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Abstract

Background: Modern environmental health research extensively focuses on outdoor air pollutants and their effects on public
health. However, research on monitoring and enhancing individual indoor air quality is lacking. The field of exposomics
encompasses the totality of human environmental exposures and its effects on health. A subset of this exposome deals with
atmospheric exposure, termed the “atmosome.” The atmosome plays a pivotal role in health and has significant effects on DNA,
metabolism, skin integrity, and lung health.

Objective: The aim of this work is to develop a low-cost, comprehensive measurement system for collecting and analyzing
atmosomic factors. The research explores the significance of the atmosome in personalized and preventive care for public health.

Methods: An internet of things microcontroller-based system is introduced and demonstrated. The system collects real-time
indoor air quality data and posts it to the cloud for immediate access.

Results: The experimental results yield air quality measurements with an accuracy of 90% when compared with precalibrated
commercial devices and demonstrate a direct correlation between lifestyle and air quality.

Conclusions: Quantifying the individual atmosome is a monumental step in advancing personalized health, medical research,
and epidemiological research. The 2 main goals in this work are to present the atmosome as a measurable concept and to demonstrate
how to implement it using low-cost electronics. By enabling atmosome measurements at a communal scale, this work also opens
up potential new directions for public health research. Researchers will now have the data to model the impact of indoor air
pollutants on the health of individuals, communities, and specific demographics, leading to novel approaches for predicting and
preventing diseases.

(JMIR Biomed Eng 2021;6(4):e28920) doi: 10.2196/28920
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Introduction

At any moment in time, health is affected by various internal
and external factors, such as the genome, microbiome, and
exposome. The exposome consists of everything an individual
is exposed to across his or her lifespan [1]. It considers lifestyle,
occupation, socioeconomic factors, and the environmental
conditions in which people live to develop an in-depth

understanding of how an individual’s surroundings impact
his/her health. The atmospheric exposome, a subset of the
complete exposome and which is presented in this work, focuses
on the health effects from the air that people breathe.

The term “atmosome” was coined to describe the atmospheric
subset of an individual’s exposome. Common indoor air
pollutants include PM2.5 (particulate matter with diameter of
≤2.5 μm), PM10 (particulate matter with diameter of ≤10 μm),
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carbon dioxide (CO2), nitrogen dioxide (NO2), carbon monoxide
(CO), volatile organic compounds (VOCs), ozone (O3), liquid
petroleum gas (LPG), natural gas (NG), formaldehyde (HCHO),
and biological contaminants such as bacteria and fungi.
Measuring the quality of indoor air can provide insights into
the potential adverse effects of poor air quality and preventative
measures to keep the exposome cleaner. A cleaner atmosome,
in turn, has a positive impact on health and well-being. Thus,
there is a need for a portable, real-time, multichannel air
measurement system for enabling data-driven analytics and
research [2].

A number of studies have been conducted by several federal,
state, and local agencies that monitored, collected, and stored
outdoor air quality data in the Environmental Protection
Agency’s (EPA) Air Quality System database [3,4]. The
Environmental Defense Fund in collaboration with Google Earth
[5], the World Health Organization Global Urban Ambient Air
Pollution Database [6], the World Air Quality Historical
Database [7], and many other organizations generated air quality
maps. These data are used for various modeling studies, to
review policy implementation plans, and to generate reports for
the Congress (US) [5]. However, these agencies have overlooked
similar quantitative studies of indoor air quality (IAQ).

Previous studies have shown that indoor air is much more
polluted than outdoor air and represents a major public health
challenge especially in developing countries [8]. Many studies
focused on specific or limited indoor air pollutants such as
VOCs, CO2, PM2.5, PM10, and halogen flame-retardants [9-12].
Further, though potentially unexpected, there exist a myriad of
well-defined sources of indoor air contamination and,
correspondingly, numerous contaminants [13]. To improve air
quality and minimize pollution-related disease and mortality,
the atmosome must be defined, measured, and analyzed to
mitigate adverse environmental conditions and improve health
outcomes. Thus, the motivation for this work is to use the
atmosome to further personalize an estimation of individual
health from multimodal data [14,15].

According to the EPA, indoor air pollution is one of the top 5
environmental risks to public health. Annually, 9 out of every
10 people breathe air containing high levels of pollutants at
some point [16,17]. Air pollutants can be in the form of pet
dander, mold, dust mites, CO, radon, pests, lead, and secondhand
smoke [17]. Americans spend approximately 90% of their time
indoors, where the concentrations of some airborne pollutants
are 2-5 times higher than those outdoors [13]. This poor IAQ
can cause various infections, lung cancer, and chronic lung
diseases, including asthma [18]. It can also contribute to the
development of atherosclerosis, a root cause of many
cardiovascular diseases [19]. In 2020, a long-term study of over
63 million US adults indicated a surprising correlation between
PM2.5 and hospitalizations for severe neurological diseases [20].

According to the State of Global Air 2020 [21], nearly 500,000
newborns died in 2019 in their first month of life due to
exposure to all types of air pollutants described previously.
Household inhalation of mold spores and infant pulmonary
hemorrhage are found to be linked in some studies [22]. Air

pollution even impacts children while they are in their mothers’
womb [23,24], with the effect of air pollution on pregnant
women and their fetuses comparable to smoking tobacco [21].
People often assume that indoor spaces are safe from outdoor
air pollution, but this is inaccurate. Therefore, IAQ is a
significant threat to public health [25]. The Program Needs for
Indoor Environments Research (PNIER) document details
EPA’s research needs for the indoor environment and
recommends that the EPA and other governmental and private
sector agencies and organizations address this issue [26].

The environmental research field of IAQ is nascent.
Nonetheless, several researchers have recently demonstrated
portable gas detection systems using various sensor technologies
covering a limited set of analytes. For example, MQ sensors
were embedded in a system where VOCs were detected [27].
MQ sensors are well-known to exhibit acceptable selectivity,
but low sensitivity. Interestingly, the researchers implemented
an artificial neural network and dramatically improved the
sensitivity to gas concentrations at single-digit parts per million
(ppm). However, the supported analyte set is far too small given
the contaminants of concern, as reported by the EPA. A related
research effort embedded photoionization detectors (PIDs) into
a portable system for the detection of isobutylene, ethanol,
propanol, and acetone [28]. PID sensors are well-known to
exhibit high sensitivity (ie, on the order of parts per billion
[ppb]), but lower selectivity than MQ sensors. Further, that
work demonstrated only a small set of detected analytes. Other
recent efforts include a portable system with embedded gas
chromatography PID sensors [29]. This system detects benzene,
toluene, and xylene. The researchers also employed an elegant
algorithm using various quantification parameters (eg, pumping
time, temperature) and calibration curves to optimize selectivity.
This system also requires a pumping time up to 90 seconds and
an analysis time of 10 minutes. Nonetheless, as expected, very
high sensitivity was achieved, but again the analyte set is small
and the system cost is substantially higher than an
implementation with low-cost devices, such as MQ sensors.
Last, none of these research efforts considered management of
the data in an actionable manner. The systems reported were to
demonstrate selectivity and sensitivity, the 2 most critical
metrics for gas sensors.

This recent research focused on utilizing more common sensor
technologies for portable applications. However, more exotic
sensors have been developed recently in portable gas detection
systems that have been demonstrated for indoor and outdoor
use. For example, in [30], a mobile microscopy system (coined
as the c-Air device) is presented and utilizes microscopy as a
sensing technique and includes machine learning algorithms to
increase accuracy. Further, it includes a mobile software app
for data display. The device requires a sample of 6.5 L of air
and an analysis time of 30 seconds. Also, similar to related
studies, the c-Air device supports only a limited set of analytes,
including total suspended particulates, PM10, and PM2.5.
Nonetheless, very good results are achieved and it is an
advancement that the system is linked to a mobile app, though
nothing actionable is reported.
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In [31], a so-called portable cyber-physical system is presented
for gas detection and is embodied in 2 distinct architectures, a
stationary and portable device, each using well-established
electronics related to this work, including an Arduino
microcontroller and Raspberry Pi system-on-chip (SoC),
corresponding to each embodiment. The 2 systems also use MQ
sensors. However, the only sensors supported by the system are
an MQ-4 (a methane sensor) and an MQ-8 (a hydrogen sensor).
Further, although the system supports connectivity to the
internet, the functionality is to merely upload the data to cloud
storage. No manipulation or presentation of the data is reported.

Basic IAQ commercial-off-the-shelf (COTS) products also exist.
Xiaomi, for example, offers a countertop product which detects
PM2.5, total VOC (tVOC), CO2, temperature, and humidity [32].
It includes a touch screen and Wi-Fi connectivity. The company
also offers handheld products that measure individual analytes,
such as PM2.5 [33]. Further, Xiaomi offers air purifiers that can
be controlled by a mobile phone app and are marketed under
the brand Mi. There exist many other related COTS products
for IAQ monitoring. Although interesting, these products
measure a very small set of analytes and offer minimal, if any,
actionable information based on the data collected.

In contrast to both the recent research and commercial work,
this paper introduces a patent pending and low-cost embedded
system called the Atmosome Measurement System (AMS) [34],
which can reliably, accurately, and instantaneously monitor and
measure significantly more indoor air pollutants such as PM2.5,
PM10, CO2, NO2, CO, VOCs, O3, LPG, NG, equivalent CO2

(eCO2), hydrogen as well as environmental parameters including
temperature, humidity, pressure, and altitude. This set of
analytes was chosen as it represents the primary sources of
indoor air pollution as well as the leading causes of adverse
impact on human respiratory health, according to the EPA.
Further, the presented work is implemented as a scalable and
low-cost embedded system utilizing COTS electronics including
an Arduino microcontroller, Raspberry Pi SoC, MQ gas sensors,
and simple environmental sensors. MQ sensors were selected
for low cost, high selectivity, and sufficient sensitivity. Besides,
in contrast to previous studies [10,12], AMS is built with the
goal of providing a cloud-based infrastructure that stores,
analyzes, and presents insights into IAQ and trends that correlate
with personal lifestyles. It displays historic and real-time data
from multiple sensors in a user-friendly web application, enables
users to interpret their data, and recommends environmental
changes to improve personal atmosome conditions.

Therefore, the development of a system that can evaluate IAQ
by using multiple analytes, process and visualize pollutant data,
recommend remediation steps, and be built at an affordable
price point is the foundation of this research. The system can
be configured with a variety of optional customizations
including the frequency at which the users would like to monitor
their air quality; their geographic location details including the
zip code, city, state, and country; the indoor space details such
as home, office, or car; the location within the space such as
kitchen, bedroom, garage; and the activity details such as
cleaning, cooking, routine. Further, AMS supports
representational state transfer (REST) application programming

interface (API) to download data for further exploration and
analytics. AMS also includes an option for the users to
anonymously share their data to further indoor air pollution
research. This opens the possibility of developing a public
indoor air quality database while maintaining user confidentiality
allowing for extended research on indoor air quality, its impacts,
and health policy modeling.

Taken together, AMS can be a useful tool for improving public
health outcomes as it can provide the necessary data that people
need to manage their IAQ in a cost-effective and convenient
manner. Moreover, the data can display different atmosomes
between 2 neighbors or within neighborhoods of different
socioeconomic classes, which can be useful for public health
officials or policy researchers that work toward enhancing the
health of citizens.

Comparisons of AMS with various COTS products are available
in Multimedia Appendix 1 [35-41]. AMS stood out in both
number of analytes and cost compared with the nearest COTS
product, Aeroqual, that covers multiple analytes [35].
Comparisons are also made with recent studies and those details
are available in Multimedia Appendix 2 [42-47]. Aspects such
as data sampling duration and pollutant streams in AMS are
found to be much more extensive than similar indoor air quality
assessments in a college campus [44] and homes in a temperate
region of the United States [46]. Comparisons are not made
with the cited research because the analyte sets are dramatically
smaller than those supported by AMS and there is no actionable
interpretation of the data in the studies, because they focus
primarily on sensor selectivity and sensitivity, as described
previously. Further, few of those efforts included internet
connectivity and none included any actionable information
based on the data collected.

Methods

Study Approach and Design
An experimental approach combining internet of things (IoT)
hardware and software development was used to measure air
pollutants and air quality metrics. The researchers used AMS
to nonintrusively monitor air quality through daily indoor life.
AMS provided visuals and recorded trends that could indirectly
indicate the relationship between lifestyle and observed pollutant
values.

In this work, the researchers used AMS to collect air quality
data indoors at home (in Cupertino, California; South Lake
Tahoe, California; and Hyderabad, Telangana, India) as well
as during local commute in the United States and during an
inflight journey from the United States to India. These locations
were chosen to monitor and evaluate the performance of AMS
in environments associated with distinct indoor air quality
profiles and climates. The device, similar to a thermostat placed
in a room, is completely noninvasive. To initiate readings, it is
powered on with a USB cable (or a wall socket) and AMS
software is launched by the user. The studies were conducted,
intermittently, between January 2020 and January 2021.

After initial calibration, to ensure the continued accuracy of the
measurements made by AMS on an ongoing basis, the sensors
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were recalibrated every 3 months. Measurements were repeated
over similar activities in several different timeframes to better
analyze and predict possible relationships between activities
and associated pollutants. To control for bias, measurements
were also carried out across several recalibrations.

System Architecture
AMS comprises 3 distinct modules that collect, analyze and
store, and display data. As shown in Figure 1, these 3

interconnected modules include the data collection system
(DCS), data analysis and storage engine (DASE), and user
interface (UI). The DCS is a sensor system that collects the
user’s environmental data in user-defined intervals. The data
gathered are then analyzed and stored by the system’s DASE,
and the air quality metrics obtained are displayed by the
system’s web-based UI.

Figure 1. AMS block diagram illustrating the basic functionality for data collection, data analysis and storage, and the user interface.

Materials and Software
Materials used to build the DCS and the software used to create
DASE and UI are discussed in the following sections.

Data Collection System

Overview

The DCS is an IoT air monitoring sensor system for acquiring
an individual’s unique geospatial data to track air quality. It
includes 17 environmental sensors that measure 22 different air
pollutant data streams, an Arduino Mega, a Raspberry Pi, and
a power source. Referring back to Figure 1, the Arduino Mega
is a microcontroller that captures sensor data and the Raspberry
Pi is an SoC which supports Wi-Fi and enables an interface to
the cloud.

Sensors

The DCS monitors environmental conditions such as
temperature, pressure, altitude, humidity, and various analytes
including PM2.5, PM10, CO, O3, CO2, eCO2, tVOCs, LPG,

methane, hydrogen, flammable gases, aromatic compounds,
hydrogen sulfide, ammonia, nitrogen oxide, NG, and HCHO
as shown in Table 1. Metal oxide semiconductor (MOS) gas
sensors were used to detect the different air pollutants.
MOS-based sensors detect the concentration of various kinds
of gases by acting as a chemiresistor, where a change in
resistance of the metal oxide occurs due to the adsorption of
specific gases. These sensors, and specifically MQ series
sensors, are ideally suited for low-cost and low-power
applications in indoor environments. Selectivity to certain gases
is dependent on the specific sensor model, which is indicated
numerically. Some MQ sensors are sensitive to multiple gases;
for example, both MQ-5 and MQ-6 measure LPG, but MQ-6
exhibits higher selectivity and sensitivity to LPG and is
calibrated for that particular gas. As individual sensors are
calibrated for their specific gases, they are less selective to other
gases. A total of 17 different kinds of sensors were used to detect
and measure the level of pollutants as well as environmental
parameters (Table 1).
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Table 1. List of sensors, including target gas analytes and parameters as well as sensor type, in the data collection system implementation. The system
supports 22 data streams from 17 different sensors.

Sensor typeAnalyte/parameterSensor

Environmental combo sensorTotal volatile organic compounds, equivalent carbon dioxide,
temperature, humidity, pressure, altitude

CCS811/BME280

Nondispersive infraredCarbon dioxideCO2

Optical, infrared-emitting diodeParticulate matter 2.5PM2.5

MOSaSmoke/particulate matter 10MQ2

MOS gas sensorMethaneMQ4

MOS gas sensorLiquefied petroleum gasMQ6

MOS gas sensorCarbon monoxideMQ7

MOS gas sensorOzoneMQ131

MOS gas sensorAlcohol (ethyl alcohol)MQ3

MOS gas sensorNatural gasMQ5

MOS gas sensorHydrogenMQ8

MOS gas sensorFlammable gasesMQ9

MOS gas sensorAromatic compoundsMQ135

MOS gas sensorHydrogen sulfideMQ136

MOS gas sensorAmmoniaMQ137

MOS gas sensorNitrogen oxidesNOx

MOS gas sensorFormaldehydeHCHO

aMOS: metal oxide semiconductor.

Realized AMS

Figure 2 presents the complete realized AMS including sensors
and the Raspberry Pi platform, which are securely mounted to
an FR4 printed circuit board (PCB) and an Arduino Mega 2560

microcontroller reverse mounted to the same. The Arduino
Mega microcontroller is programmed to capture data from the
sensors. All of these system components and associated positions
on the PCB are labeled clearly in Figure 2.

Figure 2. A photograph of the populated PCB with the Arduino (reverse mounted) and 17 sensors listed in Table 1. CO: carbon monoxide; CO2: carbon
dioxide; H2S: hydrogen sulfide; HCHO: formaldehyde; LPG: liquid petroleum gas; NG: natural gas; NH3: ammonia; PCB: printed circuit board; PM2.5:
particulate matter with diameter of 2.5 μm or less; PM10: particulate matter with diameter of 10 μm or less; VOC: volatile organic compound.
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IoT

The sensor PCB is connected using a USB cable linked to a
computer (either a Raspberry Pi or a laptop that runs the DCS
software). The computer receives sensor data from Arduino
Mega microcontroller and posts it to the cloud (DASE) server
or saves it in local memory in the absence of an internet
connection. The PCB comes in 2 variations: a portable model
that consists of 8 different sensors providing 13 data streams
and powered by the USB; and a high-power model that has 17
sensors providing 22 data streams and which must be powered
by a wall socket. Future work will aim to make the high-power
model portable.

Data Storage and Analysis Engine
DASE runs in the cloud on Amazon Web Services (AWS) and
stores the sensor data in a Postgres Database. AWS was selected
for simplicity of implementation, low cost, and well-known
user data security as shown in a recent case study [48]. Further,
no personally identifiable information is collected for this study.
The username and zip code are stored in the cloud and password
protected. The software implementation is built using the Python
Flask Framework and supports REST API to support receiving
data from the sensor board at user location (DCS) and for
sending data to the UI or alerts to the user. The source module
layout and libraries are shown in Figure 3.

Figure 3. DASE (data analysis and storage engine) programming components and functional flow diagram.

The backend of the system is based on Python and Flask and
has 3 distinct interconnected components that make up the
Atmosome engine: the web application framework, the database
model that receives data from the cloud database, and the
numerical analysis libraries that operate on the data received
from the user’s device and surface them to the user via the front
end UI. To accomplish this workflow, DASE employs various
Flask web framework components including flaskmigrate (to
support modifications to existing DB tables), sqlalchemy (an

object-relational mapper that enables reading from/writing to
the DB python data objects without the need for using the DB’s
SQL), flasksqlalchemy (to manage DB connections and
sessions), flaskcors (to enable cross-domain REST API
communication between the server and the UI),
flaskmarshmallow (to handle python-json
serialization/deserialization for REST API communication),
numpy (Python’s multidimensional numerical analysis library),
pandas (Python’s DataFrame support much like a database table

JMIR Biomed Eng 2021 | vol. 6 | iss. 4 | e28920 | p. 6https://biomedeng.jmir.org/2021/4/e28920
(page number not for citation purposes)

Bhimaraju et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


in memory), and matplotlib (Python’s data visualization library).
flaskproject.models defines the DB tables in python,
flaskproject.config defines the web application configurations,
for example, the type of database being used, and
flaskproject.app is the code that handles all data computations.

User Interface
The UI is built as a progressive web application using the React
Framework. This makes it available on any device with a web
browser. Additionally, because it is a progressive web app, it
automatically adjusts to the size of mobile platforms, and
thereby presents a user experience similar to a native app. The
source code is structured and modularized into pages and
components within pages.

For example, Figure 4 illustrates the 6 javascript (.js) source
files that render the various sections of the Atmosome

dashboard. header.js is the header of the page, and displays the
page title, user location, date, and time. gauge.js displays the
AQI gauge which gives an “at-one-glance” state of the current
indoor air conditions. weatherParameters.js displays the
temperature, humidity, pressure, and altitude. Although weather
metrics are not pollutants, they are a part of lifestyle conditions
and are recorded along with information on pollutants.
pollutants.js displays numeric and visual information about
each of the pollutants. averageExposure.js displays the user’s
average exposure to various pollutants in different intervals of
time. timeseries.js displays the quarterly time series graphs of
the user’s historic exposure to various pollutants. The UI is
designed mainly to render data and does not store data or
perform computations. It makes REST API calls to DASE to
retrieve the data.

Figure 4. UI dashboard software and display components. The dashboard showcases the level of various pollutants (eg, PM2.5, VOC, ozone, CO2),
weather metrics (eg, temperature, humidity, pressure, and altitude), Air Quality Index, average exposure levels over time, and quarterly temporal graphs
reflecting the user’s historic exposure data. CO2: carbon dioxide; PM2.5: particulate matter with diameter of 2.5 μm or less; UI: user interface; VOC:
volatile organic compound.

Procedure
In this section, the methods involved in calibrating the DCS
device, collecting data from a setting, and posting data to DASE

will be discussed. Moreover, the analyzed data can be viewed
on UI screens for the given set up.
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Sensor Calibration
The sensors in AMS’s DCS are first “burned-in,” meaning that
they are placed in an environment with clean air and operated
with active power for 48 hours. Next, AMS’s DCS is run
through a meticulous calibration process to ensure accuracy. A
flow diagram of the calibration algorithm is illustrated in Figure

5. AMS DCS is calibrated for several variables such as CO2,
tVOC, LPG, PM2.5, PM10, and others as indicated. During the
initial set up, this process is repeated daily and accumulated
over a period of 15 days to train a linear regression model to
predict the values. The calibration code is run on the sensor’s
board Arduino Mega microcontroller, and the data are
accumulated on the Pi system.

Figure 5. DCS calibration algorithm flow diagram. CO: carbon monoxide; CO2: carbon dioxide; DCS: data collection system; LPG: liquefied petroleum
gas; NG: natural gas; O3: ozone; PM2.5: particulate matter with diameter of 2.5 μm or less; PM10: particulate matter with diameter of 10 μm or less;
tVOC: total volatile organic compound.

To ensure the continued accuracy of the new system, the sensors
were recalibrated every 3 months, and new training improves
the accuracy of the data correction algorithms. Upon continued
comparison of the DCS postcalibration values with precalibrated
COTS devices, over 90% accuracy postcalibration was achieved
when compared with precalibrated COTS devices. Alternative
calibration approaches, such as calibrating outdoors against the
values of the nearest outdoor weather station, were explored
and similar accuracy was noted.

Data Collection
Once the user receives the portable DCS, they need to power it
and connect it to a Wi-Fi network, if available. Then they need
to launch the application. Once launched, the user can change
any of their default settings, or retain the defaults, and initiate
collection of air quality data.

Although AMS is intended to measure IAQ, part of the
calibration routine was performed outdoors. This decision was
made to compare results easily with the nearest, trusted outdoor
air pollution station. Further, the environmental differences
between the indoor and outdoor settings were not notable enough
to introduce a substantial error. Certainly, an entirely indoor

calibration routine would yield higher sensor accuracy, but
precise indoor calibration techniques are complex and not
suitable for consumer use. For example, precision routines to
calibrate gas sensors are typically performed in the presence of
a high concentration source of each analyte. Such an approach
was deemed unrealistic and prohibitively expensive.

The researcher (HB) used AMS to monitor air quality through
daily life at home, such as in the kitchen, living room, bedroom,
home office, and during commute. The researcher also measured
air quality during air travel to India, and at home in India and
the United States.

Data Transmission

Local Storage and Transmission to Cloud

In the presence of Wi-Fi, as the DCS program collects air quality
data from the sensors at the frequency specified by the user, it
concurrently transmits the data to the cloud and requires no user
interaction. In the absence of Wi-Fi, the DCS stores the data in
local memory. Once a Wi-Fi connection is available, the user
can connect the DCS to the Wi-Fi, and select an icon in the UI
that indicates “Upload AMS data to the Cloud.” This loads the
data to the cloud, and once complete, deletes the locally stored
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data, automatically removing the no-longer required data from
local storage.

Post/Receive Data to/From Cloud

The DCS software wraps the readings from each of its sensors
into JSON, a simple format, with a series of key value pairs,

used to store and transmit data to DASE, which is running in
the cloud. Once a JSON payload with the values of each
pollutant, atmospheric data, and sampling location information
has been assembled (a portion of which is shown in Figure 6)
it is ready to be transmitted via the internet to DASE.

Figure 6. Data transmission: REST API POST data from DCS to DASE containing sensor types and values. API: application programming interface;
DASE: DASE: data analysis and storage engine; DCS: data collection system; REST: representational state transfer.

The DCS software uses REST APIs to interact with DASE.
REST APIs use HTTP requests to interact with a remote web
server. The HTTP GET method is used to receive data from the
server, and the HTTP POST method is used to send data to the
remote server.

The DCS software sends this JSON payload by making a REST
API POST request to DASE, which receives the data, and
subsequently analyzes and stores them. Upon receiving an HTTP
GET request from the UI to display data, DASE formats the
information required by the UI into the JSON payload and sends
it, as illustrated in Figure 7. The UI then displays these data.
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Figure 7. JSON formatted REST API GET data from DASE to UI containing attributes stored for each pollutant and weather metric. API: application
programming interface; DASE: data analysis and storage engine; REST: representational state transfer; UI: user interface.

Data Storage
DASE stores the received sensors data in its Postgres database.
Postgres is a free database and is seamlessly integrated into
DASE’s Python Flask framework to store and retrieve data
using REST API calls. Currently, there is no limit on the amount
of time the user’s history data are stored in DASE and there is
no user action involved in this step.

AQI Calculation

General Equation
The Indoor Air Quality Index is calculated using the weighted
mean formula. The contribution of each pollutant is multiplied
by its weightage, whose calculation is explained in the next
section, and divided by the sum of pollutant weightages.

This can be represented by the formula:

where Wi is weightage of pollutant i and Pi is the reading of
pollutant i.

Calculation of Pollutant Weightages
Weightages for each of the pollutants have been calculated
based on the concentrated means and their contribution to
different AQI levels.

Individual AQIs (Table 2) and the breaking points for the
concentration mean of different pollutants in a fixed cycle were
used to arrive at the weights of each pollutant at the respective
AQI levels. Weightage of each pollutant’s mean concentration
at each AQI level was calculated by measuring the fractional
contribution to the AQI.
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Table 2. Individual Air Quality Indexes and the breaking points for the concentration mean of pollutants [49]a,b.

PM2.5
e 24

hours

Ozone 8
hours

Ozone 1
hour

Carbon
monoxide

1 hourc

Carbon
monoxide 24
hours

PM10
d 24

hours

Nitrogen
dioxide 1

hourc

Nitrogen
dioxide 24
hours

Sulfur
dioxide 1

hourc

Sulfur
dioxide 24
hours

Indoor Air
Quality In-
dex

00000000000

351001605250100401505050

7516020010415020080500150100

1152153003514250700180650475150

15026540060243501200280800800200

25080080090364202340565f1600300

350g1000120485003090750f2100400

500g1200150606003840940f2620500

aData presented are mean values.
bSulfur dioxide (not collected by AMS) and nitrogen dioxide, which are primarily outside pollutants, are excluded from the indoor Air Quality Index
calculation. Carbon dioxide and volatile organic compounds are much more common indoors and are more relevant and considered in the indoor Air
Quality Index calculation.
cThe concentration means of 1-hour sulfur dioxide, nitrogen dioxide, and carbon monoxide just adapt to the real-time calculation for Indoor Air Quality
Index, but the concentration means of 24-hour sulfur dioxide, nitrogen dioxide, and carbon monoxide were used to calculate for a whole day.
dPM10: particulate matter with diameter of ≤10 μm.
ePM2.5: particulate matter with diameter of ≤2.5 μm.
fThe concentration mean of 1-hour sulfur dioxide higher than 800 μg/m3 is calculated with the concentration mean of 24-hour sulfur dioxide.
gThe concentration mean of 8-hour ozone higher than 800 μg/m3 is calculated with the concentration mean of 1-hour ozone.

tVOC Information
Values from Table 3 have been considered for the corresponding
AQI windows, with the midpoint of concentration breaking

points chosen as pollutant representation, which is used as the
denominator, and the breaking point of the IAQI range as the
numerator, similar to calculations performed for other pollutants.

Table 3. Individual AQIs and the breaking points for the concentration mean of VOCs and others [50].

DescriptionPMe (µg/m3) concentration
(BPLO–BPHI)

COd (µg/m3) concentration
(BPLO–BPHI)

VOCb (µg/m3) concentration

(BPLO–BPHI)
c

AQIa rangeLevel

Good0-300-4.990-2000-50A

Moderate31-905-9.99201-35051-100B

Unhealthy91-14010-14.99351-500101-250C

Very unhealthy141-75015-2000501-757251-400D

aAQI: Air Quality Index.
bVOC: volatile organic compound.
cBP: breaking point (LO: low; HI: high).
dCO: carbon monoxide.
ePM: particulate matter.

CO2 Information

Values from Table 4 have been considered for the corresponding
AQI windows, with the midpoint of pollutant concentration

calculated and chosen as pollutant representation, which is used
as the denominator, and the breaking point of the IAQI range
as the numerator, as is the case with others.
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Table 4. Individual Air Quality Indexes and the pollutant concentration ranges of carbon dioxide and others [51].

Health effectsIndoor Air
Quality In-
dex

Oxygen
(%)

Toluene
(ppm)

Hydrogen
sulfide
(ppm)

Ethanol
(ppm)

Ammonia
(ppm)

Hydrogen
(ppm)

Carbon dioxide
(ppm)

Carbon
monoxide
(ppm)

Good0-5020.950-0.02470-0.000330-0.490-240-10-3790-0.2

Moderate51-10019-20.90.0248-0.60.00034-1.50.5-1025-301.1-2380-4500.21-2

Unhealthy for sensitive
individuals

101-15015-190.7-1.61.6-511-4931-502.1-3451-10002.1-9

Unhealthy151-20012-151.7-9.86-2050-10051-1003.1-51001-50009.1-15.4

Very unhealthy201-30010-129.9-12.221-50101-700101-4005.1-85001-30,00015.5-30.4

Hazardous301-400<1012.3-10051-100701-1000401-5008.1-1030,001-40,00030.5-50.4

The final weightage factor of each pollutant was calculated by
taking the arithmetic mean as shown in Tables 5-10.

Pollutant Weightage Formula

where Wp is the weightage of pollutant; IQAIr is the individual
AQI pollution level; and PCMr is the corresponding
concentration threshold mean of a pollutant.

Weightage Worksheet Tables by Pollutant

Table 5. Weightage calculation for PM10
a.

PM10 weightagePM10 24-hour meanIndoor Air Quality Index

15050

0.666666667150100

0.6250150

0.571428571350200

0.714285714420300

0.8500400

0.833333333600500

0.740816327Final weightage

aPM10: particulate matter with diameter of ≤10 μm.

Table 6. Weightage calculation for COa.

CO weightageCO 1-hour meanIndoor Air Quality Index

10550

1010100

4.2857142935150

3.3333333360200

3.3333333390300

3.33333333120400

3.33333333150500

5.37414966Final weightage

aCO: carbon monoxide.
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Table 7. Weightage calculation for O3
a.

O3 weightageO3 1-hour meanIndoor Air Quality Index

0.312516050

0.5200100

0.5300150

0.5400200

0.375800300

0.41000400

0.4166666671200500

0.429166667Final weightage

aO3: ozone.

Table 8. Weightage calculation for PM2.5
a.

PM2.5 weightagePM2.5 24-hour meanIndoor Air Quality Index

1.4285714293550

1.33333333375100

1.304347826115150

1.333333333150200

1.2250300

1.142857143350400

1500500

1.248920438Final weightage

aPM2.5: particulate matter with diameter of ≤2.5 μm.

Table 9. Weightage calculation for tVOCa.

tVOC weightagetVOC meanIndoor Air Quality Index

0.510050

0.363636364275100

0.588235294425250

0.636942675628400

0.522203583Final weightage

atVOC: total volatile organic compound.
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Table 10. Weightage calculation for CO2
a.

CO2 weightageCO2 meanIndoor Air Quality Index

0.14662756634150

0.133868809747100

0.1149425291305150

0.0370370375400200

0.0095238131,500300

0.00634920663,000400

0.074724826Final weightage

aCO2: carbon dioxide.

Data Analysis
The data analysis flowchart is depicted in Figure 8. Analysis of
the collected data from the DCS is automatically executed in
the background and is transparent to the user. Upon receiving
a request from the UI, or through the background user alert
process, the database is queried to retrieve data. The data are

validated against thresholds predetermined by environmental
safety limits [52,53]. If the user is registered to receive alerts
and the values exceed safe thresholds, an alert is sent to the
user. Additionally, the values and corresponding qualitative
metrics of each pollutant are determined. Finally, AQI is
computed and the data are returned.
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Figure 8. DASE data flow on the web server used to populate the Atmosome UI or send a user alert. DASE: data analysis and storage engine; DB:
database; UI: user interface.

The authors considered including an adaptive threshold for each
analyte to account for spatial, temporal, and environmental
variations. However, AMS is recalibrated in each new usage
location and is intended for indoor use. Thus, environmental
variations are small and no substantial error between AMS and
COTS sensors was observed when analyzing the data.
Nonetheless, it is well-known that MQ sensors exhibit high
temperature coefficients and sensitivity to humidity [54]. Drift
of these sensors is low and ongoing recalibration every 3 months
is more than sufficient to address such drift [54]. Considering
these factors, the ranges at which the AQI considered are

absolute, but the unit itself is adjusted to account for location.
Further, the sample rate is considered sufficient for the
application. In the data that follow, it does not appear that the
sensors are undersampled, so temporal variation is not
considered in this embodiment. Nonetheless, one of the goals
for the future work is to automate the calibration process and
also allow customization of the calibration interval according
to the user’s choice.
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Data Alerts
If a user opts to be alerted when pollutants are above the optimal
threshold, DASE sends an email and SMS text message alerts.
This could be invaluable in preventing accidents or calling for
emergency services in the case of an NG leakage or similar
emergency.

Data Display

Current UI Module and Plans for the Next Version
The UI module displays the air quality information to users.
The user accesses the UI at the atmosome website [55]. There
is a dropdown menu to select the user’s zip code.

The next version of the atmosome UI will include a login screen
for the user, instead of the current zip code selection. The
various parts of the UI displayed to the user are described below.

Hourly Dashboard
The dashboard (Figure 9) presents the user with an “at-a-glance”
state of their indoor air quality using a gauge that reflects AQI.
The gauge conforms to the conventions of the US AQI gauge.
The AQI is computed based on the pollutants that show the
most variability due to user lifestyle, including PM2.5, tVOC,
CO2, O3, CO, and PM10. The past hourly averages sample of
10 pollutant analytes is presented visually and quantitatively.
Thresholds for each analyte are predetermined by environmental
safety limits. Relative assessments of levels are color coded and
reported as GOOD, MODERATE, POOR, or BAD. Four
environmental parameters, including temperature, pressure,
humidity, and altitude, are also shown quantitatively.

Figure 9. Representative example of hourly dashboard of user’s atmosome data displayed by AMS UI. The values of 4 environmental parameters are
also quantitatively presented below the AQI gauge. AMS: Atmosome Measurement System; AQI: Air Quality Index; PM10: particulate matter with
diameter of 10 μm or less; UI: user interface.

Recommendations
Each pollutant in the dashboard is associated with detailed
information about acceptable thresholds and specific suggestions

on how to manage it to be within healthy limits. This is shown
in Figures 10 and 11.
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Figure 10. Lifestyle recommendations to improve atmosome quality, provided to the user in AMS UI. Clicking on the “Tips" link of each of the
pollutants in the UI dashboard, as shown, opens up a popup box showing the quantitative thresholds associated with the pollutant and gives the user
recommendations on managing it to maintain healthy levels. AMS: Atmosome Measurement System; ppb: parts per billion; UI: user interface; VOC:
volatile organic compound.

Figure 11. Examples in the AMS UI that show the recommendations and thresholds for NG and PM2.5. AMS: Atmosome Measurement System; NG:
natural gas; PM2.5: particulate matter with diameter of 2.5 μm or less; UI: user interface.

Average Exposure
The cumulative average values of different pollutants indicate
the overall exposure across various periods as shown in Figure

12. These data provide potential insights into the underlying
causes of poor AQI, which could be correlated with specific
living conditions.
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Figure 12. An example of AMS UI showing the average exposure statistics for different pollutants across various periods, ranging from 8 hours to 1
week. AMS: Atmosome Measurement System; CO2: carbon dioxide; O3: ozone; ppb: parts per billion; ppm: parts per million; UI: user interface; VOC:
volatile organic compound.

Quarterly Temporal Graphs
The UI time-series data display quarterly data from the different
pollutant data streams (Figure 13). This enables users to
visualize trends over time and gain deeper insights into which

pollutants are affecting their air quality most substantially. For
example, tVOC measurements are noted to be highly variable
due to indoor sources resulting from occupant lifestyle, including
exposure to cosmetics, cleaning products, room refreshers,
cooking fumes, and more.

Figure 13. An example of AMS UI showing graphs of the user’s quarterly trends of tVOC, CO2, O3, and humidity data streams. AMS: Atmosome
Measurement System; CO2: carbon dioxide; O3: ozone; tVOC: total volatile organic compound; UI: user interface.

Pollutants Information Page
For each category of pollutant, upon selecting its name in the
UI, the user is taken to a new page that contains a brief
description of the pollutant; associated health risks at different

concentrations; and examples of how such data can be collected,
graphed, and studied further are shown. This provides users
further insights into each of the pollutants and the possibility
of enabling additional research. An example description page
is shown in Figure 14 for PM2.5.
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Figure 14. An example of AMS UI individual pollutant page that is displayed on a separate web page for every pollutant and can be found by selecting
the pollutant name in the dashboard. These pages provide the user with greater detail about each pollutant. This includes information such as more
details about the pollutant, common sources of the pollutant, possible research and data analysis that have been/could be done on the pollutant using
the corresponding AMS sensor, and more. This figure is an example of the PM2.5 pollutant page. Besides providing more details about PM2.5, it shows
how the AMS PM2.5 sensor and extensive statistical analysis of its data was used for new, internationally published research on low-cost enhancement
of facial mask filtration. AMS: Atmosome Measurement System; PM2.5: particulate matter with diameter of 2.5 μm or less; UI: user interface.

REST API
An extended REST API is also available for advanced users
and developers interested in conducting further research or data
analysis using the DCS measurements. The REST API enables
users to download their data in a .csv format. These data can be
mined to gain deep insights into the dynamics of the various
indoor air pollutants across time, address extreme or alarming
conditions by taking appropriate corrective actions, and
exploring possible connections between air pollution and various
health conditions.

Results

Study Purpose
The purpose of this work was to measure various pollutants and
other air quality metrics that affect individual environmental

atmosomes. The following section presents the results of a
variety of air quality metrics in selected environments and relates
them with the conditions in their atmosome.

Temperature and Humidity
Figures 15 and 16 show the quantity and value of readings of
relative humidity and temperature, respectively, taken at 3
different indoor locations: a home in Cupertino, California
(shown in blue); a home in Hyderabad, Telangana, India (shown
in orange); and an airplane economy cabin during a nonstop
flight of 17 hours (shown in green). The low humidity readings
from the airplane correlate with the dryness and discomfort
often experienced by airplane passengers and align with the
United States Centers for Disease Control and Prevention’s
(CDC) air travel yellow book [56].
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Figure 15. Relative Humidity (%): 30-50 marks the ideal range. Conditions within the airplane journey were low in humidity and conditions in
Hyderabad went above the recommended range at times. The Cupertino home had ideal humidity values.

Figure 16. Temperature (°C): 20-27 marks a comfortable and healthy range. Conditions within the airplane journey and in Hyderabad were high in
temperature. The Cupertino home had mostly ideal temperature values.

Carbon Dioxide
Figure 17 shows a graph of CO2 measurements taken in the
same environments as above. The readings in the home in the
United States showed much higher indoor CO2 levels than the
readings in a more polluted area in India. Further analysis has
revealed, however, that the closed windows and doors
throughout the day during winter in the United States reduced

ventilation and increased CO2 concentration. Studies show that
higher CO2 exposure can cause drowsiness [57]. These data
highlight the importance of ventilation during the winter. The
readings on the lengthy airplane journey confirmed that the
DCS readings and published values by the airline were within
the range of each other. Figure 18 illustrates CO2 readings in 2
rooms and shows the role AMS had in enabling the researcher
to take corrective actions to improve indoor air quality.

Figure 17. CO2 (ppm): 250-1000 is the safe range for typical indoor spaces with good air ventilation. Higher than 1000 leads to a range of adverse
effects from drowsiness to headaches, nausea, and increased heart rate among other conditions. Conditions within the airplane journey and in Hyderabad
were mostly ideal to moderate, while conditions in the Cupertino home were outside healthy limits. CO2: carbon dioxide; ppm: parts per million.

JMIR Biomed Eng 2021 | vol. 6 | iss. 4 | e28920 | p. 20https://biomedeng.jmir.org/2021/4/e28920
(page number not for citation purposes)

Bhimaraju et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 18. Temporal data for CO2 pollution in 2 different rooms in the Cupertino house: (A) Room 1; (B) Room 2. In both rooms, air conditions were
initially unhealthy and then improved drastically. In Room 1, conditions became unhealthy again after some hours before improving once more. CO2:
carbon dioxide.

Particulate Matter 2.5 µm (PM2.5)

Figure 19 depicts the variation in PM2.5 during the course of a
typical home activity (cooking food). The onset of cooking is
associated with a sharp, transient increase in the levels of PM2.5

followed by a sustained period of unhealthy PM2.5 levels. In
this particular scenario, the user responded to the elevated
concentration of PM2.5 by activating the exhaust fan,
deactivating the stove, and opening all windows for improved
cross-ventilation.

Figure 19. PM2.5 (µg/m3) readings in the kitchen while cooking food. Much of the time spent cooking was in very unhealthy air conditions. PM2.5:
particulate matter with diameter of 2.5 μm or less.

This set of mitigating actions lowered the PM2.5 levels but
unhealthy concentrations (defined by the horizontal orange and
purple lines in Figure 19) persisted even after cooking ceased.
These observational data highlight the power and utility of AMS
in identifying and mitigating substantially unhealthy levels of
indoor air quality. A longitudinal analysis of such data has the
potential to offer rich insights into the interaction between indoor
air pollutants and respiratory health outcomes, and aid
data-driven health policy research.

Volatile Organic Compounds and Ozone
Raw data stored in DASE were downloaded in .csv format using
its REST API for advanced users. The data were graphed in a
python notebook using matplotlib. As shown in Figure 20, there
is a substantial difference between Indian and American
household air pollution levels in terms of tVOC measurements.
The difference in results could be attributed partly to the
substantially higher levels of air pollution in India compared
with those in the United States. The current results are consistent
with previous results suggesting vehicle exhaust as one of the
leading sources of VOC-related pollution in India [58].
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Figure 20. tVOCs (ppb): 0-200 is the safe range. Values above 2200 ppb are extremely unhealthy. Conditions in the airplane journey and in the
Cupertino home were typically ideal, whereas conditions in Hyderabad were often very unhealthy. ppb: parts per billion; tVOC: total volatile organic
compound.

Figure 21 displays a strong correlation between tVOC and
ground-level O3 measurements. For the most part, spikes in
tVOC result in increases in O3 levels that cause nitrogen oxides

to react with tVOC in the presence of sunlight to create
ground-level O3.

Figure 21. Ozone (ppb): Ozone levels from February to April 2020 at a home in the Sierra Mountains, El Dorado County, CA, USA. O3: ozone; ppb:
parts per billion; tVOC: total volatile organic compound.

Figure 22 displays tVOC readings recorded during various daily
activities such as house cleaning, cooking at night, and
commuting by car. The tVOC values were 1549, 2008, and
2868 ppb, respectively, for the aforesaid activities, well above

the accepted moderate range of 220-660 ppb (presented in Figure
8), and demonstrate the high levels of tVOC during innocuous
common activities [59]. The results also show that tVOC
readings impact the indoor AQI value.

Figure 22. tVOC readings during (A) home cleaning, (B) cooking, and (C) commuting by car. These statistics are displayed on AMS user interface.
AMS: Atmosome Measurement System; tVOC: total volatile organic compound.
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Figure 23. Personal atmosome biological modeling. This scatterplot and line-of-best-fit display how ambient temperature affects resting heart rate
reflected by data from the GoldenCheetah OpenData Project.

Studies carried out in 2003 by the California Air Resources
Board show that cleaning products alone account for the release
of 7.4 t of VOCs per day and that their various health effects
include asthma attacks and eczema [60]. AMS can furnish
necessary information to take precautions in such situations (eg,
a spike in tVOC levels). Homes with infants or expecting parents
often undergo more cleaning than typical. AMS, however,
suggests that a presumably “well-cleaned” house may, in fact,
pose a heightened risk of childhood asthma to infants [60],
delays in child language development [61], or prenatal exposure
to the fetuses that may impact their postnatal growth [62].

In summary, these results show that IAQ may be at unhealthy
levels while conducting typical daily activities. AMS is able to
track air quality through its sensors and indicate the impact of
harmful levels of indoor air pollutants such as O3, tVOC, CO2

levels, and the presence of PM2.5 inside homes.

Discussion

Principal Findings
This work has aimed to determine the performance of a low-cost
AMS in indoor spaces in terms of gathering sensor data for a
variety of air pollutants, transferring data reliably to an analysis
engine in the cloud, displaying air quality monitoring results to
the user, and sending alerts when the pollutants exceed safe
thresholds. This system also provided a way for users to choose
to share their IAQ data anonymously for further health research,
and for users and researchers to retrieve data using REST APIs
for further analysis and data analysis. This can be a foundation
for building a public IAQ database across geographical regions.

The results establish that AMS is effective in analyzing
multipollutant data streams in multiple settings, displaying AQI
value, hourly visual and quantitative data of 18 pollutants,
average exposure statistics of various pollutants, and the user’s
quarterly pollutant exposure graphs. The dashboard also includes
tips for each pollutant that display the GOOD, MODERATE,
or POOR thresholds, enabling the user to better interpret the
values and graphs shown in the UI and receive recommendations
for keeping various pollutants in check with simple mitigation.
The individual pollutant pages give the user further insights
into the pollutant and show novel research in which AMS
sensors and data collection have been employed. The system is
also effective in sending alerts when pollutants exceed safe
thresholds. The following sections discuss the findings of the
work, which are corroborated by previous work and studies of
a similar nature.

Particulate Matter
Particulate matter refers to mixtures of microscopic solid and
liquid particles suspended in the air. There are 2 types of
particulate matter that are most relevant to air pollution: PM10

and PM2.5. PM10 consists of particles that are between 2.5 and
10 μm (diameter); some examples of these include dust, pollen,
and particles of mold. PM2.5 consists of fine particles that are
2.5 μm in diameter or less; some examples of these include fuel
combustion, cigarette smoke, and aerosols. Particulate matter
is a health risk because it is small enough to be inhaled and
deposits itself in the airways of the human respiratory system.
Smaller particles can lodge themselves deep in the lungs or
enter the bloodstream. Even short-term exposure to PM2.5 has
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been associated with worsening respiratory diseases and can
lead to emergency care. Long-term exposure (ie, months to
years) has been linked to premature death, especially in people
with chronic conditions, and leads to reduced lung function in
children [63]. The EPA set the maximum 24-hour exposure

limit to PM2.5 to 35 µg/m3 and annual exposure limit to 12 µg/m3

[64].

Quite interestingly, results of this work clearly indicate that
when cooking is involved, the level of PM2.5 increases well
beyond recommended exposure limits and these levels remain
high even after cooking has ceased. While it was observed that
ventilation could mitigate levels to some extent, it is imperative
that cooking methodologies are modified to reduce the emission
of PM2.5. A study that focused on emission of PM2.5 from
cooking in homes found that the levels were raised 20-40-fold

to 160 µg/m3 in the kitchen and 10-fold in the nearby living

room to 60 µg/m3 [65], clearly corroborating the results of this
work. Measuring particulate matter in indoor air can direct
researchers toward finding easily implementable corrective
actions to reduce exposure levels.

Carbon Dioxide
CO2 is considered to be a dominant air pollutant. Moderately
high concentrations of CO2 in indoor air can lead to drowsiness,
fatigue, and headaches. Increasing amounts can cause dizziness
and nausea [66]. In the experimental data, CO2 levels increased
dramatically in poorly ventilated rooms as shown in the temporal
data in Figure 18. In both the rooms, air conditions were initially
unhealthy and then improved drastically. In room 1, conditions
became unhealthy again after some hours due to a room heater
that did not circulate air. Taking advice furnished by AMS and
adding a fan, along with regular ventilation, improved conditions
again. These results corroborate the findings of a previous work
in the Texas elementary schools that monitored CO2 levels in
120 randomly selected classrooms in 2 school districts [67].
The simple process of improving ventilation and air circulation
can reduce high concentrations of CO2 and improve comfort.

Volatile Organic Compounds
The experimental results show that even seemingly routine daily
activities can induce significant tVOC release. A variety of
household items, such as candles, cooking fumes, room
fresheners, cosmetics, cleaning products, and paints, emit VOCs.
These are organic chemicals that are usually in gaseous form
at room temperature and are photo-chemically active. Short-term
exposure to VOCs can cause optic or respiratory irritation,
headaches, memory lapses, and dizziness. Long-term exposure
can cause nausea, fatigue, organ damage, and cancer [68].
Results shown in Figure 22 based on an AMS report of
activities, such as cleaning, cooking, and commuting,
corroborate the findings of previous work [69-72].

Ozone
Readings taken while cleaning, cooking, and commuting, as
shown in Figure 22, highlighted a correlation between activities
that lead to elevated VOC levels in the presence of sunlight and
elevated O3 levels. In support, studies in Los Angeles have

found as many VOCs being emitted from household products
as from vehicle exhaust pipes, which then react in the presence
of sunlight to produce ground-level O3 [73]. These results match
the EPA’s report that mentions the adverse effects of synthetic
chemicals and emissions caused by cars, power plants, and other
industrial setups that react in the presence of sunlight to increase
ozone levels [74]. The results of this work show that the same
levels of VOCs do not elevate O3 as much at night, as there is
no sunlight to facilitate such a chemical reaction.

Ground-level O3 can trigger a variety of health problems,
including chest pain, coughing, throat irritation, and airway
inflammation. It can also worsen bronchitis, emphysema, and
asthma [74]. This can lead to the need for increased medical
care [75]. In 2016, 90% of noncompliance to the national
ambient air quality standards in the United States was due to
O3. Both short- and long-term exposures to O3 at concentrations
below the current regulatory standards are associated with
increased mortality from respiratory and cardiovascular diseases
[76].

Temperature
The DCS can measure both events induced by high temperature
(eg, the formation of ground-level O3 and low-temperature
triggers [77]) and brown adipose tissue metabolism [78]. The
direct impact of temperature reflected in a user’s heart rate data
stream during their sleep was characterized. An increasing trend
in ambient temperature even in the 68-80°F (20-27°C) range
and most definitely beyond (>27°C; Figure 16) could be
unhealthy. This observation is supported by a previous study
highlighted in Figure 23, which shows data collected for 1 user
over 424 nights using an iPhone with the Sleep Cycle app and
a Garmin Fenix 5 Watch [79]. Clear increases in the user’s
circulation flow (ie, reflected by resting heart rate) were
observed and appear to be correlated with increases in ambient
temperature.

Humidity
Lower humidity levels can cause skin dryness, corneal dryness,
dry nasal passages, and sinusitis [80], while higher relative
humidity levels can promote the growth of mold, bacteria, and
viruses. According to previous studies, low humidity levels lead
to increased aqueous tear evaporation [81,82]. The low humidity
values in the flight shown in Figure 15 corroborated with the
researcher’s discomfort due to dry eye symptoms during the
flight.

Significance
Previous studies have shown that several air pollutants, including
PM2.5, PM10, tVOC, CO, CO2, and more, can be present at much
higher quantities in indoor air than in the outdoors [83]. There
has been an increasing concern among the scientific community
about the connection between IAQ and the impact of personal
health [84].

The study results are significant in several ways. Data access
in AMS is both simple and comprehensive. Real-time AMS
data can be obtained and analysis performed from any device
through a progressive web application. The website also includes
historic data logs and recommendations on how to improve the
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user’s current air quality. Because it uses a cloud-based API, it
opens the possibility to integrate new types of analytical graphs
or recommendations into the system without the users needing
to update their device. With all the air quality measurements
collected and posted in tandem, there is an increased knowledge
about the interconnections and impacts of pollutants on an
individual, community, or specific demographic. Other
researchers can also tap into the system to download data and
include their own analyses for their unique studies.

Limitations
Because the DCS unit’s calibration is not performed on a large
scale, the calibration training set is limited when developing
data correction algorithms. Another limitation is that the data
were collected only by the researcher, and not external
participants, which indicates that the data set is small and does
not provide insight into various indoor pollutants affecting
various living situations. This limits the development of training
sets for learning algorithms to generate optimal individual
weights for each of the pollutants to calculate AQI and to
generate customized optimal recommendations for managing
the pollutants to maintain healthy indoor air quality. While the
DCS unit can be USB powered and portable when providing
13 data streams, due to increased power consumption for the
comprehensive 22 data streams model, it requires to be plugged
into a wall socket, thereby limiting its portability.

Future Work
Future research could implement AMS on a large scale to
safeguard public and personal health. Users can anonymously
share their data to help researchers draw connections between
indoor air pollution and public health and to further research in
the development of new modeling techniques for public health,
low-cost sensor data correction algorithms, and sensor modeling.
The larger vision of AMS is to build a public database for indoor
air, like EPA’s Air Quality System database [11,12] for ambient
air. The REST APIs in the system can be used to access the
open database populated by users willing to share their data.

AMS could include dynamic recalibration of the devices
installed at various settings over the internet. With this
auto-calibration, sensors would maintain the highest accuracy
possible and users would not have to perform manual calibration
themselves.

AMS can be researched for reduction of power consumption,
while still providing the comprehensive set of all 22 data
streams, thus maximizing its portability.

AMS can be used within households to compare indoor air
quality levels between neighbors, or on a grander scale within
communities. Large-scale distribution of AMS can lead to an
expansion of preventative health approaches from an individual
level to a community level and can provide valuable insights
into public health.

Other possible enhancements include making the high-power
model portable, and adding physical indicators, such as sound

and light on AMS hardware, which can help indicate the
hazardous levels of pollutants in a more noticeable way.

Cybernetic and navigational health approaches enable
individuals to be in control of their health throughout their lives
so that they have the necessary information to always maintain
an ideal state of health [85,86]. Continued research in this field
will focus on expanding into other health domains, improving
quality metrics, and developing methods to combine atmosome
data with other data streams to provide uniquely tailored lifestyle
recommendations.

Last, AMS could implement more sophisticated software
algorithms, such as an artificial neural network, as demonstrated
in [27], and machine learning, as demonstrated in [30], and
adaptive thresholding. In particular, the simplest algorithm to
implement would be to account for environmental variation (eg,
temperature and humidity) using an adaptive threshold to
improve sensor accuracy. Specifically, and referring to [54], an
adaptive threshold or the computed gas concentration could be
computed as a function of temperature and humidity. This would
significantly increase the sensitivity of the MQ sensors. Other
algorithms likely exist and could be explored with the intention
of maintaining a low-cost and small sensor solution as opposed
to transitioning to an alternative sensor.

Conclusions
In this work, the concept of an atmospheric exposome
(atmosome) was presented and a low-cost approach to leverage
multimodal sensors and cloud data storage in building a personal
atmosome was proposed. This work shows that AMS offers
both the concept and system to quantify and measure the
atmosphere with continuous real-time data streams, which
provide users and researchers access to pertinent air quality data
through a cloud computing architecture. These data can be used
by both members of the public and researchers. For example,
AMS could be used to alert an elderly user with dementia about
a gas leakage.

Further, AMS can find the effect of other atmospheric streams
such as temperature and humidity on the user’s observed health
and behavioral outcomes. This system monitors and analyses
VOCs, which could help ensure that pregnant women breathe
safe air, safeguarding not only their own health, but also that
of their fetus(es). Particulate matter detection and warnings can
help users to act on remediating the environment to avoid
pulmonary complications in all age groups. Overall, the findings
indicate that the multidimensional model of AMS is a step closer
in considering a variety of pollutants and atmospheric
characteristics that guide users toward a healthy lifestyle.

While the system can predict respiratory triggers, such as asthma
attacks in vulnerable people, it is yet to be tethered to other
health conditions (eg, proneness of a patient with diabetes to
blood glucose variations due to air quality). AMS could certainly
provide insight into such correlations and dramatically improve
personal health.
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