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Abstract

Background: Clinical decision support systems (CDSS) have the potential to lower the patient mortality and morbidity rates.
However, signal artifacts present in physiological data affect the reliability and accuracy of the CDSS. Moreover, patient monitors
and other medical devices generate false alarms while processing physiological data, further leading to alarm fatigue because of
increased noise levels, staff disruption, and staff desensitization in busy critical care environments. This adversely affects the
quality of care at the patient bedside. Hence, artifact detection (AD) algorithms play a crucial role in assessing the quality of
physiological data and mitigating the impact of these artifacts.

Objective: The aim of this study is to evaluate a novel AD framework for integrating AD algorithms with CDSS. We designed
the framework with features that support real-time implementation within critical care. In this study, we evaluated the framework
and its features in a false alarm reduction study. We developed static framework component models, followed by dynamic
framework compositions to formulate four CDSS. We evaluated these formulations using neonatal patient data and validated the
six framework features: flexibility, reusability, signal quality indicator standardization, scalability, customizability, and real-time
implementation support.

Methods: We developed four exemplar static AD components with standardized requirements and provisions interfaces that
facilitate the interoperability of framework components. These AD components were mixed and matched into four different AD
compositions to mitigate the artifacts’ effects. We developed a novel static clinical event detection component that is integrated
with each AD composition to formulate and evaluate a dynamic CDSS for peripheral oxygen saturation (SpO2) alarm generation.
This study collected data from 11 patients with diverse pathologies in the neonatal intensive care unit. Collected data streams
and corresponding alarms include pulse rate and SpO2 measured from a pulse oximeter (Masimo SET SmartPod) integrated with
an Infinity Delta monitor and the heart rate derived from electrocardiography leads attached to a second Infinity Delta monitor.

Results: A total of 119 SpO2 alarms were evaluated. The lowest achievable SpO2 false alarm rate was 39%, with a sensitivity
of 80%. This demonstrates the framework’s utility in identifying the best possible dynamic composition to serve the clinical need
for false SpO2 alarm reduction and subsequent alarm fatigue, given the limitations of a small sample size.

Conclusions: The framework features, including reusability, signal quality indicator standardization, scalability, and
customizability, allow the evaluation and comparison of novel CDSS formulations. The optimal solution for a CDSS can then
be hard-coded and integrated within clinical workflows for real-time implementation. The flexibility to serve different clinical
needs and standardized component interoperability of the framework supports the potential for a real-time clinical implementation
of AD.

(JMIR Biomed Eng 2021;6(2):e23495) doi: 10.2196/23495
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Introduction

Clinical Decision Support Systems
Clinical decision support systems (CDSS) are computerized
health care analytic systems that have the functionality to
integrate patient data for their analyses and detect clinically
significant patient events. CDSS has the potential to lower
patient mortality and morbidity rates when integrated into
critical care workflows [1-5]. Clinical event detection (CED)
algorithms that identify clinically significant events and early
onset indicators of various pathophysiological diseases may be
integrated into the CDSS to further exploit this potential [6-10].
Similarly, parameter derivation algorithms that extract clinically
useful low-frequency parameters from high-frequency input
data are also essential for clinical decision making [11-14].
However, the inherent presence of signal artifacts in
physiological data impacts the reliability and accuracy of the
analytical results produced by such algorithms [15]. Moreover,
commercial physiologic patient monitors used in clinical settings
are built using relatively simplistic proprietary algorithms for
preprocessing artifacts [16-18]. This results in an unacceptably
high rate of false alarms generated by these patient monitors
[19]. Such alarms, termed as nuisance or false alarms, result in
increased noise levels, staff disruption, and staff desensitization
in busy critical care environments [20-22]. False alarms need
to be typically silenced or overridden by staff, which leads to
alarm fatigue, causing an even bigger hazard of missed alarms
and compromising the quality of care at the patient bedside
[21,23,24]. The Emergency Care Research Institute, a
Pennsylvania-based patient safety organization, issued an annual
report of the top 10 health technology hazards. Leading up to
and including 2019, the Emergency Care Research Institute has
reported medical device alarms to be among the top 10 hazards.
The literature has reported false alarm rates (FAR) greater than
70% [25]. The integrity and quality of data are crucial to the
success of any analytic system. Therefore, it is important to
design and implement CDSS for assessing the quality of data
and issue relevant alarms with a high specificity and low FARs.
A recent study suggested behavioral methods to reduce false
alarms and alarm fatigue in the neonatal intensive care unit
(NICU) [26]. The study was conducted in an NICU in a
low-income country (India) [26], whereas our study was
conducted in a high-income country (Canada) where the
recommended behavioral changes have already been
implemented [27].

Artifact Detection
Research groups have published several artifact detection (AD)
algorithms to assess the quality of physiologic data and minimize
the impact of artifacts before analyzing these data for CED.
However, a methodological literature review by the authors
conveys common limitations in the application of a vast majority
of AD algorithms [28]. In this review, we synthesized more
than 80 state-of-the-art AD algorithms and discovered the

following six shortcomings: most AD algorithms (1) are
designed for one specific type of critical care patient population,
(2) are validated on data harvested from a single monitor model,
(3) generate signal quality indicators (SQIs) that are not yet
standardized for useful integration in clinical workflows, (4)
operate either in standalone mode or are tightly coupled with
other CDSS applications, (5) are rarely evaluated in the real
time, and (6) are not implemented in clinical practice [28]. A
more recent review on the initiatives to manage and improve
alarm systems taken by means of human, organizational, and
technical factors for an improved quality of health care also
supports our findings [20]. The review reveals gaps between
alarm-related standards and how those standards are translated
into practice, especially in a clinical environment that uses
multiple alarming medical devices from different manufacturers
[20]. This suggests standardization across devices from the same
and different manufacturers and the use of machine learning to
improve the alarm safety [20].

AD Framework
To address the six shortcomings (1)-(6) that are listed above,
we designed and developed a novel, multivariate,
component-based, standardized AD framework [29]. For the
reader’s convenience, the Methods section provides the
background on framework development, including the design
of its components and interfaces by developing a common
reference model (CRM). The objective is to facilitate the
integration of AD and CED algorithms within the CDSS in a
standardized manner. To achieve this, we leveraged six
framework features f1 to f6, which are listed in then Methods
section. We designed the AD framework as a test bed to
formulate and evaluate multiple combinations of independently
developed AD and CED components. Once a combination of
AD and CED is affirmed to satisfy clinical needs through offline
testing, then that combination can be evaluated in a real-time
environment using the middleware technology. In this way, the
transition to real-time clinical implementation and validation
can be facilitated by using this framework.

For the reader’s convenience, this section summarizes the
development of the AD framework, as in a previous study [29].
This section comprises the development of the components and
interfaces that provide the framework’s end-to-end functionality,
a CRM for the standardized communication between
components across their interfaces and the framework’s features.

Components and Interfaces
A framework comprises components that interact with each
other and with the system through one or more interfaces to
realize the system goals. An interface is defined as a means of
communicating with or accessing a component [30]. Clearly
defined uniform interfaces enable components to make their
own functional requirements explicit as well as to enable
specifications of other collaborating components. Interfaces
stipulate prerequisites, provisions, and constraints of component
operations. A component can have one or more interfaces,
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selectively instantiated at the runtime depending on the
component’s role in a particular composition. As described in
a previous study [31], an interface can be categorized as (1)
requirement, (2) provision, and (3) configuration. Each
component has its own operational requirements, specified by
its requirement interface, which defines what the system or other
components in the system must provide for the component to
function [30]. The provision interface makes explicit what a
component can provide either to another component or as a
contribution to the system output. The configuration interface
incorporates a user-defined functionality, further allowing the
user to define the runtime parameters for a particular application.
A configuration interface can be part of the user interface
designed for a clinician to interact with the system settings.

The AD framework comprises the following components: (1)
patient data acquisition (PDA), (2) AD, and (3) CED. Each
component is composed of low-level code and the following
three interfaces: (1) requirement, (2) provision, and (3)
configuration. Framework components can interface as either
standalone algorithms or in cascade with the same or different
types of components.

Common Reference Model
The standardization of interfaces is key for achieving the system
goals. This involves defining unambiguous formalisms with
semantics that are commonly understood by all components
within the framework. A novel CRM was developed to
standardize the definitions for these interfaces to facilitate
component interoperability within the AD framework [29].
Multiple medical ontologies are in existence to address the
measurement of medical parameters such as LOINC (Logical
Observation Identifiers Names and Codes), which is a database
and universal standard for identifying medical laboratory
observations; Systematized Nomenclature of Human
Medicine (SNOMED), which is a multiaxial nomenclature for
indexing medical records; and the Fast Healthcare
Interoperability Resources which is an interoperability standard
created by the standards development organization Health Level
7 to enable health data, including clinical and administrative
data, to be quickly and efficiently exchanged across medical
devices. The CRM interfaces designed as a part of our
framework are easily customizable to match any of these
standards. CRM comprises metadata that are intended to
establish a common understanding of the meaning or semantics
of the data exchanged between component interfaces. This
allows all framework components to communicate, regardless
of their underlying low-level logic. For example, CRM
facilitates interfacing a variety of AD algorithms for different
types, frequencies, and quality of physiologic data that are
commonly processed by CDSS. In particular, the standardization
of SQIs is a novel contribution to the development of CRM.
The CRM metadata comprise the following layered schema:
PatientData (PatientID, DeviceID, Data (Type, TimeStamp,

Value, SQI (SQType and SQValue))). PatientData represents
the patient data exchanged between the components. Its schema
consists of three properties, as shown in Figure 1 (PatientID,
DeviceID, and Data). PatientID identifies the patients with
whom the data are associated. It can be any type of patient
identifier, such as the patient’s admission reference number.
DeviceID represents the hospital or original equipment
manufacturer (OEM) identifier for the patient monitor or other
devices from which the data are being acquired. The more
complex Data property has the following four attributes: Type,
TimeStamp, Value, and SQI. Type is a string variable from a
controlled schema, naming the physiological data stream.
TimeStamp is the time at which each datum is logged. A
component may have specific data exchange and processing
rates, which require data at specific frequencies. Therefore,
TimeStamp can be used to (1) derive the frequency of data, (2)
align multiple data streams for fusion, and (3) annotate events
in real time. Value contains the numeric or string value of each
datum. An SQI may also be associated with each datum. This
measure of signal quality is provided by the monitor (via a PDA
component) or derived by one or more AD algorithms. The SQI
for each datum is further described by two attributes: SQType
and SQValue. SQType is a string variable from a controlled
schema, for example, “binary,” “rank,” “categorical,” or “null.”
New strings can be introduced in this set in the future. “Null”
implies there is no SQI available for that particular data type.
SQValue depends on SQType. For example, if SQType is
“binary,” then SQValue belongs to a set of 0 or 1. This schema
is extensible when needed for newer CDSS formulations. Our
preliminary research demonstrates the instantiation of CRM
using XML [32].

At runtime, the PDA component inputs patient data and
conforms them to the CRM, which are then consumed by the
AD and CED components that comprise the CDSS. AD and
CED algorithms, published in the past or future, whether
standalone or tightly coupled, may be used in CDSS
formulations with modifications as needed. The framework is
a unique test bed with features of reusability and scalability.
These features allow for the creation of new AD configurations
by mixing and matching independently developed or decoupled
AD components and integrating those components with CED
components to serve varying clinical needs. The AD
configuration most suited to a clinical need can then be
hard-coded and integrated into the clinical workflow for
real-time implementation. For example, some recently developed
AD algorithms leverage sensor fusion for motion artifact
removal while deriving the heart rate (HR) [33-37]. The
implementation of these AD and CED algorithms within the
framework simply requires modifying their interfaces to comply
with the CRM. This would allow for these algorithms to be
tested, compared, or combined with extant or newer algorithms
to advance research in the field of signal quality and physiologic
monitoring.

JMIR Biomed Eng 2021 | vol. 6 | iss. 2 | e23495 | p. 3https://biomedeng.jmir.org/2021/2/e23495
(page number not for citation purposes)

Nizami et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 1. Common reference model schema consisting of the patient data metadata used by each component’s requirement and provision interfaces at
input and output. SQ: signal quality; SQI: signal quality indicator.

Framework Features
To address the six shortcomings (1)-(6) identified in
state-of-the-art AD algorithms in a previous study [28], we
developed an AD framework with the following six features f1
to f6 The framework design supports: (f1) flexibility to serve
the needs of patient populations from different types of critical
care units through generalization and customizability, (f2)
reusability across multiple types of physiological data harvested
by different OEM monitors, (f3) standardized definitions of SQI
that promote interoperability and comparison between
independently developed components, (f4) reusability and
scalability by mixing and matching several AD and CED
components in various combinations, (f5) customizability to
evaluate and compare the performance of multiple combinations
of independently developed components on offline and
potentially real-time patient data when integrated with clinical
workflow, and (f6) standardized component interfaces that can
potentially support real-time clinical implementation of AD.
This study validates the six framework features f1 to f6.

Research Contribution
The main contribution of this paper is the dynamic evaluation
of the AD framework as a test bed, given the clinical context
of false alarm reduction in medical devices. In this study, we
first developed a catalog of several exemplar AD components
and a single CED component. The interfaces of all these
components comply with the CRM, such that they can be
integrated within the AD framework. Given the motivation for
false alarm reduction, we designed a novel CED component
that can generate peripheral oxygen saturation (SpO2) alarms.
We then created four unique CDSS configurations by mixing
and matching different AD components from the catalog with
the same SpO2 alarm generation CED component. The Methods
section describes the research methodology, including the
development of the framework component catalog and the four
CDSS formulations used for evaluating the framework and its
features. This section demonstrates how the framework
leverages existing AD algorithms by incorporating them with

the SpO2 alarm–generating CED component. The four
configurations are designed and evaluated based on the results
and recommendations in the state-of-the-art research linked to
the reduction of false alarms generated by OEM monitors.
Although CRM has been developed after an extensive review
of the literature that summarizes the requirements, provisions,
and configurations for many existing AD algorithms, it is
expected that the CRM will continue to evolve because a wide
variety of new AD and CED algorithms with differing data
needs are implemented as components within this framework.
For example, a new OEM alarm management system, Philips
Care Event, was evaluated along with the optimization of the
clinical workflow in the NICU [25]. The OEM system delay
time for saturation-related alarms was increased from 10 to 20
seconds, and the averaging time was decreased from 10 to 4
seconds without changing the standard alarm settings. This
strategy led to a reduction in the number of SpO2≤80% alarms
and an increase in nurses’ response to alarms [25]. This is an
exemplar state-of-the-art CED strategy that can be easily
accommodated and evaluated in combination with various AD
techniques using our framework to further reduce false alarms
and subsequent alarm fatigue. In this way, the framework can
facilitate the discovery of optimal CDSS formulations through
the mixing and matching of new AD and CED components
supported by an evolving CRM.

Methods section describes the framework evaluation
methodology comprising the data collection method and
performance evaluation metrics of sensitivity (Sn) and FAR.
For framework validation, we used real patient data collected
from 11 neonates during a clinical study at the NICU of the
Children’s Hospital of Eastern Ontario (CHEO), Ottawa,
Ontario, Canada. Harvested data streams include HR, pulse rate
(PR), SpO2, and their corresponding alarms from physiologic
patient monitors. Several conditions, such as hypothermia
(peripheral vasoconstriction), edema (increased thickness and,
therefore, diffusion distance for oxygen), increased skin
pigmentation, and shock, are known to decrease the clinical
reliability of SpO2. None of the patients in this study had any
such condition.

JMIR Biomed Eng 2021 | vol. 6 | iss. 2 | e23495 | p. 4https://biomedeng.jmir.org/2021/2/e23495
(page number not for citation purposes)

Nizami et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Results section provides the performance evaluation results in
terms of Sn and FAR of the SpO2 alarms generated by each of
the four CDSS formulations. Once a CDSS formulation is
affirmed to satisfy clinical needs through offline testing by
applying this methodology, the optimal combination can be
evaluated in a real-time environment using the middleware
technology. This will facilitate the real-time implementation of
the optimal CDSS formulation through hard-coded integration
within clinical workflows.

It should be noted that all four CDSS formulations deploy the
same CED component for SpO2 alarm generation. Hence, the
sensitivity of the CED component to the error profiles and the
impact of errors remain controlled or constant across all
experiments. Therefore, the reported Sn and FAR values reflect
the performance of the four different AD configurations,
regardless of the performance of the CED component. In other
words, the framework evaluation reported here remains
independent of the performance of the CED component. This
validates the use of the framework as a test bed to discover the
optimal combination of AD components with a CED component
that is designed for a specific clinical problem. In the future,
the framework can be similarly deployed with another CED
component for different clinical problems.

Discussion section discusses the research contributions and
provides a detailed discussion on the validation of the six
framework features (f1) to (f6). Section 7 concludes the paper
and suggests directions for future work.

Methods

Overview
According to Larsen [30], beyond designing and building a
component-based framework, its evaluation requires static
models that illustrate component structures as well as dynamic
models that illustrate component collaboration. This paper first
develops a catalog of static PDA, AD, and CED components.
Subsequently, four dynamic compositions of these components
were formulated and evaluated using real patient data. Each of
the AD components processes physiological data streams in the
form of numeric or string values, and the CED component
generates alarms on the SpO2 data stream. The requirements
and provision interfaces of all components comply with the
CRM, such that they can be integrated within the AD
framework. Each configuration is integrated with PDA and
CED components to formulate a CDSS that generates SpO2

alarms at its output.

The following subsections expand upon this research
methodology: Components Catalog develops a catalog of

framework components; CDSS Formulations mixes and matches
these components to build and evaluate four different CDSS
formulations; and the Evaluation subsection uses real patient
data to evaluate the performance of each CDSS formulation,
thereby validating the use of the framework as a test bed; and
determining the optimal CDSS formulation for SpO2 alarm
generation. Once a combination is affirmed to satisfy clinical
needs through offline testing by applying this method, the
optimal combination can be evaluated in a real-time environment
using the middleware technology. This will facilitate the
real-time implementation of the optimal CDSS formulation
through hard-coded integration within clinical workflows.

Components Catalog
In this subsection, we develop a catalog of framework
components comprising an original PDA component, four AD
components, and one novel CED component. The catalog
represents a model instantiation of the framework comprising
the original PDA and CED components designed in
collaboration with our clinical partners. The catalog is not meant
to represent an exhaustive or particularly novel set of AD
components; rather, it tailors the interfaces of existing AD
algorithms to comply with the CRM.

PDA Component
As defined in our earlier research, the PDA component inputs
patient data from sources that include, but are not limited to,
OEM patient monitors, clinical data entry, lab results,
physician’s order, and patient demographics from electronic
health records [29]. In this research, the PDA inputs the
physiological data and alarm streams from the OEM monitors
and translates these data to the schema defined by the CRM. It
then feeds these data to one or more AD components, as shown
in the CDSS flowcharts in Figure 2. In these workflows, the
hardware and software requirements are factored in the PDA
component. The hardware comprises the Digi International
Edgeport4 (Digi International), which consists of the Eltima
Port Monitor Professional Edition Software v4.x (Eltima
Software) for data logging with additional customized software
written in JAVA to conform the OEM-generated data streams
to the CRM. Specifically, the Data.Type (SpO2, HR, PR, and
alarm status) and corresponding Data.Values were extracted
from each interleaved OEM data packet. Each packet was
produced by the monitor at 0.5 Hz. The low-level code of the
PDA component interpolated and synchronized the data streams
at 1 Hz. As the OEM monitors fail to provide an explicit SQI
stream for any of the data types, a default SQI stream with a
SQType=“binary” and SQValue=1 is generated by the PDA
component for each data type using MATLAB (MathWorks).
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Figure 2. Low-level component code for clinical event detection and generation of peripheral oxygen saturation alarms. SpO2: peripheral oxygen
saturation; SQI: signal quality indicator.

AD Components
We surveyed a wide variety of techniques used by AD
algorithms to detect, mitigate, and suppress physiological
artifacts that are found in clinical settings [28]. To demonstrate
the framework composition, we developed four AD components
exemplifying the following diverse AD functionalities: (1) data
and SQI deinterlacing, (2) SQI fusion, (3) data fusion, and (4)

data smoothing. Although each exemplar component differs in
its low-level code, all components conform to the CRM. The
low-level code and configuration interfaces for each functional
group of the components are described as follows.

ADDIL DeInterlace Component
Some monitors produce a single output stream, which is, in fact,
interlaced with the data and SQI. The ADDIL component is
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designed to deinterlace (DIL) these two information streams by
allowing the user to define a set of symbols (artSyms) to be
associated with the corresponding SQI values. Typically,
artSyms is a list of artifact indicators specified by the
manufacturer, which could be either numeric or string values
that replace the value of the datum. For example, for Infinity
monitors (Dräger Medical Systems), the set of artSyms would
include {NaN,^^,5}, where Not-a-number (NaN) is substituted
for any missing datum, ^^ is an artifact indicator, and 5 is an
alarm state (ie, part of the alarms stream) indicating a lead
disconnection. Therefore, a data segment interlaced with artifacts
is logged with the corresponding artSyms value. In a different
example, Philips Intellivue MP70 monitors (Philips) generate
a value of “2” in the alarms data stream in case of leads
disconnection. However, with the alarm data stream connected
to the input of the ADDIL component, the value “2” can be
identified by the component as an artSyms. In such a way, the
component can deinterlace the alarms stream and generate a
corresponding binary SQI stream, where the value “2” would
be replaced by a 0. The low-level code for ADDIL is given by
equation (1).

i f  ( D a t a . Va l u e ( i )  a r t S y m s ) ;
SQIout(i)=SQIMatch(Data.Value(i)); end (1)

The configuration interface of the ADDIL component specifies
the Data.Type to be examined, artSyms, and the corresponding
set of SQValue (SQIMatch). This AD component produces a
“rank” SQType, with “binary” being a special case of “rank,”
where SQIMatch=0. Multiple instances of this component were
cascaded in the AD framework in this validation study.

ADFuseSQI Fuse SQI Component
The ADFuseSQI component accepts more than one data stream
at its requirements interface, along with the respective SQI of
each stream. This component combines N incoming SQI inputs
to generate a single fused SQI (FuseSQI). The fused SQI value
is equal to the operator, that is, the minimum, maximum, or
average SQI value from all the input SQI data at any given
instant. This requires all the input SQTypes to be the same. The
low-level code for ADFuseSQI is shown in equation (2).

SQIout(i)=operator (SQI1, SQI2,..., SQIN) (2)

The configuration interface of the ADFuseSQI component defines
N, the required input SQType (same as output), and the operator
(min, max, and avg) to be applied to all input SQI values. In
addition, the configuration interface can specify which data
types to forward at the provision interface, as only a subset of
the input streams may be required beyond this component.
Equation (2) is a relatively simple depiction of data fusion. Data
can be fused at different levels of abstraction, requiring a more
complex combination of operators and weighting [38].

ADDiff Differential Component
The ADDiff component calculates an absolute differential error
function between two input data streams, Data1 and Data2. This
error value was then compared with a configured threshold. The
input “binary” SQI streams are examined such that if either
stream has a poor signal quality, then the output SQValue=0.

This component can be used in the case where two independent
measurements of the same physiological parameter are provided;
then, this component will derive an SQI by exploiting data
fusion. The configuration interface specifies the output SQType
to be produced; the Data.Type of Data1 and Data2; the number
of SQI thresholds, nThresh, to be applied to the difference; the
ordered set of thresholds (SQThreshj;j=1:nThresh); and the set
of nThresh+1 SQValues (SQIj) corresponding to each threshold
with the additional SQValue for the default case (SQIdefault). The
configuration interface can specify which data types to forward
at the provision interface. The low-level code for this component
is illustrated in equation (3), as follows:

SQIout (i)=SQIdefault;

i f  (Data1 .SQI.SQValue( i )==0)  | |
(Data2.SQI.SQValue(i)==0);

return; diff=|Data1.Value(i)−Data2.Value(i)|;

for j=1: nThresh

{if (diff ≤ SQThreshj){SQIout(i)=SQIj;break;}}end
(3)

The ADDiff component can derive a “rank” SQType stream from
HR and PR streams by configuring the component to have
output SQType set to “rank”; the Data.Type of Data1=HR and
Data2=PR; nThresh=3; SQThresh={6,12,18}; and SQIj={3,2,1,0},
where the SQIdefault=0. This configuration of the ADDiff

component was used in the validation study.

For example, consider the work on wearable devices and
systems published by He et al [39]. Their study synchronously
collected the data of ballistocardiogram, electrocardiography
(ECG), and photoplethysmography. Their study suggests
checking if all three physiological signals measure the same
values for HR so that this information can be used to ensure
that the acquired data are not corrupted. However, their study
did not demonstrate whether and how it checks for data quality.
Such a system would benefit from using the ADDiff component.

ADMedFilt Median Filter Component
The ADMedFilt component implements a median filter (MedFilt).
It is used for smoothing a stream of data to mediate abrupt
transient artifacts. The configuration interface defines the size
of the sliding window MedWW for use while computing the
median value. Its requirement interface inputs a single data type
and its corresponding SQI stream. Each datum in the output
data stream was equal to the median of the past MedWW input
data samples. Only a subset of these MedWW may actually be
used in computing the median because the ADMedFilt component
only includes the data within the sliding window for which the
input SQI is acceptable. The SQI stream passed through this
component and remained unchanged. By comparing the filtered
and unfiltered data using an ADDiff component, one can compute
an SQI proportional to the degree of smoothing applied to each
point. The ADMedFilt component was used in CDSS formulations
in this study.
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CED Component
In this subsection, we develop a novel CED component that
generates SpO2 alarms. By discussing and reaching consensus
with our clinical collaborators at CHEO, we translated clinical
rules into low-level logic to create a CED component with a
requirements interface that conforms to the CRM. Alarm
generation studies suggest these two approaches to reduce the
FAR: (1) modifying or adjusting the alarm thresholds and (2)
introducing alarm annunciation delays, that is, a delay between
when an alarm threshold is crossed and when the alert is sounded
or displayed [25,40-43]. These studies test alarm annunciation
delays anywhere from 5 to 120 seconds for a variety of
physiological data types. However, none of these studies
quantify the trade-off between Sn and FAR resulting from their
suggested alarm generation algorithms. In our study, the CED
component incorporates both approaches described above to
reduce FAR. Its low-level code allows for adjusting the alarm
thresholds by reduction in the lower SpO2 alarm threshold and
increment in the upper SpO2 alarm threshold. During evaluation,
both limits were adjusted by 3%, which corresponds to the
manufacturer-specified margin of error in the accuracy of the
pulse oximeter reading. Therefore, the low alarm threshold,
ThreshLo, is breached if the SpO2 value is lower than the alarm
threshold of the OEM monitor by at least 3%, and the upper
alarm threshold ThreshHi is breached if the SpO2 value is higher
than the alarm threshold of the OEM monitor by at least 3%.
Incorporating the second approach, the low-level code of the
CED allows for tuning the alarm annunciation delays (CEDDT)
between 5 and 60 seconds.

Figure 2 shows a flowchart of the low-level source code of the
CED component. In this case, the user is an expert who
composes the CDSS in collaboration with the clinician. The
user can set tunable parameters at the configuration interface,
including values for ThreshLo, ThreshHi, DTLO, DTHI, and Floor.
Floor is an absolute minimum SpO2 value determined by

clinicians, typically in the range of 50%-75%. We set a Floor
value below because SpO2 sensors are unable to calibrate at
such low values; hence, the true state of the patient can no longer
be determined, and the CED must alarm to alert the clinician
to come and check the patient. The CED continuously compares
the SpO2 value with the lower and upper limits, ThreshLo and
ThreshHi, respectively. A history of threshold breaches gets
stored in circular buffers, errorLo and errorHi. These breaches
are summed over a sliding window such that the total error is
a function of both the magnitude and duration of the threshold
breaches. The integrated error is continuously compared with
the tunable lower and upper decision thresholds, DTLO and
DTHI. These decision thresholds are set proportional to the
CEDDT value, which is set at the configuration interface of the
CED component. Specifically, DTLO is set equal to CEDDT, and
DTHI is set to twice the CEDDT because high SpO2 alarms are
not clinically deemed to be as dangerous as low SpO2 alarms.
Therefore, the CED waits twice as long to generate a high SpO2

alarm as compared with a low SpO2 alarm. The decision to
generate an alarm is based on three conditions, as shown in
Figure 2. The CED generates an alarm if the incoming SpO2

value is less than or equal to the set value of Floor and the
incoming SQI is not zero, or if the integrated errors, namely
errorLo or errorHi, exceed DTLO or DTHI, respectively. Here, we
configured parameters suitable for the neonatal population.
Users may tune the parameters specific to other patient
populations.

CDSS Formulations
This section describes the dynamic framework compositions of
the four CDSS formulations. MATLAB was used for the
dynamic framework modeling. Table 1 lists the requirements,
provisions, and configuration interfaces for each AD component
deployed in the four CDSS formulations.
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Table 1. Artifact detection component interfaces used in clinical decision support systems formulations.

InterfaceADa component

ConfigurationProvisionsRequirements

CDSSb #1 and CDSS #2

artSymse{NaNf,^^,5}[SpO2Alarms, SQI][SpO2
c Alarms, SQId]ADDil

artSyms{NaN,^^,5}[SpO2, SQI][SpO2, SQI]ADDil

N=2; operator (min); SQTypeg=“binary”[SpO2, SQI][SpO2 Alarms, SQI]; [SpO2,
SQI]

ADFuseSQI

CDSS #2 ( additional component )

Med WW
h ={5,10,20,25,30,35,60}[SpO2Med, SQI][SpO2, SQI]ADMedFilt

CDSS # 3 and CDSS #4

artSyms{NaN,^^,5}[HR, SQI][HRi, SQI]ADDil

artSyms{NaN,^^,5}[PR, SQI][PRj, SQI]ADDil

artSyms{NaN,^^,5}[SpO2, SQI][SpO2, SQI]ADDil

artSyms{NaN,^^,5}[SpO2 Alarms, SQI][SpO2Alarms, SQI]ADDil

N=2;operator(min); SQType=“binary”[SpO2, SQI][SpO2Alarms, SQI]; [SpO2, SQI]ADFuseSQI

Data1.Type=“HR”;Data2.Type=“PR”;SQ-
Type=“binary”;
SQThresh={6,12,18};SQIdefault=0

[PR, SQI][HR, SQI]; [PR, SQI]ADDiff

N=2; operator(min); SQType=“binary”[SpO2, SQI];[SpO2, SQI]; [PR, SQI]ADFuseSQI

CDSS # 4 ( additional component)

Med WW ={5,10,20,25,30,35,60}[SpO2Med, SQI][SpO2, SQI]ADMedFilt

aAD: artifact detection.
bCDSS: clinical decision support systems.
cSpO2: peripheral oxygen saturation.
dSQI: signal quality indicator.
eartSyms: a list of artifact indicators with corresponding values of SQI specified by the manufacturer.
fNaN: Not-a-number.
gSQType: a string variable from a controlled schema with corresponding types of SQI.
hMedWW: size of the sliding window of the median filter.
iHR: heart rate.
jPR: pulse rate.

CDSS #1
CDSS #1 constitutes the simplest of the four compositions
designed for this study. A flowchart for CDSS #1 is shown in
Figure 3. This flowchart has three functional horizontal swim
lanes, depicting the PDA, AD, and CED components of the
integrated CDSS. Each data stream is represented by a tuple
with both data and SQI information. The input data stream is
sourced only by the SpO2 sensor comprising two data types,
namely, SpO2 and SpO2 alarm status (SpO2Alarm). The
low-level logic of the PDA component maps the incoming
values to its respective data type (SpO2 or SpO2Alarm) and
assigns a default SQValue of 1 to each datum of each Data.Type
because an SQI value is not provided by the OEM monitor in
this case.

The AD composition pipeline in CDSS #1 consists of two
ADDILs and one ADFuseSQI component. The ADDIL component
deinterlaces the OEM-generated artifacts, whereas the ADFuseSQI

component combines the SQI streams from the two ADDIL

components. The PDA provides SpO2 and its associated SQI
stream to one instantiation of ADDIL while providing SpO2Alarm
and its SQI stream to the second instantiation of ADDIL. The
low-level code of the ADDIL component deinterlaces the
OEM-specified artifact values. Here, the user-set configuration
interface includes artSyms={NaN,^^,5} and SQIMatch=0. The
“NaN” string implies missing data, and the “^^” symbol
represents OEM-specified artifact values in the SpO2 stream,
whereas “5” is interlaced within the SpO2Alarm to imply that
the SpO2 sensor is off. Hence, the use of the two ADDIL

components would provide the original data streams of
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Data.TypeSpO2 and SpO2Alarm, along with their respective
SQI streams, with SQValue=0 wherever the Data.Value is equal
to any one of the artSyms. These 2 data streams and their
associated SQI streams are then input to the requirements
interface of an ADFuseSQI component. The low-level code of the
ADFuseSQI component fuses two or more incoming SQI inputs

to generate a single fused SQI value. In this formulation, the
operator is set to min; hence, it provides an output SQValue that
is the minimum of the 2 input SQValue for which
SQType=“binary.” As shown in Figure 3, this output SQI stream
is associated with the original SpO2 stream that is required by
the CED component.

Figure 3. Flowchart showing the patient data acquisition, artifact detection, and clinical event detection components in clinical decision support systems
CDSS # 1 and 2 formulations. CDSS: clinical decision support systems; ECG: electrocardiography; HR: heart rate; PDA: patient data acquisition; PPG:
photoplethysmography; PR: pulse rate; SpO2: peripheral oxygen saturation; SQI: signal quality indicator.

CDSS #2
CDSS #2 extends the CDSS #1 formulation by adding an
ADMedFilt component to process the SpO2 data stream through
a median filter for reducing transient artifacts. This extension
is labeled CDSS #2 in Figure 3. The low-level code of the
ADMedFilt configuration interface comprises a tunable parameter
MedWW={5,10,20,25,30,35,60}, and the component produces a
median filtered SpO2Med data stream and its associated SQI
stream, which are then passed to the requirements interface of
the CED component.

CDSS #3
CDSS #3 leverages data fusion to derive an estimate of the
signal quality for SpO2. Here, an ADDiff component computes
the difference between the PR and HR. Physiologically, PR and
HR are equal, representing the mechanical and electrical

pumping rates of the heart, respectively. Therefore, any
difference between PR and HR serves as a proxy for signal
quality measurements. In this study, HR is considered as the
gold standard. Therefore, a large difference between the
instantaneous PR and HR values indicates that the PR has
deviated and is not reliable. In this case, a low SQI is assigned
to both PR and SpO2 because both are sourced from the same
sensor. Figure 4 shows the PDA, AD, and CED components in
the flowchart for CDSS #3. The low-level code of the ADDiff

component computes the difference between the instantaneous
HR and PR values. By comparing that difference to a threshold,
a “binary” SQType is generated, which is then passed to the
requirements interface of the CED component. The
configuration interface was set with a single threshold to produce
a “binary” SQType. The SQI threshold (SQThresh) is varied in
the range {6,12,18} to examine its effect, and the results are
reported separately for each.
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Figure 4. Flowchart showing the patient data acquisition, artifact detection, and clinical event detection components in clinical decision support systems
CDSS # 3and 4 formulations. CDSS: clinical decision support systems; ECG: electrocardiography; HR: heart rate; PDA: patient data acquisition; PPG:
photoplethysmography; PR: pulse rate; SpO2: peripheral oxygen saturation; SQI: signal quality indicator.

CDSS #4
CDSS #4 builds on the composition of CDSS #3, as depicted
in Figure 4. Here, an ADMedFilt component is added such that
the SpO2 data stream can be median filtered to produce SpO2Med

data and SQI streams, which are then fed to the requirements
interface of the CED component. The tuned values of MedWW

include {5,10,20,25,30,35,60}.

Evaluation

Clinical Data Collection
Data were collected during a clinical study conducted in the
CHEO NICU. The study was approved by the hospital’s
Research Ethics Board. In total, 11 neonatal patients with diverse
pathologies were enrolled in this study. The following
time-stamped data streams and corresponding alarms were
collected simultaneously from each infant at a frequency of one
reading every 2 seconds (0.5 Hz): PR and SpO2 from a pulse
oximeter (Masimo SET SmartPod Model # MS16356, Masimo
Corp) integrated with an Infinity Delta monitor (Dräger Medical
Systems) as well as HR derived from ECG leads attached to a
second Infinity Delta monitor. HR and PR are parameters that
estimate the rate at which the heart beats per min (bpm).

Although HR and PR are acquired independent of each other,
they essentially represent the exact same functionality of the
heart, albeit in electrical and mechanical contexts, respectively.
HR is acquired through ECG leads, which are electrical sensors,
and PR is acquired using optical sensors attached to the pulse
oximeter. Moreover, the pulse oximeter derives SpO2 using the
same optical sensor data. This implies that the quality of the PR
data stream reflects the quality of the SpO2 data stream.
Therefore, to evaluate the framework as a CDSS that generates
SpO2 alarms, we selected the HR as the gold standard for
comparison with the quality of the PR data stream. The reason
for selecting the HR patient data acquired from the Infinity
Delta monitor as the gold standard is that these monitors are
used for continuous patient monitoring at the research site
(CHEO); therefore, clinicians depend on the vital sign data
displayed by these monitors to routinely assess the patients.
Second, we evaluated the SpO2 alarm generation performance
of the framework as compared with the Masimo SET SmartPod
pulse oximeter. Again, this pulse oximeter was selected for
comparison because it is routinely used for continuous patient
monitoring at the CHEO. RS232 serial ports on both Infinity
Delta monitors were connected through Digi International
Edgeport4 (Digi International) hardware to a USB port on a
computer. Eltima Port Monitor Professional Edition Software
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v4.x (Eltima Software) was installed on the same computer to
read and log data transmitted by each monitor in real time. Thus,
a total of 79,200 data points from each physiologic data type
were used for analysis. To synchronize data collected from the
2 OEM monitors, these samples were interpolated to obtain one
sample every second, resulting in 158,400 data points from each
data type. Information regarding patient demographics, inclusion
and exclusion criteria, and the detailed methods of data
acquisition and data annotation can be found in the author’s
earlier research on this data set [44]. A previous study manually
counted and categorized patient monitoring alarms [44].
Clinicians, including bedside nurses and neonatologists,
validated and categorized the alarms generated by patient
monitors. However, manual counting introduces the likelihood
of human error. To minimize this likelihood, the process of
counting and categorizing the alarms was automated by running
the data through a computerized script. This resulted in the
identification and categorization of 119 alarms generated by
the Masimo pulse oximeter across all 11 patients. These alarms
were validated against the clinicians’ original validation and
categorization criteria from [44]. The Sn and FAR of the
Masimo pulse oximeter were found to be 85% and 46%,
respectively.

Evaluation Metrics
Data from all 11 patients were used as an input to evaluate each
of the four integrated formulations, CDSS #1-4. Leave-one-out
cross-validation was used to compute two performance metrics,
Sn and FAR. Data from a set of 10 patients were used to tune
the components and from the remaining patients to generate
alarms. This was repeated 11 times, each time changing the
patient for whom the data were left out as a test case.

We then compared the alarm generation performance of each
CDSS composition with that of the OEM monitor. Using the
OEM monitor’s Sn of 85% and FAR of 46%, we formulated

equations (4) and (5) to measure the difference between the Sn
and FAR values of the CDSS formulations and the OEM
monitor and report that as a percent change. Negative values of
percentage change indicate reduction, and positive values
indicate increments in Sn and/or FAR. These are reported as
(% change in Sn) and (% change in FAR) by equations 4 and
5, respectively.

Results

Overview
This section presents the performance evaluation results for all
four formulations CDSS #1-4 in terms of Sn and FAR, which
are averaged across all 11 cross-validation trials. Tables 2 and
3 summarize the pooled results for achieved Sn values of >75%
and >80%, respectively. These Sn thresholds were chosen
arbitrarily, and other threshold values may be chosen depending
on the clinical needs. These tables show the best achievable
results expressed as (Sn [% change in Sn], FAR [% change in
FAR]) in all four CDSS formulations. The formulations were
tabulated based on the inclusion of the ADMedFilt and ADDiff

components. Figure 5 shows the graphical results from all four
CDSS formulations as linear plots of Sn (%) and corresponding
FAR (%) achieved by tuning the parameters MedWW, CEDDT,
and SQThresh, where applicable to a CDSS. As the
configuration parameters of the AD and CED components are
varied (tuned), the total number of alarms that are generated
also varies. By reporting the performance metrics of Sn and
FAR in terms of percentages, we can compare the results across
the four CDSS formulations. Here, we compare the best results
achieved and tabulated in Tables 2 and 3.

Table 2. The best possible (Sn [% change in Sn], FAR ([% change in FAR]) achieved in clinical decision support systems #1-4, where sensitivity≥75%.
Tunable parameters are specified for each case.

ADDiff
bADMedFilt

a

Yes •• CDSS #2CDSSc #4
• MedWW=15, CEDDT=12: (75 [−11.7%], 32 [−30.4%])• MedWW

d=10, CEDDT
e=15,

• SQThreshf=18: (76 [−10.5%], 36 [−21.7%])

No •• CDSS #1CDSS #3
• •CEDDT=20, SQThreshf=18: (78 [−8.2%], 47 [21.7%]) CEDDT=15: (76 [−10.5%], 40 [−15%])

aADMedFilt: AD median filter component.
bADDiff: AD differential filter component.
cCDSS: clinical decision support systems.
dMedWW: size of the sliding window of the median filter.
eCEDDT: alarm annunciation delay.
fSQThresh: the ordered set of thresholds.
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Table 3. The best possible (Sn [% change in Sn], FAR [% change in FAR]) achieved in clinical decision support systems #1-4, where sensitivity ≥80%.
Tunable parameters are specified for each case.

ADDiffADMedFilt

NoYes

Yes •• CDSS #2CDSSa #4
• MedWW=10, CEDDT=10: (80 [−5.8%], 39 [−15.2%])• MedWW

b=10, CEDDT
c=5, SQThreshd=18: (80

[−5.8%], 44 [−4.3%])

No •• CDSS #1CDSS #3
• •CEDDT=12, SQThresh=12: (82 [−3.5%], 50 [8.6%]) CEDDT=12: (80 [−5.8%], 41 [−10.8%])

aCDSS: clinical decision support systems.
bMedWW: size of the sliding window of the median filter.
cCEDDT: alarm annunciation delay.
dSQThresh: the ordered set of thresholds.

Figure 5. Results of sensitivity (%) and false alarm rate (%) plotted against the relevant tunable parameters CEDDT and MedWW for (a) clinical decision
support system CDSS #1, (b) clinical decision support system CDSS #2, (c) clinical decision support system CDSS #3 with SQThresh=18, and (d)
clinical decision support system CDSS #4 with SQThresh=18. FAR: false alarm rate.

CDSS #1
The best achievable result for CDSS #1 is (Sn, FAR)=(80, 41)
and is obtained when CEDDT=12, where Sn≥80%. If Sn is only
required to be ≥75%, then the best achievable performance

becomes (Sn, FAR)=(76, 40) when CEDDT=15. The FAR (40%)
was 15% less than that of the OEM’s FAR (46%). This is
achieved at the cost of decreasing Sn (76%) by 10.5% than the
Sn of the OEM (85%).
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CDSS #2
Table 2 shows that the best achievable result for CDSS #2 is
(Sn, FAR)=(80, 39) when MedWW=10 and CEDDT=10, where
Sn≥80%. In this formulation, Sn≥80% was achievable only
when MedWW≤10. If Sn is allowed to be ≥75%, then the best
achievable performance becomes (Sn, FAR)=(75, 32) when
MedWW=15 and CEDDT=12.

CDSS #3
In CDSS #3, with the ADDiff component configured with
SQThresh=6, the best achievable result for (Sn, FAR)=(86, 52)
with CEDDT=5. The CDSS performance was worse for all other
CEDDT thresholds at SQThresh=6. Although this CDSS
performs with an improved Sn (86%) as compared with the
OEM’s Sn (85%), the cost is an increase of 13% in the FAR
(52%) as compared with the OEM’s FAR (46%).

With the ADDiff component configured with SQThresh=12, the
best achievable (Sn, FAR) is (82, 50) when CEDDT=12 for both
values of the required Sn≥80% and Sn≥75%. The CDSS
performance was worse for all other CEDDT thresholds at
SQThresh=12. When the ADDiff component is configured with
SQThresh=18, the best achievable result for (Sn, FAR)=(80,
50), with CEDDT=12 with a threshold of Sn≥80%, and the best
achievable result for (Sn, FAR) is (78, 47), with CEDDT=20
while maintaining Sn≥75%. Thus, CDSS #3 was not able to
beat the OEM monitor’s FAR (46%) at any of the parameter
settings that were tested.

CDSS #4
When the ADDiff component of CDSS #4 is configured with
SQThresh=6 and the sensitivity requirement is ≥80%, the best
achievable result for (Sn, FAR)=(84, 52) when MedWW=5 and
CEDDT=5. When Sn≥75%, the best achievable (Sn, FAR)=(75,
40) when MedWW=10 and CEDDT=12. MedWW>10 resulted in
lower (Sn, FAR) values, where Sn<75. If the ADDiff component
is configured with SQThresh=12 and Sn≥80%, then the best
achievable result for (Sn, FAR)=(82, 49) with MedWW=5 and
CEDDT=12. When Sn≥75%, the best achievable (Sn, FAR)=(75,
37) is obtained when MedWW=12 and CEDDT=12. MedWW>12
resulted in lower (Sn, FAR) values, where Sn<75. Table 3 shows
the results from CDSS #4, where the ADDiff component is
configured with SQThresh=18 and Sn≥80%, and the best
achievable result (Sn, FAR)=(80, 44) is obtained when
MedWW=10 and CEDDT=5. When Sn≥75%, the best achievable
result (Sn, FAR)=(76, 36) is obtained when MedWW=10 and
CEDDT=15. MedWW>12 resulted in lower (Sn, FAR) values,
where Sn<75.

Discussion

Principal Findings
The overarching contribution of this study is the illustration of
dynamic framework models and their evaluation using clinical
data. In this section, we also discuss how this evaluation leads
to the validation of the six framework features (f1) to (f6).

Framework Evaluation
As described in the Evaluation section, the data set used in this
evaluation contained 119 alarms across all 11 patients in this
study. This data set represents a unique and valuable resource
because it includes the detailed annotations of artifacts, alarms,
clinical events, clinical interventions, and observations. The
patients in our study represented a neonatal population with
varying disease severity, weight, and gestational age. Although
such a wide range of patients provides for the development of
widely applicable rules, as discussed above, many decision
thresholds are required to be patient centric. For example, one
patient was far more ill than the other 10 patients, with 32% of
the associated clinical events. Other limitations of the data set
include a possible ambiguity in categorizing alarms as true
versus false, especially in cases where the SpO2 reading hovers
around the OEM monitor’s alarm threshold setting. In this study,
such indeterminate alarms were categorized as false alarms.
The study sample size was limited because of hospital logistics
and resources. In the future, a larger sample size could facilitate
subgroup analyses with division based on clinical characteristics,
weight, and gestational and chronological age of infants.

From the evaluation results presented in Table 2 under the
criterion that Sn≥75%, we infer that CDSS #2 results in the best
achievable performance of (Sn, FAR)=(75,32) when MedWW=15
and CEDDT=12. Although a considerable reduction in Sn was
observed (11.7%), this parameter combination resulted in a
significant reduction in FAR (30.4%). From Table 3, we
conclude that CDSS #2 also gives the best possible performance
of Sn=80% and FAR=39%, representing percentage reductions
of 5.8% and 15.2% for Sn and FAR, respectively. Therefore,
CDSS #2 is considered the optimal formulation out of all four
CDSS because of the largest reduction in FAR while maintaining
Sn≥80%. The optimal parameters for this formulation were
MedWW=10 and CEDDT=10.

The results of CDSS #1 illustrate the effects of varying the CED
decision threshold (CEDDT) on the performance of CDSS. By
adjusting this threshold, the system could be made more
conservative or permissive, leading to an explicit trade-off
between Sn and FAR. This CEDDT is patient-centered and may
be adjusted depending on the severity of disease and clinical
resources available, for example, the nurse-to-patient ratio may
differ in the NICU versus that in the general ward. A comparison
of the results from CDSS #1 and #2 indicates that the use of
ADMedFilt significantly improved both the Sn and FAR of the
CDSS. As expected, increasing the median filter width reduced
both Sn and FAR because the median filter smoothed out
transient SpO2 values. The range of median filter widths was
evaluated in combination with a range of CEDDT values seeking
the combination that provided the greatest decrease in FAR
while maintaining a Sn≥80% or ≥75%. Although these Sn
thresholds were somewhat arbitrary, they reflect the need to
detect the majority of true clinical events.

CDSS #3 and #4 leveraged data fusion via an ADDiff component
to identify periods of low signal quality. Clifford et al [45]
recommended that an SQI be generated for each datum when
a known error rate is available for calibration. Following this,
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we hypothesized that by computing the error rate from the
combined information from two different sensor modalities, PR
from SpO2 and HR from ECG, an SQI signal could be generated
and increased performance would be achievable. The results
for three different ADDiff threshold values failed to demonstrate
an improved performance. In fact, the frequency of all three
types of alarms, namely, true, missed, and false, increased with
the use of ADDiff. A close inspection of the generated alarms
revealed the fragmentation of previously contiguous alarms into
more alarms of shorter duration. This was due to the
instantaneous masking of individual SpO2 values because of
transient disparities between HR and PR, which are not
necessarily associated with prolonged periods of low signal
quality. We observe that an incremental trend in SQThresh
values, that is, from 6 to 12 to 18, demonstrates a decreasing
trend in Sn and FAR percentages in both CDSS #3 and #4. In
future work, the CED algorithm may be modified to process
the SQI in a variety of ways that may lead to improved
performance. Suggestions for future exploration include either
retaining the previous alarm state during periods of low signal
quality or appraising cumulative SQI values instead of
instantaneous ones.

In summary, dynamic framework modeling showed that the
lowest achievable FAR was 39% at a sensitivity of 80%, when
compared across all four CDSS formulations.

Framework Features
The four dynamic CDSS formulations serve to validate the 6
framework features (f1) to (f6) as follows:

(f1) Flexible in serving the differing needs of patient populations
from different types of critical care units through generalization
and customizability. The CRM includes several fields to
generalize and customize each component, for example,
Data.Type and Data.SQType. Although the data in this
validation study were collected at the NICU, the inherent
flexibility of the framework can accommodate various types of
data streams acquired from other types of critical care units.
Similarly, the component-based nature of this framework allows
for the creation of CED components relevant to different clinical
domains and for their integration with the most appropriate
available AD components. As a result, the components catalog,
dynamic framework models, and analyses are not restricted in
application to the NICU. This could be demonstrated using
future experiments based on data from other units, whether
gathered specifically for this research or taken from repositories
such as Physio Net [46].

(f2) Reusable across multiple types of physiological data
harvested by different OEM monitors: The configuration
interface of each component permits the setting of OEM-specific
and Data.Type-specific values such that the same component
may be applied to various physiological data types arising from
different OEM monitors. For example, the artSyms configuration
parameter allows the ADDIL component to identify artifacts
flagged by different OEM monitors. AD components selected
from the catalog were used to process different physiological
streams acquired by different OEM monitors in various
experiments. For example, the ADDIL component is used to

process the HR from the Dräger OEM monitor and SpO2 and
PR from the Masimo OEM pulse oximeter. This validates the
reusability of the framework and its components across multiple
types of physiological data harvested by different OEM
monitors.

(f3) Standardized definitions of SQI that promote interoperability
between independently developed components: The CRM
defines standardized types of SQI, such as, “continuous,” “rank,”
and “binary.” These experiments used multiple components to
generate the SQI. These components were developed based on
the current algorithms identified in the literature review. For
example, the ADDiff component is derived from the work of Yu
et al [47] and applied to the HR and PR streams in experiments
3 and 4, whereas the CED component leverages the ideas of
threshold modification and alarm annunciation delays that were
introduced in previous studies [40-43]. These experiments
demonstrate the integration of components that were developed
independently and whose interoperability is facilitated through
the use of standardized SQI, as defined in the framework’s
CRM.

(f4) Reusability and scalability by cascading, mixing, and
matching several AD and CED components in various
combinations: By requiring all component interfaces to conform
to the standardized CRM, interoperability is promoted, allowing
for component reuse and the creation of highly complex
pipelines leveraging simple and well-tested components. Each
of the four models represented a different component
composition. The analyses in each composition vary in scale
through the reuse and cascading of components. This mixing
and matching are made possible by the adherence of each
component to the CRM. Comparing the flowcharts in Figures
3 and 4, there is an increase in the number of instantiations of
the ADDIL component from 2 to 4 between CDSS #1 and #3.
This demonstrates that the framework supports reusability and
scalability by cascading, mixing, and matching several
components.

(f5) Customizability to evaluate and compare the performance
of multiple combinations of independently developed
components on offline and potentially real-time patient data
when integrated with clinical workflows: A literature review
reveals that AD algorithms are typically developed and validated
in offline environments [28]. This study illustrates the dynamic
framework evaluation using real patient data offline. This
validates the use of the framework as a test bed for multiple
combinations of independently developed components. Once
a combination is affirmed to satisfy clinical needs through
offline testing, that combination can then be evaluated in a
real-time environment using the middleware technology. In this
way, the transition to real-time clinical implementation and
validation is facilitated. A number of studies have suggested
the introduction of delays in alarm annunciation to reduce FARs.
This strategy is expected to reduce the FAR. However, there is
a lack of quantitative evaluation in terms of the impact of such
a strategy on Sn and FAR. The framework developed here
promotes and enables such a quantitative study design, as
demonstrated by the experiments developed here. In fact, it was
found that such strategies failed to suppress false alarms while
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maintaining a sufficiently high Sn. This shows that the
customizability of the framework allows for performance
evaluation and comparison of multiple combinations of
independently developed components on offline and potentially
real-time patient data when integrated with clinical workflows.

(f6) Standardized component interfaces that can potentially
support real-time clinical implementation of AD: If independent
research and OEM groups choose to implement their algorithms
within the context of the framework, that is, adhering to the
CRM, then it is more likely that these algorithms will reach
clinical implementation because the CRM supports
interoperability between all components. Furthermore, the
framework simplifies information technology (IT) requirements
for hospitals because it provides a unified functional
environment in which all AD and CED components required
by multiple critical care units can be supported and executed.
Finally, the framework facilitates the testing and validation of
new algorithms across different clinical settings, populations,
critical care units, and pathologies. This will make the system
more robust and therefore more likely to be adopted [48]. There
is a paucity of CDSS for real-time clinical implementation. One
hurdle to their clinical adoption is the requirement to transform
complex algorithms for real-time implementation. By
implementing the required algorithms within the framework,
the algorithms will be made suitable for execution in real time.
The four experiments were implicitly designed to run the
framework components in a real-time streaming environment.
The composition of the analysis in each experiment was
evaluated using a simulated real-time environment. As a result,
with negligible reformulation, the optimal framework
composition resulting from this evaluation can be integrated
within clinical workflows. Therefore, we conclude that the

standardized component interface design warranted by the CRM
supports real-time clinical implementation of AD within CDSS.

Conclusions
This research evaluated a novel AD framework that standardizes
the interoperability of AD and CED algorithms for integration
within the CDSS. The framework provides a unique test bed
with the ability to create and integrate new AD compositions
by mixing and matching independently developed or decoupled
AD components with CED components that are designed to
deliver specific clinical outcomes. This study validates the use
of the AD framework in a clinical study using real patient data
from the NICU. Several combinations of AD and CED
components were evaluated, thereby illustrating the validity of
the six framework features, namely, f1-f6, including flexibility,
reusability, standardization of SQI, scalability, customizability,
and support for real-time implementation.

Future work will include the implementation of a wide range
of AD and CED components to further leverage the
interoperability provided by the CRM. Although the CRM has
been developed following an extensive review of the literature
that summarizes the requirements, provisions, and configurations
for many existing AD algorithms, it is expected that the CRM
will continue to evolve as a wide variety of new AD and CED
algorithms with differing data needs are implemented as
components within this framework. Further validation of the
framework can be conducted by independent research groups.
The clinical benefits of this research will be broadly realized
through the integration of the framework in real-time CDSS to
enhance the quality of data analytics. In this way, framework
implementation within clinical workflows offers the potential
to improve the quality of care for patients and clinicians in
critical care.
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