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Abstract

Background: Modern environmental health research extensively focuses on outdoor air pollutants and their effects on public
health. However, research on monitoring and enhancing individual indoor air quality is lacking. The field of exposomics
encompasses the totality of human environmental exposures and its effects on health. A subset of this exposome deals with
atmospheric exposure, termed the “atmosome.” The atmosome plays a pivotal role in health and has significant effects on DNA,
metabolism, skin integrity, and lung health.

Objective: The aim of this work is to develop a low-cost, comprehensive measurement system for collecting and analyzing
atmosomic factors. The research explores the significance of the atmosome in personalized and preventive care for public health.

Methods: An internet of things microcontroller-based system is introduced and demonstrated. The system collects real-time
indoor air quality data and postsit to the cloud for immediate access.

Results: The experimenta resultsyield air quality measurements with an accuracy of 90% when compared with precalibrated
commercia devices and demonstrate a direct correlation between lifestyle and air quality.

Conclusions: Quantifying the individual atmosome is a monumental step in advancing personalized health, medical research,
and epidemiological research. The 2 main goalsin thiswork areto present the atmosome as ameasurabl e concept and to demonstrate
how to implement it using low-cost electronics. By enabling atmosome measurements at acommunal scale, thiswork also opens
up potential new directions for public health research. Researchers will now have the data to model the impact of indoor air
pollutants on the health of individuals, communities, and specific demographics, leading to novel approaches for predicting and
preventing diseases.

(JMIR Biomed Eng 2021;6(4):€28920) doi: 10.2196/28920
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understanding of how an individual’s surroundings impact
his’her health. The atmospheric exposome, a subset of the
complete exposome and whichis presented in thiswork, focuses
on the health effects from the air that people breathe.

Introduction

At any moment in time, health is affected by various internal
and external factors, such as the genome, microbiome, and
exposome. The exposome consists of everything an individual
isexposed to acrosshisor her lifespan [1]. It considerslifestyle,

The term “atmosome” was coined to describe the atmospheric
subset of an individua’s exposome. Common indoor air

occupation, socioeconomic factors, and the environmental
conditions in which people live to develop an in-depth
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pollutants include PM,, 5 (particulate matter with diameter of
<2.5 um), PM,, (particulate matter with diameter of <10 pm),
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carbon dioxide (CO,), nitrogen dioxide (NO,), carbon monoxide
(CO), volatile organic compounds (VOCs), ozone (O5), liquid
petroleum gas (L PG), natural gas (NG), formaldehyde (HCHO),
and biological contaminants such as bacteria and fungi.
Measuring the quality of indoor air can provide insights into
the potential adverse effectsof poor air quality and preventative
measures to keep the exposome cleaner. A cleaner atmosome,
in turn, has a positive impact on health and well-being. Thus,
there is a need for a portable, real-time, multichannel air
measurement system for enabling data-driven analytics and
research [2].

A number of studies have been conducted by several federal,
state, and local agencies that monitored, collected, and stored
outdoor air quality data in the Environmental Protection
Agency’s (EPA) Air Quality System database [3,4]. The
Environmental Defense Fund in collaboration with Google Earth
[5], the World Health Organization Global Urban Ambient Air
Pollution Database [6], the World Air Quality Historical
Database 7], and many other organizations generated air quality
maps. These data are used for various modeling studies, to
review policy implementation plans, and to generate reportsfor
the Congress (US) [5]. However, these agencies have overlooked
similar quantitative studies of indoor air quality (IAQ).

Previous studies have shown that indoor air is much more
polluted than outdoor air and represents a major public health
challenge especially in developing countries [8]. Many studies
focused on specific or limited indoor air pollutants such as
VOCs, CO,, PM, 5, PM 44, and halogen flame-retardants[9-12].
Further, though potentially unexpected, there exist amyriad of
well-defined sources of indoor air contamination and,
correspondingly, numerous contaminants [13]. To improve air
quality and minimize pollution-related disease and mortality,
the atmosome must be defined, measured, and analyzed to
mitigate adverse environmental conditions and improve health
outcomes. Thus, the moativation for this work is to use the
atmosome to further personalize an estimation of individual
health from multimodal data[14,15].

According to the EPA, indoor air pollution is one of the top 5
environmental risks to public health. Annually, 9 out of every
10 people breathe air containing high levels of pollutants at
some point [16,17]. Air pollutants can be in the form of pet
dander, mold, dust mites, CO, radon, pests, lead, and secondhand
smoke[17]. Americans spend approximately 90% of their time
indoors, where the concentrations of some airborne pollutants
are 2-5 times higher than those outdoors [13]. This poor 1AQ
can cause various infections, lung cancer, and chronic lung
diseases, including asthma [18]. It can also contribute to the
development of atherosclerosis, a root cause of many
cardiovascular diseases[19]. In 2020, along-term study of over
63 million US adultsindicated a surprising correl ation between
PM,, 5 and hospitalizationsfor severe neurological diseases[20].

According to the State of Global Air 2020 [21], nearly 500,000
newborns died in 2019 in their first month of life due to
exposure to al types of air pollutants described previously.
Household inhalation of mold spores and infant pulmonary
hemorrhage are found to be linked in some studies [22]. Air
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pollution even impacts children whilethey arein their mothers
womb [23,24], with the effect of air pollution on pregnant
women and their fetuses comparable to smoking tobacco [21].
People often assume that indoor spaces are safe from outdoor
air pollution, but this is inaccurate. Therefore, IAQ is a
significant threat to public health [25]. The Program Needs for
Indoor Environments Research (PNIER) document details
EPA's research needs for the indoor environment and
recommends that the EPA and other governmental and private
sector agencies and organizations address this issue [26].

The environmental research field of IAQ is nascent.
Nonetheless, several researchers have recently demonstrated
portable gas detection systems using various sensor technol ogies
covering a limited set of analytes. For example, MQ sensors
were embedded in a system where VOCs were detected [27].
MQ sensors are well-known to exhibit acceptable selectivity,
but low sensitivity. Interestingly, the researchers implemented
an artificial neural network and dramatically improved the
sensitivity to gas concentrations at single-digit partsper million
(ppm). However, the supported analyte set isfar too small given
the contaminants of concern, asreported by the EPA. A related
research effort embedded photoionization detectors (PIDs) into
a portable system for the detection of isobutylene, ethanol,
propanol, and acetone [28]. PID sensors are well-known to
exhibit high senditivity (ie, on the order of parts per billion
[ppb]), but lower selectivity than MQ sensors. Further, that
work demonstrated only asmall set of detected analytes. Other
recent efforts include a portable system with embedded gas
chromatography PID sensors[29]. Thissystem detects benzene,
toluene, and xylene. The researchers also employed an el egant
algorithm using various quantification parameters (eg, pumping
time, temperature) and calibration curvesto optimize selectivity.
This system also requires a pumping time up to 90 seconds and
an analysistime of 10 minutes. Nonetheless, as expected, very
high sensitivity was achieved, but again the analyte set is small
and the system cost is substantially higher than an
implementation with low-cost devices, such as MQ sensors.
Last, none of these research efforts considered management of
the datain an actionable manner. The systems reported were to
demonstrate selectivity and sensitivity, the 2 most critical
metrics for gas sensors.

This recent research focused on utilizing more common sensor
technologies for portable applications. However, more exotic
sensors have been devel oped recently in portable gas detection
systems that have been demonstrated for indoor and outdoor
use. For example, in [30], amobile microscopy system (coined
as the c-Air device) is presented and utilizes microscopy as a
sensing technique and includes machine learning algorithmsto
increase accuracy. Further, it includes a mobile software app
for data display. The device requires a sample of 6.5 L of air
and an analysis time of 30 seconds. Also, similar to related
studies, the c-Air device supportsonly alimited set of analytes,
including total suspended particulates, PM, and PM,s.
Nonetheless, very good results are achieved and it is an
advancement that the system is linked to a mobile app, though
nothing actionable is reported.
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In[31], aso-called portable cyber-physical systemis presented
for gas detection and is embodied in 2 distinct architectures, a
stationary and portable device, each using well-established
electronics related to this work, including an Arduino
microcontroller and Raspberry Pi system-on-chip (SoC),
corresponding to each embodiment. The 2 systemsasouse MQ
sensors. However, the only sensors supported by the system are
an M Q-4 (amethane sensor) and an M Q-8 (ahydrogen sensor).
Further, although the system supports connectivity to the
internet, the functionality isto merely upload the data to cloud
storage. No manipulation or presentation of the dataisreported.

Basic |AQ commercial-off-the-shelf (COTS) productsalso exist.
Xiaomi, for example, offersacountertop product which detects
PM, s, total VOC (tVOC), CO,, temperature, and humidity [32].
Itincludes atouch screen and Wi-Fi connectivity. The company
also offers handheld products that measureindividual analytes,
such as PM,, 5 [33]. Further, Xiaomi offersair purifiersthat can
be controlled by a mobile phone app and are marketed under
the brand Mi. There exist many other related COTS products
for IAQ monitoring. Although interesting, these products
measure a very small set of analytes and offer minimal, if any,
actionable information based on the data collected.

In contrast to both the recent research and commercial work,
this paper introduces a patent pending and low-cost embedded
system called the Atmosome Measurement System (AMS) [34],
which can reliably, accurately, and instantaneously monitor and
measure significantly moreindoor air pollutants such as PM, s,
PM,,, CO,, NO,, CO, VOCs, Og, LPG, NG, equivaent CO,
(eCO,), hydrogen aswell asenvironmental parametersincluding
temperature, humidity, pressure, and altitude. This set of
analytes was chosen as it represents the primary sources of
indoor air pollution as well as the leading causes of adverse
impact on human respiratory health, according to the EPA.
Further, the presented work is implemented as a scalable and
low-cost embedded system utilizing COTS electronicsincluding
an Arduino microcontroller, Raspberry Pi SoC, MQ gas sensors,
and simple environmental sensors. MQ sensors were selected
for low cost, high selectivity, and sufficient sensitivity. Besides,
in contrast to previous studies [10,12], AMS is built with the
goa of providing a cloud-based infrastructure that stores,
analyzes, and presentsinsightsinto | AQ and trendsthat correlate
with personal lifestyles. It displays historic and real-time data
from multiple sensorsin auser-friendly web application, enables
users to interpret their data, and recommends environmental
changes to improve personal atmosome conditions.

Therefore, the devel opment of a system that can evaluate IAQ
by using multiple analytes, process and visualize pollutant data,
recommend remediation steps, and be built at an affordable
price point is the foundation of this research. The system can
be configured with a variety of optional customizations
including the frequency at which the userswould like to monitor
their air quality; their geographic location details including the
Zip code, city, state, and country; the indoor space details such
as home, office, or car; the location within the space such as
kitchen, bedroom, garage; and the activity details such as
cleaning, cooking, routine. Further, AMS supports
representationa statetransfer (REST) application programming
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interface (API) to download data for further exploration and
analytics. AMS also includes an option for the users to
anonymously share their data to further indoor air pollution
research. This opens the possibility of developing a public
indoor air quality database while maintaining user confidentiality
allowing for extended research on indoor air quality, itsimpacts,
and health policy modeling.

Taken together, AM S can be a useful tool for improving public
health outcomes asit can provide the necessary datathat people
need to manage their IAQ in a cost-effective and convenient
manner. Moreover, the data can display different atmosomes
between 2 neighbors or within neighborhoods of different
socioeconomic classes, which can be useful for public health
officials or policy researchers that work toward enhancing the
health of citizens.

Comparisons of AM Swith various COTS productsare available
in Multimedia Appendix 1 [35-41]. AMS stood out in both
number of analytes and cost compared with the nearest COTS
product, Aeroqual, that covers multiple anaytes [35].
Comparisons are a so made with recent studies and those details
are available in Multimedia Appendix 2 [42-47]. Aspects such
as data sampling duration and pollutant streams in AMS are
found to be much more extensive than similar indoor air quality
assessmentsin a college campus[44] and homesin atemperate
region of the United States [46]. Comparisons are not made
with the cited research because the analyte sets are dramatically
smaller than those supported by AM S and thereisno actionable
interpretation of the data in the studies, because they focus
primarily on sensor selectivity and sensitivity, as described
previously. Further, few of those efforts included internet
connectivity and none included any actionable information
based on the data collected.

Methods

Study Approach and Design

An experimenta approach combining internet of things (1oT)
hardware and software development was used to measure air
pollutants and air quality metrics. The researchers used AMS
to nonintrusively monitor air quality through daily indoor life.
AM S provided visualsand recorded trendsthat could indirectly
indicate the rel ati onship between lifestyle and observed pollutant
values.

In this work, the researchers used AMS to collect air quality
data indoors at home (in Cupertino, California; South Lake
Tahoe, California; and Hyderabad, Telangana, India) as well
as during local commute in the United States and during an
inflight journey from the United Statesto India. Theselocations
were chosen to monitor and evaluate the performance of AMS
in environments associated with distinct indoor air quality
profilesand climates. The device, similar to athermostat placed
in aroom, is completely noninvasive. To initiate readings, it is
powered on with a USB cable (or a wall socket) and AMS
software is launched by the user. The studies were conducted,
intermittently, between January 2020 and January 2021.

Afterinitial calibration, to ensure the continued accuracy of the
measurements made by AMS on an ongoing basis, the sensors
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wererecalibrated every 3 months. Measurementswere repeated
over similar activities in several different timeframes to better
analyze and predict possible relationships between activities
and associated pollutants. To control for bias, measurements
were also carried out across several recalibrations.

System Architecture

AMS comprises 3 distinct modules that collect, analyze and
store, and display data. As shown in Figure 1, these 3
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interconnected modules include the data collection system
(DCS), data analysis and storage engine (DASE), and user
interface (Ul). The DCS is a sensor system that collects the
user’s environmental data in user-defined intervals. The data
gathered are then analyzed and stored by the system’s DASE,
and the air quality metrics obtained are displayed by the
system’s web-based UI.

Figurel. AMSblock diagram illustrating the basic functionality for data collection, data analysis and storage, and the user interface.

Atmosome Measurement System (AMS)

(comprising of 3 interconnected modules)

Data Collection System
(DCS)

This module collects user environment data

Raspberry Pi

Posting to cloud,
local storage
if no Wi-Fi,
and a browser
to view results

Data Analysis & Storage Engine

This module analyzes & stores

Data Analytics, Web-based
Alerts, and Storage Frontend
Cloud Backend
Hosted on GoDaddy

User Interface
(UI)

This module displays user data

(DASE)

the user data

Data Visualization

Hosted on AWS

Materials and Software

Materials used to build the DCS and the software used to create
DASE and Ul are discussed in the following sections.

Data Collection System

Overview

The DCSisan loT air monitoring sensor system for acquiring
an individual’'s unique geospatial data to track air quality. It
includes 17 environmental sensorsthat measure 22 different air
pollutant data streams, an Arduino Mega, a Raspberry Pi, and
apower source. Referring back to Figure 1, the Arduino Mega
isamicrocontroller that captures sensor dataand the Raspberry
Pi is an SoC which supports Wi-Fi and enables an interface to
the cloud.

Sensors

The DCS monitors environmental conditions such as
temperature, pressure, atitude, humidity, and various analytes
including PM, 5, PM;,, CO, O CO,, eCO,, tVOCs, LPG,
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methane, hydrogen, flammable gases, aromatic compounds,
hydrogen sulfide, ammonia, nitrogen oxide, NG, and HCHO
as shown in Table 1. Metal oxide semiconductor (MQOS) gas
sensors were used to detect the different air pollutants.
MOS-based sensors detect the concentration of various kinds
of gases by acting as a chemiresistor, where a change in
resistance of the metal oxide occurs due to the adsorption of
specific gases. These sensors, and specifically MQ series
sensors, are idedly suited for low-cost and low-power
applicationsinindoor environments. Selectivity to certain gases
is dependent on the specific sensor model, which is indicated
numerically. Some MQ sensors are sensitive to multiple gases,
for example, both MQ-5 and MQ-6 measure LPG, but MQ-6
exhibits higher selectivity and sensitivity to LPG and is
calibrated for that particular gas. As individual sensors are
calibrated for their specific gases, they areless selective to other
gases. A total of 17 different kinds of sensorswere used to detect
and measure the level of pollutants as well as environmental
parameters (Table 1).
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Tablel. List of sensors, including target gas analytes and parameters as well as sensor type, in the data collection system implementation. The system

supports 22 data streams from 17 different sensors.

Sensor Analyte/parameter Sensor type

CCS811/BME280 Total volatile organic compounds, equivalent carbon dioxide, Environmental combo sensor
temperature, humidity, pressure, atitude

CO, Carbon dioxide Nondispersive infrared

PMy 5 Particulate matter 2.5 Optical, infrared-emitting diode

MQ2 Smoke/particul ate matter 10 MOS?

MQ4 Methane MOS gas sensor

MQ6 Liquefied petroleum gas MOS gas sensor

MQ7 Carbon monoxide MOS gas sensor

MQ131 Ozone MOS gas sensor

MQ3 Alcohol (ethyl acohol) MOS gas sensor

MQ5 Natural gas MOS gas sensor

MQ8 Hydrogen MOS gas sensor

MQ9 Flammable gases MOS gas sensor

MQ135 Aromatic compounds MOS gas sensor

MQ136 Hydrogen sulfide MOS gas sensor

MQ137 Ammonia MOS gas sensor

NOy Nitrogen oxides MOS gas sensor

HCHO Formaldehyde MOS gas sensor

3MOS: metal oxide semiconductor.

Realized AMS

Figure 2 presentsthe complete realized AM Sincluding sensors
and the Raspberry Pi platform, which are securely mounted to
an FR4 printed circuit board (PCB) and an Arduino Mega 2560

microcontroller reverse mounted to the same. The Arduino
Mega microcontroller is programmed to capture data from the
sensors. All of these system components and associated positions
on the PCB are labeled clearly in Figure 2.

Figure 2. A photograph of the populated PCB with the Arduino (reverse mounted) and 17 sensorslisted in Table 1. CO: carbon monoxide; CO,: carbon
dioxide; H,S: hydrogen sulfide; HCHO: formaldehyde; LPG: liquid petroleum gas; NG: natural gas; NH3: ammonia; PCB: printed circuit board; PM» 5:
particulate matter with diameter of 2.5 pm or less; PM1q: particulate matter with diameter of 10 um or less; VOC: volétile organic compound.
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loT

The sensor PCB is connected using a USB cable linked to a
computer (either a Raspberry Pi or alaptop that runs the DCS
software). The computer receives sensor data from Arduino
Mega microcontroller and posts it to the cloud (DASE) server
or saves it in loca memory in the absence of an internet
connection. The PCB comes in 2 variations. a portable model
that consists of 8 different sensors providing 13 data streams
and powered by the USB; and a high-power model that has 17
sensors providing 22 data streams and which must be powered
by awall socket. Future work will aim to make the high-power
model portable.

Bhimargju et a

Data Storage and Analysis Engine

DASE runsin the cloud on Amazon Web Services (AWS) and
storesthe sensor datain aPostgres Database. AWS was selected
for simplicity of implementation, low cost, and well-known
user data security as shown in arecent case study [48]. Further,
no personally identifiableinformation is collected for this study.
The username and zip code are stored in the cloud and password
protected. The softwareimplementation is built using the Python
Flask Framework and supports REST API to support receiving
data from the sensor board at user location (DCS) and for
sending data to the Ul or aertsto the user. The source module
layout and libraries are shown in Figure 3.

Figure 3. DASE (dataanalysis and storage engine) programming components and functional flow diagram.

F---------------------------1

ATMOSOME’S BACKEND PYTHON FLASK WEB APPLICATION

web application framework

flask

DB Tables
modifications
and
migrations

Hosted on Amazon Web Services, Uses Apache Web Server & Let's Encrypt

SQL toolkit and Object Relational Mapper

-

manages DB
connections
and sessions

sqlalchemy

timeseries
data

graphs
generation

matplotlib
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frontend
ReactJS
calls

an object
serialization,
deserialization
library

DB model definitions

flaskproject,
models

Atmosome Engine

web app configuration

REST api definition

flaskproject,

flaskproject,
config

app

The backend of the system is based on Python and Flask and
has 3 distinct interconnected components that make up the
Atmosome engine: the web application framework, the database
model that receives data from the cloud database, and the
numerical analysis libraries that operate on the data received
from the user’s device and surface them to the user viathe front
end Ul. To accomplish this workflow, DASE employs various
Flask web framework components including flaskmigrate (to
support modifications to existing DB tables), sglalchemy (an
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object-relational mapper that enables reading from/writing to
the DB python data objects without the need for usingthe DB'’s
SQL), flasksglalchemy (to manage DB connections and
sessions), flaskcors (to enable cross-domain REST API
communication between the server and the Ul),
flaskmar shmallow (to handle python-json
seridization/deserialization for REST APl communication),
numpy (Python’smultidimensional numerical analysislibrary),
pandas (Python’s DataFrame support much like adatabase table
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inmemory), and matplotlib (Python’s datavisualization library).
flaskproject.models defines the DB tables in python,
flaskproject.config defines the web application configurations,
for example, the type of database being used, and
flaskproject.app isthe code that handles all data computations.

User Interface

The Ul isbuilt as aprogressive web application using the React
Framework. This makes it available on any device with aweb
browser. Additionally, because it is a progressive web app, it
automatically adjusts to the size of mobile platforms, and
thereby presents a user experience similar to a native app. The
source code is structured and modularized into pages and
components within pages.

For example, Figure 4 illustrates the 6 javascript (.js) source
files that render the various sections of the Atmosome

Bhimargju et d

dashboard. header.jsis the header of the page, and displaysthe
page title, user location, date, and time. gauge.js displays the
AQI gauge which gives an “at-one-glance” state of the current
indoor air conditions. weatherParametersjs displays the
temperature, humidity, pressure, and altitude. Although weather
metrics are not pollutants, they are a part of lifestyle conditions
and are recorded along with information on pollutants.
pollutants.js displays numeric and visual information about
each of the pollutants. averageExposure,js displays the user’'s
average exposure to various pollutants in different intervals of
time. timeseries.js displays the quarterly time series graphs of
the user’s historic exposure to various pollutants. The Ul is
designed mainly to render data and does not store data or
perform computations. It makes REST API calls to DASE to
retrieve the data.

Figure 4. Ul dashboard software and display components. The dashboard showcases the level of various pollutants (eg, PM5 5, VOC, ozone, CO,),

weather metrics (eg, temperature, humidity, pressure, and altitude), Air Quali

ty Index, average exposure levels over time, and quarterly temporal graphs

reflecting the user’s historic exposure data. CO,: carbon dioxide; PM 5: particulate matter with diameter of 2.5 um or less; Ul: user interface; VOC:

volatile organic compound.
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Procedure

In this section, the methods involved in calibrating the DCS
device, collecting datafrom asetting, and posting datato DASE
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will be discussed. Moreover, the analyzed data can be viewed
on Ul screens for the given set up.
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Sensor Calibration

The sensorsin AMS's DCS arefirst “burned-in,” meaning that
they are placed in an environment with clean air and operated
with active power for 48 hours. Next, AMS's DCS is run
through a meticulous calibration process to ensure accuracy. A
flow diagram of the calibration algorithmisillustrated in Figure

Bhimargju et d

5. AMS DCS is calibrated for several variables such as CO,,
tVOC, LPG, PM, 5, PM,,, and others as indicated. During the
initial set up, this process is repeated daily and accumulated
over a period of 15 days to train a linear regression model to
predict the values. The calibration code is run on the sensor’s
board Arduino Mega microcontroller, and the data are
accumulated on the Pi system.

Figure5. DCScdlibration algorithm flow diagram. CO: carbon monoxide; CO,: carbon dioxide; DCS: data collection system; L PG: liquefied petroleum
gas, NG: natural gas, O3: 0zone; PM5 s5: particulate matter with diameter of 2.5 um or less; PMqq: particulate matter with diameter of 10 pm or less;

tVOC: total volatile organic compound.
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To ensure the continued accuracy of the new system, the sensors
were recalibrated every 3 months, and new training improves
the accuracy of the data correction algorithms. Upon continued
comparison of the DCS postcalibration valueswith precalibrated
COTSdevices, over 90% accuracy postcalibration was achieved
when compared with precalibrated COTS devices. Alternative
calibration approaches, such as calibrating outdoors against the
values of the nearest outdoor weather station, were explored
and similar accuracy was noted.

Data Collection

Once the user receives the portable DCS, they need to power it
and connect it to a Wi-Fi network, if available. Then they need
to launch the application. Once launched, the user can change
any of their default settings, or retain the defaults, and initiate
collection of air quality data.

Although AMS is intended to measure 1AQ, part of the
calibration routine was performed outdoors. This decision was
madeto compareresults easily with the nearest, trusted outdoor
air pollution station. Further, the environmental differences
between theindoor and outdoor settingswere not notable enough
to introduce a substantial error. Certainly, an entirely indoor
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calibration routine would yield higher sensor accuracy, but
precise indoor calibration techniques are complex and not
suitable for consumer use. For example, precision routines to
calibrate gas sensors are typically performed in the presence of
a high concentration source of each analyte. Such an approach
was deemed unrealistic and prohibitively expensive.

The researcher (HB) used AMS to monitor air quality through
daily lifeat home, such asinthekitchen, living room, bedroom,
home office, and during commute. The researcher also measured
air quality during air travel to India, and at home in India and
the United States.

Data Transmission

L ocal Storage and Transmission to Cloud

In the presence of Wi-Fi, asthe DCS program collectsair quality
data from the sensors at the frequency specified by the user, it
concurrently transmitsthe datato the cloud and requires no user
interaction. In the absence of Wi-Fi, the DCS stores the datain
local memory. Once a Wi-Fi connection is available, the user
can connect the DCS to the Wi-Fi, and select anicon in the Ul
that indicates “ Upload AM S data to the Cloud.” Thisloadsthe
data to the cloud, and once complete, deletes the locally stored
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data, automatically removing the no-longer required data from

local storage.

Post/Receive Data to/From Cloud

The DCS software wraps the readings from each of its sensors

Bhimargju et d

used to store and transmit data to DASE, which is running in

the cloud. Once a JSON payload with the values of each
pollutant, atmospheric data, and sampling location information
has been assembled (a portion of which is shown in Figure 6)

into JSON, a simple format, with a series of key value pairs,

it isready to be transmitted via the internet to DASE.

Figure 6. Datatransmission: REST API POST datafrom DCS to DA SE containing sensor types and values. API: application programming interface;

DASE: DASE: dataanalysis and storage engine; DCS: data collection system; REST: representational state transfer.
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Params

none
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The DCS software uses REST APIs to interact with DASE.
REST APIs use HTTP requests to interact with a remote web
server. The HTTP GET method is used to receive datafrom the
server, and the HTTP POST method is used to send data to the

remote server.

https://biomedeng.jmir.org/2021/4/e28920

RenderX

b

v https://atm-rest.com/api/air

Authorization Headers (8) Body @

form-data x-www-form-urlencoded

“city": "Cupertino",
"state": "CA",
“country": “USA“,
"zipcode": "95814",
"place": "home",
"details": “rooms",
"misc": “routine days”,
“temp": "75.9",
"humidity": "'38",
"altitude": "272.98",
“pressure": "29.63",
“pm2_5": "13.06",
"tvoCc": "1i467.00",
“co2_ppm": "10822.32",
"mql31_o3_ppm": "0.096",
"mg7_co_ppm": "16.00",
“"pm_1@": "448.00",
“"mg6_1lpg_ppm": "3.11",
"mg4_ng_ppm": "3.18",
"eC02": "2355.00",
"mg7_h2_ppm": "0.00"

The DCS software sends this JSON payload by making aREST
APl POST request to DASE, which receives the data, and
subsequently analyzesand storesthem. Upon receivingan HTTP
GET request from the Ul to display data, DASE formats the

information required by the Ul into the JSON payload and sends
it, asillustrated in Figure 7. The Ul then displays these data.
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Figure 7. JSON formatted REST APl GET data from DASE to Ul containing attributes stored for each pollutant and weather metric. API: application
programming interface; DASE: data analysis and storage engine; REST: representational state transfer; Ul: user interface.

{
"pollutantDetails": [
{

"name": "Carbon Dioxide",

"abbr": "cCo2",
"value": 574.65,
"units": "ppm",
"state": "GOOD",
"barColor": "green",
"barProgress": 10,
"tipsTitle": '""CO2",

" Generated by

( Atmosome

\ Recommendation
» Engine /

"tipsContent": "<ul><li>Ventilate, especially

“order": 3
}
1,
"weatherDetails": [
{

"name": "Temperature",

“"abbr":
"value": 76.13,
"unit": "F",
"order": 1

"name": "Humidity",
"abbr": "Humidity",
"value": 32.83,
"unit": "%",
"order": 1

}

1,

"locationDetails": {
"zipCode": "95014",
"city": "Cupertino",
"state": "CA",
"country": "USA",
"place": "home"

iz
" qill . 39
}

Data Storage

DA SE storesthe received sensors datain its Postgres database.
Postgres is a free database and is seamlessly integrated into
DASE's Python Flask framework to store and retrieve data
using REST API calls. Currently, thereisno limit on the amount
of time the user’'s history data are stored in DASE and thereis
no user action involved in this step.

AQI Calculation

General Equation

The Indoor Air Quality Index is calculated using the weighted
mean formula. The contribution of each pollutant is multiplied
by its weightage, whose calculation is explained in the next
section, and divided by the sum of pollutant weightages.

This can be represented by the formula:
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where W, is weightage of pollutant i and P, is the reading of
pollutant i.

Calculation of Pollutant Weightages

Weightages for each of the pollutants have been calculated
based on the concentrated means and their contribution to
different AQI levels.

Individual AQIs (Table 2) and the breaking points for the
concentration mean of different pollutantsin afixed cyclewere
used to arrive at the weights of each pollutant at the respective
AQI levels. Weightage of each pollutant’s mean concentration
at each AQI level was calculated by measuring the fractional
contribution to the AQI.

JMIR Biomed Eng 2021 | vol. 6 | iss. 4 | €28920 | p. 10
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR BIOMEDICAL ENGINEERING Bhimaragju et al

Table 2. Individual Air Quality Indexes and the breaking points for the concentration mean of pollutants [49]a*b.

| ndot_)r Air S_ulfgr S_quL_Jr l\!itr(_)gen N_itrqgen PM 10d 24 Carbor? Carbon_ Ozone 1 Ozone 8 PM, <€ 24
Quality In- dioxide24 dioxidel dioxide24 dioxidel hours monoxide24 monoxide  hour hours hours
dex hours hour® hours hour® hours 1 hour®

0 0 0 0 0 0 0 0 0 0 0

50 50 150 40 100 50 2 5 160 100 35
100 150 500 80 200 150 4 10 200 160 75
150 475 650 180 700 250 14 35 300 215 115
200 800 800 280 1200 350 24 60 400 265 150
300 1600 f 565 2340 420 36 90 800 800 250
400 2100 f 750 3090 500 48 120 1000 g9 350
500 2620 f 940 3840 600 60 150 1200 g9 500

3Data presented are mean values.

bsulfur dioxide (not collected by AMS) and nitrogen dioxide, which are primarily outside pollutants, are excluded from the indoor Air Quality Index
calculation. Carbon dioxide and volatile organic compounds are much more common indoors and are more relevant and considered in the indoor Air
Quality Index calculation.

®The concentration means of 1-hour sulfur dioxide, nitrogen dioxide, and carbon monoxide just adapt to the real-time cal cul ation for Indoor Air Quality
Index, but the concentration means of 24-hour sulfur dioxide, nitrogen dioxide, and carbon monoxide were used to calculate for awhole day.

dpm 10- particulate matter with diameter of <10 pm.

®PM, 5: particulate matter with diameter of <2.5 um.

"The concentration mean of 1-hour sulfur dioxide higher than 800 pg/m3 is calculated with the concentration mean of 24-hour sulfur dioxide.
9The concentration mean of 8-hour ozone higher than 800 pg/m3 is calculated with the concentration mean of 1-hour ozone.

points chosen as pollutant representation, which is used as the

denominator, and the breaking point of the IAQI range as the
numerator, similar to cal cul ations performed for other pollutants.

tVOC I nformation

Valuesfrom Table 3 have been considered for the corresponding
AQI windows, with the midpoint of concentration breaking

Table 3. Individual AQIsand the breaking points for the concentration mean of VOCs and others [50].

Level  AQI%range VOCP (ug/md) concentration  CO% (ug/m3) concentration PM® (ug/m®) concentration Description
(BP_o-BPy))° (BPLo—BPH) (BPLoBPHI)

A 0-50 0-200 0-4.99 0-30 Good

B 51-100 201-350 5-9.99 31-90 Moderate

C 101-250 351-500 10-14.99 91-140 Unhealthy

D 251-400 501-757 15-2000 141-750 Very unhealthy

3AQI: Air Quality Index.

byoc: volatile organic compound.

®BP: breaking point (LO: low; HI: high).
dco: carbon monoxide.

€PM: particulate matter.

calculated and chosen as pollutant representation, which isused

CO, Information

Valuesfrom Table 4 have been considered for the corresponding
AQI windows, with the midpoint of pollutant concentration
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as the denominator, and the breaking point of the IAQI range
as the numerator, asis the case with others.
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Table4. Individual Air Quality Indexes and the pollutant concentration ranges of carbon dioxide and others [51].

Bhimargju et d

Carbon Carbon dioxide Hydrogen Ammonia Ethanol Hydrogen Toluene Oxygen Indoor Air  Health effects

monoxide  (ppm) (ppm) (ppm) (ppm) sulfide (ppm) (%) Quality In-

(ppm) (ppm) dex

0-0.2 0-379 0-1 0-24 0-0.49 0-0.00033  0-0.0247 20.95 0-50 Good

0.21-2 380-450 11-2 25-30 0.5-10 0.00034-1.5 0.0248-0.6 19-20.9  51-100 Moderate

219 451-1000 2.1-3 31-50 11-49 165 0.7-1.6 15-19 101-150 Unhealthy for sensitive
individuals

9.1-154 1001-5000 3.15 51-100 50-100 6-20 1.7-9.8 12-15 151-200 Unhealthy

15.5-30.4  5001-30,000 5.1-8 101-400 101-700 21-50 9.9-12.2 10-12 201-300 Very unhealthy

30.5-504 30,001-40,000 8.1-10 401-500 701-1000 51-100 12.3-100 <10 301-400 Hazardous

The final weightage factor of each pollutant was calculated by ~ where W, is the weightage of pollutant; IQAI, istheindividual
AQI pollution level; and PCM, is the corresponding
concentration threshold mean of a pollutant.

Weightage Worksheet Tables by Pollutant

taking the arithmetic mean as shown in Tables 5-10.
Pollutant Weightage Formula

n IAQI,
v (3, %)
P »=1 PCM,

Table 5. Weightage calculation for PM o2

Indoor Air Quality Index PM 19 24-hour mean PM 1o weightage
50 50 1
100 150 0.666666667
150 250 0.6
200 350 0.571428571
300 420 0.714285714
400 500 0.8
500 600 0.833333333
Final weightage 0.740816327
8PM 10: particul ate matter with diameter of <10 um.
Table 6. Weightage calculation for CO?
Indoor Air Quality Index CO 1-hour mean CO weightage
50 5 10
100 10 10
150 35 4.28571429
200 60 3.33333333
300 90 3.33333333
400 120 3.33333333
500 150 3.33333333
Final weightage 5.37414966

4CO: carbon monoxide.
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Table 7. Weightage calculation for O52.

Indoor Air Quality Index O3 1-hour mean O3 weightage

50 160 0.3125

100 200 0.5

150 300 0.5

200 400 0.5

300 800 0.375

400 1000 0.4

500 1200 0.416666667

Final weightage 0.429166667
804: ozone.

Table 8. Weightage calculation for PM 52

Indoor Air Quality Index PM 3, 5 24-hour mean PM, 5 weightage
50 35 1.428571429
100 75 1.333333333
150 115 1.304347826
200 150 1.333333333
300 250 12

400 350 1.142857143
500 500 1

Final weightage 1.248920438

3PM, 5: particulate matter with diameter of <2.5 um.

Table 9. Weightage calculation for tVvOC?,

Indoor Air Quality Index tVOC mean tVOC weightage
50 100 0.5

100 275 0.363636364
250 425 0.588235294
400 628 0.636942675
Final weightage 0.522203583

%V OC: total volatile organic compound.
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Table 10. Weightage calculation for CO,?,

Bhimargju et d

Indoor Air Quality Index CO, mean CO, weightage
50 341 0.146627566
100 747 0.133868809
150 1305 0.114942529
200 5400 0.037037037
300 31,500 0.00952381
400 63,000 0.006349206
Final weightage 0.074724826

8CO,: carbon dioxide.

Data Analysis

The dataanalysisflowchart is depicted in Figure 8. Analysis of
the collected data from the DCS is automatically executed in
the background and is transparent to the user. Upon receiving
a request from the Ul, or through the background user alert
process, the database is queried to retrieve data. The data are
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validated against thresholds predetermined by environmental
safety limits [52,53]. If the user is registered to receive alerts
and the values exceed safe thresholds, an aert is sent to the
user. Additionally, the values and corresponding qualitative
metrics of each pollutant are determined. Finaly, AQI is
computed and the data are returned.
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Figure 8. DASE data flow on the web server used to populate the Atmosome Ul or send a user alert. DASE: data analysis and storage engine; DB:

database; Ul: user interface.
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The authors considered including an adaptive threshold for each
analyte to account for spatial, temporal, and environmental
variations. However, AMS is recalibrated in each new usage
location and is intended for indoor use. Thus, environmental
variations are small and no substantial error between AMS and
COTS sensors was observed when analyzing the data
Nonetheless, it is well-known that MQ sensors exhibit high
temperature coefficients and sensitivity to humidity [54]. Drift
of these sensorsislow and ongoing recalibration every 3 months
is more than sufficient to address such drift [54]. Considering
these factors, the ranges at which the AQI considered are
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absolute, but the unit itself is adjusted to account for location.
Further, the sample rate is considered sufficient for the
application. In the data that follow, it does not appear that the
sensors are undersampled, so tempora variation is not
considered in this embodiment. Nonetheless, one of the goals
for the future work is to automate the calibration process and
also alow customization of the calibration interval according
to the user’s choice.
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Data Alerts

If auser optsto be a erted when pollutants are above the optimal
threshold, DA SE sends an email and SM S text message alerts.
This could be invaluable in preventing accidents or calling for
emergency services in the case of an NG leakage or similar
emergency.

Data Display

Current Ul Module and Plans for the Next Version

The Ul module displays the air quality information to users.
The user accesses the Ul at the atmosome website [55]. There
isadropdown menu to select the user’s zip code.

The next version of the atmosome Ul will include alogin screen
for the user, instead of the current zip code selection. The
various parts of the Ul displayed to the user are described bel ow.

Bhimargju et d

Hourly Dashboard

The dashboard (Figure 9) presentsthe user with an “ at-a-glance”
state of their indoor air quality using a gauge that reflects AQI.
The gauge conforms to the conventions of the US AQI gauge.
The AQI is computed based on the pollutants that show the
most variability due to user lifestyle, including PM, s, tVOC,
CO,, O3, CO, and PM,,. The past hourly averages sample of
10 pollutant analytes is presented visually and quantitatively.
Thresholdsfor each analyte are predetermined by environmental
safety limits. Relative assessments of levelsare color coded and
reported as GOOD, MODERATE, POOR, or BAD. Four
environmental parameters, including temperature, pressure,
humidity, and altitude, are also shown quantitatively.

Figure 9. Representative example of hourly dashboard of user’s atmosome data displayed by AMS Ul. The values of 4 environmental parameters are
also quantitatively presented below the AQI gauge. AMS: Atmosome Measurement System; AQI: Air Quality Index; PMq: particulate matter with

diameter of 10 um or less; Ul: user interface.
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Each pollutant in the dashboard is associated with detailed
information about acceptable threshol ds and specific suggestions
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i January 29, 2021. Last updated: 7:44am

Pollutants
Particulate Matter - 17.67 Volatile Organic 1531.86
PM2.5 ug/m3 Compounds - VOC ppb
O
MODERATE Tips POOR Tips
Carbon Dioxide - CO;  572.70 Ozone - O 0.14
ppm ppm
-
GOOD Tips POOR Tips
Carbon Monoxide - CO 3.56 PM10 - 50.16
ppm ug/m3
a a
GOOD Tips GOOD Tips
Liquid Petroleum Gas - LPG3.78 Natural Gas - NG 1.74
ppm ppm
a |
GOoD Tips GOOD Tips
Equivalent Carbon 2383.31 Hydrogen - Hy 0
Dioxide - eCO; ppm ppm
|
POOR Tips GOOD Tips

on how to manage it to be within healthy limits. Thisis shown
in Figures 10 and 11.
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Figure 10. Lifestyle recommendations to improve atmosome quality, provided to the user in AMS UI. Clicking on the “Tips' link of each of the
pollutants in the Ul dashboard, as shown, opens up a popup box showing the quantitative thresholds associated with the pollutant and gives the user
recommendations on managing it to maintain healthy levels. AMS: Atmosome Measurement System; ppb: parts per billion; Ul: user interface; VOC:
volatile organic compound.

VOC

Clicking on “Tips” shows

the recommendations e Ventilate

e Reduce use of spray
cosmetics, perfumes, air
fresheners, aerosols
238.89

ppb e Ventilate while using soaps, |
- o cleaning solvents, paints, nail|
MODERATE

Pollutants
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Carbon Dioxide - CO2 51?:: e Further Reading
- Thresholds (ppb):
GOOD "ips e Good: 0 - 220

Ozone - 03 "U:‘S e Average: 221 - 660
— e Poor: 661 - 2000
GOOD fips e Bad: >2000

Figure11. Examplesinthe AMS Ul that show the recommendations and thresholds for NG and PM2.5. AMS: Atmosome Measurement System; NG:
natural gas; PM, 5: particulate matter with diameter of 2.5 um or less; Ul: user interface.

NG PM2.5

® |cave area of suspected leak e Avoid smoke, burning wood,
as quickly as possible candles, incense, etc.

® Warn others to stay out of the e Ventilate and use exhaust fans
area e Use exhaust fan while cooking

® Call local utility preferably or e Use HEPA filters to purify air
911 e Further reading:

® Further https://www.airnow.gov/aqi/aqgi-basics/

extremely-high-levels-of-pm25/
Thresholds (pg/m?3):

e Good: 0-15.4

e Moderate: 15.4 - 40.4

e Poor: 40.5 - 65.4

Unhealthy: 65.5 - 150.4

Very unhealthy: 150.5 - 250.4

reading: https://www.peoples-
gas.com/all-about-
gas/safety/smell/what-to
do.php

12. These data provide potential insights into the underlying

Average Exposure causes of poor AQI, which could be correlated with specific
The cumulative average values of different pollutantsindicate  |iving conditions.

the overall exposure across various periods as shown in Figure
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Figure 12. An example of AMS Ul showing the average exposure statistics for different pollutants across various periods, ranging from 8 hoursto 1
week. AMS: Atmosome Measurement System; CO5: carbon dioxide; O3: ozone; ppb: parts per billion; ppm: parts per million; Ul: user interface; VOC:

volatile organic compound.

VOC
8 Hours 907.35 ppb
24 Hours 39595 ppb
1 Week 315.76 ppb

Cco,
8 Hours 585.89 ppm
24 Hours 723.02 ppm
1 Week 715,63 ppm

0O,
8 Hours 0.11 ppm
24 Hours 0.1 ppm
1 Week 0.09 ppm

(a) VOCs exposure

(b) CO, exposure

(c) O; exposure

Quarterly Temporal Graphs

The Ul time-series datadisplay quarterly data
pollutant data streams (Figure 13). This

visualize trends over time and gain deeper insights into which

pollutants are affecting

their air quality most substantially. For

example, tVOC measurements are noted to be highly variable

from the different
enables users to

duetoindoor sourcesresulting from occupant lifestyle, including
exposure to cosmetics, cleaning products, room refreshers,
cooking fumes, and more.

Figure 13. An example of AMS Ul showing graphs of the user’s quarterly trends of tVOC, CO,, Og, and humidity data streams. AMS; Atmosome
Measurement System; CO»: carbon dioxide; Oz: 0zone; tVOC: total volatile organic compound; Ul: user interface.
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Pollutants | nformation Page

For each category of pollutant, upon selecting its name in the

Ul, the user is taken to a new page that

description of the pollutant; associated health risks at different
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concentrations; and examples of how such data can be collected,
graphed, and studied further are shown. This provides users

contains a brief

further insights into each of the pollutants and the possibility
of enabling additional research. An example description page
isshown in Figure 14 for PM,, 5.
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Figure14. Anexampleof AMSUI individua pollutant pagethat is displayed on a separate web page for every pollutant and can be found by selecting
the pollutant name in the dashboard. These pages provide the user with greater detail about each pollutant. This includes information such as more
details about the pollutant, common sources of the pollutant, possible research and data analysis that have been/could be done on the pollutant using
the corresponding AM S sensor, and more. Thisfigure is an example of the PM2.5 pollutant page. Besides providing more details about PM5 s, it shows

how the AMS PM, 5 sensor and extensive statistical analysis of its data was used for new, internationally published research on low-cost enhancement
of facial mask filtration. AMS: Atmosome Measurement System; PM», 5: particulate matter with diameter of 2.5 pm or less; Ul: user interface.

Particulate Matter (PM2.5)

Particulate matter refers to mixtures of microscopic solid and liquid particles

suspended in air. There are two types of particulate matter that are most relevant to air
pollution: PM10 and PM2.5. PM10 refers to particles that are between 2.5 and 10

microns; some examples of these include dust, pollen, and particles of mold. PM2.5

consists of fine particles that are 2.5 microns in diameter or less; fuel combustion,

cigarette smoke, aerosols, and more can form them. Particulate matter is a health risk

because it is small enough to be inhaled and deposits itself in airways of the human

body.

The AMS's PM 2.5 sensor can also be used to spin off new research as done by the

same researchers in “Low-cost enhancement of facial mask filtration to prevent
transmission of COVID-19" published in the BBIJ Journal.
A system as shown below was developed to compare the efficacies of different

facial masks, based on their abilities to filter PM 2.5 particles and the data was analyzed

using a nested two-way ANOVA model, besides many other statistical techniques.
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REST API

An extended REST API is also available for advanced users
and devel opersinterested in conducting further research or data
analysis using the DCS measurements. The REST API enables
usersto download their datain a.csv format. These data can be
mined to gain deep insights into the dynamics of the various
indoor air pollutants across time, address extreme or alarming
conditions by taking appropriate corrective actions, and
exploring possible connections between air pollution and various
health conditions.

Results

Study Purpose

The purpose of thiswork was to measure various pollutants and
other air quality metrics that affect individual environmental
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atmosomes. The following section presents the results of a
variety of air quality metricsin selected environments and rel ates
them with the conditions in their atmosome.

Temperature and Humidity

Figures 15 and 16 show the quantity and value of readings of
relative humidity and temperature, respectively, taken at 3
different indoor locations: a home in Cupertino, California
(showninblue); ahomein Hyderabad, Telangana, India (shown
in orange); and an airplane economy cabin during a nonstop
flight of 17 hours (shown in green). The low humidity readings
from the airplane correlate with the dryness and discomfort
often experienced by airplane passengers and align with the
United States Centers for Disease Control and Prevention’s
(CDC) air travel yellow book [56].
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Figure 15. Relative Humidity (%): 30-50 marks the ideal range. Conditions within the airplane journey were low in humidity and conditions in
Hyderabad went above the recommended range at times. The Cupertino home had ideal humidity values.
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Figure 16. Temperature (°C): 20-27 marks a comfortable and healthy range. Conditions within the airplane journey and in Hyderabad were high in

temperature. The Cupertino home had mostly ideal temperature values.
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Carbon Dioxide
Figure 17 shows a graph of CO, measurements taken in the

same environments as above. The readings in the home in the
United States showed much higher indoor CO, levels than the
readings in amore polluted areain India. Further analysis has
revedled, however, that the closed windows and doors
throughout the day during winter in the United States reduced

ventilation and increased CO, concentration. Studies show that
higher CO, exposure can cause drowsiness [57]. These data
highlight the importance of ventilation during the winter. The
readings on the lengthy airplane journey confirmed that the
DCS readings and published values by the airline were within
the range of each other. Figure 18 illustrates CO, readingsin 2
rooms and shows the role AM S had in enabling the researcher
to take corrective actions to improve indoor air quality.

Figure 17. CO, (ppm): 250-1000 is the safe range for typical indoor spaces with good air ventilation. Higher than 1000 leads to a range of adverse

effectsfrom drowsiness to headaches, nausea, and increased heart rate among other conditions. Conditionswithin the airplanejourney and in Hyderabad
were mostly ideal to moderate, while conditions in the Cupertino home were outside healthy limits. CO,: carbon dioxide; ppm: parts per million.
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Figure 18. Tempora datafor CO, pollution in 2 different roomsin the Cupertino house: (A) Room 1; (B) Room 2. In both rooms, air conditions were
initially unhealthy and then improved drastically. In Room 1, conditions became unhealthy again after some hours before improving once more. COo:

carbon dioxide.
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Figure 19 depicts the variation in PM, 5 during the course of a
typical home activity (cooking food). The onset of cooking is

associated with asharp, transient increasein the levelsof PM, 5

followed by a sustained period of unhealthy PM, s levels. In
this particular scenario, the user responded to the elevated
concentration of PM,s by activating the exhaust fan,
deactivating the stove, and opening all windows for improved
cross-ventilation.

Figure 19. PM5 5 (ug/m3) readings in the kitchen while cooking food. Much of the time spent cooking was in very unhealthy air conditions. PM5 5:

particulate matter with diameter of 2.5 um or less.
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This set of mitigating actions lowered the PM, 5 levels but
unhealthy concentrations (defined by the horizontal orange and
purple linesin Figure 19) persisted even after cooking ceased.
These observational data highlight the power and utility of AMS
in identifying and mitigating substantially unhealthy levels of
indoor air quality. A longitudinal analysis of such data has the
potential to offer rich insightsinto theinteraction between indoor
air pollutants and respiratory health outcomes, and ad
data-driven health policy research.

https://biomedeng.jmir.org/2021/4/e28920

XSL-FO

RenderX

1000 1250 1500 1750

Volatile Organic Compounds and Ozone

Raw datastored in DA SE weredownloaded in .csv format using
its REST API for advanced users. The data were graphed in a
python notebook using matplotlib. Asshownin Figure 20, there
is a substantial difference between Indian and American
household air pollution levelsin terms of tVOC measurements.
The difference in results could be attributed partly to the
substantially higher levels of air pollution in India compared
withthosein the United States. The current results are consistent
with previous results suggesting vehicle exhaust as one of the
leading sources of VOC-related pollution in India[58].
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Figure 20. tVOCs (ppb): 0-200 is the safe range. Values above 2200 ppb are extremely unhealthy. Conditions in the airplane journey and in the
Cupertino home were typically ideal, whereas conditions in Hyderabad were often very unhealthy. ppb: parts per billion; tVOC: total volatile organic

compound.
10° Bl USA Surface |
B India Surface |
L B Airplane
c
=
S 10°
L)
—
w“
=]
0
[}
2

10!

3000 4000 5000
tvOC (ppb)

Figure 21 displays a strong correlation between tVOC and to react with tVOC in the presence of sunlight to create
ground-level O; measurements. For the most part, spikesin  ground-level O.
tVOC result inincreasesin O; level sthat cause nitrogen oxides

Figure 21. Ozone (ppb): Ozone levels from February to April 2020 at a homein the Sierra Mountains, El Dorado County, CA, USA. O3: 0zone; ppb:
parts per billion; tVOC: total volatile organic compound.
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Figure 22 displaystVOC readingsrecorded during variousdaily  the accepted moderate range of 220-660 ppb (presented in Figure
activities such as house cleaning, cooking at night, and 8), and demonstrate the high levels of tVOC during innocuous
commuting by car. The tVOC values were 1549, 2008, and common activities [59]. The results also show that tVOC
2868 ppbh, respectively, for the aforesaid activities, well above  readings impact the indoor AQI value.

Figure 22. tVOC readings during (A) home cleaning, (B) cooking, and (C) commuting by car. These statistics are displayed on AMS user interface.
AMS: Atmosome Measurement System; tVOC: total volatile organic compound.
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Figure 23. Personal atmosome biological modeling. This scatterplot and line-of-best-fit display how ambient temperature affects resting heart rate

reflected by data from the GoldenCheetah OpenData Project.
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Studies carried out in 2003 by the California Air Resources
Board show that cleaning products alone account for the release
of 7.4 t of VOCs per day and that their various health effects
include asthma attacks and eczema [60]. AMS can furnish
necessary information to take precautionsin such situations (eg,
aspikeintVOC levels). Homeswith infants or expecting parents
often undergo more cleaning than typical. AMS, however,
suggests that a presumably “well-cleaned” house may, in fact,
pose a heightened risk of childhood asthma to infants [60],
delaysin child language development [61], or prenatal exposure
to the fetuses that may impact their postnatal growth [62].

In summary, these results show that IAQ may be at unhealthy
levels while conducting typical daily activities. AMSisableto
track air quality through its sensors and indicate the impact of
harmful levels of indoor air pollutants such as O;, tVOC, CO,
levels, and the presence of PM,, 5 inside homes.

Discussion

Principal Findings

Thiswork has aimed to determine the performance of alow-cost
AMS in indoor spaces in terms of gathering sensor data for a
variety of air pollutants, transferring datareliably to an analysis
enginein the cloud, displaying air quality monitoring resultsto
the user, and sending alerts when the pollutants exceed safe
thresholds. This system also provided away for usersto choose
to sharetheir IAQ dataanonymously for further health research,
and for users and researchersto retrieve data using REST APIs
for further analysis and data analysis. This can be afoundation
for building apublic | AQ database across geographical regions.
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The results establish that AMS is effective in analyzing
multipollutant data streamsin multiple settings, displaying AQI
value, hourly visual and quantitative data of 18 pollutants,
average exposure statistics of various pollutants, and the user’s
quarterly pollutant exposure graphs. The dashboard also includes
tips for each pollutant that display the GOOD, MODERATE,
or POOR thresholds, enabling the user to better interpret the
valuesand graphs shown in the Ul and receive recommendations
for keeping various pollutants in check with simple mitigation.
The individual pollutant pages give the user further insights
into the pollutant and show novel research in which AMS
sensors and data coll ection have been employed. The systemis
also effective in sending aerts when pollutants exceed safe
thresholds. The following sections discuss the findings of the
work, which are corroborated by previous work and studies of
asimilar nature.

Particulate M atter

Particulate matter refers to mixtures of microscopic solid and
liquid particles suspended in the air. There are 2 types of
particulate matter that are most relevant to air pollution: PM 4,
and PM, 5. PM, consists of particles that are between 2.5 and
10 pm (diameter); some examples of theseinclude dust, pollen,
and particles of mold. PM, 5 consists of fine particles that are
2.5 umindiameter or less; some examples of theseinclude fuel
combustion, cigarette smoke, and aerosols. Particulate matter
is a health risk because it is small enough to be inhaled and
deposits itself in the airways of the human respiratory system.
Smaller particles can lodge themselves deep in the lungs or
enter the bloodstream. Even short-term exposure to PM, 5 has
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been associated with worsening respiratory diseases and can
lead to emergency care. Long-term exposure (ie, months to
years) has been linked to premature death, especially in people
with chronic conditions, and leads to reduced lung function in
children [63]. The EPA set the maximum 24-hour exposure

limit to PM,, 5 to 35 pg/m? and annual exposurelimit to 12 ug/m®
[64].

Quite interestingly, results of this work clearly indicate that
when cooking is involved, the level of PM, 5 increases well
beyond recommended exposure limits and these levels remain
high even after cooking has ceased. While it was observed that
ventilation could mitigate levelsto some extent, it isimperative
that cooking methodol ogies are modified to reduce the emission
of PM,s. A study that focused on emission of PM, 5 from
cooking in homes found that the levels were raised 20-40-fold
to 160 pg/m° in the kitchen and 10-fold in the nearby living

room to 60 pg/m° [65], clearly corroborating the results of this
work. Measuring particulate matter in indoor air can direct
researchers toward finding easily implementable corrective
actions to reduce exposure levels.

Carbon Dioxide

CO, is considered to be a dominant air pollutant. Moderately
high concentrations of CO, inindoor air can lead to drowsiness,
fatigue, and headaches. Increasing amounts can cause dizziness
and nausea [66]. In the experimental data, CO, levelsincreased
dramatically in poorly ventilated roomsas shown in the temporal
datain Figure 18. In both the rooms, air conditionswereinitially
unhealthy and then improved drastically. In room 1, conditions
became unhealthy again after some hours due to aroom heater
that did not circulate air. Taking advice furnished by AMS and
adding afan, along with regular ventilation, improved conditions
again. Theseresults corroborate the findings of apreviouswork
in the Texas elementary schools that monitored CO, levelsin
120 randomly selected classrooms in 2 school districts [67].
The simple process of improving ventilation and air circulation
can reduce high concentrations of CO, and improve comfort.

Volatile Organic Compounds

The experimental results show that even seemingly routine daily
activities can induce significant tVOC release. A variety of
household items, such as candles, cooking fumes, room
fresheners, cosmetics, cleaning products, and paints, emit VOCs.
These are organic chemicals that are usualy in gaseous form
at room temperature and are photo-chemically active. Short-term
exposure to VOCs can cause optic or respiratory irritation,
headaches, memory lapses, and dizziness. Long-term exposure
can cause nausea, fatigue, organ damage, and cancer [68].
Results shown in Figure 22 based on an AMS report of
activities, such as cleaning, cooking, and commuting,
corroborate the findings of previous work [69-72].

Ozone

Readings taken while cleaning, cooking, and commuting, as
shownin Figure 22, highlighted a correlation between activities
that lead to elevated VOC levelsin the presence of sunlight and
elevated O, levels. In support, studies in Los Angeles have
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found as many VOCs being emitted from household products
as from vehicle exhaust pipes, which then react in the presence
of sunlight to produce ground-level O5[73]. Theseresults match
the EPA's report that mentions the adverse effects of synthetic
chemicalsand emissions caused by cars, power plants, and other
industrial setupsthat react in the presence of sunlight toincrease
ozone levels [74]. The results of this work show that the same
levels of VOCs do not elevate O3 as much at night, asthereis
no sunlight to facilitate such a chemical reaction.

Ground-level O5 can trigger a variety of health problems,
including chest pain, coughing, throat irritation, and airway
inflammation. It can also worsen bronchitis, emphysema, and
asthma [74]. This can lead to the need for increased medical
care [75]. In 2016, 90% of noncompliance to the national
ambient air quality standards in the United States was due to
Os. Both short- and long-term exposuresto O, at concentrations
below the current regulatory standards are associated with
increased mortality from respiratory and cardiovascular diseases
[76].

Temperature

The DCS can measure both eventsinduced by high temperature
(eg, the formation of ground-level O; and low-temperature
triggers [77]) and brown adipose tissue metabolism [78]. The
direct impact of temperature reflected in auser’s heart rate data
stream during their sleep was characterized. Anincreasing trend
in ambient temperature even in the 68-80°F (20-27°C) range
and most definitely beyond (>27°C; Figure 16) could be
unhealthy. This observation is supported by a previous study
highlighted in Figure 23, which shows data collected for 1 user
over 424 nights using an iPhone with the Sleep Cycle app and
a Garmin Fenix 5 Watch [79]. Clear increases in the user's
circulation flow (ie, reflected by resting heart rate) were
observed and appear to be correlated with increases in ambient
temperature.

Humidity

Lower humidity levels can cause skin dryness, corneal dryness,
dry nasal passages, and sinusitis [80], while higher relative
humidity levels can promote the growth of mold, bacteria, and
viruses. According to previous studies, low humidity levelslead
toincreased aqueoustear evaporation [81,82]. Thelow humidity
values in the flight shown in Figure 15 corroborated with the
researcher’s discomfort due to dry eye symptoms during the
flight.

Significance

Previous studies have shown that several air pollutants, including
PM, s, PM o tVOC, CO, CO,, and more, can be present at much
higher quantitiesin indoor air than in the outdoors [83]. There
has been an increasing concern among the scientific community

about the connection between |AQ and the impact of personal
health [84].

The study results are significant in several ways. Data access
in AMS is both simple and comprehensive. Real-time AMS
data can be obtained and analysis performed from any device
through a progressive web application. Thewebsite also includes
historic datalogs and recommendations on how to improve the
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user's current air quality. Because it uses a cloud-based AP, it
opensthe possibility to integrate new types of analytical graphs
or recommendations into the system without the users needing
to update their device. With al the air quality measurements
collected and posted in tandem, thereis an increased knowledge
about the interconnections and impacts of pollutants on an
individual, community, or specific demographic. Other
researchers can also tap into the system to download data and
include their own analyses for their unique studies.

Limitations

Because the DCS unit’s calibration is not performed on alarge
scale, the calibration training set is limited when developing
data correction algorithms. Ancther limitation is that the data
were collected only by the researcher, and not externa
participants, which indicates that the data set is small and does
not provide insight into various indoor pollutants affecting
variousliving situations. Thislimitsthe development of training
sets for learning algorithms to generate optimal individual
weights for each of the pollutants to calculate AQI and to
generate customized optima recommendations for managing
the pollutants to maintain healthy indoor air quality. While the
DCS unit can be USB powered and portable when providing
13 data streams, due to increased power consumption for the
comprehensive 22 datastreams model, it requiresto be plugged
into awall socket, thereby limiting its portability.

Future Work

Future research could implement AMS on a large scale to
safeguard public and persona health. Users can anonymously
share their data to help researchers draw connections between
indoor air pollution and public health and to further research in
the devel opment of new modeling techniquesfor public health,
low-cost sensor data correction algorithms, and sensor modeling.
Thelarger vision of AM Sisto build apublic database for indoor
air, like EPA’s Air Quality System database[11,12] for ambient
air. The REST APIs in the system can be used to access the
open database populated by users willing to share their data.

AMS could include dynamic recalibration of the devices
installed at various settings over the internet. With this
auto-calibration, sensors would maintain the highest accuracy
possible and userswould not have to perform manual calibration
themselves.

AMS can be researched for reduction of power consumption,
while still providing the comprehensive set of all 22 data
streams, thus maximizing its portability.

AMS can be used within households to compare indoor air
quality levels between neighbors, or on a grander scale within
communities. Large-scale distribution of AMS can lead to an
expansion of preventative health approachesfrom an individual
level to a community level and can provide valuable insights
into public health.

Other possible enhancements include making the high-power
model portable, and adding physical indicators, such as sound

Bhimargju et d

and light on AMS hardware, which can help indicate the
hazardous levels of pollutants in a more noticeable way.

Cybernetic and navigational health approaches enable
individualsto bein control of their health throughout their lives
so that they have the necessary information to always maintain
anideal state of health [85,86]. Continued research in thisfield
will focus on expanding into other health domains, improving
quality metrics, and devel oping methods to combine atmosome
datawith other datastreamsto provide uniquely tailored lifestyle
recommendations.

Last, AMS could implement more sophisticated software
algorithms, such asan artificial neural network, asdemonstrated
in [27], and machine learning, as demonstrated in [30], and
adaptive thresholding. In particular, the simplest algorithm to
implement would be to account for environmental variation (eg,
temperature and humidity) using an adaptive threshold to
improve sensor accuracy. Specifically, and referring to [54], an
adaptive threshold or the computed gas concentration could be
computed asafunction of temperature and humidity. Thiswould
significantly increase the sensitivity of the MQ sensors. Other
algorithmslikely exist and could be explored with theintention
of maintaining alow-cost and small sensor solution as opposed
to transitioning to an alternative sensor.

Conclusions

In this work, the concept of an atmospheric exposome
(atmosome) was presented and alow-cost approach to leverage
multimodal sensorsand cloud data storage in building apersonal
atmosome was proposed. This work shows that AMS offers
both the concept and system to quantify and measure the
atmosphere with continuous real-time data streams, which
provide users and researchers accessto pertinent air quality data
through acloud computing architecture. These datacan be used
by both members of the public and researchers. For example,
AMS could be used to alert an elderly user with dementiaabout
agas leakage.

Further, AMS can find the effect of other atmospheric streams
such astemperature and humidity on the user’s observed health
and behavioral outcomes. This system monitors and analyses
VOCs, which could help ensure that pregnant women breathe
safe air, safeguarding not only their own health, but also that
of their fetus(es). Particul ate matter detection and warnings can
help users to act on remediating the environment to avoid
pulmonary complicationsin all age groups. Overall, thefindings
indicate that the multidimensional model of AMSisastep closer
in considering a variety of pollutants and atmospheric
characteristics that guide users toward a healthy lifestyle.

Whilethe system can predict respiratory triggers, such asasthma
attacks in vulnerable people, it is yet to be tethered to other
health conditions (eg, proneness of a patient with diabetes to
blood glucose variationsdueto air quaity). AMS could certainly
provideinsight into such correlations and dramatically improve
personal health.
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AWS: Amazon Web Services

COTS: commercid-off-the-shelf

DASE: dataanalysisand storage engine

DCS:. datacollection system

EPA: Environmental Protection Agency

loT: internet of things

PCB: printed circuit board

PID: photoionization detector

PM, g particulate matter with diameter of 2.5 pm or less
PM10: particulate matter with diameter of 10 um or less
ppb: parts per billion

ppm: parts per million

REST: representational state transfer

SoC: system-on-chip

tVOC: tota volatile organic compound

Ul: user interface
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