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Abstract

Background: A formal autism diagnosis can be an inefficient and lengthy process. Families may wait several months or longer
before receiving a diagnosis for their child despite evidence that earlier intervention leads to better treatment outcomes. Digital
technologies that detect the presence of behaviors related to autism can scale access to pediatric diagnoses. A strong indicator of
the presence of autism is self-stimulatory behaviors such as hand flapping.

Objective: This study aimsto demonstrate the feasibility of deep learning technologies for the detection of hand flapping from
unstructured home videos as afirst step toward validation of whether statistical models coupled with digital technologies can be
leveraged to aid in the automatic behavioral analysis of autism. To support the widespread sharing of such home videos, we
explored privacy-preserving modifications to the input space via conversion of each video to hand landmark coordinates and
measured the performance of corresponding time series classifiers.

Methods: We used the Self-Stimulatory Behavior Dataset (SSBD) that contains 75 videos of hand flapping, head banging, and
spinning exhibited by children. From this data set, we extracted 100 hand flapping videos and 100 control videos, each between
2 to 5 seconds in duration. We evaluated five separate feature representations: four privacy-preserved subsets of hand landmarks
detected by MediaPipe and one feature representati on obtained from the output of the penultimate layer of aMobileNetV 2 model
fine-tuned on the SSBD. We fed these feature vectorsinto along short-term memory network that predicted the presence of hand
flapping in each video clip.

Results: The highest-performing model used MobileNetV2 to extract features and achieved a test F1 score of 84 (SD 3.7;
precision 89.6, SD 4.3 and recall 80.4, SD 6) using 5-fold cross-validation for 100 random seeds on the SSBD data (500 total
distinct folds). Of the models we trained on privacy-preserved data, the model trained with all hand landmarks reached an F1
score of 66.6 (SD 3.35). Another such model trained with a select 6 landmarks reached an F1 score of 68.3 (SD 3.6). A
privacy-preserved model trained using a single landmark at the base of the hands and a model trained with the average of the
locations of all the hand landmarks reached an F1 score of 64.9 (SD 6.5) and 64.2 (SD 6.8), respectively.

Conclusions: We created five lightweight neural networks that can detect hand flapping from unstructured videos. Training a
long short-term memory network with convolutional feature vectors outperformed training with feature vectors of hand coordinates
and used almost 900,000 fewer model parameters. This study provides the first step toward developing precise deep learning
methods for activity detection of autism-related behaviors.
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Introduction

Autism affects almost 1 in 44 peoplein America[1] and isthe
fastest growing developmental delay in the United States[2,3].
Although autism can be identified accurately by 24 months of
age [4,5], the average age of diagnosis is dlightly below 4.5
years[6]. Thisis problematic because earlier intervention leads
toimproved treatment outcomes[7]. Mobiledigital diagnostics
and therapeutics can help bridge this gap by providing scalable
and accessible services to underserved populations lacking
accessto care. The use of digital and mobile therapiesto support
children with autism has been explored and validated in
wearable devices[8-15] and smartphones [16-22] enhanced by
machine learning models to help automate and streamline the
therapeutic process.

Mobile diagnostic efforts for autism using machine learning
have been explored in prior literature. Autism can be classified
with high performance using 10 or fewer behavioral features
[23-28]. While some untrained humans can reliably distinguish
these behavioral features[25,29-36], an eventual goal isto move
away from human-in-the-loop solutions toward automated and
privacy-preserving diagnostic solutions [37,38]. Preliminary
efforts in this space have included automated detection of
autism-related behaviors such as head banging [39], emotion
evocation [40-42], and eye gaze [43].

Restrictive and repetitive movement such as hand stimming is
aprimary behavioral feature used by diagnostic instrumentsfor
autism [44]. Because computer vision classifiers for abnormal
hand movement do not currently exist, at least in the public
domain, we strived to create a classifier that can detect this
autism-related feature as afirst step toward automated clinical
support systems for developmental delays like autism.

Pose estimation and activity recognition have been explored as
a method for detection of self-stimulatory behaviors. Vyas et
al [45] retrained a 2D Mask region-based convolutional neural
network (R-CNN) [46] to obtain the coordinates of 15 body
landmarks that were then transformed into a Pose Motion
(PoTion) representation [47] and fed to a convolutional neural
network (CNN) model for aprediction of autism-related atypical
movements. This approach resulted in a 72.4% classification
accuracy with 72% precision and 92% recall. Rajagopalan and
Goecke [48] used the Histogram of Dominant Motions (HDM)
representation to train a model to detect self-stimulatory
behaviors [48]. On the Self-Stimulatory Behavior Dataset
(SSBD) [49], which we also used in this study, the authors
achieved 86.6% binary accuracy when distinguishing head
banging versus spinning and 76.3% accuracy on the 3-way task
of distinguishing head banging, spinning, and hand flapping.
We note that they did not train a classifier with a control class
absent of any self-stimulatory behavior. Zhao et al [50] used
head rotation range and rotations per minute in the yaw, pitch,
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and roll directions as features for autism detection classifiers.
This reached 92.11% classification accuracy with a decision
tree model that used the head rotation rangein theroll direction
and the amount of rotations per minute in the yaw direction as
features.

Building upon these prior efforts, we developed a computer
vision classifier for abnormal hand movement displayed by
children. In contrast to prior approaches to movement-based
detection of autism, which use extracted activity features to
train a classifier to detect autism directly, we aim to detect
autism-related behaviors that may contribute to an autism
diagnosis but that may also be related to other behavioral
symptoms. We trained our abnormal hand movement classifier
on the SSBD, as it is the only publicly available data set of
videos depicting abnormal hand movement in children. We used
cross-validation and achieved an F1 score of 84% using
convolutional features emitted per frame by a fine-tuned
MobileNetV2 model fed into a long short-term memory
(LSTM). We also explored privacy-preserving hand-engineered
feature representationsthat may support the widespread sharing
of home videos.

Methods

Overview

We compared five separate training approaches. four subsets
of MediaPipe hand landmarksfedinto an LSTM and fine-tuned
MobileNetV2 convolutiona features fed into an LSTM. The
hand landmark approaches provided an exploration of activity
detection on privacy-preserved feature representations. Because
we strived to use machine learning classifiers in low-resource
settings such as mobile devices, we additionally aimed to make
our models and feature representations as light as possible.

Data Set

We used the SSBD [49] for training and testing of our models.
To the best of our knowledge, SSBD is the only publicly
avalable data set of self-stimulatory behaviors containing
examples of head banging, hand flapping, and spinning. SSBD
includes the URLs of 75 YouTube videos, and for each video,
annotations of the time periods (eg, second 1 to second 35)
when each self-stimulatory behavior was performed. Multiple
videos contain multiple time periods for the same behavior (eg,
seconds 1-3 and 5-9 both contain hand flapping) as well as
multiple behaviors (eg, seconds 1-3 show head banging and
seconds 5-9 show hand flapping). We only used the hand
flapping annotations.

Preprocessing

To obtain control videos absent of hand flapping displays, we
first downloaded al YouTube videos in SSBD that contained
sections of hand flapping. Each section in a video exhibiting
hand flapping was extracted to create a new clip. The parts of
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the video without hand flapping (ie, with no annotations) were
isolated to create control clips. This data curation process is
illustrated in Figure 1.

After extracting al positive and control clips from the
downloaded videos, we aimed to maximize the amount of
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training datain each class. Because ahand flapping event occurs
within a couple of seconds, we split any clips longer than 2
secondsinto smaller clips. We manually deleted any videosthat
were qualitatively shaky or of low quality. Intotal, we extracted
50 video clips displaying hand flapping and 50 control videos.

Figurel. Extraction of positive and control videos. Sections of avideo demonstrating hand flapping are separated to create positive videos, and segments

between the hand flapping sections are used as control videos.
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Feature Extraction

We evaluated five separate feature extraction methods. For four
of them, we used the numerical coordinates of the detected hand
landmarks concatenated into a 1-dimensional vector as the
primary feature representation. For the remaining model, we
fine-tuned a mobile-optimized CNN, MobileNetV2 [51], to
learn features derived from raw image sequences. We noted
that the landmark-based feature representations are
privacy-preserved, as they do not require the face of the
participant to be shown in the given data for adequate
classification.

To extract the hand coordinates, we used MediaPipe, a
framework hosted by Google that detects the landmarks on a
person’sface, hands, and body [52]. M ediaPipe's hand landmark
detection model providesthe (x, Y, z) coordinates of each of the
21 landmarks it detects on each hand. The x coordinate and y
coordinate describe how far the landmark is on the horizontal
and vertical dimensions, respectively. Thez coordinate provides
an estimation of how far thelandmark isfrom the camera. When
M ediaPipe does not detect alandmark, the (X, y, z) coordinates
areall set to O for that landmark.

The first landmark-based feature representation approach we
tried used all 21 landmarks on each hand provided by MediaPipe
to create the location vector fed into the LSTM. SSBD’svideos
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mostly contain children whose detected hand landmarks are
closer together due to smaller hands. This could be a problem
when generalizing to older individualswith wider gaps between
hand landmarks. To help the model generalize beyond hand
shape, one possible solution is to use a curated subset of
landmarks.

To eliminate hand shape al together, one could use only one
landmark. We tried this method by using a single landmark at
the base of the hand. However, because the videos in SSBD
may be shaky, reliance on MediaPipe being able to detect this
landmark may have led to empty featuresfor some frames. One
way to circumvent this problem is to take the mean of al the
(X, Y, ) coordinates of detected landmarks and use the average
coordinate for each hand. We call this method the “mean
landmark” approach.

We took the first 90 frames of a video and for each frame, we
concatenated the feature vectors and used them asinput for each
timestep of an LSTM model (Figure 2). We experimented with
subsets of landmarks provided by MediaPipe; we tried using
all 21 landmarks, 6 landmarks (5 at each fingertip and 1 at the
base of the hand), and with single landmarks. We note that the
concatenated coordinates of landmarkswill alwaysform avector
that is6 timeslarger than the number of landmarks used because
there are 3 coordinates for a single landmark and 2 hands for
which each landmark can be detected.
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Figure 2. Hand flapping detection workflow. The initial 90 frames of a single video are each converted to a feature vector, consisting of either the
location of coordinates as detected by MediaPipe (depicted here) or afeature vector extracted from the convolutional layers of a MobileNetV2 model.
For all feature extraction methods, the resulting feature vectors are passed into an LSTM. The LSTM’soutput on thefinal timestep isfed into amultilayer
perceptron layer to provide afinal binary prediction. LSTM: long short-term memory.
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Model Architecture

The neural network architecture we used for all experiments
consisted of an LSTM layer with a64-dimensional output. The
output of the LSTM was passed into a fully connected layer
with sigmoid activation to obtain a binary prediction. To
minimize overfitting, we also inserted a dropout layer between
the LSTM and the dense layer with adropout rate of 30%. The
landmark-based model s contained nearly 3 million parameters.
(Table 1). We note that the number of parameters depends on
the feature approach; Table 1 shows the number of parameters

Hand Flapping or Control

based on our heaviest feature approach of using all 21
landmarks.

We experimented with other model architecturesbefore selecting
thismodel. We found that adding more than one LSTM or fully
connected layer did not cause any notable difference in
performance; thus, we removed these layers to minimize the
model’s capacity for overfitting. We also experimented with
the output dimensionality of the LSTM; wetried 8, 16, 32, and
64. We found that using 32 and 64 performed similarly, with
64 usually performing slightly better.

Table 1. Number of parameters in the neural networks using hand landmarks as features. The two feature extraction models collectively contained
3,133,336 parameters. By contrast, MobileNetV 2 feature extraction contained 2,260,546 parameters with 2 output classes.

Layer Parameters, n
MediaPipe Hand Detector 1,757,766
MediaPipe Landmark Extractor 1,375,570
LSTM? (64 units) 43,896
Dropout (30%) 0

Dense 65

Tota 3,182,297

8_STM: long short-term memory.

Model Training

We trained all models with binary cross-entropy loss using
Adam optimization [53]. We tried learning rates of 0.0005,
0.0001, 0.0005, 0.001, and 0.1, and found that in almost all
cases 0.01 worked best. All models and augmentations were
written using Keras [54] with a TensorFlow [55] back end run
on Jupyter. No GPUs or specialized hardware were required
dueto the low-dimensional feature representation, and training
a single model took a few minutes on a CPU with 32GB of
RAM.
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For al models, we trained the model until there was consistent
convergence for 10 or more epochs. This resulted in 75 epochs
of training across all models. After training, we reverted the
model’s weights to its weights for which it performed best. We
used this strategy for all feature approaches.

Results

Overview
We used 5-fold cross vaidation to evaluate each model’s
average accuracy, precision, recall, and F1 score across all folds
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for training and testing. However, because of our small data set,
the particular arrangement of the videos in each fold
substantially affected the model’s performance. To minimize
this effect, we ran the 5-fold cross-validation procedure 100
times, each with a different random seed, resulting in atotal of
500 distinct folds. We further ensured that each fold was
completely balanced in both the training and testing set (50%
head banging and 50% not head banging). In al folds, there
were 10 videos displaying hand flapping and 10 videos
displaying head banging.

We report the mean and SD of each metric across all 500 folds
as well as the area under receiver operating characteristics
(AUROC). For all feature approaches, we also show the average
receiver operating characteristics (ROC) curve across all folds.

Lakkapragada et a

All Hand Landmarks

This approach used all 21 landmarks on both hands for a total
of 42 unique landmarks. We show the results of this approach
in Table 2. In Figure 3, we show the ROC curves of the model
with and without augmentations.

When using all the landmarks, we used graphical interpolation
to fill in the coordinates of missing landmarks to help reduce
the effects of camera instability. However, when we tried this,
wefound that it often decreased accuracy and resulted in higher
SDs. We therefore decided to discontinue using interpolation
when evaluating the approaches described in the next section.
We conjecture that the inability of MediaPipe to detect hand
key pointscould be asalient feature for hand flapping detection,
and this feature becomes obfuscated once key points are
interpolated.

Table2. Model performance for training and testing when using all hand landmarks in the feature representation.

Run type Accuracy (SD; %) Precision (SD; %) Recall (SD; %) F1 (SD; %)
Training 79.7 (1.6) 82.4 (2.67) 765 (3.0) 79.0 (1.7)
Testing 68.0 (2.66) 70.3 (3.6) 65.34 (5.0) 66.6 (3.35)

Figure 3. Receiver Operating Characteristics (ROC) curve across all runswhen using all hand landmarks. We achieved an area under receiver operating

characteristics of 0.748 (SD 0.26).
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Single Hand Landmark

Here, we describe the mean and onelandmark approaches, both
of which relied on asinglelandmark on each hand asthe feature

representation. We show the results of both approaches, with
and without augmentations, in Table 3. In Figure 4, we show
the average ROC curve for both approaches.

Table 3. Model performance for mean versus single landmark feature representations with and without data augmentation.

Approach Train/test Accuracy (SD; %) Precision (SD; %) Recall (SD; %) F1 (SD; %)
Mean |andmark Training 69.2 (4.1) 704 (5.3) 70.6 (7.0) 68.9 (5.12)
Mean landmark Testing 65.5 (4.5) 66.7 (7.4) 66.9 (9.6) 64.2 (6.8)
One landmark Training 69.2 (3.4) 70.47 (4.4) 69.71 (6.7) 68.7 (4.4)
One landmark Testing 65.8 (4.3) 66.5 (7.5) 68.0 (6.7) 64.9 (6.5)
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Figure 4. Average ROC curve for the mean (left plot) and one (right plot) landmark approach. The mean landmark approach yielded an area under
receiver operating characteristics (AUROC) of 0.73 (SD 0.04), and the one landmark approach yielded an AUROC of 0.751 (SD 0.03). ROC: receiver

operating characteristics.
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Six Hand Landmarks

We used the six landmarks on the edges of the hands to create
thelocation frames. We achieved an F1 score and classification

One Landmark Average ROC Curve

Tue Positive Rate

average of runs
-7 === chance
- + 1 std. dev.

0.2 4 -7

04 06 08 10
False Positive Rate

0.0 02

accuracy of about 72.3% (Table 4). We also achieved an
AUROC of 0.76 (Figure 5).

Of all of the landmark-based approaches, the six landmarks
approach yielded optimal results. All of the validation metrics
were higher with this approach than those previously discussed.

Table4. Model performance in training and testing for feature representations containing six landmarks.

Run type Accuracy (SD; %) Precision (SD; %) Recall (SD; %) F1 (SD; %)
Training 76.8 (1.95) 787 (2.9) 747 (3.5) 76.2(2.1)
Testing 69.55 (2.7) 71.7 (3.5) 67.5(5.5) 68.3 (3.6)

Figure5. Receiver Operating Characteristics (ROC) curvefor the six landmarks approach across all runs. We achieved an area under receiver operating

characteristics of 0.76 (SD 0.027) with this approach.
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M obileNetV2 Model

In the approaches discussed so far, M ediaPipe was consistently
used as a feature extractor to bring each video frame into a
lower-dimensional vector representation. Here, we substituted
the MediaPipe feature extractor with MobileNetV2's [51]
convolutional layers (pretrained on ImageNet [56] and
fine-tuned on SSBD) as a feature extractor. As with the

https://biomedeng.jmir.org/2022/1/e33771
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landmark-based approaches, this extracted vector was fed into
an LSTM network to obtain a prediction for whether hand
flapping was present in the video. We evaluated this model on
the same 100 data sets (500 total folds), aswe used for all other
approaches. The ROC curve of this model is shown in Figure
6, and the metrics are detailed in Table 5.
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The MobileNetV2 model achieved an accuracy and F1 score
both around 85%, surpassing the performance of all the
landmark-based approaches. The MobileNetV2 models aso
had a higher capacity to overfit, achieving near perfect
accuraciesintraining (>99.999%), whereas all landmark-based

Lakkapragada et a

approaches never surpassed 90% for any of the training metrics.
We conjecture that thisis because the MobileNet V2 model has
learned both the feature extraction and discriminative steps of
the supervised learning process.

Figure 6. Receiver Operating Characteristics (ROC) curve of the Mobile Net. With this method, we achieved an area under receiver operating

characteristics of 0.85 (SD 0.03).
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Table 5. Model performance in training and testing when using MobileNetV 2 convolutional layers as the feature extractor.

Run type Accuracy (SD; %) Precision (SD; %) Recall (SD; %) F1 (SD; %)
Training 97.7 (1.0 99.5(0.0) 95.9 (1.7) 97.6 (1.0)
Testing 85.0 (3.14) 89.6 (4.3) 80.4 (6.0) 84.0 (3.7)

Comparison of Results

We conducted a 2-sided t test to determine whether the
differences we observed for each approach (including the
MobileNetV 2 method) were statistically significant. We applied
Bonferroni correction across the comparisons, deeming a P
value <.005 as statistically significant. We show the P values

from comparing all the approaches with each other on the 4
aforementioned metricsin Table 6.

Most of the comparisons between approacheswere statistically
significant after Bonferroni correction. Thetwo single landmark
approaches (mean and one landmark) were not statistically
significant for any of the metrics.

Table 6. We conducted a 2-sided t test to determine whether the differences in results for each approach were statistically significant. We display P

values for the 500 accuracy, precision, recall, and F1 values.

All land- All land- All land- All land- Six land- Six land- Six land- Meanland- Meanland- Oneland-
marks vs marks vs marks vs marks vs marks vs marks vs marks vs mark vs mark vs mark vs
meanland- oneland-  six land- mobilenet meanland- oneland- mobilenet oneland- mobilenet mobile net
mark (P mark (P marks(P (Pvalue)  mark (P mark (P (Pvalue)  mark (P (Pvdue)  (Pvaue)
value) value) value) value) value) value)
Accuracy <.001 <.001 <.001 <.001 <.001 <.001 <.001 .67 <.001 <.001
Precision <.001 <.001 .007 <.001 <.001 <.001 <.001 .85 <.001 <.001
Recall A5 .01 .004 <.001 .59 .66 <.001 42 <.001 <.001
F1 .002 .02 .001 <.001 <.001 <.001 <.001 .50 <.001 <.001
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Discussion

Principal Results

We explored several feature representations for lightweight
hand flapping classifiersthat achieved respectabl e performance
onthe SSBD. The highest-performing model used MobileNetV2
to extract features and achieved atest F1 score of 84 (SD 3.7).
A model trained with all hand landmarks reached an F1 score
of 66.6 (SD 3.35). A model trained with a select 6 landmarks
reached an F1 score of 68.3 (SD 3.6). A model trained using a
singlelandmark at the base of the hands reached an F1 score of
64.9 (SD 6.5).

One point of interest in this study is the trade-off between
privacy-preserved solutions and performance in diagnostic
machine learning tasks. While the MobileNetV2 model
outperformed all the MediaPipe classifiers, the MobileNetV2
model lacks the capability to preserve the privacy of the
participants, as the participants faces were ultimately used in
the data needed for classification. We expect this to be a
difficulty for future research in the behavioral diagnostic space.

Limitations

The primary limitation of this approach is that without further
class labels across a variety of hand-related activities and data
sets, there is a probable lack of specificity in this model when
generalizing to other data sets beyond the SSBD. Hands can
move but not display hand flapping or self-stimulatory
movement. Furthermore, stereotypic use of hands may occur
inthe absence of aformal autism diagnosis. Multi-class models
that can distinguish hand movement patterns are required for
this degree of precision. Such models cannot be built without
corresponding labeled data sets, and we therefore highlight the
need for the curation of data sets displaying behaviors related
to developmental health care.

For this study to truly generalize, further validation is required
on data sets beyond the SSBD. While the SSBD was curated
with autism diagnosisin mind, the paper describing the original
data set does not necessarily include children with confirmed
autism diagnoses. Existing mobile therapies that collect
structured videos of children with autism [16-18,40] can be
used to acquire data sets to train more advanced models, and
these updated models can be integrated back into the digital
therapy to provide real-time feedback and adaptive experiences.

Opportunitiesfor Future Work

There are myriad challenges and opportunities for computer
vision recognition of complex social human behaviors [57],
including socialy motivated hand mannerisms. Additional
prospects for future work include alternative feature
representation and incorporation of modern architectures such
as transformers and other attention-based models.

The hand movement classifier we describe here is one of a
potential cocktail of classifiersthat could be used in conjunction
not only to extract features relevant to an autism diagnosis but
also to provideinsight into which particular symptoms of autism
achild isexhibiting. The primary benefit of this approachisfor
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greater explainability in medical diagnoses and a strive toward
specificity in automated diagnostic efforts.

Comparison With Prior Work

Gaze Patterns

Gaze patterns often differ between autism cases and controls.
Chang et a [58] found that people with autism spend moretime
looking at a distracting toy than a person engaging in social
behavior in a movie when compared to those with typical
development. This demonstrated that gaze patterns and a
preference to social stimuli is an indicator of autism. Gaze
patterns have been used as a feature in machine learning
classifiers. Jiang et a [59] created a random forest classifier
that used as an input a participant’s performance in classifying
emotions and other features about their gaze and face. They
achieved an 86% accuracy for classifying autism with this
approach. Liaquat et a [60] used CNNs[61] and LSTMson a
data set of gaze patterns and achieved a 60% accuracy on
classifying autism.

Facial Expression

Another behavior feature relevant to autism detection is facial
expression. Children with autism often evoke emotions
differently than neurotypical peers. Volker et a [62] found that
typically devel oping raters had more difficulty with recognizing
sadness in the facial expressions of those with autism than
controls. Thisfinding was confirmed by Manfredoniaet al [20]
who used an automated facial recognition software to compare
how easily those with autism and those who are neurotypical
could express an emotion when asked. They found that people
with autism had a harder time producing the correct facia
expression when prompted compared to controls. People with
autism typically have less facial symmetry [63]. Li et a [64]
achieved an F1 score of 76% by using aCNN to extract features
of facial expressions in images that were then used to classify
autism. CNNs, along with recurrent neural networks[65], were
also appliedin Zunino et al’s[66] work where videoswere used
to classify autism. They achieved 72% accuracy on classifying
those with autism and 77% accuracy on classifying typically
developing controls.

On-Body Devices

Smartwatch-based systems and sensors have been used to detect
repetitive behaviorsto aid intervention for people with autism.
Westeyn et a [67] used a hidden Markov model to detect 7
different stimming patterns using accelerometer data. They
reached a 69% accuracy with this approach. Albinali et a [68]
tried using accelerometers on the wrists and torsos to detect
stimming in people with autism. They achieved an accuracy of
88.6%. Sarker et a [69] used a commercialy available
smartwatch to collect data of adults performing stimming
behaviors like head banging, hand flapping, and repetitive
dropping. They used 70 features from accelerometer and
gyroscope data streams to build agradient boosting model with
an accuracy of 92.6% and an F1 score of 88.1%.

Pose Estimation

Pose estimation and activity recognition have also been used
to detect self-stimulatory behaviors. Vyas et a [45] retrained a
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2D Mask R-CNN [46] to get the coordinates of 15 key points
that were then transformed into a PoTion representation [47]
and fed into a CNN model for a prediction of autism-related
behavior. This approach resulted in a 72.4% classification
accuracy with 72% precision and 92% recall. We note that they
used a derived 8349 episodes from private videos of the
Behavior Imaging company to train their model. Rajagopalan
and Goecke [48] used the HDM from a video that gives the
dominant motions detected to train a discriminatory model to
detect self-stimulatory behaviors. Onthe SSBD [49], which we
also used in this study, they reached an 86.6% accuracy on

Lakkapragada et a

76.3% accuracy on distinguishing head banging, spinning, and
hand flapping behavior. We note that they did not train a
classifier withacontrol class. Another effort sought to determine
whether individuals with autism nod or shake their head
differently than neurotypical peers. They used head rotation
range and amount of rotations per minute in the yaw, pitch, and
roll directions as features for the machine learning classifiers
to detect autism [50]. They achieved a 92.11% accuracy from
a decision tree model that used the head rotation range in the
roll direction and the amount of rotations per minute in the yaw
direction as features.

distinguishing head banging versus spinning behavior and a
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