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Abstract

Background: Respiratory rate (RR) is arguably the most important vital sign to detect clinical deterioration. Change in RR can
also, for example, be associated with the onset of different diseases, opioid overdoses, intense workouts, or mood. However,
unlike for most other vital parameters, an easy and accurate measuring method is lacking.

Objective: This study aims to validate the radar-based sleep monitor, Somnofy, for measuring RRs and investigate whether
events affecting RR can be detected from personalized baselines calculated from nightly averages.

Methods: First, RRs from Somnofy for 37 healthy adults during full nights of sleep were extensively validated against respiratory
inductance plethysmography. Then, the night-to-night consistency of a proposed filtered average RR was analyzed for 6 healthy
participants in a pilot study in which they used Somnofy at home for 3 months.

Results: Somnofy measured RR 84% of the time, with mean absolute error of 0.18 (SD 0.05) respirations per minute, and
Bland-Altman 95% limits of agreement adjusted for repeated measurements ranged from –0.99 to 0.85. The accuracy and coverage
were substantially higher in deep and light sleep than in rapid eye movement sleep and wake. The results were independent of
age, sex, and BMI, but dependent on supine sleeping position for some radar orientations. For nightly filtered averages, the 95%
limits of agreement ranged from −0.07 to −0.04 respirations per minute. In the longitudinal part of the study, the nightly average
was consistent from night to night, and all substantial deviations coincided with self-reported illnesses.

Conclusions: RRs from Somnofy were more accurate than those from any other alternative method suitable for longitudinal
measurements. Moreover, the nightly averages were consistent from night to night. Thus, several factors affecting RR should be
detectable as anomalies from personalized baselines, enabling a range of applications. More studies are necessary to investigate
its potential in children and older adults or in a clinical setting.

(JMIR Biomed Eng 2022;7(2):e36618) doi: 10.2196/36618
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Introduction

Background
Respiratory rate (RR) is arguably the most valuable parameter
to detect clinical deterioration in hospital wards [1-3], and it is
an important measure of health and wellness. Substantial change
in RR can be associated with lower respiratory tract infections
[4], fever [5,6], acute asthma [7], acute brain damage [8], opioid
overdose [9], or exacerbation of chronic obstructive pulmonary
disease (COPD) [10,11]. Other factors such as intense workouts
[12], emotions or anxiety [13], and menstrual cycle [14] have
also been shown to affect RR. A solution that can automatically,
conveniently, and continuously monitor RR can have a range
of applications.

In recent years, many new methods and devices have been
developed to measure RR [15], but an accurate and simple
method is still lacking [16]. Capnography is sometimes regarded
as the gold standard [15,17], but hospitals still use manual
counting of breaths [18], even though chest patches and
under-the-mattress sensors are also available [19]. Chest patches
derive RR from electrical cardiography by analyzing
respiration-induced modulations on the heart signals, a technique
also used in photoplethysmography in consumer wearables [20].
Studies on sleep use wearables such as thermistors, nasal
pressure, and respiratory inductance plethysmography (RIP) to
measure respiration. Although some of these technologies are
accurate, they are unfortunately not suitable for longitudinal
studies. It would be preferable for such a device to be noncontact
and mobile and not need recharging or maintenance. As RRs
vary during the day, measurements are often performed when
the person is resting to obtain consistent measurements. To
increase consistency, it can be advantageous to measure during
nighttime, when the person sleeps and is unable to affect the
measurements intentionally or unintentionally. Nocturnal RRs
have also been shown to be an independent predictor of
long-term mortality (RRs >16 respirations [breaths] per minute
[RPM]) [21], and nocturnal hyperpnea is shown to be an
indicator of periodic limb movement disorders [22]. Different
under-the-mattress sensors have been investigated for this
purpose [23-25], but radar technology is also an alternative.

Radar technology has been extensively studied for measuring
RR [26-29] and even for detecting apnea [26,30-32]. However,
most studies have measured RR only during optimized
conditions where the participant is asked to sit or lie still [26]
or during natural movements or sleep, but only for short periods
[28,29]. A recent study validated RRs during full nights of sleep
in both healthy individuals and patients with sleep apnea, but
their study included only 6 healthy participants and the precision
decreased significantly for participants with sleep apnea [27].
Moreover, their study did not analyze factors that may affect
precision, such as body position (prone, supine, and side), sleep
stage, or BMI or for how much of the night the radar was able
to measure RR. There is still a need for more validation of radar
technology for continuous monitoring during sleep. Furthermore,
most studies dealing with RRs compare spot measurements with
aggregate statistics that combine measurements from different
people [33,34], even though there are large variations between

individuals within the normal range [35,36]. Thus, the
technology will be more useful if it can also be used to establish
meaningful personalized baselines. The development and use
of such baselines must be carefully considered, as RRs vary
extensively even throughout the night. Thus, a person can easily
seem ill in one moment and healthy in the next, when using
standard spot measurements. For the technology to be able to
reliably detect events affecting RR, it is vital that both the
normal variations and measurement error for RR are
significantly smaller than the effect of the event.

Objectives
The aim of this study was to investigate whether a commercially
available radar-based sleep monitor, Somnofy (VitalThings),
can be used as a longitudinal RR monitor. The first objective
was to extensively benchmark RR measurements from Somnofy
against those derived from RIP. This objective included both
instantaneous measurements and filtered nightly averages, which
are proposed as robust metrics in longitudinal monitoring of
RR. The second objective was to analyze the night-to-night
consistency of this nightly average in a pilot study over 3 months
and investigate whether it can be possible to reliably detect
events affecting RR as deviations from personalized baselines
with this type of technology.

Methods

Participants and Data Sample
For the first part of the study, 55 volunteers from Norway were
recruited to sleep 1 night at a sleep laboratory. The participants
were recruited directly or through social media. The inclusion
criterion was healthy adults aged >18 years. In total, 33%
(18/55) of the individuals were later removed from the data set.
Of these 18 individuals, 15 (83%) were excluded owing to
indications of sleep-related disorders that can influence RR
(sleep apnea and periodic limb movement disorder), whereas 3
(17%) were excluded owing to initial recording problems (the
recordings lacked >2 hours of data). Thus, the first data set
contained data from 1 night of sleep from 67% (37/55) of the
healthy adults (21/37, 57% were women). The average age was
32.6 (SD 10.6) years, and they had an average BMI of 23.3 (SD

2.9) kg/m2.

For the second part of the study, 6 Norwegian individuals (aged
11-81 years; n=2, 33% were women) were recruited to use
Somnofy at home for 3 months. The inclusion criterion was the
participants to be in good health, which meant that they did not
have any disease that increased the possibility for
hospitalization, causing discontinuity in the measurements.

Ethical Considerations
As this was not a clinical study and included only healthy
participants, it was exempted from review in accordance with
the Norwegian National Research Ethics Committee (reference
number: "2019/995 A", June, 2019). Written informed consent
was obtained from all participants in accordance with the
principles embodied in the Declaration of Helsinki. All methods
were performed in accordance with relevant guidelines and
regulations.
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Procedure
The participants in the first phase slept 1 night at the sleep
laboratory in the Colosseum Clinic in Oslo, Norway. They were
not allowed to consume alcohol or other drugs 48 hours before
the assessments and could not smoke during the assessments.
Full polysomnography (PSG) was performed to detect possible
sleep disorders. The PSG data were also used to derive RRs,
which were later compared with the output from Somnofy. In
total, 2 Somnofy units recorded each night. One unit was placed
on a nightstand to the left of the participant and the other unit
was placed on the wall above the participant’s head. Both units
were aimed at the participant’s chest. Overall, 4 participants
lacked data from one of the sensors. Consequently, data from
only 1 randomly selected sensor were used per participant
(nightstand: 20/37, 54% and wall: 17/37, 46%). However, for
the analyses specifically investigating the difference between
the 2 sensor locations, both sensors were used, and the 4
participants with only 1 sensor location were dropped.

In the second part of the study, the participants were each given
1 Somnofy unit to take home, and they were instructed to place
it on their nightstand. The adult participants (3/6, 50%) shared
beds with their spouses. For these participants, the Somnofy
distance parameter was set to a distance at the midpoint between
the 2 individuals’ thoraces in a normal sleeping position. No
problems were detected with this setup, and no data were
removed owing to disruption by the spouse. All participants
were encouraged to live normally. During the study, 67% (4/6)
of the participants experienced periods of self-reported illness.
They did not recall the exact start or end times of these illnesses.
As no illness occurred in the first half of the period, it was used
to calculate personalized RR baselines for all participants (n=40
nights). Baselines were calculated as the average RR over the
period, and 95% CIs were calculated as the baseline–1.96 × SD
to baseline+1.96 × SD.

Somnofy
Somnofy (version 0.7; VitalThings) was used in this study.
Somnofy uses an impulse radio ultrawideband radar with an
average sampling rate of 23.8 GHz, which, through
configuration, is sampled into a 3-m–long frame of 5-cm bins
updated with a frequency of approximately 17 Hz. Somnofy
measures humans by emitting signals that are reflected by the
human body. If the body moves, it will affect the signals that
are returned to the radar. The RR is further derived by using the
Doppler effect and signal processing techniques, primarily the
Fast Fourier transform (FT), to analyze periodic movements
caused by the chest wall. The Fast FT is calculated every second
for the last 20 seconds of the data, using a Hann window and
19-second overlap. Artifacts and harmonics are automatically
removed by Somnofy; therefore, it provides only estimates that
it is confident in. In this study, Somnofy was configured to
provide RRs between 8 and 30 RPM. Movement is derived by
analyzing the changes in the received radar signal over the last
6 seconds. The operating frequency enables the radar signal to
travel through bedsheets and clothes before being reflected on
the human body. More information on the principles of radar
technology is available in previous studies [26].

Somnofy also calculates the nightly average RR. When
calculating nightly averages, it is not necessary to use every
instantaneous RR throughout the night. Using only selected
measurements and filtering outliers can increase the
night-to-night consistency, because the average does not depend
on, for example, the amount of movement during the night.
Therefore, Somnofy considers only periods without movement
and rapid eye movement (REM) sleep, where RR tends to vary,
when calculating nightly averages. In addition, outliers defined
as >0.675 SD away from the mean are disregarded.

Somnofy is certified according to the Federal Communication
Commission and “Conformité Européene” and harmless to
human beings. Somnofy is installed by simply placing the unit
on a nightstand or mounting it on a wall. Somnofy measures
RR for 1 person and can do so despite the presence of 2
individuals in a bed, for which it measures only the nearest
person if the person lies 5 cm closer to the radar than the other
person. However, when 2 individuals are sharing a bed, the
distance parameter in Somnofy should be set to a distance
between the 2 individuals’ thoraces to prevent the unit from
starting to measure the other person when the intended
participant exits the bed. Somnofy also collects additional
information about the sleeping environment and scores sleep
stages (accuracy to detect sleep=0.97 and accuracy to detect
wake=0.72 in epoch-by-epoch analyses) [37]. For more details
about Somnofy, refer to the validation study on sleep stage
classification [37]. Currently, Somnofy is not a Food and Drug
Administration–approved medical device.

PSG Recordings
PSG was performed using SOMNOscreen plus
(SOMNOmedics) by sleep specialists following the guidelines
of the American Academy of Sleep Medicine [38]. RRs were
derived from 32 Hz RIP using the short-time FT (STFT) as
implemented by the Python library SciPy (version 1.4.1). The
STFT was calculated with a 20-second Hann window and a
19-second overlap, providing 1 measurement per second. For
minimal noise, the RIP belt (thorax or abdomen) with the highest
signal quality was used for each 20-second window to derive
RR.

However, the RRs derived from RIP were still noisy when the
input data quality was low. To remove this noise, all
measurements that were more than double or less than half of
the measurement in the previous second were disregarded. The
RRs were filtered further by removing outliers, which were
defined as measurements >1.96 SDs away from the mean of a
15-minute interval around the measurement.

Nightly average RRs for RIP were calculated using the same
time stamps as those used by Somnofy. To synchronize the
clocks in Somnofy and PSG, the cross-correlation between
movement from Somnofy and PSG was maximized. Time in
bed was defined as the time from lights out to lights on.

Statistical Analysis
As RRs were measured continuously during the night, the
Bland-Altman method [39] was chosen as the main statistical
tool to validate Somnofy against RIP [40]. In contrast to
techniques that predefine an acceptable error margin, the
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Bland-Altman limit of agreement can be considered across
several applications, as the difference is quantified. For
instantaneous measurements, the Bland-Altman limits of
agreement were calculated per night, and on the combined data
set, adjusting for multiple measurements per participant [41].
In addition, the mean absolute error (MAE) was used to measure

the absolute deviance, the coefficient of determination (R2) was
calculated to measure the correlation between RIP and Somnofy
during the night, and coverage (percentage of the time Somnofy
provided measurements regardless of whether RIP provided
measurements) and gap (longest time that passed without a
Somnofy measurement) were analyzed to investigate the
reliability and robustness of the device.

MAE and coverage for instantaneous RRs were analyzed across
age, sex, BMI, sensor location, and sleeping position for
significant differences. The null hypothesis was that there was
no difference with α set to .05. Age (young adult or adult), sex
(male or female), and BMI (normal weight or overweight) were
analyzed using a 2-tailed, 2-sample, unpaired t test, as the
sample sizes were <30. To avoid bias toward individual
participants, analyses were performed on average values for
each night, disregarding waking periods. Calculations were
performed using Python (version 3.6.8) and the SciPy (version
1.4.1) library.

From the radars’ point of view, sleeping position depended on
sensor location. A total of 8 different position parameters were
established as combinations of the four sleeping positions
(supine, prone, left, and right) and the two sensor locations
(nightstand and wall). For each night, combinations with <300
measurements were disregarded. Consequently, not all

combinations were available for every night, because not all
the participants slept in every sleeping position. As the data set
was paired, had >2 levels, and was unbalanced, a linear mixed
effects model was chosen to analyze statistical significance. For
these analyses, only measurements taken during
Somnofy-defined sleep were used. The output model was
analyzed using the Tukey method to investigate individual
pairwise relationships. The analyses were performed in R
(version 3.6.3), using the “lme4” (version 1.1-23) and
“multcomp” (version 1.4-13) packages.

Results

Data Statistics
Table 1 shows the age, sex, and BMI distribution of the
participants in the validation part of the study, and Table 2
shows the relevant sleep and respiratory parameters. On average,
the participants spent 8 (SD 0.7) hours in bed, with PSG-defined
sleep efficiency of 85.3% (SD 8.3%). The average RIP RR
ranged from 11 to 21.4 RPM. On average, 5.8% (SD 1.9%) of
the data were removed per night owing to filtering of RIP noise.
Of the 61,775 data points removed, most data were removed
from PSG-defined wake (n=31,063, 50.28%), light sleep
(n=19,137, 30.98%), and REM sleep (n=7,561, 12.24%). Figure
1 displays the noise filtering for RIP for the nights with the
least, average, and most noise. The filter removed most outliers
but did not remove the natural variations in RR that occur during
wake and REM sleep. While removing time stamps with PSG
artifacts, 3.42% (30,294/886,512) of the Somnofy data were
removed.

Table 1. Age, sex, and BMI of the participants in the validation study (N=37).

BMI (kg/m2), mean (SD); rangeAge (years), mean (SD); rangeFemale participants, n (%)Participants, n (%)Categories

23.3 (2.9); 18.5-28.732.6 (10.6); 20-6221 (57)37 (100)All

21.7 (2); 18.5-24.731.8 (10.7); 22-6215 (41)25 (68)Normal weighta

26.6 (1.1); 25.2-28.734.4 (10.8); 20-556 (16)12 (32)Overweightb

22.3 (2.9); 18.5-28.725.6 (2.6); 20-2913 (35)22 (59)Young adultc

24.6 (2.3); 20.8-27.842.9 (9.6); 31-628 (22)15 (41)Adultd

a18.5≤BMI<25.
bBMI≥25.
cAged <30 years.
dAged ≥30 years.
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Table 2. Sleep and respiratory parameters for the validation study (N=37).

Values, rangeValues, mean (SD)Parameters

6.8-108 (0.7)PSGa—time in bed (hours)

58.9-95.485.3 (8.3)PSG—sleep efficiency (%)

4-143.944.9 (33.8)PSG—wake after sleep onset (minutes)

4.1-8.26.9 (0.9)Somnofy—total sleep time (hours)

3.1-12.55.8 (1.9)RIPb—noise removed (%)

11-21.415.5 (2.1)RIP—average respiratory rate (RPMc)

0-3.81.1 (1.1)AHId

0-13.81.3 (2.8)PLMIe

2.6-18.299.2 (3)ArIf

aPSG: polysomnography.
bRIP: respiratory inductance plethysmography.
cRPM: respirations per minute.
dAHI: apneas and hypopneas per hour of sleep.
ePLMI: periodic limb movements per hour of sleep.
fArI: arousals per hour of sleep.

Figure 1. Nights with the least, average, and most noise removed from respiratory rates derived from respiratory inductance plethysmography (RIP).
The respiratory rates as respirations per minute (RPM) are displayed on the y-axis, and the date and time (mm-dd HH) are displayed on the x-axis. The
filter removes obvious outliers in the respiratory rate without removing normal variations during wake and rapid eye movement (REM) sleep.

Instantaneous RR
The results of the measurements of instantaneous RR are
displayed in Table 3. During time in bed, Somnofy managed to
measure RR 84% (SD 6%) of the time (coverage) and the MAE
of these measurements was 0.18 (SD 0.05) RPM compared with
RIP. On average, the 95% limits of agreement with RIP ranged

from −0.94 (SD 0.35) to 0.80 (SD 0.32) RPM, with bias of
−0.07 (SD 0.02) RPM. After adjusting for repeated
measurements, the limits of agreement on the whole data set
ranged from −0.99 to 0.85. Figure 2 shows the Bland-Altman
plot for this scenario. The orange regression line

(slope=−0.0057; R2=0.0059) indicates that Somnofy tends to
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underestimate RR compared with RIP and that Somnofy
underestimates more for high RRs. During Somnofy-defined
sleep, the coverage was 90% (SD 3.7%) and the limits of
agreement ranged from −0.83 (SD 0.28) to 0.69 (SD 0.25), on
average. In particular, the worst nights were improved by
removing wake data, indicating that these nights had high
amount of wake, which was difficult for Somnofy to measure.

Table 4 shows the coverage and accuracy across the different
Somnofy-defined sleep stages. Somnofy was most accurate
during deep sleep (non-REM 3) and light sleep (non-REM 1 or
non-REM 2), whereas accuracy and coverage were substantially
lower during wake and REM sleep than during other sleep
stages. The results across PSG-defined sleep stages were similar
(Multimedia Appendix 1).

Table 3. Results for instantaneous respiratory rate (N=37).

During Somnofy-defined sleep, mean (SD); rangeDuring time in bed, mean (SD); rangeParameters

24.69 (3.26); 14.88 to 29.6728.66 (2.66); 24.48 to 36.07Number of measurementsa (1000s)

89.5 (3.7); 80.2 to 97.383.5 (6); 69 to 93.3Coverageb (%)

2.42 (1.77); 0.55 to 104.97 (3.80); 1.27 to 16.85Longest gapc (minimum)

21.81 (3.14); 13 to 27.2323.54 (2.90); 17.21 to 30.35Number of common measurementsd (1000s)

0.90 (0.06); 0.73 to 0.970.89 (0.15); 0.03 to 0.96R 2e

0.17 (0.04); 0.10 to 0.240.18 (0.04); 0.10 to 0.28MAEf

−0.07 (0.02); −0.12 to −0.04−0.07 (0.02); −0.14 to −0.04Bias

−0.83 (0.28); −1.57 to −0.43−0.94 (0.35); −2.19 to −0.43LoAg—low

0.69 (0.25); 0.32 to 1.360.80 (0.32); 0.32 to 1.90LoA—high

aNumber of instantaneous respiratory rate measurements in 1000s.
bPercentage of the time Somnofy provided respiratory rate measurements.
cHighest number of minutes between 2 Somnofy measurements per night.
dNumber of times both Somnofy and noise-filtered respiratory inductance plethysmography provided measurement.
eR2: coefficient of determination.
fMAE: mean absolute error.
gBland-Altman 95% limits of agreement, calculated as bias – 1.96 × SD to bias + 1.96 × SD.
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Figure 2. Bland-Altman plot for instantaneous respiratory rates. The y-axis displays the disagreement between Somnofy and respiratory inductance
plethysmography (RIP; N=871,072), whereas the x-axis displays the average of Somnofy and RIP measurements. All values are presented as respirations
per minute (RPM). Measurements from the same night are visualized with the same color. For overlapping measurements, the top measurements were
picked randomly. The y-axis is limited to between –1.2 and 1.2.

Table 4. Results for instantaneous respiratory rate for Somnofy-defined sleep stages.

Rapid eye movementDeepLightWakeParameters

178,862195,462539,229141,320Number of measurementsa

16.115.715.316.9RIPb—average respiratory rate (RPMc)

75.398.191.347.1Coveraged (%)

132,109189,369485,31562,981Number of common measurementse

0.300.110.150.33MAEf

−0.12−0.05−0.06−0.12Bias

−1.67−0.38−0.66−1.97LoAg—low

1.420.280.551.72LoA—high

aNumber of instantaneous respiratory rate measurements.
bRIP: respiratory inductance plethysmography.
cRPM: respirations per minute.
dPercentage of the time Somnofy provided respiratory rate measurements.
eNumber of times both Somnofy and noise-filtered RIP provided measurement.
fMAE: mean absolute error.
gBland-Altman 95% limits of agreement, adjusted for repeated measurements and calculated as bias – 1.96 × SD to bias + 1.96 × SD.
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Nightly Average RR
For the nightly average RRs, MAE was 0.052 (SD 0.008) RPM.
Figure 3 displays the Bland-Altman plot for these averages. The
Bland-Altman limits of agreement show that 95% of the nightly
averages are expected to have a disagreement with RIP between

−0.07 and −0.04 RPM. As indicated by the orange line

(slope=−0.0018; R2=0.343), there seems to be a trend, where
Somnofy underestimates more for high RRs. This trend is a
similar to that for the instantaneous RR measurements shown
in Figure 2.

Figure 3. Bland-Altman analysis for nightly filtered respiratory rates. The y-axis displays the disagreement between Somnofy and respiratory inductance
plethysmography (RIP; N=37), whereas the x-axis displays the average of Somnofy and RIP measurements. All values are presented as respirations per
minute (RPM). The nightly averages are visualized as blue dots.

Night-to-Night Consistency of Nightly Average RR
The results from the longitudinal pilot study are shown in Figure
4. The RRs were fairly consistent from night to night for all
participants (6/6, 100%), and most values were within the 95%
CIs around the baselines. Moreover, periods with self-reported

illness substantially deviated from their respective baselines.
In total, 67% (4/6) of the participants reported 1 illness each.
The participants who were aged 13, 11, and 38 years,
respectively, reported a cold, and the participant aged 81 years
reported an infection that was treated with antibiotics.
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Figure 4. Nightly filtered average respiratory rates over 3 months. A total of 6 individual participants are labeled with sex and age above the corresponding
graph. The y-axis displays the average filtered respiratory rates as respirations per minute (RPM), whereas the x-axis displays the date at wake up.
Self-reported illness is tagged on the first peak of the respiratory rate during the illness. All nights substantially outside the CI were related to the
self-reported illnesses.

Other Analyses
In this study, the null hypothesis that MAE and coverage were
independent of age (MAE: P=.97 and coverage: P=.63), sex
(MAE: P=.28 and coverage: P=.73), and BMI (MAE: P=.99
and coverage: P=.43) could not be rejected. In contrast, for
sleeping position and sensor location, the null hypothesis was

rejected. Some combinations, all including supine sleeping
position, showed statistically significantly higher MAE (mean
0.045 RPM, SD 0.01) and statistically significantly lower
coverage (mean 5.0%, SD 0.9%) than other radar or sleeping
positions. The mean difference and P values for all the
significantly different combinations are shown in Table 5.
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Table 5. Statistically significant differences for sleeping position and sensor locationa.

Coveraged (%)MAEb (RPMc)Significantly different combinations

P valueMean differenceP valueMean difference

<.001−6.21<.0010.048Supine nightstand—left wall

<.001−5.99<.0010.046Supine nightstand—right wall

<.001−4.78.0020.052Supine nightstand—left nightstand

.002−4.17<.0010.042Supine nightstand—right nightstand

N/AN/Ae.020.053Supine nightstand—prone wall

.002−4.15.040.027Supine wall—right wall

.001−4.37N/AN/ASupine wall—left wall

aThe table shows combinations of sleeping position (right, left, supine, and prone) and sensor location (nightstand and wall) that were statistically
significantly different using Tukey method on a linear mixed effects model (33/37, 89%).
bMAE: mean absolute error.
cRPM: respirations per minute.
dPercentage of the time Somnofy provided respiratory rate measurements.
eN/A: not applicable.

Discussion

Principal Findings
This study demonstrated that Somnofy can accurately detect
instantaneous RRs during time in bed for healthy adults. On
average, Somnofy was able to measure RR 84% (SD 6%) of
the time with MAE of 0.18 (SD 0.04) RPM. The Bland-Altman
95% limits of agreement ranged from −0.99 to 0.85 RPM. The
accuracy and coverage varied significantly according to the
sleep stage, where deep sleep (MAE=0.11; coverage=98%) was
the most accurate, followed by light sleep (MAE=0.15;
coverage=91%), REM sleep (MAE=0.30; coverage=75%), and
wake (MAE=0.33; coverage=47%). For filtered nightly
averages, the measurements from RIP and Somnofy were almost
identical with Bland-Altman 95% limits of agreement, ranging
from −0.07 to −0.04 RPM. Overall, Somnofy tended to slightly
underestimate RR. Results were independent of age, BMI, and
sex but were slightly worse for supine sleeping position.

The longitudinal part of the study showed that the nightly RRs
seem fairly consistent from night to night. Most nightly averages
were within the 95% CIs of the personalized baselines.
Moreover, the CIs were smaller than, for example, the normal
effect of 1-degree increase in body temperature on RR (eg,
associated with fever) [5,6]. All substantial deviations coincided
with self-reported illness, which were expected to increase the
RR. The small night-to-night variations can be caused by other
factors that affect RR, such as increased RRs after intense
workouts [12] and RRs varying with emotions or anxiety [13]
and owing to menstrual cycle [14]. A large study investigating
these factors is necessary to understand the usefulness of
investigating small deviations from baseline.

The coverage and accuracy varied substantially according to
the sleep stage. It is probably easier for Somnofy to measure
RR during light and deep sleep, as RR during these periods is
more stable than that during wake or REM sleep. Coverage was
particularly low during wake, when more movement likely

resulted in more noise. Somnofy takes advantage of this by
using values only from light and deep sleep to calculate the
nightly average, during which the accuracy is higher. This has
the additional benefit that the average is independent of the
amount of wake and REM sleep during the night, during which
RR varies more and tends to be higher. Thus, using values only
from light and deep sleep should also improve the night-to-night
consistency.

On average, 5.8% (SD 1.9%) of the PSG data had to be filtered
for noise. Another reference device or signal processing
technique could have been used instead of RIP with STFT.
Unfortunately, there is no gold standard for longitudinal
measurements of RR, and changing the reference is unlikely to
affect the results significantly. RIP was used in one study [23],
and RIP and STFT were used in another study [27]. One study
used a nasal flow sensor, but had to remove 10 out of 40 nights
owing to missing or unusable flow data [24]. Another study
used both flow and effort signals with a peak detection
algorithm, but based on the number of epochs they analyzed
divided by the average time in bed in their study, they removed
approximately twice as much noise as removed in this study
[25].

Compared with wearables, radar technology has the benefit that
nothing must be attached to the body, which can negatively
affect sleep. Wearables also must be charged, and the user must
remember to wear the device in bed. According to Fitbit, only
half of its users wear their armbands at night [42], indicating
that compliance can be a problem. Furthermore, neither
wearables nor under-the-mattress sensors have been shown to
measure sleep as reliably as Somnofy [37], information that can
be used for more consistent nightly averages.

As Somnofy measures RRs from a distance, it was especially
interesting to analyze the results across sleeping positions and
sensor locations. All significant differences were found for
supine sleeping position, indicating that this position may be
more difficult to assess. For the nightstand sensor, the supine
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position may be more difficult, because the respiration
movement is mainly perpendicular to the transmitted radar
signals. This is also true for the prone position, but in this
position, some of the respiration movements may be pushed in
different directions by the bed. The wall sensor may have
difficulties in assessing the supine position owing to more
movement. Here, the body is free to move, and the sensor has
good view of the movements. Interestingly, Somnofy seems to
measure RR equally well when the chest or the back is aimed
toward the sensor. In addition, there was no statistically
significant difference according to age, sex, or BMI, which are
factors that can affect both how respiration is visible on the
body surface and actual RRs. However, the study had few
participants with high BMI; therefore, this should be investigated
further.

Previous studies have reported that active measurements of RRs
can be imprecise if the user is aware of being measured, and
therefore, consciously affects breathing [43]. As Somnofy
measures RRs from a distance, it should be possible to do so
without affecting the user. Moreover, measuring during sleep
enforces measurements to occur during rest. Noncontact
measurements of RRs should also have other benefits such as
user-friendliness and less administration.

Comparison With Previous Studies
Few commercially available technologies suitable for
longitudinal studies have been validated for RR measurements.
Comparison between studies is always difficult, because the
sleep data, reference device or signal processing, and
performance metrics are different. However, to the best of our
knowledge, the results of this study are significantly better than
those of other technologies [23-25,44-46] including radar
technology [27,29]. The validated measurements are also more
instantaneous, as previous studies have averaged RRs over
epochs of data. Moreover, previous studies of noncontact RR
measurements during sleep have not investigated the effect of
all the factors that can affect the results, such as sleep stage,
age, BMI, and sleeping position [23-25,27,46]. This is also the
first study that explicitly analyses coverage and measures gaps
in continuous RR measurements during sleep using radar
technology.

To the best of our knowledge, the accuracy in this study is also
significantly higher than that of the measuring methods used in
hospitals, such as manual counting of breaths [47] and chest
patches [19]. However, these studies were performed on
different populations and in different settings, which could have
made measurements more difficult.

Previous studies have not validated filtered nightly average, as
proposed in this study. This filtered average was substantially
more accurate than the standard nightly averages reported in
other studies [24,25]. In theory, it should also be more suitable

for longitudinal studies, as the night-to-night variability should
be lower.

No other study has analyzed whether anomaly detection from
personalized baselines is a sound application of longitudinal
RR monitoring. For the approach to be sensible, RRs need to
be sufficiently consistent from night to night and the
measurement error needs to be sufficiently small, depending
on the application. However, a pilot study investigated a specific
use case for patients with COPD [48]. Their intention was to
detect exacerbation of COPD by comparing the median RR of
one night with those of the previous nights. They concluded
that RR can be obtained using radar technology and that RR
may be an indicator of change in clinical status. Another study
found that the use of both instantaneous and previous RRs
improved precision when detecting clinical deterioration [49].

Limitations
The study investigated measurements only during rest, and the
results cannot be automatically applied to general situations
where the individual is awake. Furthermore, the study was
limited to healthy adults. More studies are necessary to validate
Somnofy for people with different illnesses, children, and older
adults.

The second part of the study included few participants. A large
population should be analyzed to investigate the night-to-night
consistency of average nocturnal RRs in a general population.
Moreover, the participants’ illnesses were self-reported. No
physicians were consulted for diagnosis, and body temperatures
were not measured. Further studies should investigate which
types of disease can be detected with this technology and how
early in the development of these diseases the RR changes.

This study analyzed only RR. Although RR can be valuable to
measure longitudinally, more value can be added by measuring
other biomarkers such as temperature, blood pressure, and heart
rate simultaneously. Heart rate is often measured using
comparable technology [23-25], and radar technology has
previously also been validated for measuring heart rate during
sleep [27]. Heart rate measurement was not available from
Somnofy at the time of this study.

Conclusions
This study shows that Somnofy accurately measures RR during
sleep in healthy adults. To the best of our knowledge, Somnofy
has higher precision than any other noncontact device suitable
for longitudinal monitoring, especially for nightly averages.
Moreover, measuring RRs during sleep seems to be a sound
option for consistent longitudinal measurements. Several events
that affect the RR should be detectable as deviations from
personalized nocturnal baselines, making the device suitable
for a broad range of applications. Further studies are necessary
to validate the use of Somnofy for children and older adults or
to use this device in clinical settings.
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