevant
perceived barriers in the spread of mobile health (mHealth)
solutions and smartphone-based data collectors [24,25].
According to a recent review [26], broad consent and

pseudonymization are frequently used approaches to manage
these kinds of issues. A robust ethical framework is not yet
clearly defined, and future evolutions should consider technical
development, clinical benefits, and ethical issues together to
shape an effective implementation of passive sensing in health
care. Technical findings and outcomes of this study aim also to
contribute to the definition of this framework promoting the
use of passive data in an ethically safe and sound fashion.

Methods

Data Acquisition System
QMP is a composite system managing background acquisition
of 24/7 data related to the social use of the smartphone (through
call logs, app use, and device use) and to the user’s activity
habits (through GPS and accelerometer analysis).

The platform consists of a mobile app based on the Android
OS, a cloud backend (backend as a service model), and a
web-based dashboard (Figure 1). Data acquisition runs in the
background during daily use of the smartphone by means of a
passive motion sensor data acquisition approach. Through data
processing algorithms, selected features are extracted to describe
users’ life and behavior changes. The dashboard allows for
management of the registry of users and visualization of the
acquired data in graphical and numerical forms.

Figure 1. QuantifyMyPerson architecture consists of the user’s smartphone, a cloud backend for data storing and processing, and a web-based dashboard
for data visualization.

The monitoring app stores data locally on the smartphone and
transmits them as Wi-Fi network connectivity becomes
available. This strategy allows data collection in a variety of
wireless connectivity scenarios with the confidence that
intermittent network access does not affect the nature, quality,
or quantity of the collected data.

Acquired data are temporarily saved in a remote storage area
and processed daily to extract descriptive features. The

computed features are saved on an in-cloud database accessed
through a web-based dashboard. The dashboard, as a
management tool, makes available various means for the
management of the patient database while acquired features
may be displayed through different graph typologies on freely
selectable time windows. The use flow is described in Figure
2.
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Figure 2. QuantifyMyPerson data flow from app installation to data visualization.

The mobile app is the core element of the sensing platform.
During the study, the app was available for Android platforms
only as this operating system enables more flexibility in the
management and access to the data registries and sensors. The
mobile app uses the sensor made available by the Android
framework to interact with the inertial measurement unit sensors
embedded in the smartphone and with the social and
communication registries made available by the operating
system. The sensors to be used for collecting data and related
sampling frequencies can be set through a parametric
configuration table allowing a dynamic fine tuning of the
acquisition parameters without the need for updating the app
on users’ devices.

The following embedded sensors and registries are used as raw
data sources by the QMP mobile app:

• Accelerometer sensor
• Gyroscope sensor
• Barometer sensor

• Magnetometer sensor
• GPS sensor
• Exchanged kBs per app registry
• Calls log registry
• Short message service log registry
• Screen brightness registry

The data acquired through the sensors are locally stored on the
device as separated raw text files, one for each sensor. The raw
files are then sent through an https encrypted communication
protocol when a Wi-Fi connection is available in order to reduce
the internal memory occupation and user data plan consumption.
After the first log-in, the app runs in the background without
any intervention from the user.

Data Processing
The features extracted from the raw data are based on the main
findings reported in the literature according to a previous review
of ours [27]. Table 1 summarizes the features calculated from
raw data.
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Table 1. Behavioral features extracted by QuantifyMyPerson.

DescriptionFeature

Calls

Average duration of incoming calls (seconds)mean_incoming

Average duration of outgoing calls (seconds)mean_outgoing

Total call duration (seconds)tot_call_length

Number of calls madeoutgoing_call

Brightness

Average duration of a session of use (from screen switch on to screen switch off)mean_time_usage

Number of times screen is switched onnumber_switch_on

Seconds of phone’s use from hour n–1 to n with hourly granularity over the whole 24 hoursb_n (24)

Apps

Kilobytes consumed in social app (Facebook, Instagram, Twitter, LinkedIn)tot_kb_social

Kilobytes consumed in communication app (WhatsApp, Messenger, Telegram, Skype, Hangouts)tot_kb_communication

Kilobytes consumed in navigation app (Chrome, Firefox, proprietary browser, Google, YouTube, Tripadvisor)tot_kb_navigation

Total kilobytes consumed in a daytot_kb

GPS

Number of places visitednumber_of_clusters

Percentage of time spent outside the hometime_outside

Variability in a participant’s location calculated as location_variance = (σ2
long + σ2

lat), where σ2
long and σ2

lat

represent the variance of the longitude and latitude, respectively, of the GPS location coordinates

location_variance

Measure of how uniformly a participant spends time at different locations. Let pi denote the percentage of time
that a participant spends in location cluster i. The entropy of the participant is calculated as entropy = −(pi*log(pi))

Entropy

Latitude and longitude coordinates of the visited places according to the distance from homevisited_clusters

Activity

Average of the acceleration signal amplitude from hour n–1 to n with hourly granularity over the whole 24 hoursm_amp_n (24)

Seconds of high activity from hour n–1 to n with hourly granularity over the whole 24 hourss_a_n (24)

Seconds of low activity from hour n–1 to n with hourly granularity over the whole 24 hourss_r_n (24)

High activity/(high activity + low activity)percentage_activity

Study Design
A sample of 12 healthy people was recruited for this initial
feasibility study for a time span of 7 months. As the aim of this
study is to assess how smartphone-based passive sensing
platforms cope with heterogeneous and complex environment,
any Android user was considered eligible irrespective of the
smartphone model, connection availability, or digital literacy.
The final goal was to highlight any possible criticality that could
occur during normal use under free-living conditions.

The participants’ smartphones included 5 different smartphone
brands and 11 different models running Android operating
system versions from 4.4 to 7. The brand distribution shows a
prevalence of Samsung and Huawei devices. The mean age of
the selected participants was 39 (SD 5.4) years, the majority
were male (8/12, 67%), and the average number of days of use
was 62.

All participants were informed of the study aims and modalities
when installing and running the app. Data handling was fully

compliant with the General Data Protection Regulation. To
ensure proper awareness about the acquired and stored data and
aim of the study, an in-app communication approach was
adopted consisting of an interactive wizard that describes the
data sources used and the scope of the study. This approach
ensures proper communication about data management and
study aims through a clear description that can be understood
by everyone regardless of the digital literacy of the enrolled
subject.

Each participant’s identity was pseudoanonymized with a
random user ID, keeping the ID map separated from all other
acquired data so that data cannot be traced back to individuals.
Participant data were uploaded on a secured server using
encrypted SSL protocol to ensure they cannot be intercepted
by third parties. When people left the study, their personal data
were removed while the raw data acquired during the study and
the calculated features remain anonymously stored for scientific
research purposes.
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Results

Data Acquisition System
The system was first assessed in terms of performance with the
2-fold objective of evaluating the impact of the mobile app on
the daily use of the smartphone and quality of the acquired data.
As reported in the study description section, the device brand
distribution spanned the most relevant Android market players.
Samsung devices showed a prevalence of 33% (4/12) within
the considered sample followed by Huawei devices with 25%
(3/12), Xiaomi (8%), Asus (17%), and Honor (17%). This
population distribution is fairly aligned with the brand
fragmentation reported in the Android Fragmentation report
[28] and the most recent Statista’s global smartphone market
share [29]. Thus, the sample under analysis mirrors the Android
user population making the recruited participants a
representative sample.

During the validation phase, no issues concerning normal
smartphone functioning were reported, and the everyday use of
the smartphone was not hindered by the background activity of
the app. The app was installed on the user smartphone without
impacting the running of already installed apps. No lags or limits
in functionalities were reported during the study period.

The average battery consumption trend of the smartphones,
with and without the monitoring app on board, are compared
in Figure 3. The battery drain analysis was made comparing
performance within the same operational environments (running
apps, operative system, connection type). The two trends are
comparable with an acceptable increase in power consumption
when the app is up and running. This trend confirms the known
battery drain issues for smartphone-based passive sensing
platforms, but the battery consumption can be well managed
by tuning acquisition parameters such as sensors sample rate,
data writing frequency, and data sending frequency.

Figure 3. Comparison of the average daily battery consumption trend for the same smartphone with and without QuantifyMyPerson on board and
running.

Because of the implementation by some manufacturers of battery
consumption management policies, some commercial devices
do not allow continuous data acquisition from both the phone’s
register and embedded sensors. This aspect could negatively
influence reproducibility and scalability of smartphone-based
monitoring systems especially within the Android ecosystem
due to high level of fragmentation (brand, devices, and OS
versions) if compared with the iOS systems [28].

By analyzing the up time of each sensor within the selected
population of users during the acquisition period, we identified
two subgroups based on the behavior of their smartphone:
subgroup A consisted of 7 users for whom the specific policies
of the phone operating system do not impact on the continuity
of data; subgroup B consisted of 5 users with smartphones

whose proprietary operating system policies have a strong
impact on the continuity of acquisition (Table 2 and Figure 4).

The most widely used battery consumption management policies
switch the embedded sensors off when the phone is not used
(ie, when the screen is off for some time) and when there are
no changes in the GPS signal (when GPS is active). The phone
is woken up again when one of the two situations changes.

This behavior makes clear that data from embedded sensors are
lost mainly when the phone is still (ie, it is not used, and it is
not moved). That means that most of the lost data from sensors
might be not associated with periods of activity (assuming that
users are carrying the phone on their person). So, the related
loss of information should be not relevant, but more focused
tests are still needed to validate this first outcome.
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Table 2. Classification of user device within subgroup A and B according to the proprietary smartphone management policies.

Device brand and modelSubgroup

A

Asus Zenfone 4

Samsung S4

Samsung S6

ASUS Zenfone 2 Laser

Samsung S5

Redmi 3S

B

Honor 8

Huawei P10 Lite

Honor 7

Huawei P9 Lite

Huawei P8 Lite

Figure 4. Comparison between the integrity of acquired data between a subgroup A user and a subgroup B user. Grey bars represent the timespan in
which the brightness of the display has been detected, blue points identify GPS data collection, and the orange line comprises 5 Hz sampled embedded
sensors data.

The quality and quantity of data are the main strengths of a
continuous monitoring approach. Smartphone sensor issues,
memory leaks, poor connection quality, and smartphone use in
free-living condition have real impact on the quality of the
collected data regardless the specific brand of the smartphone.

To assess these aspects, the data integrity percentage has been
calculated using the following formula:

This measure is aimed at quantifying the percentage of data
actually acquired while the app runs. The hours of acquired data
are considered as the timespan during which the samples are
acquired without interruption greater than 1 second. This
measure provides an indirect computation of data samples lost
during an acquisition session and allows us to spot gaps in the
data.

Data integrity is a crucial parameter for the identification of the
most appropriate data processing and feature extraction
techniques. Datasets with a very low data integrity index should

be not considered for frequency-based processing techniques
or proper resampling techniques should be implemented.

This parameter might be used as a quality control parameter
before mathematically or visually analyzing data. This approach
should also be considered to ensure compliance with the medical
device regulation (EU) 2017/745 on the risk of data misuse for
clinical evidence extraction.

Within this study, the global data integrity percentage is 84%
considering the entire sample of users, but a slightly different
behavior was observed between the two subgroups of users
described in the previous section. In particular, subgroup B is
characterized by a lower value of data integrity percentage
(60%) compared with subgroup A (96%). The analysis
performed on the accelerometer, brightness, and GPS signals
reveals that the lower data integrity percentage observed for the
subgroup B of users is due to the previously described
acquisition holes during which the smartphone kills the
acquisition routine according to proprietary power-saving
policies. At this time, no solutions have been found due to the
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proprietary policies implemented that are business confidential
and differ between smartphone models and brands.

Data integrity has not been negatively impacted by poor or
absent Wi-Fi connections and in some cases all the data were
properly stored and sent even if the smartphone was not
connected to Wi-Fi for a few days (up to 3). The data transfer
protocol has proved to be efficient and capable of handling
unreliable connections.

Thus, the strategy adopted for sending large raw data files based
on file chunks periodically sent and attached to the master file
stored on the remote repository provides a reliable data exchange
protocol. This strategy allows decentralization of the
computational power needed and thus reduces the impact on
performance of the users’ smartphones. This approach is largely
used for the management of data collection through a big data
approach, and it is at the core of the edge computing paradigm
that allows the implementation of sparse technological
frameworks.

Data Processing
Even if the focus of this study is not the clinical evaluation of
the smartphone-based passive sensing platform, the collected
data have been processed with the aim of extracting the features
identified in the literature and evaluating their potentialities in
identifying behavior trends and shifts for the analyzed users.
The processing task was executed daily through an automatic
routine.

The computed features were analyzed in order to investigate
the information content and assess whether the typology and
integrity of the available data could match with the data
processing requirements for the analysis of trends and anomalies
about human behavior. First, a principal component analysis
was performed on the whole pool of features extracted with the
aim of detecting the most descriptive set of features. The
following features were identified as the most descriptive:

• GPS-related features such as movement index, location
variance, and normalized entropy

• Hourly activity features—in particular, in the timespan that
goes from 10 AM to 9 PM

• Hourly brightness features—in particular, in the timespan
that goes from 11 AM to 10 PM

Thus, the selected features were used to extract information
about the variance between each day and detect anomalous days.
This approach starts from the evidence reported by Berrouiguet
[30] on the analysis of GPS-based features and validates its
feasibility with a larger set of features than the ones investigated
here. The set of features was analyzed using a k-Nearest
Neighbor Global Anomaly Score in order to detect the days that
differ from others within the period of use of QMP (Figure 5).
This analysis showed a repeatable pattern for each user along
the period of acquisition discriminating between the nonworking
days and the working days. Public holidays instead were
detected as the most relevant outliers showing the ability of the
system to easily detect the days that differ most because of
nonstandard behavior of the user.

Figure 5. k-Nearest Neighbors Global Anomaly Score graph for a selected user. Points represent the calculated anomaly score for each day with the
red points representing days with the highest values of anomaly.
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People use their smartphones for different purposes and through
different interaction modalities regardless their of demographic
data, which has been demonstrated to not have relevant impacts
on the smartphone-related behavior [31] Smartphones are
strongly integrated in every aspect of people’s lives acting as a
reliable behavioral mirror [32] enabling the longitudinal
monitoring and indirect assessment of cognitive and physical
status. Further analyses are ongoing in order to better assess the
potentialities of identifying clinically relevant and
behavior-related trends through a wider clinical trial. The first
data analysis shows promising results for users belonging to
both subgroup A and B. However, further investigation is still
needed in order to find the best data normalization method that
takes advantage of the data integrity parameters for each of the
identified subgroups.

Discussion

Principal Findings
In this paper, we presented the results of a validation test aimed
to assess the reliability of smartphone-based passive sensor
systems and the related integrity of the acquired data. Also, a
preliminary assessment of the informative content of these data
and their correlation to real user behavior has been presented
with the aim of associating the data integrity with the capability
to extract valuable insights from data.

All participants used the system consistently and actively for
the period of the study without any kind of technological
constraint. The proposed approach proved to be able to manage
the flow of data correctly without a consistent loss of
information and provide a daily update of the calculated features.
The method used to acquire data from the embedded sensors
through a mobile app was able to work with the heterogenous
and complex technical environment ensuring a good level of
reliability and maintaining a good level of performance of the
users’smartphones without impacting the already installed apps.
The system also registered a high level of acceptability due to
the good level of integration in the normal use of the smartphone
in conjunction with an adequate level of transparency and
ubiquitousness that ensured reliable and meaningful results.
Two participants (17%) asked to interrupt the study after 1
month due to battery drain effects, but the users continued the
study when the battery drain effect was mitigated by activating
the GPS sensor only for limited time spans within the day.

The current smartphone evolution is highly focused on the
optimization of the battery consumption for the most
energy-consuming sensors such as GPS and Bluetooth as many
of the most common apps require their continuous running (eg,
COVID-19 tracking apps). Thus, the impact on battery drain is
also expected to be reduced for passive sensor platforms such
as the one used in this study. Besides, the use of monitoring
tools in the frame of a structured digital health approach will
further justify the power consumption side effect thanks to
demonstrated care benefits.

In this study, data acquisition, performed by means of the users’
own smartphones without any limitations or technological
eligibility criteria, reached a remarkable integrity of the globally

acquired data—14,970 hours of collected sample out of 17,845
hours of acquisition (84%)—that surpasses the performances
presented in previous publications [33], proving the potentialities
of passive sensing platforms. However, different behaviors
observed for subgroup A and B have some impacts on the data
integrity ratio with 96% and 60%, respectively, when kept
separately. Brand-related operating system policies still have
the most important impact on data integrity due to the observed
fragmentation of the Android services.

The availability of different sensor data allows us to describe
each subject in terms of physical activity (accelerometer data),
social interaction (calls, communications, and social network
data), and georeferenced data. This approach provides an overall
description of each user that can be used to continuously monitor
both the psychological and physical status, strengthening the
added value of this type of system which can provide a
comprehensive description of quality of life and well-being.
The wide range of data made available by monitoring platforms
can also be considered the necessary starting point for data
fusion approaches [34].

Preliminary analysis of the obtained results shows that the data
fusion between different sensors provides a valuable key to
interpret personal behavior. In particular, the demonstrated
capability of identifying anomalous days is strongly dependent
on the variability in content of the acquired data and can
represent a strong starting point for different clinical
applications. Furthermore, the habits about smartphone use
itself could be used as a valid behavioral descriptors. For
example, intrapersonal changes in frequency and duration of
smartphone daily usage or the inactivity period of the
smartphone due to the fact the user has not carried the
smartphone can be used as indirect behavioral descriptors. Thus,
the fusion between data acquired from different contexts gives
a comprehensive description considering all the aspects that
can be impacted by changing physical or psychological
condition. Also, the smartphone use parameters (eg, screen time,
battery use) can be used to normalize the calculated features,
reducing the bias due to different smartphone use that can impact
the reliability of the collected data.

Limitations
This study has been conducted on a limited number of subjects
with a focus on Android devices. A wider study should be
conducted including a wider pool of devices and subjects.
Furthermore, assessment of the approach on acute and chronic
patients is required to ensure generalizability in the clinical
application domain.

The use of mobile apps for health monitoring is still in an early
phase. To foster their acceptance at a wider level, making the
collected information routinely useful for the health care system,
clinical validations are necessary to select the best parameters
to investigate each pathological condition. However, analysis
of this aspect was outside the scope of this study, which focused
on assessment of perceived technical limitations to daily use.

Conclusion
In this paper, we present a study that contributes as an additional
step to broad distribution of smartphone-based monitoring
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platforms. We described the technical approach used to
implement a smartphone-based passive platform, its
characteristics, and the potentialities of this type of solution to
provide insights to patients and clinicians. The quality of the
acquired data and performance of the system are quite dependent
on the proprietary policies implemented by each smartphone
brand even if the acquisition through smartphone-embedded
sensors as presented in this article is able to provide a good
level of accuracy within an heterogenous pool of devices. The
preliminary analysis performed on the raw data collected
provides initial encouraging results that must be better validated
through well-structured clinical trials with the aim of
substantiating the clinical evidence of monitoring systems and
their capability of extracting indexes that could be used as
reliable descriptors and predictors of the disease path.

In the future, we will continue this work deepening the technical
validation of this type of platform to assess performance and
quality of the collected data on a wider study cohort including
the most recent Android updates and newest smartphone brands.

Furthermore, the research will focus on the assessment of the
data fusion potentialities for the extraction of valuable clinical
insights according to the characteristics of the collected data.
Additionally, as the performance of this type of monitoring
system is quite depending on the policies of each smartphone
producer, a wider discussion could address guidelines that could
match with the needs of mHealth in the near future.

Discussion about the repeatability and reliability of
smartphone-based passive sensing platforms should also drive
the debate about software as medical device and its applicability
in the current regulatory framework. This is still an open issue
[35] whose resolution will be necessary to drive the successful
use of monitoring systems as scalable and reliable supports for
the clinical practice. Also, ethical and security aspects will be
investigated to make the system as secure as possible by design.
Thus, a quantified technical characterization of the system in
terms of reproducibility and robustness of the provided
measurements will be necessary, and the proposed article could
be considered a good methodologic starting point.
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