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Abstract

Background: Adoption of 3D imaging systems in humanitarian settings requires accuracy comparable with manual measurement
notwithstanding additional constraints associated with austere settings.

Objective: This study aimed to evaluate the accuracy of child stature and mid–upper arm circumference (MUAC) measurements
produced by the AutoAnthro 3D imaging system (third generation) developed by Body Surface Translations Inc.

Methods: A study of device accuracy was embedded within a 2-stage cluster survey at the Malakal Protection of Civilians site
in South Sudan conducted between September 2021 and October 2021. All children aged 6 to 59 months within selected households
were eligible. For each child, manual measurements were obtained by 2 anthropometrists following the protocol used in the 2006
World Health Organization Child Growth Standards study. Scans were then captured by a different enumerator using a Samsung
Galaxy 8 phone loaded with a custom software, AutoAnthro, and an Intel RealSense 3D scanner. The scans were processed using
a fully automated algorithm. A multivariate logistic regression model was fit to evaluate the adjusted odds of achieving a successful
scan. The accuracy of the measurements was visually assessed using Bland-Altman plots and quantified using average bias, limits
of agreement (LoAs), and the 95% precision interval for individual differences. Key informant interviews were conducted remotely
with survey enumerators and Body Surface Translations Inc developers to understand challenges in beta testing, training, data
acquisition and transmission.

Results: Manual measurements were obtained for 539 eligible children, and scan-derived measurements were successfully
processed for 234 (43.4%) of them. Caregivers of at least 10.4% (56/539) of the children refused consent for scan capture;
additional scans were unsuccessfully transmitted to the server. Neither the demographic characteristics of the children (age and
sex), stature, nor MUAC were associated with availability of scan-derived measurements; team was significantly associated
(P<.001). The average bias of scan-derived measurements in cm was −0.5 (95% CI −2.0 to 1.0) for stature and 0.7 (95% CI
0.4-1.0) for MUAC. For stature, the 95% LoA was −23.9 cm to 22.9 cm. For MUAC, the 95% LoA was −4.0 cm to 5.4 cm. All
accuracy metrics varied considerably by team. The COVID-19 pandemic–related physical distancing and travel policies limited
testing to validate the device algorithm and prevented developers from conducting in-person training and field oversight, negatively
affecting the quality of scan capture, processing, and transmission.

Conclusions: Scan-derived measurements were not sufficiently accurate for the widespread adoption of the current technology.
Although the software shows promise, further investments in the software algorithms are needed to address issues with scan
transmission and extreme field contexts as well as to enable improved field supervision. Differences in accuracy by team provide
evidence that investment in training may also improve performance.
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Introduction

Background
Anthropometric measurement of children is a standard
component of pediatric care to enable growth monitoring as
well as population-level assessments and clinical research.
Despite widespread reliance on anthropometry, there has been
limited technological advancement in measurement equipment.
The accuracy of weight measurement was improved with the
transition from spring to digital scales in the 1980s [1,2].
However, until recently, measurements of recumbent length
and standing height have not benefited from similar innovations;
commonly used stadiometers, or height boards, are heavy,
wooden devices that are robust to field conditions but
inconvenient to transport, as is commonly done for field surveys
and community screenings in low-resource settings.

In recent years, 2 different types of mobile device–based
technologies have been proposed as alternatives to manual
anthropometry using stadiometers: (1) apps using geometric
morphometric models and (2) apps using 3D imaging systems.
Using a portable camera attached to a standard tablet and
preloaded software, these imaging systems are able to estimate
child stature (length or height), head circumference, and
mid–upper arm circumference (MUAC) from a 3D model
developed from a series of image captures. Geometric
morphometric models aim to directly classify a child as severely
or moderately acutely malnourished; examples include the
Severe Acute Malnutrition Photo Diagnosis App [3] developed
by Action Against Hunger Spain and the Methods of Extremely
Rapid Observation of Nutrition Status developed by Kimetrica
[4]. In contrast, 3D imaging system technology—currently used
by the Child Growth Monitor, developed by the nonprofit
Welthungerhilfe, and AutoAnthro, developed by the company
Body Surface Translations Inc (BST)—produces estimates of
anthropometric measurements, which can then be used to
characterize nutrition status.

Preliminary validation studies for software aiming to directly
classify acute malnutrition have encountered methodological
as well as logistic challenges. The Photo Diagnosis App
validation phase study in Spain and Senegal found high accuracy
of diagnosis but suggested significant morphometric differences
among the populations sampled, implying a need to investigate
this morphological variability [5,6]. The researchers involved
in the study noted that, although morphological variability could
likely be overcome with machine learning, the approach proved
very expensive compared with current technologies and that
capturing a viable scan required conditions that could not be
repeated in the field (AV Brizuela, personal communication,
February 25, 2022). Lower accuracy was obtained by the
Methods of Extremely Rapid Observation of Nutrition Status
software during an initial pilot in Kenya; work is ongoing to

improve performance with further calibration using a larger,
multicountry data set [4].

Although the Child Growth Monitor is still in development and
beta testing, several studies have evaluated the performance of
AutoAnthro. Initial efficacy studies demonstrated that, in a
controlled setting in Georgia, United States, devices were able
to achieve high precision—the reliability of repeated 3D scans
was within 1 mm of manual measurement for stature, head
circumference, and MUAC; however, systematic biases were
reported [7]. Replication studies in Guatemala, Kenya, and
China aimed to determine whether the systematic biases
observed were generalizable across populations and, therefore,
something that could be corrected analytically. However, the
multicountry replication studies found lower accuracy and
variability in the direction and magnitude of bias [8].

Further testing in a humanitarian setting was proposed given
the additional challenges for nutrition surveillance in these
locations. Settings hosting internally displaced persons and
refugees are commonly remote, experience austere weather
conditions, and have limited or no internet connectivity. These
conditions present unique operating challenges for training and
use of 3D imaging technology. Changes to the software and
hardware were implemented to ensure that the device and
operating software were robust to and acceptable in these
conditions. In addition, the timing of the evaluation—during
the acute phase of the COVID-19 pandemic—presented new
challenges. Travel and movement restrictions necessitated a
more autonomous operation. In addition, concern about
transmission risk associated with the physical contact required
for traditional anthropometry, particularly height and length
measurement, created additional interest in the potential for 3D
imaging technology.

Objectives
Widespread adoption of the AutoAnthro technology in
humanitarian settings requires accuracy at least comparable
with manual measurement notwithstanding additional
constraints. Therefore, this study aimed to re-evaluate device
accuracy following modifications to the software algorithm.

Methods

Overview
This study evaluated the accuracy of the third generation of the
AutoAnthro 3D imaging system in comparison with manual
measurements for child anthropometry. The third-generation
software contained major updates to the previous version that
were designed to achieve higher levels of durability and
portability required in austere settings, improve user experience
with scan capture and device performance, automate image
processing, and implement changes to allow the software to
operate on lower-cost hardware. Details on the hardware,
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positioning, data capture, and processing for the AutoAnthro
technology used in this study and previous versions are
compared in Table 1. Given the interest in the field-readiness
of the technology, the study was embedded within a
population-representative household nutrition survey conducted
by International Medical Corps (IMC) to simulate the level of

automation required to enable use by nonresearch actors in
nutrition surveys [9]. The survey was undertaken in late 2021
(September 27 to October 2) at the Malakal Protection of
Civilians site, which hosts approximately 34,000 internally
displaced people and is located in the northeast of South Sudan
[10].

Table 1. Hardware, data acquisition, review, and processing used by AutoAnthro technology to produce automated measurements of anthropometry
for children.

Third generationSecond generationFirst generation

Samsung Galaxy 8 phone running An-
droid and an Intel RealSense 3D scan-
ner

iPad and a structure sensor 3D scanneriPad and a structure sensor 3D scannerHardware

Enumerators were able to constrain the
child’s hands or feet to help position
them

Enumerators were able to constrain the
child’s hands or feet to help position
them

Enumerators were unable to constrain the
child’s hands or feet to help position them

Positioning

AvailableNot availableNot availableReal-time estimates

Fixed number of scans automatically
captured

Fixed number of scans automatically
captured

Unlimited scansNumber of scans

Automatically uploaded to a computer
server

Automatically uploaded to a computer
server

Automatically uploaded to a computer
server

Data acquisition

No manual screening by enumeratorsNo manual screening by enumeratorsScans manually screened for data quality
by enumerators

Data review

Fully automaticFully automaticSemiautomaticData processing

Used in this study in South SudanReplication studies in Guatemala,
Kenya, and China [8]

Initial efficacy study in the United States
[7]

Evidence on perfor-
mance

Study Design and Data Collection
Households were sampled using a 2-stage cluster sampling
design in which camp blocks were selected with probability
proportional to size. Selected blocks were fully enumerated,
and households were randomly selected using systematic random
sampling. A sample of 485 children was targeted to achieve
desired precision for estimating prevalence of global acute
malnutrition, the primary survey aim. This sample was
determined to be sufficient to detect a difference of 0.17 cm for
height/length and 0.09 cm for MUAC given an α of .05, power
of 0.8, and SDs observed in previous studies [5]. All children
aged 6 to 59 months within selected households whose primary
caregiver gave verbal informed consent were eligible to
participate.

Staff from BST remotely trained the IMC survey manager;
training included instructions on the positioning of children,
use of the hardware and AutoAnthro software, and performing
and saving scans. The survey manager replicated the training
in person for the enumerators. Manual anthropometrics and 3D
scan teams received a 4-day training. Teams jointly participated
in a classroom training on study objectives and manual
anthropometry. Practical exercises and a standardization test
were organized separately for manual anthropometrists and
scanners. All manual measurers passed the standardization test
with an intra- and interenumerator technical error of
measurement (TEM) for manual measurement of <1.4 for
height/length and <3.0 for MUAC.

Measurements were performed by 6 teams of 4 individuals,
including 2 (50%) measurers, 1 (25%) team leader trained on
manual anthropometry, and 1 (25%) measurer trained to obtain
the 3D scan-derived measurements. For a given child, manual
measurements (weight, height/length, and MUAC) were
separately obtained by 2 manual anthropometrists and entered
into a survey programmed in Open Data Kit (Get ODK) on a
tablet device. Anthropometrists first collected weight and
MUAC; height or length was then collected following the
protocol used for the 2006 World Health Organization (WHO)
Child Growth Standards study [11]. After manual measurement,
scans were taken by a different enumerator to ensure
independence. Scans were captured using the AutoAnthro
(version 3) software on a Samsung Galaxy 8 Android phone
and an Intel RealSense 3D scanner (Figure 1). Each 3D imaging
session comprised 10 scans, with 5 scans of both the front and
back of the child. Two sets of measurements were produced:
(1) a real-time, offline estimate of height/length and MUAC,
which was produced by the app and displayed to data collection
teams while in households for plausibility checks, and (2) an
updated measurement. For the updated measurement, scan data
were uploaded to a cloud server for fully automated processing,
which is a slower, more computationally intensive, and generally
more rigorous version of the phone-based algorithm with
additional error checking for unanticipated positioning of the
child. The software then compared the real-time result with the
updated measurement and reported the more consistent result,
which was identified by comparing the SD of the individual
subscans (6-10 subscans produce 1 scan). In cases where the
scan data were too poor to produce either real-time or updated
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measurements, AutoAnthro did not report results. For 11.9%
(64/539) of the children, enumerators perceived the real-time
estimate as implausible and took additional scans. If multiple
scan sessions were performed for a given child, the median of
all the individual scan sessions was used. Real-time scans were
primarily used to evaluate whether they could be used for
identification and referral of wasted children, whereas the
analysis focused on the updated but still fully automated
measurements.

Given a large number of lost scans following initial quality
checks and data processing, in-depth interviews were conducted
with enumerators (4 group interviews with a total of 12
enumerators) and BST staff (3 individual interviews) to
document challenges. The interviews were conducted remotely
in English from the United States using a semistructured
interview guide and recorded to facilitate note taking.

Figure 1. Example scan capture using the AutoAnthro software (version 3; Body Surface Translations Inc) on a Samsung Galaxy 8 Android phone
and an Intel RealSense 3D scanner.

Analysis Methods
Differences in demographic characteristics, nutritional status
of the children, and team number between children with and
without scan-derived measurements were evaluated to assess
characteristics associated with successful scan captures. For
unadjusted comparisons, the statistical significance of
differences was evaluated using the Kruskal-Wallis test for
continuous variables and the Fisher exact test for categorical
variables. A multivariate logistic regression was fit to evaluate
the adjusted odds of achieving a successful scan.

The quality of anthropometric measurements was assessed using
standard indicators—digit preference scores, proportion of
outlier values, and SDs [12]. The digit preference score was
calculated for height and MUAC applying the MONICA
procedure, which adjusts the chi-square statistic according to
the size of the sample and the df of the test. Digit preference
scores values of 0 indicate a uniform distribution, and the values
increase with a greater imbalance [13]. Weight-for-height or
weight-for-length z score (WHZ) and height-for-age or
length-for-age z score (HAZ) were calculated using the WHO
growth standard [14]. Outliers were calculated using two
approaches: (1) fixed exclusions of WHZ values of <−5 or >5
and HAZ values of <−6 or >6 and (2) flexible exclusions of

WHZ and HAZ values of <−3 or >3 from the observed median.
Measurements outside the range for which z scores could be
generated (length: 45-110 cm for children aged <2 years; height:
65-120 cm for children aged >2 years) were also excluded. The
SDs of the MUAC, WHZ, and HAZ distributions were evaluated
after exclusion of outliers.

The accuracy of the measurements was visually assessed using
Bland-Altman plots [15] to evaluate whether accuracy remained
constant across different child body sizes and look at random
bias. For the y-axis of the Bland-Altman plots, the manual
measurement was subtracted from the automated scan estimate
and, for the x-axis, the mean of the manual and scan estimates
was used. The average bias was assessed as a metric of
systematic bias (Equation 1). The limits of agreement (LoAs),
that is, the 95% precision interval for individual differences,
were calculated as a metric of random bias. The Pitman test of
difference in variance [16] was used to test the correlation
between accuracy and size of the child. TEM, an accuracy index
used to express the error margin, was calculated as described
by Ulijaszek and Kerr [17] (Equation 2). Analyses were
performed for all children who had both scan-derived and
manual measurements as well as disaggregated based on team,
sex, and age groups corresponding to measurement positioning
(length: ages of 6-23 months; height: ages of 24-59 months).
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where N is the number of children measured, Mi1is the
scan-derived measurement for child i, and Mi2is the manual
measurement for the same child.

In total, 2 distinct problems with data capture were identified
during the analysis. First, the AutoAnthro software estimates
height, length, and MUAC by measuring the distance between
the reference markers on the 3D image of the child. Visual
inspection of the 3D images used to generate scan values
suggested that, in select instances, the software identified a
caregiver in the background, resulting in a misplaced reference
marker, which typically resulted in outlier estimates. Second,
the scans and manual measurements were linked using a unique
ID number. Age, sex, and weight were determined for each
child and entered independently by the scan-derived and manual
measurement. For select children, child IDs matched across the
2 data sets, but age, sex, or weight were discordant, suggesting
a potential mismatch between scan-derived and manual
measurements. To evaluate the implications of these two data
capture errors, Bland-Altman plots and all accuracy metrics
were also calculated after excluding records with outliers or
mismatches in sex, age (>6 months), or weight (>5 kg).

To evaluate the implications measurement differences would
have on the classification for each derived nutrition indicator
(WHZ, HAZ, and MUAC), children were classified as severely,
moderately acutely malnourished, or neither using both manual
and scan-derived measurements. The concordance of the
classification was tabulated and visually explored. For WHZ
and HAZ, values of <−3 were considered severe, and values
between ≥−3 and <−2 were considered moderate. For MUAC,
values of <11.5 cm were considered severe, and values of ≥11.5
cm to <12.5 cm were considered moderate. All quantitative
analyses were performed in RStudio (version 1.1.456 20; R
Foundation for Statistical Computing). For the qualitative
analysis, detailed notes were taken during in-depth interviews,
supported by automated transcription available from the
Microsoft Teams software, and reviewed to synthesize key
themes. The results were triangulated with the quantitative data
and used to interpret and explain the quantitative findings.

Ethics Approval
Johns Hopkins Institutional Review Board approved the study
as “non-human subjects research” per DHHS regulations 45
CFR 46.102. The caregivers of the children enrolled in the study

and key informants provided verbal informed consent. The study
data retained for analysis were deidentified. Children identified
as malnourished were referred for care, and no further
compensation was provided.

Results

Study Sample
A total of 416 households were visited, of which 325 (78.1%)
had age-eligible children and consented to participate. Manual
anthropometric measurements were obtained for all children
aged 6 to 59 months (N=539) in the enrolled households, and
scan-derived measurements were successfully processed for
43.4% (234/539) of the children. Caregivers of 10.4% (56/539)
of the children refused consent for scan capture; in addition, a
large number of reportedly captured scans were unsuccessfully
transmitted to the server and could not be recovered from the
devices (Figure 2). A total of 485 scans were successfully
transmitted to the server for processing, of which 373 (76.9%)
were from unique children (when multiple scan sessions were
conducted, they were combined to produce a single estimate
for the child). After merging sessions and removing poor-quality
scans, scan-derived estimates were available for 265 individuals,
of which 234 (88.3%) could be matched to manual
measurements. A detailed breakdown of the available data by
cluster is provided in Table S1 in Multimedia Appendix 1.

Among the final sample with both manual and scan-derived
measurements, approximately equal proportions were from male
participants (119/234, 50.9%) and female participants (114/234,
48.7%), and two-thirds (154/234, 65.8%) were from participants
aged 24 to 59 months. The prevalence of wasting as classified
by WHZ (46/234, 19.7%) exceeded that of underweight (40/234,
17.1%) or stunting (32/234, 13.7%) when using manual
measurements; no children with edema were identified. When
comparing the demographic characteristics and nutritional status
of children with and without scan-derived measurements, there
were no significant differences apart from mean age; children
with both measurements were older (31.7, SD 14.9 months vs
28.9, SD 14.5 months; P=.03; Table 2). However, the
availability of scan-derived measurements was significantly
associated with team (P<.001), where 81% (69/85) of the
children measured by team 1 had successfully transmitted scans
compared with only 4% (3/81) of the children measured by
team 6. Differences in the availability of scan-derived
measurements by team remained significant in the multivariate
logistic regression, whereas child characteristics (age, sex,
height/length, and MUAC) were not associated with scan
availability (Table S2 in Multimedia Appendix 1).
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Figure 2. Enrollment flowchart. *Scans captured in the field that were unsuccessfully transmitted to the server and could not be recovered from devices
or child identification numbers that were misreported such that scan-derived values could not be matched to manual measurements. **In five of the 32
clusters, information on the outcomes of each household visit was recorded on paper forms lost in a large rainstorm during data collection. ***The child
identification number associated with the scan was not a match to any children with manual measurements. ****Scan positioning or resolution was too
poor to enable calculation of scan-derived measurements. *****Field teams conducted two or more scan sessions for 64 children. When multiple scan
sessions were performed for a given child, scans from all available sessions were combined, and the median of all individual scan sessions was used
for the analysis.
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Table 2. Characteristics of the sample by availability of automated scan data (N=539).

P valueaChildren with manual and scan-derived measurements
(n=234)

Children with manual measurements only
(n=305)

<.001Team, n (%)

69 (81.2)16 (18.8)Team 1 (n=85)

59 (52.7)53 (47.3)Team 2 (n=112)

45 (42.5)61 (57.5)Team 3 (n=106)

13 (14.3)78 (85.7)Team 4 (n=91)

45 (70.3)19 (29.7)Team 5 (n=64)

3 (3.7)78 (96.3)Team 6 (n=81)

.0331.7 (14.9)28.9 (14.5)Age (months), mean (SD)

.14Age category (months), n (%)

80 (34.2)123 (40.3)6 to 23

154 (65.8)182 (59.7)24 to 59

.89Sex, n (%)

115 (49.1)148 (48.5)Female

119 (50.9)157 (51.5)Male

.36−1.2 (1.0)−1.2 (1.0)Underweightb, mean (SD)

.99Underweight categoryc, n (%)

10 (4.3)13 (4.3)Severe

30 (12.8)42 (13.8)Moderate

.39−0.9 (1.2)−0.9 (1.4)Stuntingb, mean (SD)

.92Stunting categoryc, n (%)

11 (4.7)17 (5.6)Severe

21 (9)32 (10.5)Moderate

.86−1.0 (1.2)−1.1 (1.1)Wastingb, mean (SD)

.58Wasting categoryc, n (%)

9 (3.8)10 (3.3)Severe

37 (15.8)42 (13.8)Moderate

.5214.0 (1.3)14.0 (1.2)MUACd, mean (SD)

.52MUAC categoryc, n (%)

1 (0.4)4 (1.3)Severe

21 (9)23 (7.5)Moderate

aKruskal-Wallis test for continuous variables; Fisher exact test for categorical variables.
bUnderweight was classified as weight-for-age z score, stunting was classified as height- or length-for-age z score, and wasting was classified as
weight-for-height or weight-for-length z score using the World Health Organization growth reference based on manual measurements.
cFor underweight, stunting, and wasting, moderate categories included z score values between −2 and ≥−3. The severe categories included values of
<−3. For mid–upper arm circumference, the moderate category included values between 11.5 cm and 12.5 cm; values of <11.5 cm were classified as
severe.
dMUAC: mid–upper arm circumference.

Measurement Quality
The quality of manual measurements was evaluated for the
overall sample as well as for the subset matched to scan-derived
measurements. Among children with both manual and
scan-derived data (234/539, 43.4%), the digit preference score

for height/length was nearly twice as high for manual
measurements (13.5 vs 6.8) and nearly 3 times as high (19.6 vs
6.6) for MUAC measurements as compared with scan-derived
measurements, suggesting more rounding of terminal digits by
manual anthropometrists. For all other quality metrics, manual
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measurements outperformed scan-derived measurements. For
children with both measurements, no outliers were identified
with fixed exclusions, and only 11 were identified with flexible
exclusions (n=3, 27% for WHZ and n=8, 73% for HAZ) from
the manual measurements. By comparison, for scan-derived
measurements, 29 outliers were identified applying fixed
exclusions (n=13, 45% for WHZ and n=16, 55% for HAZ), and
61 were identified with flexible exclusions (n=22, 36% for WHZ
and n=39, 64% for HAZ). SDs were notably wider for

scan-derived measurements than for manual measurements for
MUAC (2.33 vs 1.26), WHZ (1.56 vs 1.16), and HAZ (1.75 vs
1.23) for all children, and the same pattern was observed for
length among younger children, for whom measurement can be
a greater challenge. For all quality indicators, the results were
similar when quality metrics for scan-derived measurements
were compared with the sample of all children (N=539) with
manual measurements (Table 3).

Table 3. Quality of manual and scan-derived measurements as evaluated using digit preference score, outliers, and SD (N=539).

Scan-derived measurementsManual measurement

All children with scans (n=234)All children with scans (n=234)All children

Digit preference score

6.7813.4712.62Height or length

6.6319.6320.87MUACa

Outlier values (fixed)b, N

1300WHZc

1601HAZd

Outlier values (flexible)e, N

2236WHZ

39817HAZ

SDf (children aged 6-59 months)

2.331.261.21MUAC

1.561.151.11WHZ

1.751.231.25HAZ

SDf (children aged 6-23 months)

2.090.900.97MUAC

1.591.281.19WHZ

1.961.311.31HAZ

aMUAC: mid–upper arm circumference.
bZ score values <−5 or >5 for weight-for-height or weight-for-length and <−6 or >6 for height- or length-for-age were considered outliers, as were
measurements outside the range for which z scores could be generated (length: 45-110 cm for children aged <2 years; height: 65-120 cm for children
aged >2 years).
cWHZ: weight-for-height or weight-for-length z score.
dHAZ: height-for-age or length-for-age z score.
eZ score values <−3 or >3 from the median z score of the sample for WHZ and HAZ were considered outliers, as were measurements outside the range
for which z scores could be generated (length: 45-110 cm for children aged <2 years; height: 65-120 cm for children aged >2 years).
fSD calculated after excluding outlier values (weight-for-height or weight-for-length and height-for-age or length-for-age).

Accuracy of Measurement
Analysis of scan-derived measurement accuracy used updated
measurements generated after measurements were uploaded to
cloud-based servers for automated processing. Real-time
scan-derived measurements that were available in the field were
reviewed to confirm adherence to the protocol to ensure that
scan-derived measurements were not shared with manual
anthropometrists (Figure S1 in Multimedia Appendix 1). Only
4 height/length and 3 MUAC manual and real-time scan-derived
measurements were exact matches, providing evidence of the

independence of the measurements. The correlations between
manual and real-time scans were 0.54 for height/length and 0.17
for MUAC.

Accuracy was visually inspected using Bland-Altman plots
(Figure 3). When using all scans, the average bias of the
measurements in cm was −0.5 (95% CI −2.0 to 1.0) for
height/length and 0.7 (95% CI 0.4-1.0) for MUAC (Table 4).
For height and length, 48.7% (114/234) of scan-derived
measurements were higher than manual measurements or
positive, and the 95% LoA was within −23.9 cm and 22.9 cm.
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For MUAC, 67.9% (159/234) of scan-derived measurements
were higher than manual measurements, and the 95% LoA was
−4.0 cm to 5.4 cm. For both indicators, the Pitman test was
statistically significant (P<.001), suggesting differential accuracy
by child size. Mean differences in height/length were negative
for all children but greater for children aged 24 to 59 months
compared with children aged 6 to 23 months, whereas the
reverse was true for MUAC. Of interest, for height/length, the
LoAs were narrower for female participants than for male
participants (Figure S2 in Multimedia Appendix 1), but the
mean difference was greater (−1.1 vs 0.1); the sex difference
in the accuracy of MUAC was less pronounced.

Accuracy metrics varied considerably by team, excluding team
6 given the small sample of scans (n=3). For height/length, the
mean difference was the greatest for team 5 (−3.8) and smallest
for teams 1 (−0.2) and 3 (0.2). The width of the 95% LoAs for
team 5 (−42.8 to 35.2) was nearly 3 times that of team 1. For
MUAC, the mean differences were positive for teams 1 to 4 but
negative for team 5, and the 95% LoAs for team 5 (−7.2 to 4.8)
exceeded those of all other teams (Table 4). Differences in
correlation between the manual and scan-derived measurements
are visualized by team in Figure S1 in Multimedia Appendix
1.

Given the relatively wide LoAs observed in the sample overall,
a sensitivity analysis was used to explore how potential errors
in data capture and matching of scan-derived and manual
measurements contributed to the overall accuracy (Table 4 and
Figure S3 in Multimedia Appendix 1). When outlier values
(n=19) and discordant pairs (n=63) were excluded, the 95%
LoA was reduced (−11.9 cm to 11.4 cm for height/length and
−3.5 cm to 5.1 cm for MUAC). The mean difference was
reduced to −0.2 (95% CI −1.2 to 0.7) for height/length and
increased marginally for MUAC; the Pitman test remained
significant for both indicators.

The TEM for height/length among children of all ages was 8.4
cm; TEM is analogous to the SD, indicating that the
scan-derived measurements were within –8.4 cm to +8.4 cm of
manual measurements for 2 out of 3 children and within –16.8
cm to +16.8 cm for 95% of the children. The TEM for
height/length was higher for children aged 24 to 59 months,
male participants, and team 5. The TEM was lowest (4.2) when
flagged and discordant pairs were removed. The TEM for
MUAC among all children was 1.8 cm, with more limited
variation by age and sex. TEM was highest for team 5 for
MUAC; excluding flagged and discordant values reduced the
TEM for MUAC to 1.6 cm.

The implications of measurement differences on classification
of nutrition status were characterized for each indicator (WHZ,
HAZ, and MUAC). Children were classified as severe,
moderate, or normal using scan-derived and manual
measurements independently, and the classifications were
compared (Figure 4). Classifications were concordant for 66.7%
(156/234) of the children by WHZ, 61.9% (145/234) of the
children by HAZ, and 77.4% (181/234) of the children by
MUAC. However, among children with low WHZ (<−2) by
manual measurement, only 32% (18/56) were identified as
wasted by scan-derived measurements. Similarly, among stunted
(HAZ <−2) and wasted children by MUAC (MUAC <125 cm),
only 23% (9/40) and 14% (3/22) were identified as stunted and
wasted by scan-derived measurements, respectively.

Key informants identified several issues unique to field data
collection that may have affected device performance. The
following section highlights issues related to (1) beta testing or
validating the device algorithm, (2) training and field
supervision, (3) data capture or field work, and (4) data
transmission.
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Figure 3. Bland-Altman plot of child stature (height and length) and mid–upper arm circumference (MUAC) comparing manual and scan-derived
measurements.

JMIR Biomed Eng 2022 | vol. 7 | iss. 2 | e40066 | p. 10https://biomedeng.jmir.org/2022/2/e40066
(page number not for citation purposes)

Leidman et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 4. Statistical evaluation of differences between manual and scan-derived measurements (N=234).

Children, n (%)Pitman test95% limits of agree-
ment (cm)

Mean difference in cm
(95% CI)

Technical error of
measurement

P valuer

Height or length

234 (100)<.0010.34−23.86 to 22.86−0.50 (−2.03 to 1.04)8.41All children

151 (64.5)<.0010.41−11.86 to 11.38−0.24 (−1.19 to 0.71)4.18Excluding flagged and discor-

dant valuesa

Age (months)

80 (34.2)<.0010.65−22.7 to 22.01−0.35 (−2.88 to 2.19)8.020 to 23

154 (65.8)<.0010.46−24.51 to 23.36−0.58 (−2.52 to 1.37)8.6224 to 59

Sex

115 (49.1)<.0010.37−20.06 to 17.85−1.11 (−2.89 to 0.68)6.85Female

119 (50.9)<.0010.33−26.88 to 27.070.09 (−2.41 to 2.59)9.69Male

Teamb

69 (29.5).100.20−14.37 to 14.08−0.15 (−1.89 to 1.60)5.10Team 1

59 (25.2).010.33−19.19 to 20.940.87 (−1.79 to 3.54)7.20Team 2

45 (19.2).030.33−15.65 to 15.940.15 (−2.27 to 2.57)5.64Team 3

13 (5.6).130.44−25.98 to 21.14−2.42 (−9.68 to 4.84)8.34Team 4

45 (19.2)<.0010.53−42.83 to 35.24−3.80 (−0.978 to 2.19)14.18Team 5

Mid–upper arm circumference

234 (100)<.0010.56−3.95 to 5.390.72 (0.41 to 1.03)1.76All children

151 (64.5)<.0010.51−3.53 to 5.100.78 (0.43 to 1.14)1.64Excluding flagged and discor-

dant valuesa

Age (months)

80 (34.2)<.0010.70−3.18 to 5.120.97 (0.5 to 1.44)1.640 to 23

154 (65.8)<.0010.58−4.33 to 5.500.59 (0.19 to 0.99)1.8224 to 59

Sex

115 (49.1)<.0010.54−3.93 to 5.320.69 (0.26 to 1.13)1.73Female

119 (50.9)<.0010.57−3.99 to 5.480.75 (0.31 to 1.19)1.78Male

Teamb

69 (29.5)<.0010.55−2.28 to 4.781.25 (0.82 to 1.68)1.54Team 1

59 (25.2)<.0010.52−2.60 to 5.491.45 (0.91 to 1.98)1.77Team 2

45 (19.2).010.41−2.19 to 4.351.08 (0.58 to 1.59)1.40Team 3

13 (5.6).360.28−3.86 to 4.010.07 (−1.14 to 1.29)1.37Team 4

45 (19.2)<.0010.61−7.20 to 4.77−1.22 (−2.13 to –0.3)2.30Team 5

aRecords were excluded if the absolute height measurement derived from the scans was out of the range, if the weight-for-height or weight-for-length
z score or height- or length-for-age z score calculated from the scanned value was considered an outlier (fixed exclusion), if the sex recorded by the
manual anthropometry and the scan teams was different, or recorded ages differed by >6 months or recorded weight differed by >10 kg.
bTeam 6 was excluded given the small number (n=3) of children with both scan-derived and manual measurements.
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Figure 4. Classification of nutritional status based on manual and scan-derived measurements. HAZ: height- or length-for-age z score; MUAC:
mid–upper arm circumference; WHZ: weight-for-height or weight-for-length z score.

Validation of Device Algorithm (Beta Testing)
The third-generation software included major software changes
aimed at full automation as well as a transition to the Android
platform. However, the COVID-19 pandemic and the resulting
social distancing policies limited the ability of developers to
test and refine the new algorithms as they had done following
previous substantive revisions of the software:

We came up with this newer device, which was on an
Android phone with an Intel scanner to try to provide
real time results. We knew that we needed to get some
preliminary data here in the US to test out the system
and also to validate the algorithms and to try and
make some revisions to the software you always have
to come back and kind of and tweak the estimation
algorithms. Because of the pandemic, we really got
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limited to [the developer’s] children...the kids that I
really got a chance to test on were roughly from the
ages of 10 to 16. So, none of the real younger kids.
So, I'd say, that was really a big hold back for us. We
really didn’t get to test the device rigorously before
we had to send it to South Sudan and let them try and
run a pilot trial.

The age of the children used for validating the algorithm may
have been particularly relevant given the difference in how the
software operated for younger children measured in a supine
position (the software identified the child’s heel) compared with
older children measured while standing (the software identified
the floor). Beta testing in South Sudan revealed that the
software’s ability to identify children in the supine position was
more erratic. The algorithms were further adjusted before field
work began. However, developers reported that further beta
testing in the United States before deployment of the devices
would have been valuable, particularly given the challenges in
pushing software updates to South Sudan.

In addition to the demographics of the children included in the
initial beta testing, pandemic-related travel restrictions meant
that all prestudy testing to validate the algorithm was primarily
performed in the United States in well-lit, indoor spaces. To
address this, a pilot study in South Sudan was conducted in June
2021 and July 2021. Data collection in Malakal was delayed
several months to allow developers time to update the software
to address issues identified (eg, scan capture taking a prolonged
period) before data collection. Donor deadlines prevented
developers from taking more time to refine the algorithm before
field-testing the updated software.

Training and Field Supervision
South Sudan mandated a 2-week quarantine for international
travelers during the study period, which prevented BST
developers from traveling to conduct training and field
supervision as had been done in previous surveys. Training of
trainers was conducted via web-based video conferencing by
the BST team from the United States, in contrast to all previous
evaluations of the AutoAnthro technology. This was perceived
as a major barrier as it limited the ability to quickly identify
small errors in data capture during training as well as support
with technical troubleshooting.

The limitations of remote training were particularly relevant
during the exercise in which the enumerators practiced taking
scans on children. Observing these measurements remotely
proved to be impractical:

At one point we were on the phone with the group at
IMC and they were trying to capture data on a child
and we were getting really just garbage data. It wasn't
any good at all. Not usable. And we couldn't figure
out what the problem was. But it turned out that two
or three of the enumerators were using the device at
the same time on a child. Now if any of us had been
there, we would have corrected that problem in five
seconds. Because we were using a structured light
approach to generate these models, when one camera
is looking for its pattern, if another camera is also

running at the same time, it's generating a pattern
that interferes with the first one. It's a 5 second
problem in person that we didn't figure out for a day
or two.

During the training of enumerators, a single individual on each
team was identified to be trained on the AutoAnthro technology.
Enumerators felt that training all enumerators would have
enabled them to better support each other; in particular, team
leads (who were not trained on the software or positioning) felt
unempowered to supervise the quality of the scans by their
teams. In previous studies, all team members were trained on
the technology:

It’s technical work. We need more training for all
people...People are trained together, and some are
very quick at capturing what [information] we were
given in the training. In class, we are not equal...It’s
good for people to be trained in one place together
and then select [individuals to do scans] who would
be the best to do the job.

[We] needed additional days for training on the
device. [BST] needed to train all of us (not just the
scanner) so we could help each other especially on
positioning. More than 2 days for piloting and device
training are needed. Maybe 4 or 5 days on the
scanners so we have enough time to practice.

Key informants, including both enumerators and BST
developers, felt that the training could have been improved by
increasing the duration and improving the training materials
and protocol. Although the duration of the training for this study
was similar to that for previous evaluations of the AutoAnthro
technology, key informants felt that, in retrospect, the training
was too short. In addition, training was organized using a manual
that was written in English with few photographs. As most
enumerators did not speak English or spoke English as a second
or third language, a more visual field manual was recommended.
Finally, a standardization test (where 10 children were measured
twice by each enumerator) was performed for both manual and
scan-derived measurements, but only manual results were
evaluated for accuracy and precision, which was perceived as
a limitation.

Data Capture
Data collection occurred during the summer period in South
Sudan, where the temperature was consistently >100 °F (38 °C)
and, on many days of data collection, the teams experienced a
downpour of rain. When it was sunny, scans were commonly
performed outside in direct sunlight. When it was raining, scans
were typically performed indoors with doors and windows
closed to prevent water from entering such that space and light
were limited. Enumerators highlighted the small spaces and low
light conditions as key barriers to obtaining successful scans:

[What we were taught was that] the result will not
come accurate if the child is not positioned well, [but
there was] not enough space to put this child in a
good position. That is where the difference is coming
from.
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Limited testing was performed under these conditions; however,
developers believed that neither should have affected scan
performance:

You really only have to be 4 feet away from the
child...When you take a picture, how far back do you
normally stand? You know, I would say at least six
feet. Probably more when you're taking a picture of
your friends. And so [the appropriate distance for the
scans] might just not be where it is natural to stand.

[Poorly lit households] should not affect scan quality.
In fact, it should improve scan quality, in as much as
you get rid of direct sunlight because then you can
rely purely on the structured light. That should be
good. [The AutoAnthro technology] has two ways of
measuring distance: through this structured light by
putting like a pattern on the kid and knowing where
those [infrared] light dots are or [by geometry using
differences in angles from] two cameras
simultaneously on the object. In really bright light,
you can only use the dual cameras, and you can't rely
so much on the structured light.

An additional challenge noted by enumerators was that the
phone frequently overheated, shut down, and gave invalid
readings, an issue that was not observed in previous studies or
during stress testing. However, stress testing in advance of the
survey was limited to 2 hours, whereas field work lasted >8
hours per day. Key informants noted that the maximum
operating temperature of the 3D scanner is 95 °F (35 °C) and
that large swings in temperature can affect the trigonometry
used in the scanner to assess distance (eg, affect calibration of
distances between the camera and infrared light emission).
However, they were uncertain regarding whether operating the
devices 5 °F above the maximum operating temperature would
be meaningful:

On the third day [of data collection] the device began
to be hot. I reported those challenges to [the study
supervisor]. The device is showing that it locked itself.
When it failed, we know there was a problem. When
the device failed it may bring you “00” or may give
[a measurement of] 30 [cm for] MUAC...When it
failed, you could click save and select end session.
When the device gave you the “00,” I selected end
session, [restarted] and then scanned the child again.
To me it happened many times. In the third and fourth
days [of data collection], maybe 3 times [each day]

Scans used for analysis were automatically processed but
manually reviewed for the purpose of understanding the source
of errors. The 2 most common issues identified were scans
captured with the feet of the child obscured (affecting height
and length measurements) and with the enumerator too close
to the child such that the algorithm mistook the enumerator’s
arm for the child’s (affecting MUAC measurements). Unusual
light conditions were also noted to have affected scans but were
observed less frequently:

The feet were almost always obscured by the
enumerators hand or arms. So, there were some
guesswork there (I didn't touch the feet manually, but

algorithmically there's going to be a lot of uncertainty
as to where the feet are). In that case, you know, I
think we could have written the instructions
differently, meaning like just hold the child by the
calves or ankles not the balls of the feet. For the older
children who were standing, I saw so many cases
where you couldn't see the feet at all. They were just
too close, or they angled the phone incorrectly. In
this example [scan from training shown] there's plenty
of space between the outline of the feet in the bottom.
And yet there were so many instances where you
couldn't even see the child's ankles. Sometimes the
hands could get cut off as well but that’s not a
problem because [the algorithm] just looks for the
elbows. It was rare that the...head was not captured.
That happened a couple of times. It was pretty rare.
The procedural problem that we saw far more often
is that the enumerators arms were really close to the
child's arms and that would throw a joint (e.g., move
it from the child elbow to the enumerators elbow).

On the iOS device, aiming screen, you were clearly
moving a cube through 3-dimensional space—that is
what it looked like on the screen—and you're trying
to put the kid in that cube. You had a very clear
representation of what is in the cube and what is out
of the cube. Your goal is to put the kid entirely in that
cube. On the Android system it is much more like
aiming a camera. It feels more 2-dimensional. We
ended up adding a body outline which was useful, but
kids were still, I think, cut off. Where with the iOS
system your cut off was not the edge of the screen.
You're cut off was like this aiming box within the
screen. And because you're using an iPad you have
a bigger kind of field of vision [compared to the
Galaxy phones] is what it feels like when you're
aiming it, using both hands.

Finally, enumerators noted that refusals by caregivers were very
uncommon. Despite cultural sensitivities regarding capturing
photographs of young children, particularly naked young
children, they were typically able to reassure caregivers,
showing them that 3D models (not pictures) were captured and,
ultimately, most caregivers consented. However, children would
sometimes cry and have tantrums and, based on this, the
caregiver would withdraw consent. According to the
enumerators, this was commonly observed when trying to
capture scans for children aged <2 years whom they needed to
lie flat on their back with arms extended, ideally separated from
their caregiver.

Data Transmission
The transmission of the data was performed by the study
coordinator at the end of data collection; daily upload by
enumerators was not feasible given connectivity. A total of 198
scans were lost during the transmission process. Developers
have been unable to replicate the error observed during
transmission such that the source of the error occurred has not
been determined. On the basis of the metadata retained,
developers believe it is more likely that the scans were not
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captured (eg, the children were positioned, but scan acquisition
was not successfully initiated) than that scan transmission failed:

The data transmission is still, to my mind, somewhat
of a mystery. I don't understand why we could
essentially run Skype, so running video back and forth
between them and our servers but we could never
consistently get the data to automatically upload. We
went through all kind of hoops and work arounds
trying to get to make sure that we actually had all of
the data. And to this day, I don't know why our
software didn't work cleanly on data uploads. In other
places it has worked. [In South Sudan] it works very
inconsistently.

I do not believe that the data exists for a lot of those
sessions. Because I could not replicate what we
observed in South Sudan, where we have...a hundred
children on the server, but there's only data for 20.
And as far as I can tell, the only way that can happen
is if you enter the child's information to create new
session, but don't actually acquire the data for it.

Discussion

Principal Findings
This study evaluated the accuracy of scan-derived
anthropometric measurements among children aged 6 to 59
months calculated using the third-generation AutoAnthro
technology. This version of the AutoAnthro system aimed to
optimize 3D imaging technology for adoption at scale in
nonresearch settings, including austere contexts such as rural
South Sudan. In contrast to previous pilots in controlled settings
but consistent with other effectiveness evaluations, the quality
of scan-derived measurements was substantially poorer than
that of manual anthropometry [7,8]. Measurement derived from
scans in our study were biologically implausible for more than
1 in 20 children applying the cutoffs recommended by the WHO
[11]. Although the mean differences between measurements for
both height/length and MUAC were within 1 cm, only 1 in 5
measurements of stature and 1 in 3 measurements of MUAC
were within 1 cm of the manual measurement. The half width
of the 95% LoAs observed was >5 times wider for MUAC and
nearly 20 times wider for height/length than that observed in
the previous efficacy study [7]. In addition, the magnitude of
the error was associated with the size of the child such that
larger errors were observed among taller children and those
with greater arm circumference. The magnitude of the
differences observed translated into poor classification of
malnutrition; most children with wasting and stunting would
not have been identified for referral using the current version
of the AutoAnthro technology.

The context of the COVID-19 pandemic as well as the
low-resource setting of South Sudan served to highlight logistic
challenges not previously identified with the use of the 3D
imaging technology and likely contributed to the low accuracy
observed in our study. Successful scans were processed for only
4 in 10 children included in the study as a result of higher refusal
rates, poorer scan quality, and a large number of scans
unsuccessfully transmitted. Although high refusal rates have

been reported in previous studies of 3D scan technologies, the
magnitude of the problem in South Sudan is distinct [5,8].
COVID-19 pandemic–related social distancing orders limited
the number of children, particularly younger children, measured
in a supine position available to use for validating the device
algorithm before the initiation of field pilots and data collection.
In addition, global COVID-19 travel restrictions prevented BST
developers from conducting in-person trainings or providing
real-time feedback to IMC IT staff or enumerators. Both of
these factors were seen as critical barriers to the success of the
AutoAnthro evaluation from the perspective of the software
developers and the users.

Although quantitative analysis documented accuracy too poor
to support the widespread adoption of the AutoAnthro software
at present, key informant interviews provided insights into
investments that may improve scan capture and processing.
With respect to the software platform, further enhancements
are needed to ensure that scans can be transmitted successfully
on low-bandwidth networks and that scans captured in extreme
light conditions (direct sunlight or very low light) can be
processed without issue. To support a transition to full
automation, the ability of enumerators and field supervisors to
review scans and metadata was more restricted than in previous
versions of the technology evaluated in the studies by Conkle
et al [7] and Bougma et al [8]. Although automation will be
essential for adoption at scale, revisiting what information
remains available to enumerators and field supervisors locally
on the device may be key to ensuring that field teams can aid
in guaranteeing that scans are well captured and successfully
saved. In addition, empowering teams to indicate which scans
should be retained for analysis may further serve to address the
barriers in scan quality identified. The teams used real-time,
scan-derived height/length estimates to inform whether they
should collect additional scans. The analysis approach,
determined a priori, used the median of all scan values without
input from enumerators on field challenges. Adaptations to the
algorithm that allow teams to indicate scans that should be
discarded may serve to improve accuracy.

In addition, further improvements in training materials are
needed to ensure a more optimal implementation without direct
support from the BST team; this would ultimately be needed to
allow for use at scale. Updates to training protocols and
materials would benefit from translation to local languages and
more illustrations to support non–English-speaking and
low-literacy enumerators. Ensuring adequate time for practice
is also essential. Consistent with previous research, we identified
a need for further guidance on scan capture and positioning in
field conditions experienced (eg, low light, small spaces, and
direct sunlight) [18]. Where scans were captured with the child’s
head, feet, and arms clearly in the frame and not obscured by
the enumerator or caregiver, the quality was acceptable. Both
the availability and accuracy of scans were strongly associated
with the enumeration team, notably more so than any
characteristic of the child measured. Although the study was
not designed to isolate the contribution of software, hardware,
and the user to device accuracy, large differences in accuracy
by team help illustrate how data acquisition (eg, positioning of
the child relative to the scanner and caregiver, control of
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lighting, adaptation to space constraints, and other environmental
factors) can affect scan-derived measurements. To the extent
that user variation can be controlled with additional
improvements in training, this may present an opportunity for
future performance improvements.

This study is subject to at least six limitations. First, scans for
over one-third of the sampled children were not successfully
transmitted to the cloud server and could not be recovered from
the devices. Although successful transmission of scans was not
associated with child demographic characteristics or nutritional
status, the loss of data resulted in a smaller sample size and
limited power for planned analysis. Second, to ensure that the
manual and scan-derived measurements were correctly matched,
the child’s age, sex, and weight were entered into both data sets
as well as a child identification number. However, for many
children with matched identification numbers, these other values
were not a perfect match, prompting concerns about whether
both measurements were truly from the same child. Third,
manual measurements were used as the standard for evaluating
the scan-derived measurements; however, there is some
indication of terminal digit preference score, and the SD of
WHZ and HAZ values exceeded 1.1, an indication of potential
measurement error [11,19]. Fourth, given the humanitarian
context, repeat manual or scan-derived measurements were not
collected. As a result, we were unable to evaluate the reliability
of these measurements. Fifth, information on the number of
eligible children measured per household was recorded on paper
forms. The forms for 5 clusters were damaged in a heavy
rainstorm such that the total number of refusals in these clusters
is unknown. Finally, the study sample is unique in that the
population sampled was from a single internally displaced
person site, and data collection occurred during the COVID-19

pandemic, both factors that may affect the generalizability of
the findings to other populations and periods.

Conclusions
This study was initiated given considerable interest in 3D
imaging technology, the potential use of the lightweight
hardware, strong user acceptability, and evidence supporting
the potential time savings relative to manual anthropometry
[20]. Previous studies in controlled settings provided evidence
that repeated scans could reliably estimate height/length and
MUAC, suggesting the potential of 3D imaging technology as
an alternative to manual measurement [7]. This study aimed to
evaluate whether these results could be replicated at scale with
full automation of scan processing and minimal oversight of
training and data collection. Enumerators communicated an
overall interest in the device performing well given that the scan
capture generally took less time than manual measurement and
eased field work. However, our findings suggest that the
scan-derived measurements produced by AutoAnthro were not
of sufficient accuracy for widespread adoption. Developers
generally concluded that they needed more time to test and
improve training and software; pandemic and financial barriers
prevented them from ensuring that the software worked as
intended before final testing. Further investments in the software
algorithms are needed to address issues with scan capture and
transmission—to ensure that scans can be captured in difficult
field contexts (eg, extreme light conditions and temperature
conditions) and efficiently transmitted on low-bandwidth
networks. In addition, software revisions aimed at empowering
field enumerators and supervisors were proposed, including
local retention of data to facilitate field review of scan capture
completeness and quality. Finally, differences in accuracy by
team provide evidence that investments in training may also be
able to improve performance.
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