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Abstract

Background: Cervical myelopathy (CM) causes several symptoms such as clumsiness of the hands and often requires surgery.
Screening and early diagnosis of CM are important because some patients are unaware of their early symptoms and consult a
surgeon only after their condition has become severe. The 10-second hand grip and release test is commonly used to check for
the presence of CM. The test is simple but would be more useful for screening if it could objectively evaluate the changes in
movement specific to CM. A previous study analyzed finger movements in the 10-second hand grip and release test using the
Leap Motion, a noncontact sensor, and a system was developed that can diagnose CM with high sensitivity and specificity using
machine learning. However, the previous study had limitations in that the system recorded few parameters and did not differentiate
CM from other hand disorders.

Objective: This study aims to develop a system that can diagnose CM with higher sensitivity and specificity, and distinguish
CM from carpal tunnel syndrome (CTS), a common hand disorder. We then validated the system with a modified Leap Motion
that can record the joints of each finger.

Methods: In total, 31, 27, and 29 participants were recruited into the CM, CTS, and control groups, respectively. We developed
a system using Leap Motion that recorded 229 parameters of finger movements while participants gripped and released their
fingers as rapidly as possible. A support vector machine was used for machine learning to develop the binary classification model
and calculated the sensitivity, specificity, and area under the curve (AUC). We developed two models, one to diagnose CM among
the CM and control groups (CM/control model), and the other to diagnose CM among the CM and non-CM groups (CM/non-CM
model).

Results: The CM/control model indexes were as follows: sensitivity 74.2%, specificity 89.7%, and AUC 0.82. The CM/non-CM
model indexes were as follows: sensitivity 71%, specificity 72.87%, and AUC 0.74.

Conclusions: We developed a screening system capable of diagnosing CM with higher sensitivity and specificity. This system
can differentiate patients with CM from patients with CTS as well as healthy patients and has the potential to screen for CM in
a variety of patients.
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Introduction

Cervical myelopathy (CM) occurs in patients with cervical
spondylotic myelopathy, ossification of the posterior
longitudinal ligament, or cervical disk herniation [1-3]. CM
causes symptoms such as clumsiness of the hands, numbness
of the extremities and trunk, and gait disturbance, and often
requires surgery. The longer the duration and the more severe
the disease, the worse the postoperative outcome [4-6].
However, some patients with CM are unaware of their early
symptoms and consult a spine surgeon only after their condition
has become severe [7]. Therefore, screening and early diagnosis
of CM are important for symptom monitoring and to determine
the optimum time for surgery [8].

Clumsiness of hands is a characteristic and important symptom
of CM and is referred to as myelopathy hand [9]. The 10-second
hand grip and release (10-s) test is commonly used to check for
the presence of myelopathy hand [9,10]. In the 10-s test, patients
repeatedly grip and release their hand as fast as possible for 10
seconds; if the number of repetitions is less than 20, a
myelopathy hand is suspected. The 10-s test is simple but would
be more useful for screening if it could objectively evaluate not
only the number of repetitions but also the changes in movement
specific to myelopathy hand.

Nowadays, the latest commercial sensors and devices using
virtual reality have been developed and are being used in the
medical field [11]. Some studies have reported using
smartphones and stylus pens to analyze hand movements and
diagnose diseases [12-14]. In the field of cervical spine, there
have been reports of diagnosis, surgery, and rehabilitation using
virtual reality [15-17]. Several studies have also been conducted
to analyze the movement of the myelopathy hand using sensors
[18-22]. Most of these studies used wearable sensors such as
motion capture systems, strain sensors, gyro sensors, and bend
sensors, which are complicated.

For a simpler test, we analyzed hand and finger movements in
the 10-s test using Leap Motion (Leap Motion) in a previous
study [23]. Leap Motion is a noncontact sensor consisting of
infrared cameras and LEDs, and captures hand and finger
movements in real time [24,25]. Furthermore, we applied a
machine learning algorithm to the obtained data to create a
binary classification model to classify CM with 84% sensitivity,
60.7% specificity, and 0.85 area under the curve (AUC).
However, because of the limitations of the system, only fingertip
movements, not all joint movements, were recorded. Moreover,
because only patients with CM and healthy participants were
compared, it was not clear whether our model could differentiate
CM from other hand disorders such as carpal tunnel syndrome
(CTS).

To solve these problems, we improved the system so that the
joints of each finger can also be recorded by Leap Motion and
aimed to develop a system capable of diagnosing CM with
higher sensitivity and specificity. Furthermore, we included
patients with CTS, a common hand disorder, to verify if it is
possible to distinguish CM from CTS.

Methods

Ethics Approval
This study was approved by the Institutional Review Board of
Tokyo Medical and Dental University (M2019-047). Written
informed consent was provided by all participants.

Recruitment
We included preoperative patients with CM (CM group),
preoperative patients with CTS (CTS group), and volunteers
(control group) between February 2020 and July 2021.
Experienced spine surgeons diagnosed CM based on symptoms,
physical and neurological findings, and magnetic resonance
imaging (MRI) or computed tomography myelogram.
Experienced hand surgeons diagnosed CTS based on symptoms,
physical findings such as the Tinel sign and Phalen test, and
nerve conduction studies (NCSs) measured by Neuropack X1
(Nihon Kohden). Volunteers were recruited from patients who
had undergone total hip arthroplasty.

In all groups, participants with a history of other upper extremity
disease, injury, or surgery; those with neurological diseases
such as stroke, brain tumor, and traumatic brain injury; those
with inflammatory diseases such as rheumatoid arthritis; those
with dementia or psychiatric disease; and those who refused to
participate were excluded. Moreover, spine surgeons also
examined participants in the CTS and control groups, and
excluded those with symptoms or physical findings suggestive
of CM from the CTS and control groups. Similarly, hand
surgeons examined participants in the CM and control groups,
and excluded those with symptoms or physical findings
suggestive of CTS from the CM and control groups.

In the CM group, primary diseases causing CM were recorded.
The maximally compressed levels of the spinal cord were also
recorded from the sagittal and axial images of the preoperative
T2-weighted MRI. In the CTS group, Bland classifications were
recorded as severity based on NCSs [26]. Finally, the CTS and
control groups were combined to create a non-CM group.

Measurements With Leap Motion
Before the measurement, the procedure and a short
demonstration were provided to the participants. The protocol
of the measurement with Leap Motion was based on a previous
study and was performed as follows: participants sat in front of

JMIR Biomed Eng 2022 | vol. 7 | iss. 2 | e41327 | p. 2https://biomedeng.jmir.org/2022/2/e41327
(page number not for citation purposes)

Koyama et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://dx.doi.org/10.2196/41327
http://www.w3.org/Style/XSL
http://www.renderx.com/


Leap Motion placed in front of a laptop computer and connected
by USB, extended the elbow on the side to be measured, placed
the hand 10 cm above Leap Motion in a pronated position, and
gripped and released the fingers as rapidly and as fully as
possible 20 times after seeing the sign to start the examination
(Figure 1) [23]. During the measurement, we confirmed that

the system could correctly capture participant hand movements
by watching the 3D hand model displayed on the screen in real
time. All participants completed both hand measurements twice.
A total of 229 parameters, listed in Table 1, were measured as
waveform data (60 frames per second).

Figure 1. Images of the measurement with Leap Motion. Leap Motion and the three axes measured by Leap Motion (A). Participants placed their hand
above Leap Motion, connected to a laptop computer via USB (B). During the measurement, a 3D hand model was displayed in real time on the screen
of the laptop computer (C).
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Table 1. Parameters measured by Leap Motion.

Total (N=229), nValues, nParameters

11Extended fingers (n)

33 dimensionsaPosition of palm

33 dimensionsDirection of palm

11Angle of wrist extension

33 dimensionsPosition of wrist

33 dimensionsDirection of forearm

55 fingersSpeed of fingertip

155 fingers × 3 dimensionsPosition of fingertip

155 fingers × 3 dimensionsDirection of fingertip

605 fingers × 4 bonesb × 3 dimensionsPosition of distal end of bone

605 fingers × 4 bones × 3 dimensionsPosition of center of bone

605 fingers × 4 bones × 3 dimensionsDirection of bone

aDimensions consist of x, y, and z coordinates.
bBones consist of distal phalanx, middle phalanx, proximal phalanx, and metacarpus. For convenience, bones of the thumb were assumed to consist of
distal phalanx, proximal phalanx, metacarpus, and carpal bones.

Statistical Analysis

Characteristics of Participants
The characteristics of participants were assessed using Student
t test for age, chi-square test for sex and measured side of the
hand, and Fisher exact test for hand dominance. A P value <.05
was considered statistically significant.

Binary Classification Model
We aimed to create two models, one to diagnose CM among
the CM and control groups (CM/control model), and the other
to diagnose CM among the CM and non-CM groups
(CM/non-CM model).

Preprocessing of the data was performed prior to the application
of machine learning. First, each waveform data was divided
into 15 segments of 64 frames each while allowing for overlap
because each participant took different frames to perform 20
grips and releases. These segments (64 frames) were linearly
detrended and multiplied by the Hanning window function [27].
The processed segments were converted to frequency domain
data using fast Fourier transform. The subwaveforms (64 frames)
were converted into frequency domain data, selecting only the
lower 16 frequencies. Finally, a 54,960-dimensional data set
(229 parameters × 16 frequency domain data × 15 segments)
was obtained for each trial. Data from two trials on each hand
were combined and used to create the CM/control model.
Alternatively, since CTS can occur on only one hand, data from
only two trials on one hand (either the right or left) were
combined and used to create the CM/non-CM model.

A support vector machine (SVM) was used to create the binary
classification models [28]. SVM is one of the common machine
learning algorithms used for classification and has performed
well in previous studies. After the learning phase, the SVM
shows a predicted label of CM with a probability score. We set
a threshold and created a binary classification model to classify
whether a data set was CM or not. Data from the CM and control
groups were used for the CM/control model, and data from all
groups were used for the CM/non-CM model. In the validation
phase, 10-fold cross-validation was performed [29]. We
generated a receiver operating characteristic (ROC) curve by
adjusting the threshold and calculating the AUC. The point on
the ROC curve closest to the upper-left corner of the graph was
set as the optimal cutoff value.

Furthermore, to investigate which parts of the hand contribute
to the diagnosis of CM, we also generated modified CM/control
models using data from only one of the 20 bones and then
similarly calculated the AUC.

Results

Comparison of Characteristics of Participants
In total, 31 participants (62 hands), 27 participants (38 hands),
and 29 participants (58 hands) were recruited to the CM, CTS,
and control groups, respectively. Patient demographics and
characteristics are summarized in Table 2. There was no
significant difference between the groups in terms of age, sex,
or hand dominance.
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Table 2. Characteristics of participants in the CM, CTS, and control groups.

P valueCMNon-CMaCharacteristic

CM/non-CMCM/controlCTSbControl

N/AN/Ac312529Participants, n

.11.2367.0 (57.0-77.0)62.0 (49.2-74.7)63.6 (52.1-75.0)Age (years), mean (SD)

.11.5916512Sex (male), n

.36>.99302529Hand dominance (right), n

N/AN/A623458Hands, n

.83>.99312029Side (right), n

N/AN/AN/AN/ABland classification, n

3Grade 1

0Grade 2

17Grade 3

0Grade 4

14Grade 5

4Grade 6

N/AN/AN/AN/APrimary disease, n

13CSMd

16OPLLe

2CDHf

N/AN/AN/AN/AMaximally compressed level, n

1C1/2

0C2/3

12C3/4

8C4/5

9C5/6

1C6/7

aCM: cervical myelopathy.
bCTS: carpal tunnel syndrome.
cN/A: not applicable.
dCSM: cervical spondylotic myelopathy.
eOPLL: ossification of the posterior longitudinal ligament.
fCDH: cervical disk herniation.

Binary Classification Model
The indexes of the binary classification models are listed in
Table 3. The ROC curve of the control and CM/non-CM model
are shown in Figure 2.

The AUC of models limited to the parameters of each bone are
listed in Table 4. The AUC of the model using the parameters
of the proximal phalanx of the thumb was the highest (0.86).
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Table 3. Index of binary classification models.

AUCaSpecificity (%)Sensitivity (%)

0.8289.774.2CMb/control model

CM/non-CM model

0.7472.871.0Total

0.7775.571.0Right hand

0.7679.174.2Left hand

aAUC: area under the curve.
bCM: cervical myelopathy.

Figure 2. Receiver operating characteristic (ROC) curve of the cervical myelopathy (CM)/control model (A) and CM/non-CM model (B). The area
under the ROC curve was 0.82 and 0.74 in the CM/control model and CM/non-CM model, respectively. The red cross indicates the optimal cutoff value.

Table 4. Area under the curve of models limited to the parameters of each bone

Little fingerRing fingerMiddle fingerIndex fingerThumba

0.780.780.800.820.83Distal phalanx

0.790.800.810.830.86Middle phalanx

0.830.830.840.820.84Proximal phalanx

0.820.830.830.820.82Metacarpus

aOnly in the thumb, middle phalanx means proximal phalanx, proximal phalanx means metacarpus, and metacarpus means carpal bones.

Discussion

Principal Results
We developed a classification model with high sensitivity and
specificity to diagnose CM. However, despite increasing the
parameters, major improvements in diagnostic performance of
the CM/control model were not obtained in this study (74.2%
sensitivity, 89.7% specificity, and 0.82 AUC) compared to the
previous study (84% sensitivity, 60.7% specificity, and 0.85
AUC) [23]. Increasing only the number of parameters will result
in improved diagnostic performance; therefore, it is necessary
to increase the number of samples. Nevertheless, the
classification model in this study is still effective as a screening

method since it has a sufficiently high diagnostic performance
when compared to classic tests. For example, the 10-s test
showed 61%-74% sensitivity, 52%-66% specificity, and
0.71-0.77 AUC [10,30,31]; the finger escape sign showed
48%-55% sensitivity [30,31]; the deep tendon reflex change
showed 15%-56% sensitivity and 96%-98% specificity [31-33].
In another previous study, the analysis and diagnoses of
myelopathy hand was performed by wearing a glove with a
sensor, with 87% sensitivity, 86% specificity, and 0.93 AUC
[21]. Although the result of this study is inferior to the previous
study, our method is superior in that it is easier to test many
patients with the noncontact sensor, making it suitable for
screening.
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In the models limited to the parameters of each bone, the AUC
of the model using the parameters of the proximal phalanx of
the thumb was the highest. In addition, overall, the models using
the parameters of bones of the thumb tended to have higher
AUCs. This result is contrary to the finger escape sign, which
indicates that the ulnar finger is more likely to be affected in
CM [9]. The cause of this discrepancy may be due to the position
of the sensor in this method. Because Leap Motion captures
hand movement from the palmar side, the bones of the fingers
other than the thumb are temporarily hidden by other bones
during the grip and release movements, and occasionally not
accurately captured. Alternatively, thumb movement is always
tracked by Leap Motion. Moreover, another study reported that
patients with CM exhibit specific changes in pinching
movements with the thumb and index finger [20]. This result
means that, in patients with CM, not only ulnar but also radial
finger movements are significantly altered. These factors would
contribute to the higher AUCs of the model using the parameters
of the proximal phalanx of the thumb.

In this study, we attempted to differentiate the CM group from
not only the control group, as in the previous study [23], but
also the CTS (non-CM) group, and we achieved high diagnostic
performance. The peak onset of CM is between the years of 40
and 60 years [1,3], but other hand disorders are also prevalent
during that time. Because CTS is a common hand disorder, with
a predilection for people 40 years or older [34,35], we included
these patients in our study. Our system can distinguish
myelopathy hand from motor disorders of the thumb that can
occur in CTS [36]. While further trials are required to
differentiate CM from other hand disorders, this result suggests
the possibility of accurately screening for CM among a variety
of hand disorders.

Several studies have also been conducted to analyze the
movement of the myelopathy hand using sensors, but Leap

Motion has the major advantage of simplicity. For example,
motion captures can provide a detailed motion analysis, but the
installation of the sensors requires skill and time of the
examiners, and it is impossible to test a large number of patients
in a short period of time. Alternatively, Leap Motion can be
used for our test simply by connecting it to a computer if the
program can be shared. Furthermore, the test can be performed
by a single patient with only a simple test procedure guide. Leap
Motion is also a less expensive commercial sensor, which is an
advantage in that it is readily available. These advantages of
Leap Motion are useful for screening large numbers of patients
in a short period of time.

Limitations
This study had some limitations. First, it is possible that there
were participants with potential CM in the CTS and control
groups because participants in these groups did not undergo an
MRI. Similarly, it is possible that there were participants with
potential CTS in the CM and control groups because participants
in these groups did not undergo an NCS.

Second, we did not compare subgroups by anatomical level of
myelopathy and by severity of CM and CTS. There may be
variation among subgroups within the same group. Third, only
internal validation by 10-fold cross validation was performed
and external validation was not. In future work, we will collect
more samples to solve these problems.

Conclusions
We developed a screening system capable of diagnosing CM
with higher sensitivity and specificity by high-dimensional
analysis of finger motion and machine learning. This system
can differentiate patients with CM from patients with CTS as
well as healthy patients and has the potential to screen for CM
in a variety of patients.
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