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Abstract

Background: Mental fatigue is a common and potentially debilitating state that can affect individuals’ health and quality of
life. In some cases, its manifestation can precede or mask early signs of other serious mental or physiological conditions. Detecting
and assessing mental fatigue can be challenging nowadays as it relies on self-evaluation and rating questionnaires, which are
highly influenced by subjective bias. Introducing more objective, quantitative, and sensitive methods to characterize mental
fatigue could be critical to improve its management and the understanding of its connection to other clinical conditions.

Objective: This paper aimed to study the feasibility of using keystroke biometrics for mental fatigue detection during natural
typing. As typing involves multiple motor and cognitive processes that are affected by mental fatigue, our hypothesis was that
the information captured in keystroke dynamics can offer an interesting mean to characterize users’ mental fatigue in a real-world
setting.

Methods: We apply domain transformation techniques to adapt and transform TypeNet, a state-of-the-art deep neural network,
originally intended for user authentication, to generate a network optimized for the fatigue detection task. All experiments were
conducted using 3 keystroke databases that comprise different contexts and data collection protocols.

Results: Our preliminary results showed area under the curve performances ranging between 72.2% and 80% for fatigue versus
rested sample classification, which is aligned with previously published models on daily alertness and circadian cycles. This
demonstrates the potential of our proposed system to characterize mental fatigue fluctuations via natural typing patterns. Finally,
we studied the performance of an active detection approach that leverages the continuous nature of keystroke biometric patterns
for the assessment of users’ fatigue in real time.

Conclusions: Our results suggest that the psychomotor patterns that characterize mental fatigue manifest during natural typing,
which can be quantified via automated analysis of users’ daily interaction with their device. These findings represent a step
towards the development of a more objective, accessible, and transparent solution to monitor mental fatigue in a real-world
environment.
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Introduction

Background
Mental fatigue is a state of brain exhaustion caused by long
periods of cognitive activity, lack of sleep, or stress. According
to Tanaka et al [1], mental fatigue may lead to overactivation
of the visual cortex in the occipital lobe, which has been linked
to cognitive impairment and low psychomotor performance.
Patients experiencing this condition usually report, among other
symptoms, a reduction of their concentration capacity,
headaches, dizziness, and slowed reflexes and responses [2].
From a clinical point of view, these psychomotor impairments
induced by mental fatigue could be a sign of other emerging
diseases, including neurodegenerative or cardiovascular
conditions [3,4]. As an example, patients with Parkinson disease
have been reported to show higher level of physical and mental
fatigue in early stages of the disease than healthy participants
[5]. Fatigue has been reported to be one of the major causes of
disability for up to half of the patients with Parkinson disease
[6], limiting their ability to participate in daily routines or social
activities [7,8].

Although multiple tools exist for the assessment of fatigue, there
is no clinical standard that enables an objective and complete
evaluation of people’s state in this domain. The most accepted
method is the Fatigue Assessment Scale, a patient-reported
outcome composed of 10 items that evaluate physical and
physiological aspects of fatigue [9]. The subjective and episodic
nature of these tools makes it difficult to detect and evaluate
fatigue in daily practice and in the context of clinical trials.
There is a clinical and research need to develop more accessible,
accurate, and specific biomarkers to monitor fatigue and its
clinical causes [10,11].

Keystroke dynamics is a biometric trait commonly used to
authenticate users based on their typing patterns [12,13]. The
speed of pressing and releasing keys [14] or the pressure exerted
when pressing a key [15] are some of the typing features used
by keystroke biometric algorithms for user authentication. Finger
kinematics during typing are fine motor skills ruled by the
neuromotor cortex and have also been presented as a powerful
biomarker in the diagnosis and monitoring of different
neurodegenerative diseases, including Parkinson disease [16-18],
multiple sclerosis [19], and Alzheimer disease [20]. A recent
meta-analysis carried out by Alfalahi et al [21] demonstrates
the promising performance of keystroke dynamics–based models
for the diagnosis of fine motor impairment in Parkinson disease
and mild cognitive impairment diseases. However, the authors
show caution in the transition from a controlled assessment in
the clinic to the unsupervised remote diagnosis and monitoring,
owing to the sparsity and unpredictable nature of typing activity
in the real-world context. Continuous keystroke data are easy
to gather via commodity hardware (eg, phones and laptops)
without requiring the use of proprietary devices. Furthermore,
remote data collection can avoid intrusive visits to the clinic,
which enhances the patient’s quality of life. Other prior

state-of-the-art works have studied how mental fatigue affects
typing activity. As an example, Ulinskas et al [22] conducted
a study with 53 participants typing a fixed password. They
achieved up to 91% of accuracy detecting a state of increasing
fatigue between 2 consecutive keystroke sessions by using
k-nearest neighbors (k-NNs) classifiers and statistical keystroke
features. In contrast, in the study by Slooten et al [23], the
authors study which keystroke features are influenced by mental
fatigue. They suggest that the addition of keystroke dynamics
features to sleep-related markers does not improve mental
fatigue detection. However, they point to the subjectivity of the
questionnaires used to label the fatigue keystroke data as a
limitation to their study.

Objectives
In this paper, we study the applicability of keystroke dynamics
as a potential biomarker of mental fatigue, going a step forward
in the state-of-the-art characterization of this psychomotor
condition by proposing a new active fatigue detection (AFD)
framework based on deep neuronal networks (DNNs). To
develop this, we will use TypeNet [24], a state-of-the-art DNN
originally designed to model identity via typing patterns at large
scale (approximately 100,000 users). The main idea behind this
work is to leverage the keystroke dynamics patterns learnt by
TypeNet for user recognition and to reoptimize this network
for the fatigue detection task.

A schema of the proposed system is shown in Figure 1. The
system is composed of 3 main elements: the input layer, the
fatigue detection model, and the postprocessing module for
active detection. The input layer ingests keystroke session data
and generates a predefined feature vector that is then fed to the
fatigue detection model. The fatigue detection model is created
by connecting the output of the TypeNet network to a fatigue
detection layer, which optimizes the original authentication
model for fatigue identification. Finally, the postprocessing
module for active detection ingests the temporal sequences of
fatigue detection scores to produce users’ calibrated fatigue
level on the basis of their baseline or previous fatigue states.
This block enables real-time monitoring of on-off fatigue
fluctuations over consecutive keystroke sessions. In this work,
we evaluate the proposed system in a controlled data context
to test the performance of the fatigue detection model to
discriminate between labeled rest and mental fatigue sessions.
In addition to this, we present a real-world application of the
system applied to natural typing data to evaluate its suitability
to identify daily fatigue cycles in a healthy population.

The main contributions of this work are 4-fold: (1) we develop
a deep neural network able to identify mental fatigue symptoms
through keystroke patterns, (2) we analyze the ability of the
proposed model to detect small variations in fatigue levels
between different keystroke sessions, (3) we propose an AFD
algorithm that continuously monitors users’ keystroke session
sequences to detect longitudinal variations in their fatigue state,
and (4) we evaluate the applicability of the proposed system to
detect fatigue trends in real-world user data.
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Figure 1. Block diagram of the entire system proposed. The fatigue detection layer adapts the capacity of TypeNet to model user behavior through
keystroke patterns for the fatigue detection task. This information is taken by the active detection algorithm to detect changes in users’ fatigue level
over consecutive keystroke sessions. QCD: quick change detection.

Methods

Keystroke Data Sets
In this section, we analyze in more detail the 3 keystroke
databases (summarized in Table 1) used in this work to train
and evaluate our proposed system.

• First, the Aalto database [25] was used to train the TypeNet
model that we used as keystroke embedding feature
extractor in our fatigue detection model. This database is
composed of 168,000 participants with 15 keystroke
sessions per participant. The database was acquired using
a web-based questionnaire under an uncontrolled
environment where each user used their own physical
keyboard. All users were initially informed of the
acquisition of their press (key down) and release (key up)
event timings during the completion of the questionnaire.
The questionnaire required users (1) to memorize an English
sentence randomly chosen from a pool of 1525 sentences
of the Enron mobile email and Gigaword Newswire corpus
(these sentences contained a minimum of 3 words and a
maximum of 70 characters) and (2) to type the memorized
sentence as quickly and accurately as they could. All
participants in the database completed 15 sessions (ie, one
sentence for each session) on either a desktop or a laptop
physical keyboard. The authors of the database reported
demographic statistics of the users: 72% of the participants
took a typing course, 218 countries were involved, and 85%
of them had English as native language. The richness of
the Aalto database resides not only in the huge amount of
participants acquired but also in the diversity of ethnicities,
countries, and different typing skill levels of the participants
enrolled allowing TypeNet to authenticate users through
keystroke dynamics at internet scale with a high
performance [26].

• Second, the neuroQWERTY Sleep Inertia (nQSI) database
[27] was designed to detect psychomotor impairment by
waking up the participants during the night, thus inducing
a sleep inertia status (a mental fatigue condition produced
by lack of sleep). The database comprises 14 healthy
participants with 4 keystroke sessions per participant of
15-minute duration collected in mechanical keyboards. Two
of the keystroke sessions were captured during the day,
whenever the participant felt well rested, labeling them as
rest state (no fatigue). The other 2 keystroke sessions
labeled as the fatigue ones were captured at midnight, when
the participants woke up during the phase III and IV of the
sleep cycle [28] to capture the keystroke sessions, thereby
inducing the sleep inertia state. The acquisition process was
monitored by the owners of the database to ensure the
quality of the keystroke data captured in both rest and
fatigue states (supervised scenario). We used this database
to train and test our proposed system for the mental fatigue
detection task through keystroke dynamics.

• Finally, the neuroQWERTY Crowdsource (nQCS) database
[29] is composed of >800 participants from a healthy control
group and group of patients with self-reported
neurodegenerative diseases or other conditions (eg,
Parkinson disease, Alzheimer disease, multiple sclerosis,
or rheumatoid arthritis) typing on mechanical keyboards
during a time span of 9 months. An enormous challenge
for exploiting this data set is that the keystroke data captured
were acquired passively, in a total transparent way for the
participant, without any type of supervision or labeled data.
In the context of this work, this database was used to study
whether our proposed system was able to detect trends in
the fatigue levels during the daily typing habits of the
healthy participant subset (a total of 251 healthy
participants).

Table 1. List of keystroke data sets used in this study.

ContextSupervisedSession sizeSessions, nSubjects, nDatabase

Development of TypeNet for
general user typing model

NoApproximately 70 keys15168,000Aalto [25]

Development and evaluation of
the fatigue detection system

Yes15 minutes414neuroQWERTY Sleep Inertia [27]

Evaluation of fatigue detection
in a real-world environment

NoApproximately 3 minutesApproximately 1000251neuroQWERTY Crowdsource [29]
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Ethics Approval
Participants in the nQSI study provided informed consent before
experiments, and experimental procedures were approved by
the Committee On the Use of Humans as Experimental Subjects
at the Massachusetts Institute of Technology (protocol number
1311).

Participants in the nQCS study provided informed consent
before experiments, and experimental procedures were approved
by the Committee On the Use of Humans as Experimental
Subjects at the Massachusetts Institute of Technology (protocol
number 1504007090).

Data Preprocessing and Feature Extraction
The raw data captured in all 3 keystroke databases are time
series of 3 dimensions: press times, release times, and the
keycode of each key. Owing to privacy concerns, the keycode
was discarded, and the keystroke features computed for each
keystroke session were based only on the press and release key
time events. These timestamps were in coordinated universal
time format but with different time resolution depending on the
acquisition protocol and device used in each keystroke database.
To normalize the keystroke data of the 3 databases, all
timestamps were converted to seconds while ensuring that all
keystroke features computed later are close to 1. This
normalization step is necessary to avoid saturation of the neurons
in the recurrent layers of our system.

The keystroke features vector is extracted at key level and is
composed by (1) hold times (ie, the elapsed time between press
and release a key), (2) flight times (ie, the elapsed time between
2 consecutive press events), (3) interkey latency (ie, the elapsed
time between release a key and press the next key), and (4)
interrelease latency (ie, the elapsed time between 2 consecutive
release events). According to this, the keystroke feature vector
x used as input of our model has a dimension of 150 × 4 (150
keystrokes by 4 features). If the keystroke sequence is lower
than 150 keys, we compute zero padding to fill with zeros up
to reach such length; otherwise, we truncate the keystroke
sequence taking the first 150 keys.

The reason why we chose these keystroke features is because
we wanted to ensure to keep the same feature set as the one

used to evaluate the TypeNet DNN model in previous works
[24,26,30] with the Aalto database. Remember that the TypeNet
model is part of our fatigue detection system that we adapt for
the fatigue detection task with transfer learning techniques, and
therefore, the keystroke features set used to feed the TypeNet
model (ie, the input of our fatigue detection model) must be the
same.

System Design
The fatigue detection model is trained and tested with the labeled
keystroke data from the nQSI database. As depicted in Figure
2A, the input of the TypeNet network is a keystroke feature
vector x extracted from the raw keystroke data in the nQSI
database. The output of TypeNet is a 1 × 128–dimensional
embedding feature vector v(x) that authenticates users by
applying a distance metric learning (DML) method [31].
TypeNet was originally trained to model the typing patterns of
100,000 users. The training process of TypeNet was aimed to
generate a 128-dimensional feature space where keystroke
events generated by the same user tend to cluster in a closer
region of the feature space, whereas events from different users
are projected in different areas of the same feature space. In this
work, we use the nQSI data set to adapt the transformed
authentication feature space to the fatigue detection task. We
apply domain adaptation techniques [32] based on the addition
of a fatigue detection layer that is trained to transform the
authentication-based feature vectors, v(x), into fatigue detection
feature vectors with the same dimension, g(v(x)), as shown in
Figure 2B. The fatigue detection layer is optimized using a
DML approach and a leave-one-out (LOO) cross-validation
protocol. Figure 3 presents some examples showing the results
of the transformation in the nQSI data set. The hypothesis
underlying the method is that the features learned to model the
typing patterns x of 100,000 users contain useful information
to characterize users’ fatigue patterns. The fatigue detection
layer serves as a nonlinear transformation g(.) to reveal such
patterns in the learned space v(x). The fatigue score is computed
at the output of the fatigue detection model as the Euclidean
distance between pairs of fatigue detection feature vectors
(equation 2).

JMIR Biomed Eng 2022 | vol. 7 | iss. 2 | e41003 | p. 4https://biomedeng.jmir.org/2022/2/e41003
(page number not for citation purposes)

Acien et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 2. Overview of the fatigue detection model design. (A) The fatigue detection model is trained with the labeled keystroke data from the
neuroQWERTY Sleep Inertia database. At the output, the model separates the fatigue embedding vectors g(v(x)) that correspond to each of the 2 user’s
states under study (ie, fatigue or rest) while favoring proximity between the embedding vectors that belong to the same class. (B) An example of the
transformation from the embedding vectors generated by TypeNet v(x) at the embedding output of the proposed model g(v(x)). The sample output
shown in this figure applies t-distributed stochastic neighbor embedding (t-SNE) to generate a 2D projection of the 1×128 output.

Figure 3. Intrauser variation of the embedding fatigue vectors g(v(x)). We observe how the fatigue detection model presents varying performance
depending on the user. Row (A) shows examples of fatigue embedding vectors for those participants where we observe a good separation between
fatigue and rest embedding vectors, whereas for participants in the row (B), the separation is not as clear. This user-dependent performance could be a
result of the varying levels of intrauser fluctuations observed during natural typing [33]. t-SNE: t-distributed stochastic neighbor embedding.

TypeNet Architecture and Domain Adaptation
The TypeNet architecture proposed in the study by Acien et al
[26] is composed of 2 long short-term memory layers of 128
neurons. Long short-term memory layers are a special type of

recurrent neural network layers specifically designed to be
sensitive to temporal changes in the input sequences, which we
think could be well suited to detect relevant changes in the
typing behavior of the participant when they are fatigued. In
addition, each recurrent layer has a recurrent dropout of 0.2 and
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a dropout layer of 0.5 between them to avoid overfitting during
training. The input of the TypeNet architecture has a masking
layer to avoid the computation of error gradients for those zeros
(ie, zeros generated when zero padding is needed for keystroke
sequences lower than 150 keys) and do not contribute to the
loss function during training (more details of TypeNet
architecture and evaluation are provided in the study by Acien
et al [26]). Finally, the output of the TypeNet architecture is an
embedding feature vector v(x) of size 128 × 1.

In this work, we transform this embedding feature vector v(x)
(originally used for keystroke user authentication at large scale)
into a new embedding vector g(v(x)) of the same size that is
better suited for the fatigue detection task. To do this, we use
domain adaptation techniques [32], in which the model learns
a new task (ie, the keystroke fatigue detection task) via
knowledge transfer from a previously learnt task (ie, keystroke
user authentication). In Figure 1, an overview of the entire
transfer learning process is depicted. The output of the TypeNet
model is connected to the fatigue detection layer, which is
composed of a multilayer perceptron layer of 128 neurons with
relu activation. During the training process, the keystroke feature
vector x extracted from keystroke sessions of the sleep inertia
database is used to feed the TypeNet network, which is frozen
during the entire training process so the weights of this network
are not altered. Then, TypeNet computes the embedding features
vector v(x) that are optimized for keystroke user authentication,
thanks to the previous training with the Aalto database in Acien
et al [26]. Finally, the fatigue detection layer is fed with this
embedding feature vector and learns to transform these
embedding features into a new feature embedding vector g(v(x))
optimized for the fatigue detection task, thanks to the labeled
data of the nQSI sleep inertia database.

This type of domain adaptation process is also referred to as
fine tuning, where the part of the TypeNet architecture that has
the knowledge of typing patterns from thousands of users of
the Aalto database is frozen, and therefore, we only need to
train the last layer (the fatigue detection layer) to adapt these
typing patterns for the fatigue detection task with the sleep
inertia database. The main reason why we use transfer learning
with fine-tuning techniques is because to train a DNN model
from the scratch for the fatigue detection task, we will need
thousands of participants with labeled keystroke data to make
the model robust, generalizable, and accurate. This technique
allows us to overcome this issue, taking advantage of other
DNN models previously trained with thousands of participants
for a similar task like TypeNet, and adapt it for the fatigue
detection task using only 16 participants of the sleep inertia
database. Fine-tuning techniques have been broadly used in

state-of-the-art works [34-36], where the databases used are not
large enough to train a DNN model from scratch.

Finally, to train the fatigue detection model successfully, we
use the triplet loss function. This loss function is well suited for
DML approaches where the output of the model to train is an
embedding feature vector instead of a single score. A triplet is
composed by 3 different samples from 2 different classes:
Anchor (A) and Positive (P) are different keystroke sequences
from the same class (fatigue or rest), and Negative (N) is a
keystroke sequence from the other class. The triplet loss function
is defined as follows:

where α is a margin between positive and negative pairs and d
is the Euclidean distance calculated as follow:

This learning process minimizes the distance between
embedding vectors from the same class (d(g(v(xA)), g(v(xP)))),
and maximizes it for embeddings from different classes
(d(g(v(xA)), g(v(xN)))). Note that all 3 samples xA, xP, and xN

belong to the same participant to avoid intrauser variations as
much as possible. An example of how the triplet loss function
works is depicted in Figure 4A, where g(v(xP)) and g(v(xA))
are 2 feature embedding vectors (ie, the output of the fatigue
detection model when fed with xP and xA samples, respectively)
that belong to the same class, whereas g(v(xN)) belongs to the
opposite class. During the training process (Figure 4B), the
triplet loss function will make g(v(xP)) and g(v(xA)) get closer
at the same time they get far from g(v(xN)). Remember that we
only train the fatigue detection layer because the TypeNet
network is frozen during training (fine tuning), thereby this
entire process is learnt by the fatigue detection layer. The unique
purpose of this layer is to separate in the latent space the feature
embedding vectors that belong to the rest state from those that
belong to the fatigue state. Examples of the final results are
shown in Figure 3 by applying dimensional reduction to the
embedding feature vectors for 2D visualization. Regarding
experimental protocol details, we follow a LOO cross-validation
strategy by using all participants but one of the sleep inertia
database to train the proposed system and testing with the
remaining participant. This means that we have 16 different
fatigue detection models (one for each test participant).
Regarding training details, the hyperparameters remain the same
as those used to train TypeNet in the study by Acien et al [24]:
learning rate of 0.005 and Adam optimizer with β1=0.9,

β2=0.999, and ε=10−8. The models were trained for 30 epochs
with 100 batches per epoch and 64 triplets in each batch.
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Figure 4. Example of how triplet loss works. 2D representation of the embedding feature fatigue vectors g(v(x)) before (A) and after (B) the triplet
loss training. The embedding vectors that belong to the same class (g(v(xP)) and g(v(xA))) get closer; meanwhile, they get far from the embedding of
the opposite class (g(v(xP)) and g(v(xN))).

Quick Change Detection Algorithm
The AFD algorithm is based on the quick change detection
algorithm proposed in the study by Perera et al [37] for intrusion
detection based on mobile behavior biometrics. In this work,
the algorithm is redesigned for the AFD task. The algorithm is
based on calculating a new score from the cumulative sum of
previous events (keystroke sessions). If the participant is in a
rested state (gray lines in Figure 5), the cumulative sum will be
almost 0. At the moment the mental state of the participant
changes into fatigue during typing, this score will tend to
increase until reaching a certain threshold, in which we detect
the fatigue symptoms. This module can be interpreted as a
postprocessing step connected at the output of the fatigue
detection model to increase the reliability of the system and to
account for the relevance of participants’preceding states when
computing their current fatigue score.

To evaluate the AFD algorithm, we will use the precomputed
fatigue detection scores resulting from the LOO framework that
optimized the fatigue detection model. This ensures that the
condition of independence between training and testing sets is
carried over in this new experiment. In this context, for a given
participant, the cumulative sum is calculated as follows:

where j means the actual keystroke session and is the
previous cumulative score. Lj is the contribution of the actual

event calculated as the log-likelihood ratio between score
distributions:

where scorej is the fatigue score of the participant’s current
event, and fR, fF are, respectively, the probability density
estimators of the participant’s remaining rest and fatigue scores.
Note that the output of the fatigue detection model is an
embedding feature vector g(v(x)) of size 1×128, so we compute
t-distributed stochastic neighbor embedding for dimensional
reduction to one dimension (ie, we reduce the size of the
embedding vector to one) to obtain a single fatigue score scorej.
According to equation 4, the log-likelihood ratio Lj will be
negative if scorej belongs to rested keystroke session and
positive in the opposite case, and therefore, multiple consecutive
keystroke sessions of the fatigued participant will increase the

cumulative sum scorej
AFD. Figure 6 depicts an example of the

entire AFD algorithm pipeline for a single participant. The
fatigue detection model computes the embedding feature vector
g(v(x)) when fed with a keystroke session. Then, we compute
t-distributed stochastic neighbor embedding for dimensional

reduction to obtain the scorej. Finally, we upgrade scorej
AFD by

computing the Lj with the new score according to equation 3,
which will increase up to reach the fatigue detection threshold
in case the participant is fatigued.
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Figure 5. Active fatigue detection (AFD) curves. (A), (B), and (C) are 3 different use cases of the AFD algorithm where the threshold chosen affects
the performance. (D) It shows the probability of false detection (PFD) versus the probability of nondetection (PND) and PFD versus average detection
delay (ADD) curves as a result of moving the threshold; the value chosen for the threshold is the point where both PFD and PND values are equal,
called equal error rate (EER).

Figure 6. The entire pipeline of the active detection algorithm. The scorej is computed by performing t-distributed stochastic neighbor embedding

(t-SNE) for dimensional reduction to the embedding fatigue vector g(v(x)). Then, scoreAFD is obtained by comparing scorej with the distributions
obtained from the neuroQWERTY Sleep Inertia (nQSI) database. Finally, a threshold τ is used to detect the Fatigue states. QCD: quick change detection.

Results

Onetime Fatigue Detection Approach
To evaluate the performance of the fatigue detection model, we
use the nQSI data set to generate a pool of intrauser keystroke
sample pairs. We contemplate a binary classification framework
based on 2 scenarios: (1) no change—when the 2 samples belong
to the same class (fatigue→fatigue or rest→rest) and (2)
change—when the 2 samples belong 2 different classes

(fatigue→rest or rest→fatigue). In Figure 2, we can observe the
distances for 2 examples: d f→f (xi, xj) is the distance between
2 fatigue samples (no change, distance between 2 red dots) and
d f→r(xi, xq) is the distance between the fatigue and rest sample
(change, distance between a red and a gray dot). The distance
between samples is directly compared with a predefined
threshold. A fatigue score superior to the threshold reveals a
change in the keystroke patterns, whereas a value below the
threshold implies no change. We compare the performance of
the fatigue detection model based on DML with different
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statistical classification algorithms trained with the feature
vectors x: random forest (RF), support vector machine (SVM)
with Gaussian Kernel, and k-NN. In addition, we also compare
with the proposed fatigue detection model but replacing the
DML approach by a softmax activation layer trained as a binary
classification model using binary cross entropy loss. This
provides a reference deep learning model used as baseline to
compare with our DML approach. Figure 7 presents the receiver
operating characteristic analysis comparison in 2 different
setups. In the first one, we limit the input size to 150 keystrokes
per sample. This input format was defined in accordance to the
design of the pretrained TypeNet architecture. In this scenario,
the best performance is achieved by the proposed fatigue
detection model that achieves an area under the curve (AUC)
of 72.1%, followed by the RF classifier with AUC of 68.4%.
The worst performance is observed in the softmax-based
variation of the proposed fatigue detection model.

In the second set-up, we increase the input size to 5-minute long
keystroke sessions (ie, an average of approximately 1100 keys
per sample) for the RF, SVM, and k-NN classifiers, while
keeping the original 150-keystroke long inputs for the proposed
fatigue detection methods and its softmax variation (owing to
the limitation of 150 keys as the input size of the TypeNet
model). In this case, the DML approach is slightly outperformed
by the RF and SVM classifiers that present AUCs of 77.8% and
74.4%, respectively, in exchange of larger input data. Finally,
we summarize the performance metrics for the 2 setups proposed
in Table 2. We can observe that our DML approach achieved
the highest F1-score, a measure of the test accuracy, in both
scenarios. Sensitivity and specificity values are estimated using
the closest-to-(0,1) corner in the receiver operating characteristic
plane to define the cutoff point. Performance metrics are
computed by pooling the cross-validated scores into a single
set of predictions used to generate an overall metric estimate
for the whole system.

Figure 7. Receiver operating characteristic (ROC) analysis for fatigue detection. Area under the curve (AUC) scores computed with keystroke sample
pairs of length 150 keys (A) and 5-minute duration (B). The ROC curves were calculated independently for each participant, and the ROCs showed are
the average of all of them. DML: distance metric learning; k-NN: k-nearest neighbor; RF: random forest; SVM: support vector machine.

Table 2. Performance metrics of the onetime fatigue detection approach.

F1-score (%)Precision (%)Sensitivity (%)Specificity (%)P valueAUCa (%)SystemSet up

72.2676973<.00172.1Fatigue (DMLb)150 keys

70.364.66368<.00168.4Random forest150 keys

65.257.95858<.00158.5Support vector machine150 keys

70.364.65177<.00158k-nearest neighbor150 keys

49.1485250<.00151.9Fatigue (Softmax)150 keys

72.2676973<.00172.1Fatigue (DML)5 minutes

7166.37670<.00177.8Random forest5 minutes

70.765.97370<.00174.4Support vector machine5 minutes

67.664.76576<.00171.7k-nearest neighbor5 minutes

49.1485250<.00151.9Fatigue (Softmax)5 minutes

aAUC: area under the curve.
bDML: distance metric learning.
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Continuous Fatigue Detection Approach
In this experiment, we consider the quick change detection
algorithm [37] that dynamically updates a confidence fatigue
score by calculating a cumulative sum from previously measured
fatigue states. The purpose of this algorithm is to adapt the
fatigue detection method to the needs posed by real-time
evaluation of fatigue in a real-world environment.

In Figure 5A, we show an example of the application of this
algorithm at the output of the fatigue detection model. The
example uses a simulated sequence of keystroke sessions
generated by concatenating 15 rest and 15 fatigue keystroke
samples from a user in the nQSI database. As the simulated
sequence starts in a rest state, the initial fatigue scores are lower
and close to 0 during the first 15 evaluation intervals (ie, the 15
user keystroke sessions labeled as rest in the nQSI database).
As the simulated sequence starts introducing fatigue samples
(from the remaining 15 user keystroke sessions labeled as
fatigue), the AFD score tends to increase until it reaches a
certain threshold that would indicate there has been a fatigue
state change. The number of keystroke sessions elapsed since
the models start getting fatigue samples until the AFD algorithm
reaches the fatigue threshold is called average detection delay
(ADD). This parameter measures the number of keystroke
sessions required to detect fatigue since the symptoms start.

The configuration of the threshold in the AFD score is crucial
for the performance of the algorithm. As shown in Figure 5B,
as we lower the threshold, we reduce the ADD from 7 (Figure
5A) to 3 keystroke sessions, in exchange of a higher risk of
false positives. This value is called probability of false detection
(PFD) and measures the probability of false fatigue detection
(similar to the false match rate). In contrast, increasing the
threshold controls the PFD at the cost of increasing the ADD
as well as the probability of nondetection (PND). PND measures
the probability of the active fatigue score never reaching the
threshold over a sequence of keystroke sessions in a fatigued
interval (Figure 5C).

According to this, there is always a trade-off between the PND
and PFD values as we move the threshold. Figure 5D shows

the PND (left y-axis) versus PFD and ADD (right y-axis) versus
PFD. To optimize both specificity and sensitivity metrics at the
same time, we have the point equal error rate (EER). The EER
value is the point where the blue curve (ie, PND vs PFD) crosses
the diagonal (the dotted black line) and is equal to 20%. This
would be equivalent to an AUC=100−EER=80%. Finally, based
on the configuration of the threshold, we can infer the number
of fatigue keystroke sessions required, according to our results,
to reach the threshold (ie, the ADD value). Once we have
calculated the EER that minimizes both PND and PFD values,
the red curve (PFD vs ADD) in Figure 5D indicates the number
of keystroke sessions required (ADD) for the chosen PFD, which
is slightly above 3.

Independent Evaluation in Real-world Environment
As mentioned above, the nQSI database used to evaluate our
system was acquired under supervised conditions with labeled
keystroke sessions. To evaluate the behavior of the proposed
method in the context of its intended use, we applied the
resulting model to the nQCS database. As a reminder, this
database includes keystroke data from a group of healthy
volunteers that was captured during their daily use of the device,
without any supervision or prompt to stimulate typing activity.
We compute the fatigue scores measured on each pair of
consecutive keystroke sessions for each user typing stream.
Each user typing stream is composed of multiple keystroke
sessions generated over varying observation periods and activity
levels. We only take into account the fatigue scores obtained
between keystroke sessions with elapsed time of <2 hours within
the same day to avoid long pauses between sessions that may
introduce artifacts in the resulting fatigue signal. In Figure 8,
we present the aggregate trends of the fatigue score levels versus
the time of the day. The results suggest lower fatigue levels
during the morning and midday hours. Higher fatigue scores
are observed during the afternoon hours and overnight. Note
that this figure was obtained by averaging the scores from all
251 volunteers in the nQCS database, and therefore, there is an
equalization effect caused by different user’s habits.

Figure 8. Fatigue score analysis in the neuroQWERTY Crowdsource (nQCS) database. The fatigue scores are calculated, at the user level, between
consecutive sessions over their daily typing activity. The graph presents the nQCS population aggregate average and CIs of the resulting fatigue score
daily sequences.
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Discussion

Principal Findings
Using domain adaptation techniques, we leveraged an algorithm
built for user authentication to detect signs of fatigue via natural
typing. The resulting classifier was then adapted for real-time
fatigue monitoring by appending an active detection algorithm
that compares successive user states. This allows for background
evaluation of users’ fatigue state in an objective and real-world
environment. The proposed classifier was able to differentiate
intrapatient fatigue versus rested states with an AUC of 72.1%
in onetime detection set-up. When simulating a continuous
detection set-up by concatenating consecutive keystroke
sessions, the proposed model is able to detect early fatigue
symptoms after 4 keystroke sessions with an AUC of 80%. A
preliminary application of the fatigue classifier combined with
active detection showcased its applicability to real-world data
in a crowdsource data set. Given that this method relies on data
collected passively from a user’s daily interactions with their
computer, the proposed pipeline operates unobtrusively with
low burden and allows for a background, objective evaluation
of a user’s fatigue state in the real-world environment.

Relying on machine learning techniques, we were able to liaise
a large data set created to study typing behaviors in the general
population with the information gathered in a limited size data
set built specifically to characterize fatigue through the analysis
of keystroke dynamics. This approach allowed us to apply a
deep learning architecture in the absence of a high-dimensional
data set specifically characterized for the phenomenon under
study, quantification of daily fatigue levels in users’ keystroke
patterns. Our work exhibits the potential of domain adaptation
techniques to minimize the complexity of gathering large and
curated data repositories required to train deep learning models
by taking advantage of open-source unsupervised data sets in
combination with much smaller supervised data sets. In our
case, the Aalto database supplies the high volume of data
required to build a network optimized for user authentication
that is then fine-tuned using the sleep inertia data set to solve
the fatigue detection task. Another novel technical contribution
of this work is the addition of an active detection algorithm that
adapts the classifier for its application in real-time fatigue
detection. This dynamic adaptation of the fatigue score threshold
turns users into their own controls over time by carrying
information from previous estimates to generate the present
score. It is one of the main differentiators of this work from
prior state-of-the-art approaches to this problem, which generally
use a cross-sectional design to evaluate fatigue at a given time
point [38-40]. As an example, Ulinskas et al [38] assign fatigue
levels to users’ data based on the time of the day. Morning,
afternoon, and evening data generated by the same user are
treated as independent samples in a multivariate classification
framework that ignores the sequential relation between fatigue
states over daily cycles. The classification results in the
controlled experiment (ie, accuracy in the separation of rested
vs fatigue samples in the sleep inertia data set) are worse than
the ones presented in previous work completed using the same
data set [27]. However, this approach reduces significantly the
size of the input sample, 150 keystroke sequences (<1 minute

at average speed) in comparison with the 15-minute long typing
samples used in the study by Giancardo et al [27]. The value of
this parameter is critical for the applicability of fatigue detection
via keystroke monitoring in a real-world setting, as users are
unlikely to generate continuous 15-minute long typing samples
on their daily use of computer keyboards. When applied on an
independent data set comprised by natural typing data collected
in a real-world environment, the population-level results align
with the results presented in previous studies on daily sleep and
alertness cycles [41], which suggest high alertness during
daytime, peaking a few hours after awakening, and higher
sleepiness during nighttime.

In general, our results suggest that users are usually more awake
and active during the mornings. Fatigue appears generally during
the afternoon and increases as the day gets closer to regular
sleep times. The daily averaged scores suggest a subtle fatigue
peak after midday that could be associated with what has been
referred in the literature as postlunch dip in performance [42].
This consensus with sleep and performance studies supports
our hypothesis that keystroke dynamics can be used to quantify
daily fatigue in computer users in an objective and unobtrusive
manner. However, it is important to note that these daily cycle
results have been analyzed at a population level and are not
considering the variability in participants’personal routines and
schedules. Future studies pairing keystroke with other
high-frequency fatigue–related data (eg, sleep and activity)
could help us better assess the performance of the proposed
method at user level.

As for its clinical application, fatigue is a common symptom
that can precede or reflect the presence of a more serious mental
or physical condition. The current standard to clinically assess
fatigue relies on patient-reported outcomes through standardized
questionnaires, such as the Fatigue Severity Scale [43]. To
identify fatigue as a symptom, patients must first identify
unusually excessive fatigue patterns and then alert their
physician before it can be further investigated. This leaves
fatigue as a commonly overlooked or unrecognized predictor
of other emerging disorders [3,4]. Fatigue has also been reported
as a frequent side effect of disease treatment [44] and long-term
sequel of conditions such as COVID-19 [45].

The proposed methodology is designed to validate an approach
for objective and passive fatigue monitoring. Leveraging the
widespread use of PCs, this framework presents an opportunity
to provide more visibility and accurate tracking of fatigue and
its clinical implications. As it runs in the background of users’
computers, this approach could potentially be used to alert
patients and health care professionals of early signs of abnormal
fatigue to uncover progressive disease or the presence of
underlying conditions. In the context of clinical trials or during
disease management, this method could also be used to enable
objective and real-world evaluation of the impact of newly
developed or existing treatment regimens on a patient’s fatigue
state.

As a major limitation of this work, the fatigue detection model
performs better for some participants than others because of the
intrauser variations when typing [33]. In users who show little
variation between resting and fatigue states, the model does not
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effectively classify performance. An example of this is shown
in Figure 3, where we can observe a clear separation between
the rest keystroke sessions and the fatigue ones for the
participants (Figure 3A), meanwhile the fatigue detection model
struggles when trying to separate the keystroke sessions for the
participants of the Figure 3B with poor results.

Conclusions
This work presents a step toward the development of a
real-world fatigue monitoring tool that operates passively by
leveraging users’ natural interaction with their PCs. It is
important to note that the data set used in these analyses is
composed solely of healthy controls; future work should
evaluate the performance of the proposed method in a cohort
that includes participants with conditions affecting psychomotor
health that may mask or be confounded by fatigue symptoms.
Another limitation and potential line for future research is that
this work has been tested using mechanical keyboard data, thus
future applications of this specific methodology require users

who type frequently on mechanical keyboard devices. Adapting
this framework to include touchscreen devices would expand
the population that could benefit from this method. Given that
typing kinematics vary significantly between mechanical and
touchscreen devices, this adaptation would require additional
studies. The limited dimension of the sleep inertia database is
another aspect to take into account in future studies. Although
the use of domain adaptation techniques reduces the need for
larger supervised data sets, increasing the size of the controlled
cohort would allow for optimization of the target task layer and
independent validation of the fatigue detection classifier. Finally,
although the crowdsource results are similar to previously
published studies on daily alertness, full validation would require
a labeled real-world data set to test the generalizability of the
proposed framework for its application in the real work setting.
Additional validation in specific use case scenarios would pave
the way for use of this method as an objective, high-resolution,
and quasicontinuous way to monitor users’ fatigue with minimal
burden on their daily routine.
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