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Abstract

Background: The distinctive features of the digital reality platforms, namely augmented reality (AR), virtual reality (VR), and
mixed reality (MR) have extended to medical education, training, simulation, and patient care. Furthermore, this digital reality
technology seamlessly merges with information and communication technology creating an enriched telehealth ecosystem. This
review provides a composite overview of the prospects of telehealth delivered using the MR platform in clinical settings.

Objective: This review identifies various clinical applications of high-fidelity digital display technology, namely AR, VR, and
MR, delivered using telehealth capabilities. Next, the review focuses on the technical characteristics, hardware, and software
technologies used in the composition of AR, VR, and MR in telehealth.

Methods: We conducted a scoping review using the methodological framework and reporting design using the PRISMA-ScR
(Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews) guidelines. Full-length
articles in English were obtained from the Embase, PubMed, and Web of Science databases. The search protocol was based on
the following keywords and Medical Subject Headings to obtain relevant results: “augmented reality,” “virtual reality,”
“mixed-reality,” “telemedicine,” “telehealth,” and “digital health.” A predefined inclusion-exclusion criterion was developed in
filtering the obtained results and the final selection of the articles, followed by data extraction and construction of the review.

Results: We identified 4407 articles, of which 320 were eligible for full-text screening. A total of 134 full-text articles were
included in the review. Telerehabilitation, telementoring, teleconsultation, telemonitoring, telepsychiatry, telesurgery, and
telediagnosis were the segments of the telehealth division that explored the use of AR, VR, and MR platforms. Telerehabilitation
using VR was the most commonly recurring segment in the included studies. AR and MR has been mainly used for telementoring
and teleconsultation. The most important technical features of digital reality technology to emerge with telehealth were virtual
environment, exergaming, 3D avatars, telepresence, anchoring annotations, and first-person viewpoint. Different arrangements
of technology—3D modeling and viewing tools, communication and streaming platforms, file transfer and sharing platforms,
sensors, high-fidelity displays, and controllers—formed the basis of most systems.

Conclusions: This review constitutes a recent overview of the evolving digital AR and VR in various clinical applications using
the telehealth setup. This combination of telehealth with AR, VR, and MR allows for remote facilitation of clinical expertise and
further development of home-based treatment. This review explores the rapidly growing suite of technologies available to users
within the digital health sector and examines the opportunities and challenges they present.
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Introduction

Background
The term telemedicine refers to the provision of clinical health
care services over a distance through information and
communication technology (ICT) channels. Telemedicine
overcomes geographical barriers in facilitating remote medical
services. Building on this, the concept of telehealth extends to
include continuing health education, research, and evaluation
by medical professionals, all while promoting the health
outcomes of individuals and communities [1]. Telehealth
broadly encompasses the delivery of remote health-related
services, including nonclinical services such as medical provider
training; medical education; public health education;
administrative meetings; and electronic exchange of clinical
data enabling diagnosis, evaluation, consultation, treatment,
and care management. The term telehealth has evolved as
available technologies have improved, such that the term “digital
health” is now often used as a more inclusive term reflecting
the application of various different types of technologies and
telecommunications systems in health care delivery. Digital

health platforms can be either provider-to-provider or
direct-to-consumer systems supported by the ICT infrastructure
[2,3]. The telehealth sector has seen an effective increase in the
past few years and has grown exponentially because of
COVID-19 pandemic restrictions. According to the report
published by Fortune Business Insights, the global telehealth
market size was estimated at around US $144.38 billion in 2020
and is likely to reach US $636.38 billion by 2028 [4].

From the reality-virtuality continuum model, according to
Milgram et al [5] (as seen in Figure 1), the real environment is
that which is viewed without any overlay of the
computer-generated entity, while at the opposite end of this
continuum, immersive virtual reality (VR) is observed as
completely enhanced computer-generated environments viewed
through a head-mounted display unit. In the augmented reality
(AR)–based display, digital information or entities are overlaid
in the real environment, such that different aspects of reality
are observed between the real and virtual environment. These
augmentation-based realities can be discovered by optical
see-through head-mounted displays (HMDs), mobile phones,
tablets, or computer monitors [5].

Figure 1. Representation of reality-virtuality continuum by Milgram et al [5]. AR: augmented reality; AV: augmented virtuality; MR: mixed reality;
VR: virtual reality.

In AR technology, the digitally created data directly coincide
with the user’s real-world environment, where the user can see
the computer-generated 2D or 3D entities such as holograms.
The virtual entities superimposed or mapped onto the real-world
space are typically rendered using optical see-through display
such as HMDs or mobile-based devices, also allowing for
stereoscopic visualization. The next most advanced form of
reality platform, the mixed reality (MR), follows the footstep
of AR and allows interaction with these virtual entities by using
hand gesture inputs, gaze recognition, or controllers. The VR
platform is a completely enhanced digital representation
featuring a 2D or 3D virtual environment or objects that can
replicate real-life surroundings. VR provides engaging sensory
perceptions for both visual and acoustic stimulation. Immersive
VR relies on headsets or stand-alone VR devices, whereas
nonimmersive VR relies on the monitor display [6].

The introduction of VR and AR technologies in medicine has
been focused on clinical-related research. The key areas

incorporating this digital reality are surgery, psychology,
neurological condition, rehabilitation, and medical educational
[7]. The 3D picturing capabilities of the VR- and AR-based
platforms have been sought for applications in the visualization
of scientific experimental imaging data, tools for surgical
planning and studying anatomy, and other collaborative
interfaces for education and telehealth [8]. Surgical simulation
has distinctively used digital reality, while VR is principally
used for visual and haptic rendering, whereas AR and MR were
predominantly positioned for the tracking system and graphical
rendering, with the latter being used in a real surgical setting
[9]. The usefulness of VR education and training using
simulation methods for nursing students was comparable with
the standard models of education and training on the outcomes
of skills, confidence, satisfaction, and performance time [10].
The current prospects of AR software applications in medical
criteria are treatment and training based [11]. Surgical
development using an MR platform has been linked as a
predominant utilization tool for training and simulation
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technology, advanced imaging and navigation, and broadening
the extent of clinical application. Recently, MR has been adapted
to neurosurgery, otolaryngology, ophthalmology, urology, and
dentistry [12]. Digital reality technology has been incorporated
into the preoperative surgical planning for several cranial-based
applications for the neurosurgical subspecialty [13]. VR-based
exposure therapy is used for various psychiatric disorders such
as anxiety, trauma and stress, neurocognitive disorders, and
several mental disorders. The effects of VR have been studied
to have long-lasting positive outcomes for the treatment [14].
VR-based training has been effective in the improvement of
executive limb function and cognitive function in patients with
stroke [15,16].

Objectives
Many published studies have reviewed the use of AR and VR
capabilities in medical research and practice and have not
detailed its implication in telehealth, thus addressing this
research gap. This systematic scoping review provides an
overview of the prospects of AR and VR applications delivered
using telehealth platforms in clinical settings. This review offers
end users and providers an update of the current use of AR, VR,
and MR effectively in telehealth delivery and highlights the
prospects of such technologies in the future. This review aims
to explore the following research questions:

• What clinical specialties have incorporated digital reality
platforms such as AR, VR, or MR exclusively with
telehealth?

• What are the different hardware and software technology
formats used in AR, VR, or MR within telehealth?

• Which important technical features of AR and VR have
been used in telehealth?

Methods

Overview
This scoping review used the framework of the PRISMA-ScR
(Preferred Reporting Items for Systematic Reviews and
Meta-Analyses extension for Scoping Reviews) guidelines [17].
Included studies from the database were solely concerned with
the application of high-fidelity simulation technology such as
AR, VR, or MR exclusively delivered via the telehealth
platform. The study has no written or published protocol.

Database and Search Strategy
Articles from Embase, PubMed, and Web of Science were
explored to obtain relative pieces of evidence. An exploded
search strategy string was developed with the support of a
university librarian. The search string included appropriate
keywords and Medical Subject Headings terms—“augmented
reality,” “virtual reality,” “mixed reality,” “extended reality,”
“telemedicine,” “telehealth,” “m-Health,” “e-Health,” and
“digital health.” The search strategy was initially developed on
the Embase database and replicated across the other databases
using predefined filtering techniques. The entire search strategy
can be seen in Multimedia Appendix 1.

Eligibility Criteria
The studies included must satisfy the active component use of
AR, VR, or MR delivered via telehealth approaches and should
have been published between the years 2016 and 2021, since
such devices with this technology format became commercially
available, marked in reference to the release date for the
first-generation Microsoft HoloLens [18]. The collaboration
aspect of AR and MR technology into social or digital
communication avenues could be observed during the same
period [19]. Telemedicine or telehealth includes a broad
spectrum of health care delivery, including education prospects;
however, this review will focus on clinical aspects, including
simulation. Only full-length text articles available on the web
in the English language were included. Full-length text from
peer-reviewed articles such as randomized controlled trials,
feasibility studies, exploratory studies, narrative reviews,
systematic reviews, case and cohort studies, book sections, and
technical reports was considered eligible for inclusion. Any
studies highlighting the mentioned technology for gaming,
entertainment, or medical education were excluded.
Correspondence papers, letters, conference abstracts (no full
texts), editorial, commentary, poster presentations, and gray
literature were also excluded from this review.

Study Selection and Data Extraction
The papers obtained from the applied search strategy from the
information databases were imported to the reference manager
EndNote 20 library, and duplicates were discarded [20]. Three
researchers (HW, SC, and JK) performed initial screenings
based on titles, abstracts, and keyword searches. Author HW
conducted eligibility criteria and full-text screening. The selected
studies were then reviewed based on the article type, study
design, clinical condition addressed in the study, mode of
telehealth communication, acceptance criteria, and the hardware
and software used in the studies for the guidance for data
synthesis. Finally, the relevant information from the studies was
tabulated into an Excel (Microsoft Corp) spreadsheet, and a
descriptive synthesis of the data was generated. In our review,
we summarized and grouped the various telehealth branches
using digital reality platforms for the various clinical condition
based on descriptive statistical findings for the included studies.
Different facets of the digital reality technology were detailed
for its application in clinical research.

Results

Overview
Of the 4407 abstracts identified from the search protocol, 134
full-text articles fulfilled the inclusion criteria. A total of 1079
duplicate records were removed, 2598 records were discarded
after title, abstract, and keyword search, and 410 records were
deemed not fit after the initial screening as these articles were
not about topic of interest having objectives that did not align
with the outcomes of this review and did not satisfy the inclusion
criteria. Of the 320 articles that were subjected to full-text
review, 177 articles were deemed not relevant because they
either included the digital reality technology or telehealth
strategies but not delivered jointly, and 9 were excluded after
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recognizing multiple papers published on the same topic by the HW, SC, and JK (Figure 2).

Figure 2. Flowchart for the structured literature search and selection.

Digital Reality Platform via Telehealth
As demonstrated in Figure 3, VR and AR cover most of the
listed telehealth domains for the eligible studies. The most
studied and researched area is telerehabilitation accomplished
using VR. The other subareas involving VR use include
telepsychiatry for evaluation and treatment, telediagnosis, and
teleconsultation. In addition, AR and MR are prevalent modes
of the reality technology platform for telementoring and
teleconsultation. Finally, telesurgery and telemonitoring are the

2 subfields of telehealth where AR technology have seen an
upward trend.

Clinically based digital health applications were considered for
the review as various specific branches of the telehealth
spectrum (Figure 4). Telerehabilitation is a postclinical care
service delivered at home or remotely for recovery purposes
and constitutes most of the included telehealth group from the
included studies [21,22]. Evident from the included studies,
stroke rehabilitation emerges as the leading medical condition

JMIR Biomed Eng 2023 | vol. 8 | e42709 | p.6https://biomedeng.jmir.org/2023/1/e42709
(page number not for citation purposes)

Worlikar et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


that has seen an uptake of these services. Different aspects of
rehabilitation, such as functional motor training, including
upper-extremity training and fine motor skills, cognitive
functional training, visuomotor tracking training, and balance
and gait training are primarily used for treating poststroke
survivors [23-41]. In turn, the patient groups who have used
telehealth for the purposes of rehabilitation have reported
improvements in their quality of life, increased daily activities,
and improved levels of motivation [42]. From the multiple
studies included, telerehabilitation has been experimented as a
home-based treatment for various neurological and cognitive
disorders or diseases such as Parkinson disease, acquired brain
injuries, multiple sclerosis, cerebral palsy, mild cognitive
impairment, Alzheimer disease, and dementia [43-58].

Conventional therapy programs in the form of physical therapy
and behavioral therapy are the nonpharmacological treatments
that have used this remote delivery platform. In a small number
of studies, the home-based rehabilitation in the form of novel
telerehabilitation have been used for patients undergoing surgical
procedures, such as total hip replacement, total knee
arthroplasty, and total knee replacement, as a postrecovery
treatment measure [59-62]. Mirror therapy for patients with
phantom limb pain and physiotherapy treatment for patients
with chronic body pain have incorporated this model of remote
teletherapy [63-68]. This field has also been applied in physical
rehabilitation for musculoskeletal disorders, provision of
vestibular rehabilitation therapy in patients with a balance
disorder, and kinesiotherapy for older adults at risk of falls
[2,69,70]. Physical therapy in the pediatric group and musical
therapy in patients with spinal cord injury have explored this
stream of technology [71,72]. Pulmonary rehabilitation therapy
for respiratory disorders such as chronic pulmonary respiratory

disorder, pulmonary fibrosis, and myocardial infarction; low
vision rehabilitation in providing functional visual assistance;
and the COVID-19 pandemic have been an influential factor in
accelerating remote rehabilitation therapy [22,73-77].

Telementoring is a subset of telemedicine that reflects remote
expert guidance such as training or telenavigation to medical
and nonmedical personnel in performance of life-sustaining
procedures [78]. The impact and usability of the telementoring
technique in provision of cardiopulmonary resuscitation in
treating cardiac arrest has been demonstrated by different
authors in simulated environments, with the assistance of a
remote mentor using an HMD or Google Glass [79,80]. Other
authors have explored the use of telementoring guidance, in
intraoperative telenavigation, and preoperative planning in
simulated battlefield and emergency trauma. The telementoring
approach for preoperative planning and telenavigation during
the intraoperative process has been demonstrated in complex
emergency hand reconstruction surgery [81,82]. Forward
damage control procedure performed on a patient-simulator
model depicting a right-sided femoral gunshot wound and
simulated trauma injuries such as airway obstruction by
conducting cricothyroidotomy have been carried out using
remote instruction—as have, lung decompression, tracheostomy,
or REBOA (resuscitative endovascular balloon occlusion of the
aorta) catheter deployment to deal with specific trauma injuries
with the aid of a remote medical expert [82-86]. The feasibility
of telementoring applicability in the performance of chest
thoracotomy, skin grafting, and fasciotomy has been evaluated
using ex vivo animal models [78,87,88]. Telementoring has
been used to great effect in different stages of surgical planning
in various orthopedic, craniofacial, spinal cord, vascular, and
cardiothoracic surgeries [6,89-100].

Figure 3. Collaboration between digital reality technology and telehealth for the included studies.
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Figure 4. An overview of different clinical conditions and groups categorized within specific telehealth domains.

Teleconsultation is a primary segment of telehealth services,
broadly consisting of remote consultation services using ICT.
This remote consultation can be synchronous or asynchronous
and between clinicians (provider-to-provider) for shared
decision-making or between clinicians and their patients
(provider-patient) [101]. This approach has been applied in
patient assessment using the National Institute of Health Stroke
Scale for patients with acute stroke and during remote clinical
rounds in isolation wards for patients with COVID-19, thereby
reducing direct exposure of the staff [102,103]. This technique
has also been evaluated in trauma and emergency-related
scenarios, such as remote consultation in reading and
interpreting electrocardiogram reports related to drug
intoxication or poisoning [104,105]. The effectiveness of
provider-to-provider teleconsultation has been demonstrated in
provision of support for ambulatory staff and first-responders

in triage during simulation of major trauma [106]. The
applications of teleconsultation in provision of surgical care are
broad, allowing collaborative, contextual, and presurgical
planning and visualization and intraoperative surgical navigation
through high-fidelity immersive reality platforms and devices,
as well as facilitating remote delivery of complex information
to patients [107-115]. Teleconsultation via the reality platforms
has been used to explore the feasibility of telepathology in
carrying out an autopsy, image scanning, and transfer of serially
sectioned cancer tissue from a mouse [116].

Telemonitoring is an advanced form of clinical care service that
provides patient-centered care. This method allows health care
providers to collect and track patient information and deliver
remote care assistance [117]. This branch of telehealth has been
evaluated in pediatric cohorts dealing with hospital-induced
stress as a shared experience on a mobile-based AR game for
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play therapy. This aspect allows managing pediatric patient
profiles, data collection, and further analysis for effective
treatment [118]. Telemonitoring via holographic conversational
agents; that is, a computer-generated character to deliver
physiotherapy home exercises to patients with musculoskeletal
disorders and chronic pain has been demonstrated to increase
their treatment adherence [119]. Supervised AR-based home
training has been used for patients with phantom limb pain by
providing mirror therapy, thereby promoting visuomotor
integration by reengaging the neural circuits related to lost limbs
[120]. Telemonitoring has been used in postoperative care and
wound assessment in orthopedic and neurosurgical cases and
has also been applied for teleproctoring or remote monitoring
in pilot simulation as training for fundamentals of laparoscopic
surgery examination [121-123].

Telepsychiatry uses ICT to offer a range of clinical and
nonclinical services such as psychiatric evaluation, therapy
(individual or group-based), patient education, and management
remotely [124]. Studies using this element of telehealth and
computer-generated virtual environments have evaluated the
feasibility of remote therapy such as Virtual Reality Exposure
Therapy for patients with acrophobia and evaluation of the
technical system in delivering specific phobia treatment for
arachnophobia [125,126]. Remotely delivered psychological
treatment by the mental health professional include behavioral
intervention therapy, cognitive behavioral therapy, mindfulness
therapy, and acceptance and commitment therapy for patients
facing stress, anxiety, public speaking anxiety, and social anxiety
disorder, among others [127-130]. In a simulation study,
cognitive and affective assessment of astronauts has been carried
out to characterize social isolation from space [131]. Evaluation
of telepsychiatry using the reality platform such as VR versus
the traditional videoconferencing platform, and the development
of newer platforms such as social VR for older adults in urban
areas has demonstrated such techniques could lead to improved
quality of life by reducing social isolation [132]. Telepsychiatry
assessment via VR as a home-based treatment delivered by
mental health professionals, such as a psychiatrist, psychologist,
licensed social worker, or a mental health counselor, has been
demonstrated to mitigate clinician burnout [133,134].

Another exciting subsection of the telehealth sphere, telesurgery,
enables teleoperation in an operating field executed over a
distance. Telesurgery involves using various disciplines such
as communication technology, imaging techniques, motor
control systems, robotics, reality platforms, and digital signal
processing [135,136]. For example, in an experimental setup,
a VR-based teleoperative system consisting of a robotic catheter
operating system can be used to imitate vascular interventional
surgery for arterial aneurysms or other vascular diseases. This
method allowed unskilled surgeons to train in essential catheter
guidance skills and enabled experienced physicians to conduct
surgeries cooperatively [137]. In addition, a telesurgical
experiment was conducted with a tendon-driven continuum
robot via telenavigation for endoscopic and minimally invasive
surgical procedures by tracking coordinate trajectory registration
[138]. Finally, in another simulation case, a magnetically driven
endoscopic capsule enabled the teleoperator or user to receive

visual feedback in VR to conduct capsule endoscopy for
colorectal cancer [139].

Moreover, the reality platform is streamed as a functional
stereoscopic display and navigates space during telesurgery.
This aspect of telesurgery has been experimented with as a
visualization opportunity using smartphone-delivered vision
and VR headsets to perform microsurgery for cataract and
phacoemulsification [140]. In addition, Stereoscopic AR
Predictive Display using the da Vinci R Surgical System to
perform laparoscopic surgery and AR-assisted robotic surgery
for kidney transplant procedures are some of the current practical
applications of telesurgery [141-143]. Telediagnosis refers to
the detection or evaluation of a disease or condition using
telematics technology. It is achieved remotely while the patient
is at a local site with remote diagnostic tools and devices
[144,145]. For instance, in experimental analysis, locating and
evaluating tumor-bearing hysteromyoma coordinates during a
3D navigated gynecological operation facilitates telediagnosis
when visualized on a 3D user interface of the medical record
[146]. Another study proposes a framework based on
bidirectional haptic feedback and tele immersion in the
evaluation of range of motion and maximum isometric strength
using the 10 arm movements method in the diagnosis of
musculoskeletal disorders, poststroke rehabilitation, or
postshoulder surgery [147]. Ultrasonography (USG) is a field
in which telediagnosis using the high-fidelity visualization
system has been used to great effect. Evaluation of 3D VR
telenavigation in cardiac USG has been undertaken in simulated
settings. The added benefits of AR enable real-time teleguidance
on procedural performance and image registration for
point-of-focus ultrasonography (POCUS) and foveated imaging
pipeline in extending VR-based telediagnosis [148-150].
Another study mentions AR video communication projected
by mobile-based AR guidance to conduct POCUS on popliteal
nerve block and a subsequent diagnosis based on the availed
health information [151].

Overview of the Hardware and Software Units for the
Included Studies
To experience MR, high-simulation visualization hardware
devices and some of the commercial ones included in the
selected studies are listed in Multimedia Appendix 2. These
include high-end AR and VR devices, smart glasses, mobile
devices, standard LED (light emitting diode) and LCD (liquid
crystal display) television or display screen, 3D television, and
3D projectors. The commonly included immersive
reality-capable devices are mostly wearable technology such
as smart glasses, VR or AR HMDs, and nonimmersive standard
display units. However, these high-fidelity simulation display
technologies form the final part of any system and are primarily
used in combination with optical capturing and tracking devices
and input devices. The optical capturing and tracking systems
or devices incorporate 3D depth and color-sensing camera
sensors. The input devices such as controllers, trackers, or
customized input modules help navigate the immediate VR or
any MR environment. Various studies have included the VR
gaming element in their rehabilitation programs, with some
having their own developed VR rehabilitation system. Most
included studies have used biometric devices for specific
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medical parameter evaluation to draw analysis and simulation
models to conduct various training. Other relative hardware
devices and systems that have been used are listed in the
Multimedia Appendix 3.

The graphical representation for any software harbors a
visualization platform, and more specifically, the MR system
incorporates contextual 3D figures and scenes. The various
software applications and source platforms that were featured
and used in the included studies are listed as a table in the
Multimedia Appendix 4. These applications are grouped as 3D
modeling and visualization software, communication and
streaming software, file-sharing and transfer applications, and
other specific and personalized software applications. The 3D
composite images and environment for the MR technology are
created using the computer graphic designing software and
gaming engine platforms. Processing and accessing the 3D
computer-generated environment or images needs specific and
compatible visualization file applications supported by the
device. The featured 3D modeling and viewing application
allows for creating and editing static and interactive
multidimensional models and VR scenes, animations, and
games, conversion of the produced scanned images to
computer-aided design models, and stereoscopic 3D display
content. The telehealth domain explores the ICT for effective
remote clinical services while using the streaming facilities
offered by various low-bandwidth platforms. This domain allows
offline or real-time interactive communication and collaboration
for any dedicated clinical services. Many communication and
streaming applications allow for remote one-to-one or group
video calls and messaging, screen sharing, file sharing, hosting
channels, and video broadcasting. Some of these platforms allow
for direct AR and VR integration and acceptance. The
file-sharing and other specific applications are synchronously
and explicitly used as a sequential fragment of the entire system.
The developed software from the studies mentioned in the table
encapsulates the combination of AR and VR cooperatively with
the remote telehealth applications.

Virtual Environment
A virtual environment (VE) recreates a coordinated appearance
of sensory information representing that of a physical
environment that can be unreal, interactive, or wholly imagined
environment perceived when the user wears an appropriate
gadget [152]. In addition, the term virtualworlds has been
interchangeably used with a VE. Developing this state-of-the-art
perceived environment is created using a subset of tools arising
from computer game technology, specifically through
commercial game engines. The scene can be a 2D or 3D
illustration, which is a complex and time-consuming process
for its creation [153]. This element of VE has been recreated in
almost every aspect using the VR platform. For example, the
study by Levy et al [125] demonstrated the use of virtual worlds
such as a subway station and a 24-story high-rise building as
background scenes to overcome acrophobia as a VR exposure
therapy. Similarly, Cikajlo et al [127] developed a program
called ReCoVR (Realizing Collaborative Virtual Reality for
Well-being and Self-Healing). The participant attends a remote
guided mindfulness program as part of a group. This
mindfulness program was organized as 360° video scenes where

they carried out different tasks and exercises. Initially, all the
participants that joined were seated in the virtual fireplace room;
upon the program’s progression, they were switched to other
3D VEs, such as the Dooney Rock, River Bonnet, or the
mountain-view. Shao and Lee [132] have addressed a social
VR platform that uses the 3D scenes in the VE for real-time
face-to-face communication in different distant locations to
learn about its value and urgency in the urban older adult
population. Tamplin et al [72] developed a web-based music
therapy telehealth platform using social VR, vTIME (vTime
Limited), allowing group music therapy sessions in VE, such
as singing around a campfire in a forest.

Gaming-Based VE
Moreover, many studies used VE in interactive game–based
settings for rehabilitative exercise programs. In a program
described by Meca-Lallana et al [53], patients were required to
carry out specific tasks to accomplish a mission in 2 different
scenes: a medieval fantasy world and a deserted island. Yet
again, in another exercise setup, VR exercises depict a wooden
church in Hrabova Roztoka. The patient explores this particular
place using a VR headset, thereby facilitating lower-limb
rehabilitation [36]. Telerehab VR, a custom-built application
program that runs on either a mobile-based tablet or PC, was
developed using the game engine Unity (Unity Technologies
Inc). This system provides upper-limb rehabilitation for patients
with multiple sclerosis. They perform various activities of daily
living tasks happening in the VE in a realistic home setting. A
leap motion controller (Ultraleap) was used to track and control
the hand motion executed while performing the gaming tasks
[48].

Telepresence
Telepresence describes the characteristic of directly interacting
with the actual physical state, experienced from the first-person
viewpoint of the user located remotely [154]. Tian et al [147]
used the H-TIME (Haptic Enable Tele-Immersion
Musculoskeletal Examination) set up at both the patient and
doctor ends to conduct a remote diagnosis of musculoskeletal
examination. At both sites, the doctor and patient could feel
each other’s movements because of the bidirectional force
feedback mechanism. They could view and communicate with
each other in the VE, bringing them to the same examination
room virtually. In another instance, in treating phobia, in
particular, fear of spiders, the patients were allowed to interact
in the VE, where the therapist gradually added the feared
creature to the scene. This treatment is performed remotely via
the tactile internet with VR headsets or standard computer
screens using a hand-tracking and haptic device such as a glove
[126].

Teleoperation refers to performing designated highly skilled
manual tasks remotely, similar to a telerobotic medical system
in minimally invasive surgery [155]. In a simulated study, an
endoscopist performs a teleoperation process using a haptic
device that controls the position of an external permanent
magnet positioned at the end of a robotic arm. The user is
wearing a VR headset and receives the corresponding visual
information from the camera of the endoscopic capsule and then
proceeds with the navigation process inside the colon [139].
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Another simulated study used teleoperated ultrasonography that
builds on the VE developed as a 3D representation of a real
USG probe and a mannequin imitating a patient’s body
highlighted with a geometric mesh for the purpose of following
the examination. The user wears an Oculus Rift DK2 HMD
(Oculus) to perform this simulation of tele-USG [148].
Syawaludin et al [150] introduced the use of 360° foveated
pipeline imaging viewed via an HMD. The image or video
capture is facilitated by the use of an omnidirectional
pantilt-zoom camera module, and the remote physician can
remotely diagnose the wound by zooming in and inspecting it

in a 360◦ view over the HMD.

Exergaming and Serious Gaming via VR
In the context of virtual telerehabilitation, exergaming and
seriousgames are the 2 most popular applications that emerge.
Simply put, exergaming is an activity connected with playing
video games that involve physical exercise [70]. In contrast,
serious games follow the objective of games, implicitly focusing
on increasing skills and abilities and gaining experience and
knowledge [156]. The TELEKIN system, a beta edition, uses
the interface of the serious game to rehabilitate cognitive and
musculoskeletal disorders using a web-based framework [43].
The training sessions are conducted and played in a 3D VE that
includes a number of games. Two of them involve physical
actions—flexion and extension of wrist, hip, or shoulder as the
doctor chooses to control the ball and platform in executing the
game. Another game focuses on cognitive rehabilitation by
featuring random words that the user must arrange them to form
a sentence, which can be achieved using gesture-based controls
[43]. Gandolfi et al [44] used the Tele Wii Lab platform as a
home-based balance training, and Sheehy et al [28] and Allegue
et al [30] used the Jintronix system (Jintronix, Inc) in
upper-extremity rehabilitation of chronic poststroke patients,
which used the exergaming platform. The study by Triandafilou
et al [24] that developed a networked multiuser gaming format,
Virtual Environment for Rehabilitative Gaming Exercise
(VERGE), conducted a feasibility trial to determine the
effectiveness of this developed system with other potential home
treatments. The VERGE system features a set of 3 exercises,
namely Ball Bump, where the users pass the ball back and forth
across the table; Food Fight, where the users in multiplayer can
pick up the food on the table and throw it at each other; and the
Trajectory Trace game, where 1 player draws a trajectory path
in the space while another player retraces the trajectory to erase
it. Burdea et al [32] included a commercial rehabilitation system
with a novel therapeutic game controller, BrightBrainer (Bright
Cloud International Corp). This system offers a multitude of
interactive games (Breakout 3D and Card Island Towers of
Hanoi, among others), training motor, cognitive, and executive
functions for chronic poststroke patients. Qiu et al [35]
demonstrated the feasibility of a home-based VR system that
features 12 developed games focusing on the elbow-shoulder,
hand, wrist, and entire arm for upper-extremity rehabilitation
in poststroke patients (finger games: car, bowling, and piano;
hand games: piano and fruit picking; wrist games: Wakamole
and wrist flying; and finally, the shoulder-elbow games: the
Maze, Arm Flying, Brick Break, and soccer goalie)

Avatar Representations or Virtual Agents
The term avatar is a distinguishable digital characterization of
a human form (either specific or random) [128]. Moreover,
these avatars can be either in 2D or 3D illustration, representing
a specific part of the body, usually arms or an entire body
structure with particular facial expressions. 3D avatars have
been a central representation in the scope of VR and AR. The
study by Anton et al [59] implements the Kinect-based
Telerehabilitation (ie, KiRES) interface, providing two 3D
avatars to guide the patient during their physical therapy session.
One of the avatars represents the remote therapist and represents
the local user or the patient, colored red and blue, respectively,
so the patient can follow and perform the exercises executed
by the 3D remote therapist avatar (in red). The patient can see
their movements reflected by their blue avatar changing their
positions as per the scenes from the therapy. In the study trial
conducted by Jung et al [74], in a telerehabilitation
program—Pulmonary Rehabilitation in Virtual Reality (PR in
VR) program—each patient was provided with a VR headset,
pico G2 4k (Pico Immersive Pte Ltd), preloaded with the PR in
VR application. This application contains education and
rehabilitation modules, and the chronic obstructive pulmonary
disorder rehabilitation module comprises several physical
exercises directed by a virtual instructor in 3D avatar
embodiment.

The REWIRE autonomous telerehabilitation platform offers
home-based intensive rehabilitation as offline remote monitoring
by hospital clinicians. This system features a virtual therapist
with artificial intelligence implanted and provides real-time
feedback to maintain correct posture. In addition, the exercises
performed by the patients are showcased as a 3D avatar on the
screen. This intelligent system highlights each body segment
of the exercise in a different color, intense green for the proper
posture and red color for the incorrect posture [23]. The VERGE
system enables the use of avatars to control and manipulate
objects in the virtual gaming environment, allowing the
capability to include multiple avatars and different users to
manipulate the same object [24]. In the social VR app, vTIME
(vTime Limited), an avatar persona is used for
self-characterization to communicate in an immersive VE [128].
Afyouni et al [65] describe the use of RehaBot, a virtual assistant
that illustrates to the user how to perform the exercises correctly
(both the therapist and patient can replay the session in a 3D
avatar). The RehaBot embeds real-time pattern and gesture
recognition together with a dynamic correction module that
considers the game difficulty level and reading from the virtual
assistant to produce a tailored set of exercises that are rather
fitting to the patient’s native abilities.

Telestration and Annotations via AR and MR
Telestration enables the drawing of freehand representations,
also known as annotations (such as lines, circles, or any other
symbols or sketches) over any image or video feed. With the
latest AR and MR technology, this telestration can be achieved
in 2D and 3D and superimpose this annotation in the live video
streaming during the video call [157]. The Virtual Interactive
Presence and AR tool is a mobile or tablet-based augmented
reality platform running on an iPad device (Apple). It
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incorporates the telestration feature, allowing the remote expert
surgeon to freeze the screen and then draw an image using a
2D pen tool. This composite video feed, viewed on both the
local and remote stations, enables intraoperative
telecollaboration in real-time [90]. In the feasibility study by
Wang et al [100], POCUS using the HoloLens was conducted
by the trainee in a simulated teleconference session. The MR
capture video from the trainee was broadcasted. Live guidance
provided by the expert mentor facilitates the trainee to complete
a right quadrant Focussed Assessment using Sonography in
Trauma examination. The broadcasting was achieved using
VSee, a proprietary low-bandwidth, group videoconferencing
and screen-sharing application. To perform complex hand
reconstruction of a patient after a bomb-blast injury, a
telementoring network was established between an expert
surgeon in Lebanon and a local surgeon in Gaza. This session
was hosted using a cloud-based AR platform Proximie (Proximie
Limited), allowing the remote surgeon to superimpose their
own hands or range of annotations and drawing tools into the
virtual surgical field [82].

Mitsuno et al [93] demonstrated telementoring in a simulation
study to perform craniofacial surgery by using a
teleconferencing setup, Skype (Microsoft Corp) for HoloLens,
enabling the telestrated features and images overlaid on the
receivers’ visual field. A POCUS examination was performed
using a novel smartphone app Vuforia Chalk (PTC Inc), an AR
video platform for remote AR assistance, anchoring the AR
annotations in each other’s supposed visual environment [151].
In the study, Ritcher et al [141] proposed the first predictive
display with AR registration and rendering using stereoscopic
displays designed for teleoperated surgical robots known as
Stereoscopic AR Predictive Display. The simulation study
measured the effectiveness of Stereoscopic AR Predictive
Display conducted on the da Vinci R Surgical System (Intuitive
Surgical) to complete the peg transfer task. The System for
Telementoring with AR (STAR) platform now combines optical
see-through display, HoloLens AR HMD. Similarly, this system
allows for telementoring guidance by overlaying 3D graphical
annotations onto the mentee’s view of the surgical field, which
remains anchored in the same place even after the mentee moves
their head position [95].

The experiment by Zhang et al [110] aimed to enhance
teleconsultation by using the AR technology ARkit (Apple) to
create an immersive replica of the consultant. Using a Kinect
sensor (Microsoft Corp) to capture the skeletal feature points
of the consultant, the patient views a 3D dynamic virtual avatar
doctor appearing in the patient’s telepresence environment on
their iPad device. A qualitative study was conducted to gain the
experience and perception of AR Glasses in patients with
pulmonary disorders for home-based telerehabilitation. The
web-based telerehabilitation system Optimov (Optimov) enabled
via an AR Glasses device Laster WAV  headset (Laster
Technologies) provides exercise coaching using a 3D virtual
agent [73]. A holographic virtual therapist was deployed in the
HOLOBALANCE, a novel health care platform for providing
vestibular rehabilitation therapy for patients with balance
disorders [158]. In the design and evaluation user study by
Kowatsch et al [119], a hybrid ubiquitous coaching model

relying on mobile and holographic conversation agents was
introduced. The 3D virtual conversation agent demonstrated
the squat exercise, engaging in real-time audio feedback for
counting the repetition or providing automatic error detection
for incorrectly or incompletely following the exercise. An
innovative 3D point tracking module and unique AR system
integrated with the HoloLens was used for surgical applications
using telementoring. This module allowed for real-time 3D
position tracking of the virtual scalpel handled by an experienced
surgeon remotely. The inexperienced trainee wearing the
HoloLens can see the surgical annotation superimposed with
the actual surgical scene; the virtual path coregistered on the
phantom arm model [78]. Next-generation mobile-based AR
games for pediatric health care allow shared experiences with
multiple other AR-supported devices to detect and interact using
the same local area network. Several games were developed
using the Unity game engine and ARCore Unity, a software
development kit for Android operating software. Jungle
Adventure, Map explorer, and Wakamole implemented AR
interaction, whereas Map explorer and Wakamole particularly
enabled the inclusion of a 2-player for a shared collaborative
experience [118].

First-Person View for AR Capture Video Feed
Noorian et al [102] demonstrated smart reality glasses to conduct
remote consultation using the National Institutes of Health
Stroke Scale scores for stroke assessment. The onsite doctor
wears the reality glass, Google glass. This Google glass is
embedded with the Xpert Eye platform (AMA XpertEye),
capable of assisted reality, allowing the person wearing this
device to share their field of view in a 2-way real-time
videoconferencing. Similarly, Nikouline et al [123] presented
a feasibility study using the Google glass live video stream
coming from the onsite proctor and the participant tasks related
to fundamentals of Laparoscopy for scoring and evaluation done
by the remote proctor. In their experiment, Lin et al [84]
implement projective video texture-mapping that supplements
a robust high-level stabilization video feed obtained from the
mentee’s first-person view. This effective format provides the
remote expert with an effective workspace visualization,
allowing seamless integration of annotations in an effective AR
surgical telementoring. The prospective observational study by
Martin et al [103] uses HoloLens 2 MR device to conduct remote
clinical consultation in a COVID-19 ward. A senior staff
member would enter the COVID-19 ward to undertake clinical
rounds, and the other staff members of the staff team would
join virtually, thereby minimizing exposure and infection
transmission. Dynamic 365 Remote Assist (Microsoft Corp)
software allowed for bidirectional audio and video functionality
through which the remote staff team could see the first-person
view from the HoloLens 2 device. In addition, this platform
allowed to place relevant imaging and electronic health record
data in the user field of view, improving situational awareness
and better clinical decision-making. Finally, it significantly
reduced the risk of direct viral transmission.

Web- and Cloud-Based Telehealth Delivery Modes
As digital communication network and services evolve, these
are rapidly being adopted in health care delivery. The web- and
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cloud-based applications have become prevalent in telehealth.
Telehealth relies on the backbone of internet infrastructure
supported using various broadband connections such as digital
subscriber lines, fiber broadband, and wireless connection,
including fixed wireless broadband, cellular network or mobile
broadband, and satellite communication. Thus, ICT has become
central to offering an array of digital health solutions such as
real-time audio and videoconferencing, remote patient
monitoring, store and forward technologies, and mobile health,
among others [159,160]. A web-based application principally
operates on the webserver. It is accessed through a web browser
over an internet connection, whereas cloud-based applications
operate similarly to web applications, operating on either or
both the client and server sides [161]. The custom-developed
systems KiRES [59] and STAR [85] rely on the WebRTC
framework, an open-source application programing interface
allowing for real-time audio-video and multimedia connection.
In addition, the study by da Silva et al [55], included a
web-based gaming application MoveHero, to evaluate the
feasibility of home-based nonimmersive serious games in
patients with cerebral palsy.

Interestingly, any virtual web-based application feeds on the
information; thus, data storage and hosting become integral to
all online services. The study by Kato et al [42], adopted the
cloud-based storage and file hosting service Dropbox (Dropbox
Inc) for collecting the spatial coordinate data for each joint using
the 3D optical camera during the VR telerehabilitation. The
proof-of-concept study by Sirilak et al [107], implemented an
e-consultation system based on the AR and MR systems using
the HoloLens device for remote consultancy services in the
intensive care environment. This e-consultation platform
depended on a cloud-based data center that performed as an
information exchange and provided services for the end devices.
It also consisted of body area network technology to integrate
the vital physiological information from different client devices
to the data center. Prvu Bettger et al [62], used a virtual
telehealth system—virtual exercise rehabilitation assistant or
virtual exercise rehabilitation assistant (Reflexion Health,
Inc)—for posthospital care for total knee arthroplasty, Tsiouris
et al [2] included a custom-developed platform
HOLOBALANCE system in managing balance disorders, both
using the technology-forward cloud-based platform.

Discussion

Principal Findings
This scoping review explores state-of-the-art extended reality
platforms and telehealth solutions used in the clinical context.
This review highlights the reported evidence-based practical
and probable applications of the extended and MR platform
with telehealth used in different clinical specialties. This review
also addresses the technical characteristics of the AR and VR
features used in telehealth services, including various hardware
and software arrangements.

Stroke is the leading clinical condition incorporating
telerehabilitation, a segment of the telehealth service and digital
VR [23-41]. Approximately half of the included studies from
the search strategy feature the use of telerehabilitation (Figure

4). Other clinical conditions such as neurological or cognitive
disorders, musculoskeletal conditions, and postsurgical recovery
have also adopted telerehabilitation facilities in the home or
remote settings to continue treatment. Telerehabilitation used
technical attributes of exergaming and serious gaming in
improving the motor and cognitive functional skills [43-58].

Other divisions of telehealth, namely telementoring,
teleconsultation, and telemonitoring, have been more frequently
used for surgical-related procedures, emergencies and trauma,
and in several disaster simulation for disaster response and
preparedness [162]. The AR and MR technologies are more
prevalent with telementoring, teleconsultation, and telesurgery
(Figure 3). Exposure therapy under telepsychiatry has used VR
to give the patient a photorealistic experience of overcoming
their pathological response to their fear [126].

Telestrated AR features through anchoring of annotations in
real-time and space, performed remotely via various
communication channels: a useful aid in telesurgery [81]. The
technical features from the digital reality technology of VE,
digital avatars, telestration or the 3D rendering of annotations,
and first-person viewpoint have demonstrated telemedical
capabilities. The web- and cloud-based applications have various
potential uses across the web-based clinical sphere [110]. Most
of the included studies relied on existing commercial
high-fidelity simulation technological hardware devices such
as head-mounted AR and VR displays. The study and software
designs for most of the included studies were codeveloped by
the respective research teams by using multiple supportive
platforms as a direct requirement for the project objectives.

These novel reality technologies of AR, VR, and MR enable
3D visualization, thereby creating a visual sense and experience
of high ecological validity [163]. This technology has been
extended as a remote, home-based solution for patients, thereby
enabling patient empowerment [164]. This technology is highly
engaging and motivating from the patient responses to
telerehabilitation, consequently necessitating initial patient
training needs may become an arduous task to the facilitator
[42,165]. Network connectivity, internet and server security
concerns, and technological constraints are some of the most
common pitfalls across several studies included in this review
[99,166]. The lack of interoperability between the hardware and
software platforms poses a significant challenge in realizing the
potential of this technology [2]. The need for improved network
infrastructure and scalability poses a challenge and target for
telehealth services; however, there is a risk of complete network
failure, which can affect the use of such systems in critical care
applications [83]. Patient confidentiality is integral at any stage
during electronic exchange of health-related data; thus, network
and data security protection are crucial factors for accessing
telehealth services and should be robustly adhered to the
governing regulations [66,149,167].

The exploded search strategy captures a broad array of important
clinical applications of this high-fidelity reality technology and
telehealth facilities. This review presents a current road map
and the prospects of digital reality technology and telehealth in
the clinical space. The determining factors presented allow the
readers and researchers to evaluate the relevance of this
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technology and its subsequent uptake in the clinical health
sector. The study protocol was not registered, the included
studies were not classified for risk of bias assessment, and the
general characterization for the included studies were not
presented. In addition, the review only included studies available
in the English language and no relevant additional pieces of
information was considered from the gray literature. From the
broad array of literature-based evidence, most of the included
experimental studies were pilot feasibility studies with small
sample sizes, leading to reporting bias.

Conclusions
This review uniquely details the current and potential
applications of digital reality technologies such as VR and AR
and telehealth solutions. The feasible and practical application
of AR and VR in the digital clinical space has been explored,
as well as the challenges this multiparty technology endures in
effective implementation and adoption. This suite of

technologies offers a collaborative experience among health
care professionals and their patient community. The telehealth
component with the high-fidelity digital reality allows for an
immersive and integrative means for teleconsultation,
telesurgical procedures, and telementoring among the medical
peer-to-peer group allowing for effective decision-making and
treatment approaches. The uptake of VR and exergaming in
various telerehabilitation programs has opened new avenues to
posttreatment measures. This essential application of telehealth
enhances the traditional health care delivery approach by
enabling remotely delivered clinical care and services and
developing home-based treatment programs. Further validated
studies are needed to evaluate the overall assessment of this
trending technology, thereby leading to commercial pathways.
A robust and secure communication infrastructure will improve
the accessibility of telehealth capabilities and extend the
interoperability of the digital reality platform allowing for a
diverse digital health care ecosystem.
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Abstract

Background: Measuring the amount of physical activity and its patterns using wearable sensor technology in real-world settings
can provide critical insights into health status.

Objective: This study’s aim was to develop and evaluate the analytical validity and transdemographic generalizability of an
algorithm that classifies binary ambulatory status (yes or no) on the accelerometer signal from wrist-worn biometric monitoring
technology.

Methods: Biometric monitoring technology algorithm validation traditionally relies on large numbers of self-reported labels
or on periods of high-resolution monitoring with reference devices. We used both methods on data collected from 2 distinct
studies for algorithm training and testing, one with precise ground-truth labels from a reference device (n=75) and the second
with participant-reported ground-truth labels from a more diverse, larger sample (n=1691); in total, we collected data from 16.7
million 10-second epochs. We trained a neural network on a combined data set and measured performance in multiple held-out
testing data sets, overall and in demographically stratified subgroups.

Results: The algorithm was accurate at classifying ambulatory status in 10-second epochs (area under the curve 0.938; 95% CI
0.921-0.958) and on daily aggregate metrics (daily mean absolute percentage error 18%; 95% CI 15%-20%) without significant
performance differences across subgroups.

Conclusions: Our algorithm can accurately classify ambulatory status with a wrist-worn device in real-world settings with
generalizability across demographic subgroups. The validated algorithm can effectively quantify users’ walking activity and help
researchers gain insights on users’ health status.

(JMIR Biomed Eng 2023;8:e43726)   doi:10.2196/43726

KEYWORDS

digital measurement; wearable sensor; machine learning; ambulatory status; Project Baseline Health Study; physical activity

Introduction

Quantifying physical activity can be highly informative about
both general health status and the condition of people with
specific diseases [1,2]. Characteristics of physical activity have

been shown to be prognostic factors in various chronic
conditions [3-13]. Yet reliably producing research-grade
measurements of physical activity in real-world settings remains
a challenge. Traditionally, the validation of such measurements
often relies on individual self-reports or is performed

JMIR Biomed Eng 2023 | vol. 8 | e43726 | p.24https://biomedeng.jmir.org/2023/1/e43726
(page number not for citation purposes)

Popham et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

mailto:spopham@verily.com
http://dx.doi.org/10.2196/43726
http://www.w3.org/Style/XSL
http://www.renderx.com/


episodically and in artificial laboratory environments. These
approaches suffer from known challenges, such as subjectivity,
assessment bias, and unreliability [14-16].

Recently, the advent of wearable technology has made it
possible to measure physical activity to a previously untenable
extent [17,18]. Ambulatory activity in particular, namely
whether individuals are walking and how much, is a basic aspect
of physical activity that can be investigated in general
populations and in specific clinical settings. Wearable devices
can collect information passively during daily living and
generate a vast quantity of digital measurements that allow
researchers to probe functional physical activity generally and
ambulatory activity specifically. Using these digital measures
in research studies, however, requires analytical validation [19].
In their design, validation studies have to balance factors such
as feasibility and the resource-intensiveness of their data
collection approach with demonstrating validity in representative
populations.

To date, the majority of measurements in validation studies
have come from either short observation periods in laboratory
settings [20,21] or self-reported labels in real-world settings
[22]. Laboratory measurements often render observations with
exceptionally clean and easy-to-use ground-truth labels, but
algorithms trained on data of this kind do not always generalize
to everyday activities [23]. On the other hand, using
self-reported labels as the ground truth yields a closer reflection
of individual everyday activities, but these labels are often noisy
and less accurate [15,16,24]. There have been some examples
of reference devices deployed to generate accurate truth labels
in generalizable real-world settings [25,26], but this came at
the cost of intrusiveness and resource-intensive data processing
steps after collection, such as manual video footage tagging.
With all these considerations in mind, validation studies tend
to be highly heterogeneous, and need to be interpreted in
context.

Herein we report on the development and analytical validation
of an ambulatory status classification algorithm. This algorithm
classifies the ambulatory status of users of a wrist-worn device
in real-world environments. We carried out 2 separate studies
including participants from independent populations with
distinct sources of ground-truth labels for a deeper
characterization of the algorithm performance. One of the
studies, the pilot program study, used a relatively small and
demographically homogeneous cohort, where participants
provided a highly accurate ground-truth source from a reference
device. The other study was derived from the Project Baseline
Health Study (PBHS), a prospective, multicenter, longitudinal
study with participants of diverse backgrounds who were
representative of the entire health spectrum [27]; this was a
demographically diverse cohort that provided self-reported
labels as the ground-truth source. This cohort was also relatively
large, and we therefore expected it to yield results less
susceptible to outlier readouts. We present analytical validation
results of the performance of our algorithm against the highly

accurate ground-truth source (from the pilot), and we examine
the generalizability of the results across a study population of
demographically diverse individuals (in the PBHS).

Methods

Participant Cohorts
Two distinct studies were conducted, with training and testing
groups identified a priori within each study. Participants in both
studies wore the smartwatch (the Verily Study Watch) [27-30].

The first study was a pilot program (n=75) of adult volunteer
participants recruited among Verily Life Sciences employees
in 2 locations (South San Francisco, California, and Cambridge,
Massachusetts) without specific selection criteria. For this group,
ground-truth labels were collected from an ankle-worn reference
device (StepWatch 4). The Verily Study Watch and reference
device were worn simultaneously for 7 consecutive days to
ensure capture of both weekday and weekend behavior; for each
participant, days were included as evaluable if both devices
were worn synchronously for a minimum of 8 hours. No
demographic information on race or ethnicity was collected in
this study. The observation period ran from June to December
2019.

In order to expand the demographic representativeness of the
overall validation effort, the second study included a large and
diverse cohort (n=1691) consisting of participants from the
PBHS who consented to participate in this substudy [27]. The
period for data collection ran from May to December 2019.

Ethics Approval
The pilot program was determined to be exempt research that
did not require institutional review board review. Written
informed consent was obtained from all participants enrolled
in the PBHS; the PBHS was approved by both the WCG
institutional review board (approval tracking number 20170163,
work order number 1-1506365-1) and the institutional review
boards of each participating institution (Stanford University,
Duke University, and the California Health and Longevity
Institute) [27]. The PBHS was registered at ClinicalTrials.gov
(NCT03154346).

All methods complied with relevant guidelines and regulations;
the research involving human participants was performed in
accordance with relevant guidelines and regulations.
Experimental protocols were approved by appropriate
committees from Verily Life Sciences and by PBHS governance
(participating institutions are above).

Wearable Devices
The Verily Study Watch recorded acceleration data in both
cohorts via an onboard inertial measurement unit with a 30 Hz
3-axis accelerometer. For the PBHS population, the smartwatch
also contained a user interface allowing participants to tag their
activities on the watch (Figure 1A).
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Figure 1. (A) Sketch of the user interface of the study device used in the Project Baseline Health Study. (B) Data elements for the 2 studies. (C) Flow
of participant inclusion for the different cohorts and data sets in the 2 studies. AUC: area under the receiver operating characteristic curve; PBHS: Project
Baseline Health Study; QC: quality control.

The reference device for the pilot program was an ankle-worn
single-axis accelerometer (Modus StepWatch 4) that provided
step count as a reference label for algorithm development.

Reference Labels
In the pilot program, we generated reference labels on data
collected from the ankle-worn StepWatch: 10-second windows
were considered “ambulatory” if they had ≥3 steps on the

wearing foot and “nonambulatory” if they had <3 steps [31].
The default window size returned by this device was 10 seconds,
and this was deemed to provide good temporal granularity.

For the self-reported reference labels from the PBHS,
participants tagged their activities as 1 of 3 options listed by
the wrist device: “walk/run,” “still,” and “other.” Participants
could tag the start and end of an activity period directly on the
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watch, which enabled precise synchronization of the labels to
the raw sensor data stream. When necessary, participants could
edit or delete tags as needed (Figure 1B). For the purpose of
this analysis, “still” and “other” were grouped together under
the “nonambulatory” label, while “walk/run” was equated to
“ambulatory.”

The amount of data used from each of these studies is
summarized in Multimedia Appendix 1, Table S3.

Algorithm Development
Data from each study (pilot program, n=75; PBHS, n=1691)
were split into nonoverlapping training and testing data sets at
the participant level. For each study, data from approximately
half the participants were used for training the algorithm and
data from the other half were held out for algorithm testing. We
decided on a 50-50 split in order to retain statistical power in
the testing data, particularly considering the intended additional
analyses of different demographic subgroups (discussed below).

In the pilot program, the split into training and testing data sets
was based on participants’ daily step counts in order to mitigate
potential algorithmic biases caused by training primarily on
data from participants with either very low or very high activity
levels. The difference in the mean daily step counts between
the 2 halves of the split was 234 steps. For the PBHS cohort,
the split into training and testing data sets was done randomly,
as participants did not have daily aggregated results. We trained
multiple versions of the algorithm with combinations of different
subsets of training data and compared performance across these
different algorithms (Figure 1).

We developed an algorithm that classifies the ambulatory status
of device users in 10-second epochs (as ambulatory vs
nonambulatory). First, the following 14 features were extracted
from the Verily Study Watch’s acceleration data, in 10-second
epochs: 3 features related to deviations of the signal, 5 features
derived from power spectral density energy in frequency bands
typically associated with user ambulation (ie, walking or
running), 2 features that are signal percentiles (ie, 95th
percentiles), and 4 features that are differences between signal
percentiles (ie, IQR). These features were fed into a shallow
neural network model with 2 dense layers: ReLu nonlinearities
and softmax of outputs. The neural network was trained with a
batch size of 32. The Adam optimizer was used with a learning
rate of 0.001, and loss was calculated using categorical
cross-entropy. Training ran for 10 epochs. Alternative features
and neural network architectures were explored using the
training data, but larger feature sets or more complex
architectures did not result in higher performance, so this
algorithm was chosen.

The classifier threshold was optimized to minimize absolute
percentage error on daily ambulatory time on the training data
from the pilot study (vs the data from the reference device used
as the ground-truth source, as discussed above). For this
optimization process, we performed 5-fold cross-validation at
the participant level within the training data. We found the
minimum daily mean absolute percentage error (MAPE) across
the aggregated held-out data from all folds using a 1D grid
search procedure.

The signal-processing, feature selection, model training, and
hyperparameter tuning were all performed on training data sets
identified a priori.

Analyses
The demographic characteristics of the study cohorts were
analyzed using descriptive statistics.

We analyzed the following metrics to characterize the
performance of the algorithm, calculated on the held-out test
sets: area under the receiver operating characteristic curve
(AUC) for the overall study cohorts and across different
demographic subcohorts within the PBHS cohort (this was
chosen as the metric for comparison because, unlike other
measures, such as F1-score or accuracy, it is not susceptible to
differences in the chosen classifier threshold), mean accuracy,
and MAPE of daily ambulatory time, defined as the summing
of all 10-second windows that were labeled as “ambulatory” in
a day.

Analyses were performed in python using NumPy (version
1.21.5), pandas (version 1.1.5), SciPy (version 1.2.1),
scikit-learn (version 1.0.2), and tensorflow (version 2.10.0).

Confidence intervals were calculated using the bootstrap method
with 1000 resampling iterations. Resampling was done at the
participant level to ensure that all data from a single participant
were either included or excluded within each resampling
iteration.

Results

Characteristics of Participants From the Pilot Study
and the PBHS Cohort
Participants in the pilot study were mostly male (45/75, 64%),
with a mean age of 33 (SD 8.5) years. Participants from the
PBHS were more often female (1366/2502, 55%), with a mean
age of 54 (SD 17) years (Multimedia Appendix 1, Table S1).

Algorithm Training
Data from each study were separately split (approximately
50-50) into nonoverlapping training and testing data sets (Figure
1); this allocation was done at the participant level (n=75 from
the pilot study and n=1691 from the PBHS population). Out of
16.769 million 10-second epochs collected from the 2 studies,
8.841 million 10-second epochs were used for training across
all algorithm iterations generated (the data sets are described in
Multimedia Appendix 1, Table S3).

From the pilot program study, a total of 1,641,272
nonoverlapping 10-second epochs were collected (n=70
participants; Figure 1), of which 228,721 (13.9%) were
“ambulatory” according to the reference device–based labels.
We used 879,593 10-second epochs (from 35 unique
participants) for training (118,730, 13.5% of which were
“ambulatory”; Multimedia Appendix 1, Table S3).

We collected a total of 14,814,910 nonoverlapping 10-second
epochs from the PBHS (n=1531 participants; Figure 1), of which
7,079,216 (47.8%) were “ambulatory” according to the
participant-reported reference labels. The proportion of
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“ambulatory” labels in the PBHS was higher than in the pilot
program study (47.8% vs 13.9%), which is likely attributable
to the different labeling methods across studies. We expect that
labeling from the pilot study was more stringent to show true
ambulatory epochs, because these were determined directly by
the reference device readouts (ie, any 10-second epoch with
greater than or equal to 6 steps, relative to all 10-second epochs
collected during the wear time). In the PBHS, the proportion
of ambulatory labels was determined based on participant
self-reported, manually entered walk/run tags relative to all
entered tags. PBHS tagging, therefore, can be more vulnerable
to selection bias toward “ambulatory,” since participants may
favor reporting active over inactive states.

Data from the PBHS were not only divided into training and
testing sets, but, across each set, we considered 2 quality control
(QC) strata to test the impact of data quality on the development
and performance of the algorithm. An extremely light QC
selection, eliminating labels with gross apparent user errors
(such as tags that were longer than a full day), was applied to
generate the “QC-minimal” sub–data set, which therefore
included virtually all labels suitable for evaluation
(10,264/104,212, 9.8% of user-tagged events were eliminated,
and another 12,010/104,212, 11.5% were truncated); a more
stringent selection was applied to generate the “QC-high”
sub–data set (80,852/104,212, 77.6% of user-tagged events were
eliminated, and all tags were truncated to some degree; Figure
1 and Multimedia Appendix 1, Table S2). The 2 strata aimed
to parse out performance variability due to noise generated by
imperfectly self-reported reference labels (this was not a factor
for the labels from the reference device in the pilot program).

The resulting size of these QC training sub–data sets was
160,778 10-second epochs for QC-high (n=173 participants)
and 7,802,829 for QC-minimal (n=829 participants). Of these
labeled epochs, 102,783 (63.7%) and 3,863,964 (49.5%),
respectively, were ambulatory according to the
participant-reported tags (Figure 1 and Multimedia Appendix
1, Table S3).

Effect of Raw Data Quality on Algorithm Performance
We tested each of the algorithm iterations from the training
process above (originated using the 2 PBHS QC sub–data sets
and the pilot data set) across data from the held-out QC sub–data
sets from the PBHS and the pilot program by calculating AUC
values across all combinations. Namely, we tested each of the
following algorithms against the held-out data sets from the
pilot study and the PBHS QC-high and QC-minimal sub–data
sets (Figure 2): (1) trained with the PBHS QC-high sub–data
set, (2) trained with the PBHS QC-minimal sub–data set, (3)
trained with the pooled PBHS QC-high plus pilot data set, (4)
trained with the pooled PBHS QC-minimal plus pilot data set,
and (5) trained with just the pilot data set. For each algorithm
iteration, AUC values varied across the testing sub–data sets
(QC sub–data sets from the PBHS and pilot program), with
differences ranging from 0.047 to 0.187. For each test data set,
the AUC variations across the algorithm iterations (1) through
(5) were narrower, with differences ranging between 0.001 and
0.045. Therefore, data quality differences across the training
sub–data sets did not appear to affect algorithm performance,
as reflected in AUC variability, as much as data quality in the
testing sub–data sets.

Figure 2. (A) Heat map of AUC values for the algorithm iterations generated via different training sub–data sets from the PBHS when tested on each
of the separate testing cohorts. (B) AUC values for the algorithm iterations generated via different training sub–data sets from the PBHS when tested
on each of the separate testing cohorts, with error bars based on the 95% CI. Each testing cohort is shown with a different color or symbol. From top
to bottom, the red dotted lines indicate mean AUC values for the pilot, PBHS QC-high, and PBHS QC-minimal test data sets, respectively. The model
trained on combined PBHS QC-high and pilot training data (highlighted in yellow) was the version of the algorithm used for further analyses. AUC:
area under the receiver operating characteristic curve; PBHS: Project Baseline Health Study; QC: quality control.

Based on the testing results described above, we selected an
algorithm trained using combined data from one of the PBHS
sub–data sets (QC-high) plus the pilot program data set to
proceed to further analysis. This algorithm iteration (termed
“version 2022”) showed the highest testing performance

(evaluated by AUC) calculated with data from the pilot program
(the most precise and cleanest data set) without substantially
reduced performance on PBHS data (Figure 2). With this
approach, we prioritized testing the accuracy of the algorithm
against participants’ actual ambulatory status based on the
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reference device, not against the type of labels that are most
feasible to obtain (ie, self-reported labels), although we report
accuracy on both types of labels.

Algorithm Testing
Tested against the held-out data set from the pilot program
(Table 1), the selected algorithm had a sensitivity of 71% and

a specificity of 95%, for an overall accuracy of 91.5% (95% CI
90.3%-92.9%; Figure 3A) and an AUC of 0.938 (95% CI
0.921-0.958; Figure 3B) when classifying the ambulatory status
of 10-second epochs. When tested on the held-out data set from
the PBHS QC-high sub–data set, the selected algorithm had an
overall accuracy of 75.7% (95% CI 72.5%-78.6%) and an AUC
of 0.832 (95% CI 0.800-0.864).

Table 1. Algorithm performance measures.

AUC-PRCcAUC-ROCbF1-scorePPVaSpecificitySensitivityAccuracy

0.7810.9380.7010.6960.9480.70691.3%Pilot study

0.9010.8320.7880.8850.8020.73175.8%PBHSd QCe-high

aPPV: positive predictive value.
bAUC-ROC: area under the receiver operating characteristic curve.
cAUC-PRC: area under the precision-recall curve.
dPBHS: Project Baseline Health Study.
eQC: quality control.

Figure 3. (A) Accuracy of the algorithm selected for full analysis, as evaluated in the pilot cohort. Here, the color map denotes K, the number of
10-second epochs. Percentages are normalized across rows, which allows easy reading of the sensitivity and specificity values. (B) Receiver operating
characteristic curve and area under the curve of the algorithm selected for full validation, as evaluated in the pilot cohort. The red X denotes the true
positive rate and false positive rate of the algorithm at the chosen classifier threshold. AUC: area under the receiver operating characteristic curve.

The proportion of predicted ambulatory epochs of the selected
algorithm varied with the number of steps in the 10-second
epochs (Figure 4). The lowest proportion of predicted
ambulatory epochs happened in the 3 to 5 step range (36%-57%
sensitivity, ie, correct predictions as “ambulatory: yes”), and
the proportion of epochs classified as ambulatory grew with

additional steps in the 10-second window (67%-91% correct
predictions). Note that data from epochs with more than 11
recorded single-leg steps are not shown due to their low
frequency (the number of samples per step count is shown in
Multimedia Appendix 1, Figure S1).
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Figure 4. Predictions of the selected algorithm to classify 10-second epochs as ambulatory (or not) according to the number of steps in the 10-second
epochs based on the reference device data from the pilot program study. A perfectly performing algorithm would predict “ambulatory” for all epochs
with 3 or more steps on the wearing foot (indicated by the blue shadow), and nonambulatory for all epochs with fewer steps (indicated by the gray
shadow). Epochs with more than 11 recorded steps are not shown due to their small sample size (Multimedia Appendix 1, Figure S1).

When considering daily step aggregates as the metric of interest,
there was good agreement between the algorithm classifications

and the reference (R2=0.771), with a MAPE in daily ambulatory
time (minutes) of 18% (95% CI 15%-20%) and a median
absolute percentage error of 14% (Figure 5A and Figure 5B).
The mean absolute error (MAE) of daily ambulatory time was
19.5 (95% CI 15.0-23.2) minutes, and the median absolute error
was 14 minutes (Figure 5C). Consistent with the observations

at the 10-second epoch level, the magnitude of error in daily
ambulatory time (ie, the difference between algorithm-predicted
and actual values) was dependent on the actual daily ambulatory
time (as computed by the StepWatch; Figure 5D): the chance
for underestimating daily ambulatory time (in minutes) grew
as the reference daily ambulatory time increased. The largest
underestimation we observed was 138.5 minutes in absolute
time (relative error 32.5%).
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Figure 5. Agreement and error rates of the algorithm predictions. K is the number of user-days. (A) Agreement between the selected algorithm’s
predictions and the ground-truth source for daily ambulatory time in the pilot-testing data set. (B) Absolute percent error in daily ambulatory time:
median (pink box) and mean (purple box). (C) Absolute error in daily ambulatory time in minutes: median (purple box) and mean (pink box). (D)
Modified Bland-Altman plot showing error in daily ambulatory time (in minutes) as it relates to the ground-truth daily ambulatory time.

Performance of the Ambulatory Status Classification
Algorithm Across Demographic Subgroups
In order to characterize the generalizability of the algorithm’s
performance, we calculated AUC values for the selected
algorithm across demographic subgroups based on gender, age,
and race. Initially, in the testing data set from the pilot program
(Figure 6A), the results suggested a possible difference in
performance between male and female participants, as seen in
the lack of overlap of the 95% CIs. However, in a similar
analysis using the larger and more diverse testing data set from

the PBHS, which enabled subanalyses by participant gender,
race, and age, that difference was no longer present and the
results showed no meaningful performance difference across
any of the subgroups of age, gender, or race, as evidenced by
the overlapping 95% CIs (Figure 6B). A replication of the
majority population from the pilot study within the PBHS
showed an AUC of 0.8166 (95% CI 0.7501-0.8666) for White
males aged 31 to 65 years in the PBHS cohort, which was not
significantly different from the AUC of the PBHS cohort as a
whole (AUC 0.8339).
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Figure 6. Performance (AUC values) of the selected algorithm across different demographic subgroups. (A) The pilot study testing data set. (B) The
PBHS QC-high testing data set. AUC: area under the receiver operating characteristic curve; PBHS: Project Baseline Health Study; QC: quality control.

Discussion

This study presents the analytical validation in a real-world
setting of an algorithm to classify the ambulatory status of users
wearing a smartwatch. The algorithm performs well,
distinguishing between ambulatory and nonambulatory states
with high accuracy (75.7%-91.5% depending on the testing data
set). Furthermore, the approach taken to analytic validation
allowed us to investigate multiple subgroups, including age,
gender, and race, demonstrating that the high performance of
the algorithm is generalizable across a broad range of
demographics.

All existing validation studies of ambulatory status classification
from wrist-worn sensors have been either performed on young
and healthy populations [25] or in the laboratory or clinic
[20,21]. Yet measuring ambulatory status or daily ambulatory
time is most clinically relevant for people with walking
impairments—whether due to age, movement disorders,
cardiovascular illness, or other circumstances—and most
informative when done in an individual’s own environment (ie,
their real-world setting). Thus, a key innovation in this work is
our focus on using data captured in real-world settings (as
opposed to highly controlled clinic or laboratory settings) from
demographically diverse cohorts for the actual development
and validation of this algorithm.

Therefore, the novel contributions of this work are 2-fold. First,
we introduce a scalable framework for collecting reference
labels on ambulatory status via a reference device and via
user-reported data for training and validation. As part of that
approach, we used 2 separate and different modalities to measure
ground-truth status. This strategy enabled us to handle both
comprehensive and highly precise labels (in the pilot program),
as well as a larger volume of inherently noisy ones
(user-reported tags from the PBHS), both in real-world settings.
Our strong results across both sets of data indicate that this
innovative multimodal approach contributed to a robust

development scheme that may have boosted the performance
of the resulting algorithm. The long-term practical convenience
of a wrist-worn device (as opposed to an ankle-worn device or
a dedicated assessment period) may be advantageous for this
type of continuous generalizable monitoring [32-35], although
a thorough side-by-side analysis of these 2 reference standard
measurement methods to fully understand their correlation
remains as a topic for future studies.

Second, we leveraged this framework to provide large-scale
validation of the performance of the selected algorithm iteration,
addressing shortcomings in terms of generalization previously
reported in the literature [20,21,32]. Prior studies have used
algorithms to report on differences in physical activity by
different demographic subgroups but lacked validation data for
those algorithms across demographic subgroups [25,36-38]. To
our knowledge, this is one of the first studies to show a proper
validation approach to develop and test a generalizable algorithm
across demographic subgroups where algorithm output could
have differed by subgroup.

In addition, our approach highlights several points of interest
when developing validation methodologies for this type of
algorithm. The increased sample sizes and variability in data
quality achieved by combining 2 distinct data sets enabled
deeper characterization of the algorithm’s performance. One of
our studies generated data sets where truth labels were of high
quality and accuracy but were collected from a study population
limited in scope; the other study collected data from a large and
demographically diverse cohort (albeit a somewhat engaged
and self-selected participant group who volunteered and
expressed interest in the PBHS and its health technology
aspects), which allowed us to conduct subgroup analyses for
both training and testing. Our results reinforce the
well-established fact that modern machine-learning algorithms
can sometimes perform well even when trained on a noisy data
set [39]. This observation may be useful for researchers
navigating study design decisions and tradeoffs, including
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sample sizes and data labeling methods. For future research,
determining the role of data quality factors in the development
and characterization of this type of algorithm is an open issue
[18].

Our approach to the generation of reference labels was
pragmatic, using deployment-friendly ankle-worn devices or
user-reported tags. Neither of these was as resource-demanding
as other intensive approaches (ie, video monitoring), but
generated information of sufficient quality to conduct our
validation with relatively high time resolution (10-second
epochs). Of note, the intrinsic nature of the 2 methods used for
the generation of reference labels probably contributed to the
noticeable difference in the proportions of “ambulatory” labels
between the 2 studies (discussed in the Results), with the
proportion observed in the pilot program study being the one
closest to other literature reports [40].

When interpreting our results in the context of existing literature,
it is worth noting that most validation studies for this type of
algorithm have used step counts as the metric of interest
[31,36,41-53], while ambulatory time (or a related metric) is
the focus of a minority of reports [54,55]. In general, considering
the close correlation between step count and ambulatory time,
the performance of our algorithm could be placed on par with
other algorithms, yet detailed side-by-side appraisals of results
remain challenging; this research field is in need of
standardization [19,56,57].

This study also had limitations. First, in principle, the StepWatch
readouts used as ground truth may not have provided perfect

accuracy, even though there is extensive literature supporting
the use of StepWatch as a reference device [31,50,51,56,58-60].
Second, we observed fluctuations in the ambulatory status
classification algorithm performance based on daily ambulatory
time; this fluctuation was present when the algorithm detected
10-second epochs as ambulatory (or not) and was also
manifested in the daily aggregates of ambulatory time. While
this trend (shown in Figure 5) may have been driven, partially,
by outlying data points with high step counts in our sample,
which would be of little relevance in hypothetical clinical
scenarios, it may also have been due to low-step periods
containing mixed activities in which walking was not the only
or dominant source of hand motion. In addition, while the cutoff
used to read the StepWatch ambulatory classification relied on
existing literature [61], it may not be perfect in itself. In this
regard, it could be reassuring that the algorithm handled epochs
with step counts between 4 and 8 as a continuum, as this is
possibly reflective of the complexities of organic movement.

In sum, we have developed an accurate algorithm for the
detection of the ambulatory status of users of a wrist-worn
device in a free-living, real-world setting; the output is
generalizable across several user demographic characteristics.
The characterization of this algorithm was conducted in 2
distinct data sets, which lends credibility to the robustness and
applicability of the performance results obtained in this study
and illustrates the advantages of similar approaches to future
research in this field.
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Abstract

Background: The incentive spirometer is a basic and common medical device from which electronic health care data cannot
be directly collected. As a result, despite numerous studies investigating clinical use, there remains little consensus on optimal
device use and sparse evidence supporting its intended benefits such as prevention of postoperative respiratory complications.

Objective: The aim of the study is to develop and test an add-on hardware device for data capture of the incentive spirometer.

Methods: An add-on device was designed, built, and tested using reflective optical sensors to identify the real-time location of
the volume piston and flow bobbin of a common incentive spirometer. Investigators manually tested sensor level accuracies and
triggering range calibrations using a digital flowmeter. A valid breath classification algorithm was created and tested to determine
valid from invalid breath attempts. To assess real-time use, a video game was developed using the incentive spirometer and add-on
device as a controller using the Apple iPad.

Results: In user testing, sensor locations were captured at an accuracy of 99% (SD 1.4%) for volume and 100% accuracy for
flow. Median and average volumes were within 7.5% (SD 6%) of target volume sensor levels, and maximum sensor triggering
values seldom exceeded intended sensor levels, showing a good correlation to placement on 2 similar but distinct incentive
spirometer designs. The breath classification algorithm displayed a 100% sensitivity and a 99% specificity on user testing, and
the device operated as a video game controller in real time without noticeable interference or delay.

Conclusions: An effective and reusable add-on device for the incentive spirometer was created to allow the collection of
previously inaccessible incentive spirometer data and demonstrate Internet-of-Things use on a common hospital device. This
design showed high sensor accuracies and the ability to use data in real-time applications, showing promise in the ability to
capture currently inaccessible clinical data. Further use of this device could facilitate improved research into the incentive
spirometer to improve adoption, incentivize adherence, and investigate the clinical effectiveness to help guide clinical care.

(JMIR Biomed Eng 2023;8:e46653)   doi:10.2196/46653

KEYWORDS

incentive; spirometry; Internet-of-Things; electronic health records; web-based intervention; medical device; medical tool; data
collection; spirometry data; incentive spirometer; data analysis; algorithm; effectiveness

Introduction

Pulmonary complications after major surgery, including
pneumonia, atelectasis, respiratory failure, prolonged

supplemental oxygen requirements, and reintubation, are
common, expensive, and harmful to patients [1]. Studies
estimated these complications in the range of 2%-39% [2,3],
though atelectasis alone has been found to affect up to 92% of
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postsurgical patients [4]. Originating in the 1970s, the incentive
spirometer was designed to mimic the physiology of a sigh or
a yawn—a slow voluminous inhalation [5,6], and this basic
medical device is often used in postoperative care to aid lung
expansion to prevent or reduce respiratory complications.

To complicate the matter, correct use and device adherence is
low among patients. Guidelines on how to properly use the
incentive spirometer device outline best practices [7,8], but over
26% of patients fail to use their incentive spirometer correctly,
and over 38% deny ever using their device in their postoperative
care [9], highlighting the need for more evidence-based
recommendations. There is sparse evidence for the use of the
incentive spirometer device [10] for postoperative pulmonary
complication prevention [11] with only a few studies
demonstrating clinical effectiveness when used properly [12,13].
As a result of the lack of high-level evidence, some clinical
practice guidelines do not support its routine postoperative use
[14]. Additionally, there remains disagreement as to the most
effective way to use the device, as studies have been unable to
demonstrate its superiority over other techniques such as deep
breathing techniques, directed coughing, early mobilization,
and optimal analgesia [15]. Uncertainty around the effective
spirometry use is partially due to the scarcity of spirometer
compliance data [16]. Compliance measurements, made through
self-reporting and staff observation, are difficult to obtain, and
when captured, they have demonstrated low patient adherence
to the incentive spirometer device [12]. Though data remain
elusive, 86% of health care providers believe patient adherence
is poor, and 95.4% believe it should be improved [17],
demonstrating the perceived use of incentive spirometry. The
first step in determining the optimal use of the incentive
spirometer is to improve data collection. Automated capture of
spirometry data may improve the quality of research studies
and ultimately determine the incentive spirometer’s use in
improving lung function and minimizing postoperative
complications.

Incentive spirometers are simple plastic meters to measure
inhalational breath flow and volume; they lack the ability to
record data. Digital flowmeters can be used to replicate the
incentive spirometer [18]. While an option for improving data
capture, the digital flowmeter can be clinically infeasible in
most practices due to its complexity and cost. Collecting data
directly from incentive spirometers falls into a technology
category called the “Internet-of-Things” [19]. There have been
great advances in the miniaturization of computing devices and
the evolution of the “Internet-of-Things” into mainstream health
devices [20,21]. As a result, wearable technologies and
web-based platforms are capturing more clinical data now than
ever before [22,23]. These technologies give clinicians and
researchers access to otherwise inaccessible patient data and
the ability to investigate new data interactions, such as enabling
patients to exercise with wearable device hardware (eg, chest
monitors and watches) and incorporating and communicating
these data with patient physiologic and movement data [24,25].
The goal was to use this technology for the incentive spirometer.

We hypothesize an add-on device can accurately measure flow
and volume data from a common incentive spirometer. This
paper describes the creation and testing of an incentive
spirometer add-on device to measure flow and volume data. An
Internet-of-Things approach was adopted to enable this device
to work with an existing incentive spirometer to capture
physiological data and communicate externally on a closed
private internet connection using hospital Wi-Fi and Bluetooth
technologies. Captured data were tested for use by developing
a classification algorithm to determine valid from invalid
breaths.

Methods

Ethics Approval
Institutional review board approval was obtained for this
prospective exploratory study on April 15, 2021
(HUM00196543, University of Michigan, Ann Arbor). Informed
consent was waived as participants were limited to authors
within this study, and interventions for this study are limited to
existing approved uses of the incentive spirometer.

Add-On Device Creation
An add-on device was designed and created for use with the
Hudson RCI Voldyne 5000 Volumetric Exerciser (Teleflex
Medical) incentive spirometer (Figures 1-3 and Multimedia
Appendix 1) and composed of photoelectric reflective infrared
optical sensors (Xingyheng) positioned lateral to the spirometer
volume and flow columns. Ten sensors were placed along the
spirometer volume column with each sensor along a 500 mL
marking on the incentive spirometer device (500-5000 mL).
Three sensors were placed along the flow column corresponding
to the middle of flow spirometer markings (“best,” “better,”
and “good”). Sensors were connected to a microcontroller by
a solderless breadboard, using an ESP32 development board
(Dorhea), a low-cost low-power system-on-a-chip
microcontroller with integrated Wi-Fi and dual-mode Bluetooth
wireless communication capability. Components were soldered
on a breadboard with breadboard jumper wires and resistors
connecting components. Interactions between the
microcontroller and the sensors were coded using C++ (Bell
Laboratories of American Telephone and Telegraph).
Components were encased in a 3D-printed base situated beneath
the incentive spirometer with a layer of plexiglass fixed overtop.

Data were sent directly to an iOS application running on an
iPad Pro (12.9″ and 10.2″, fifth generation, Apple) through
ESP32 Bluetooth as well as stored on the add-on device in a 32
gigabyte microsecure digital card (Kootion) and card reader
module (HiLetGo). A clock module (Melife) time-stamped data.
Further interconnection was made possible using an analog
digital multiplexer breakout board (Xie QianJin) and included
a 3.7-V 2400-mAh rechargeable lithium battery (Akzytue) and
charging module (MakerFocus) to power the device. An
alternative design for the add-on base can be found in
Multimedia Appendix 2.
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Figure 1. The incentive spirometer piston positions were read using reflective infrared optical sensors (1) and relayed to an ESP32 in the base of the
add-on device (2). The device both stored the data internally and used Bluetooth technology to transmit spirometer data to an Apple iPad (3). Data were
then transmitted from the iPad to dedicated servers for further data processing and storage (4).

Figure 2. Ten photoelectric reflective infrared optical sensors were placed along the spirometer volume column with each sensor along a 500 mL
marking on the incentive spirometer device (500-5000 mL); 3 sensors placed along the flow column. An on/off switch is featured on the front of the
device. An ESP32 development board, rechargeable lithium battery, and real-time clock module are labeled. Connections between components were
made with breadboard jumper wires and resistors, and all components are encased in a 3D-printed base with a layer of plexiglass overtop. A microsecure
digital card reader module is in the back of the base (not shown).
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Figure 3. The Hudson RCI Voldyne 5000 Volumetric Exerciser (Teleflex Medical) incentive spirometer is situated over the base and locked into place
with an overlying base lip and a screw on top of the 3D-printed posterior arm. A charging port is located in the base (right picture).

Software and Video Game Creation
An iOS video game and analytics application was built using
Unity and C# (Microsoft). A web server receives the data and
handles application programming interface (API) requests
written in Java (Sun Microsystems). The ESP32 reads the sensor
data using custom C++ code and sends processed data to an
Apache web server via Wi-Fi through an iPad device connected
via Bluetooth (Figure 1). Python (Python Software Foundation)
applications were exposed by the web server, and downstream
applications were networked with the server through an API to
allow data collection and further use. A web server receives the
data and handles API requests. A video game was developed
specifically for use with the incentive spirometer and add-on
device serving as a controller, designed for use with an Apple
iPad Pro.

Add-On Device Sensor Testing
Two investigators (AS and MLB) tested the add-on device
without crossover using the Hudson RCI Voldyne 5000
Volumetric Exerciser incentive spirometer. In these tests, 5 user
breaths were attempted at each of the 10 volume sensor positions
(100-5000 mL) for a total of 50 breaths per user. The volume
goal was to get the top of the volume piston to the desired
volume marking, while the flow goal was to get the top of the
flow bobbin to the middle of the desired flow marking. Flow
readings were also tested with every volume test with an
additional 5 flow tests at each of the 3 flow sensor positions.
To attain the desired flow or volume piston levels, users were
allowed to breathe through or tilt the incentive spirometer
device.

A single investigator (MLB) tested flow and volume sensor
ranges with the incentive spirometer connected to the
Puritan-Bennet PTS-2000 Ventilator Analyzer Tester
(Mallinckrodt) digital flowmeter. In this testing, the investigator
attempted increasing volume and flow values to identify sensor
ranges. Volume measurements from the flowmeter were
corrected using the body temperature, pressure, water vapor
saturated method (correcting for body temperature [37 °C],
ambient pressure, and gas saturated with water vapor). The
flowmeter volume was calculated to be 183.75 mL by calibrating
the flowmeter readings precisely at the 1000 mL display level
of the Voldyne 5000, averaged across 10 breaths. This volume
was subtracted from each raw volume reading from the
flowmeter. Flowmeter testing was attempted with a minimum
of 25 breaths around each flow and volume sensor level,
independently, and the volume achieved from the flowmeter
and the sensor level attained from the iPad were recorded. Due
to limitations continually achieving breath volumes above 3250
mL (sensor level 7), additional testing using the 2500 mL
volume Hudson RCI Voldyne 2500 Volumetric Exerciser
(Teleflex Medical) incentive spirometer was conducted. The
add-on device was created with each sensor aligning to the 500
mL markings of the Voldyne 5000. When using the Voldyne
2500, the sensors were near but incompletely aligned to the
250-mL markings.

Breath Algorithm Development and Testing
While sensors in the add-on device can detect where a piston
is located, they cannot determine if a breath was conducted to
achieve the sensor level. It is important to be able to accurately
identify when a breath moves the incentive spirometer piston
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and bobbin as opposed to tilting the incentive spirometer causing
them to fall to the desired level. To aid in distinguishing a breath
attempt, an algorithm was developed in Python (version 3.1) to
process and classify each user's breath using flow and volume
data over time. This algorithm reads spirometer log data into a
pandas data frame and parses data by identifying the start and
end of breaths. Breath start was identified by a zero flow value
that precedes a positive flow value, while breath end is identified
by 2 consecutive zero flow values. Once identified, each breath
is classified as “valid” or “invalid.” A valid breath must have
the following volume criteria: volume starts at 0, increases
within 1.5 seconds of breath start, >0 throughout the breath,
does not decrease while there is positive flow, and the length
of the breath is between 2 and 15 seconds. Breaths that do not
meet these requirements were deemed invalid.

To test this algorithm, separate from device testing, 2
investigators (AS and MLB) each attempted to create 5 valid
and 5 invalid breaths at each volume sensor level. These breath
data were processed through the classification algorithm and
evaluated. Invalid breaths were created by manually tipping the
incentive spirometers or starting breaths at a starting position
>0. All data validation was retrospectively validated using expert
opinion from one of 2 users (AS and MLB).

Statistical Analysis
Summary and descriptive statistics were calculated for collected
data using basic statistical techniques to assess models created
for breath analysis including accuracy (as defined by user

identification as gold standard), as well as mean, median, and
SD for volume and flow measurements in sensor range testing.

Results

Add-On Device Sensor Testing
An add-on incentive spirometer device was created to
independently measure real-time spirometer flow and volume
piston positions (Figures 1-3). From 2 investigators, 99 of 100
volume readings were measured at the correct corresponding
volume sensor (accuracy 99%, SD 1.4%). Only a single volume
reading was inaccurate, failing once to capture at the lowest
volume sensor (500 mL). All 130 flow bobbin readings
corresponded to the correct flow sensor (100% accuracy).

Volume and flow sensor ranges were determined using a digital
flowmeter in line with the 5000 and 2500 mL incentive
spirometers independently (Figure 4 and Tables 1 and 2).
Add-on sensors were designed with placement at every 500 mL
marking on the Voldyne 5000 incentive spirometer. These sensor
placements were not adjusted for the 2500 mL incentive
spirometer testing. Investigator breath limitations were reached
at volume levels approaching 4000 mL. Between the 2 devices
tested, median and average volumes were within 7.5% (SD 6%)
of target volume sensor levels. Maximum triggering values
seldom exceeded the intended sensor level, showing a good
correlation to placement. Flow levels corresponding to “best,”
“better,” and “good” levels differed significantly between
devices with the 5000 mL flow values more than double the
2500-mL incentive spirometer at each level.

Figure 4. User testing of add-on device connected to a digital flowmeter for both the Voldyne 5000 (A) and the Voldyne 2500 (B) incentive spirometers.
Circles represent individual breath attempts with digital flowmeter volume readings (L, x-axis) and add-on device sensor iPad readings (y-axis). Sensor
levels were designed to be placed at 500 mL levels of the Voldyne 5000 incentive spirometer and closely aligned to 250 mL markings of the Voldyne
2500.
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Table 1. Volume sensor ranges.a

Volume (L)Breaths, nNumber

MaximumMinimumMedian (IQR)Mean (SD)

Voldyne 5000 volume sensor

0.920.430.62 (0.54-0.67)0.61 (0.10)431

1.550.630.99 (0.81-1.13)0.98 (0.20)712

1.921.271.54 (1.40-1.68)1.55 (0.18)743

2.441.992.17 (2.11-2.28)2.20 (0.12)604

2.982.212.59 (2.42-2.76)2.59 (0.20)885

3.382.793.10 (3.02-3.16)3.09 (0.13)376

4.183.003.53 (3.29-3.96)3.59 (0.35)487

4.294.294.29 (N/A)4.29 (N/Ab)18

N/AN/AN/A (N/A)N/A (N/A)09

N/AN/AN/A (N/A)N/A (N/A)010

Voldyne 2500 volume sensor

0.280.130.22 (0.18-0.23)0.21 (0.04)131

0.690.220.43 (0.29-0.48)0.41 (0.13)352

0.920.570.72 (0.64-0.82)0.73 (0.11)213

1.200.871.02 (0.99-1.09)1.03 (0.09)294

1.431.091.27 (1.18-1.34)1.26 (0.10)235

1.781.381.61 (1.53-1.67)1.60 (0.11)246

2.051.711.91 (1.81-1.96)1.89 (0.11)167

2.381.992.24 (2.13-2.28)2.21 (0.11)258

2.632.242.49 (2.40-2.55)2.47 (0.11)269

3.092.522.74 (2.64-2.85)2.75 (0.14)3710

aResults from investigations of increasing volume sensor readings from the Voldyne 2500 and Voldyne 5000 incentive spirometers. The number of
breaths (n) at each sensor level (1-10) and the average, median (IQR), minimum, and maximum readings were obtained from a digital flowmeter in
liters (L).
bN/A: not applicable.

Table 2. Flow sensor ranges.a

Flow (L/minute)Breaths, n

MaximumMinimumMedian (IQR)Mean (SD)

Voldyne 5000 flow sensor

40.2119.2126.04 (22.51-27.76)26.36 (5.56)30Best

56.6936.1043.56 (40.44-48.25)44.31 (5.49)30Better

71.3839.3658.24 (53.99-61.27)57.75 (7.74)31Good

Voldyne 2500 flow sensor

19.638.4312.31 (10.69-13.12)12.24 (2.36)30Best

22.6015.0719.08 (17.45-19.56)18.70 (1.92)30Better

38.3022.6128.13 (25.93-29.96)28.45 (3.34)31Good

aResults from investigations of increasing flow sensor readings from the Voldyne 2500 and Voldyne 5000 incentive spirometers. The number of breaths
(n) at each sensor level (“best,” “better,” and “good”) and the average, median (IQR), minimum, and maximum readings were obtained from a digital
flowmeter in liters per minute (L/minute).
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Breath Algorithm Development and Testing
After data collection, an algorithm was developed to classify
breath data to determine when the spirometer was actively used.
This algorithm works by classifying each individual breath
using criteria to determine their validity as described in the
Methods section. Independent of sensor testing, 2 members of
the study team attempted 5 valid and 5 invalid breaths at each
of ten 500-mL volume levels (500-5000 mL). Investigator
limitations in achievable volumes resulted in a total of 65 valid
breaths and 100 invalid breaths. The breath classification
algorithm resulted in a 100% sensitivity and a 99% specificity
for the classification of “valid” versus “invalid” user breaths.
A single valid reading was inappropriately classified by the

algorithm, occurring at the 500 mL volume sensor level.
Example breath algorithm results are shown in Figure 5.

To investigate the downstream applicability of breath data, a
video game was developed using Unity software, Apple iOS,
with a single final application installed on Apple iPad devices
(Figure 6). The game was a Kirby (Nintendo)-based side
scroller, where the character would approach an obstacle and
traverse the obstacle after a successful breath. This game was
developed specifically for use with the incentive spirometry
device with game-play centered around proper use [7,8]. The
incentive spirometer with an add-on device was successfully
used to control the created game. A video showing the game
played in real time with an incentive spirometer device can be
found in Multimedia Appendix 3.

Figure 5. Example results from the breath algorithm used to classify “valid” from “invalid” breath attempts. The y-axis represents sensor levels for
flow and volume readings in the incentive spirometer device: flow (0-3; corresponding to none: 0; “good”: 1; “better”: 2; and “best”: 3); volume (0-10,
representing each 500 mL increment from 0 to 5000 mL). The x-axis represents the time from breath start in seconds.

Figure 6. A video game was specifically designed for use with the incentive spirometer and add-on device based on the Kirby Nintendo character. A
sprite sheet for the character development within the video game is shown on the left with a screenshot of the video game shown on the right. Multimedia
Appendix 3 shows the game being controlled using an incentive spirometer.
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Discussion

Principle Findings
In this study, an add-on device was created to allow the capture
of incentive spirometry data with high accuracy (99%, SD 1.4%
volume and 100% flow when tested at incentive spirometer
level markings). Maximum triggering values were rarely
exceeding intended sensor levels, proving excellent
differentiation of levels in the design. Furthermore, while sensor
placements were designed around the Voldyne 5000 incentive
spirometer, the similarly shaped Voldyne 2500 performed well
in testing without sensor modifications, suggesting use of the
add-on device to similar incentive spirometers without
significant redesign. While range testing was not intended to
study volume sensor accuracy, between the 2 spirometers tested,
median and average volumes were within 7.5% (SD 6%) of
target volume levels, with the worst individual readings at lower
volumes (250-500 mL sensors) with readings maximally 40 to
120 mL off target, respectively.

To differentiate quality breath attempts from errors, a
classification breath algorithm was developed. The device
allowed identification of start and end of breath attempts, valid
from invalid breaths assessment, maximum flow, maximum
volume, and volume or time ascents and descent calculations.
The breath classification algorithm used device data to discern
valid versus invalid breath attempts, showing 100% sensitivity
and 99% specificity. Identifying valid breath data from noise
is critically important for downstream applications and, while
the classification algorithm yielded results, further efforts for
improvement could be made using additional rule-based systems
or machine learning algorithms.

This system is intended to enable clinical providers access to
previously inaccessible spirometry data to improve spirometer
instruction and use protocols, study patient compliance, and
incentivize use. Using an add-on device similar to what was
created in this study would increase the granularity of spirometer
compliance data and could be used to provide insight into proper
incentive spirometer use. Additionally, the add-on device can
allow focused interventions to improve adherence. Reminder
notifications alone have been shown to improve incentive
spirometer use. In one study, an add-on use-tracking device was
equipped with a bell that sounded for up to 2 minutes every
hour as a reminder for the patient to use their incentive
spirometer [12]. This study demonstrated that patients using
the reminder device had a greater number of mean daily
inspiratory breaths and a percentage of recorded hours with an
inspiratory breath event. More importantly, patients with the
reminder displayed significantly lower mean atelectasis severity
scores measured by chest radiography, reduced median
postoperative and intensive care unit length of stay, and had a
lower mortality rate at 6 months. These findings support
postoperative incentive spirometer use and show effectiveness
of a simple intervention to improve incentive spirometer
adherence.

Gamification
To demonstrate the real-time use of incentive spirometry data,
iPad video game was created to be controlled by the add-on

incentive spirometer device. In testing, the game showed no
appreciable lag and continued connectivity during use, proving
electronic spirometer data collected by the add-on device to be
capable of real-time gamification applications. Gamification of
medical interventions is an exciting concept for improving
medical care adherence. Breathing games for the incentive
spirometer is a familiar idea, with one group brainstorming a
suite of games for asthmatics focusing on breathing metaphors
as incentives for spirometer use [26], while others developed
video games to incentivize breathing exercises and peak
expiratory flow using digital flowmeters [18,27]. There exists
an abandoned patent around the use of the incentive spirometer
as a game controller [28] and an active patent around use of the
flowmeter in video games [29], further supporting the popularity
of the idea. The device in this study was created leveraging
recent technologies and focusing design on clinical care use.
Using the add-on device, as opposed to a digital flowmeter,
maintains the current use of incentive spirometers in medical
settings to allow native data capture. Potential reuse of the
add-on device limits additional costs such as those incurred
using digital flowmeters.

Limitations
Limitations to the add-on device design include contamination
risks, costs, and technical and workflow implementation
constraints. First, while completely enclosed, the add-on device
is designed to be reused and carries the risk of infection—an
especially important consideration in a respiratory pandemic
such as COVID-19. To improve sterility, the device was
enclosed in plastic, and sensors were placed behind the incentive
spirometer, removing the need to expose the base to breaths
from sensors placed below. Improvements can be made to close
remaining gaps in the plastic encasing to further enclose the
device and allow cleaning like an iPad or PlayStation controller,
commonly used in the hospital settings. Second, routine
incentive spirometer postoperative care has been estimated to
carry a US $107.36 cost per patient above material cost of the
spirometer device, which totals US $1.04 billion in total US
annual costs [30]. This is a significant cost for a device with
sparse evidence around use and poor patient compliance. While
incentive spirometer devices are not reusable from patient to
patient, the add-on device was designed to be reusable, lowering
its effective cost. Overall, the add-on device carries a material
price of approximately US $150 per unit (Multimedia Appendix
4), which could be reduced by bulk purchasing and further
investigation into alternative individual components. While
add-on device cost is an addition to the already significant price,
identifying compliance and improving adherence will facilitate
improved use and function of the incentive spirometer. Further
studies of the incentive spirometer are required to investigate
the prevention of postoperative breathing complications and
their associated health care costs. These studies are dependent
upon accurate compliance data and would benefit from the
capabilities of the add-on device. Third, there exist integration
and maintenance requirements of the add-on device, and it may
be feasible for use only in hospital systems with existing
technical support structures. The device was designed to
minimize technical requirements, but more investigation is
required. Future studies are required to trial the add-on device
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in clinical settings and test for improved adherence using
strategies such as gamification compared to traditional incentive
spirometry.

Conclusions
Incentive spirometers are routinely used in hospital settings,
specifically in postoperative clinical care, but recommendations
for proper routine use lack thorough investigation due to a

general lack of data on device use. Creating a low-cost, effective,
and reusable add-on device for the incentive spirometer allows
native collection of previously inaccessible incentive spirometer
compliance data. These data can facilitate research into incentive
spirometer use to guide clinical care, incentivize adherence, and
draw conclusions about the clinical effectiveness of the incentive
spirometer.
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Abstract

Background: Parkinson disease (PD) is a neurodegenerative disease that has a wide range of motor symptoms, such as tremor.
Tremors are involuntary movements that occur in rhythmic oscillations and are typically categorized into rest tremor or action
tremor. Action tremor occurs during voluntary movements and is a debilitating symptom of PD. As noninvasive interventions
are limited, there is an ever-increasing need for an effective intervention for individuals experiencing action tremors. The Microsoft
Emma Watch, a wristband with 5 vibrating motors, is a noninvasive, nonpharmaceutical intervention for tremor attenuation.

Objective: This pilot study investigated the use of the Emma Watch device to attenuate action tremor in people with PD.

Methods: The sample included 9 people with PD who were assessed on handwriting and hand function tasks performed on a
digitized tablet. Tasks included drawing horizontal or vertical lines, tracing a star, spiral, writing “elelelel” in cursive, and printing
a standardized sentence. Each task was completed 3 times with the Emma Watch programmed at different vibration intensities,
which were counterbalanced: high intensity, low intensity (sham), and no vibration. Digital analysis from the tablet captured
kinematic, dynamic, and spatial attributes of drawing and writing samples to calculate mathematical indices that quantify upper
limb motor function. APDM Opal sensors (APDM Wearable Technologies) placed on both wrists were used to calculate metrics
of acceleration and jerk. A questionnaire was provided to each participant after using the Emma Watch to gain a better understanding
of their perspectives of using the device. In addition, drawings were compared to determine whether there were any visual
differences between intensities.

Results: In total, 9 people with PD were tested: 4 males and 5 females with a mean age of 67 (SD 9.4) years. There were no
differences between conditions in the outcomes of interest measured with the tablet (duration, mean velocity, number of peaks,
pause time, and number of pauses). Visual differences were observed within a small subset of participants, some of whom reported
perceived improvement. The majority of participants (8/9) reported the Emma Watch was comfortable, and no problems with
the device were reported.

Conclusions: There were visually depicted and subjectively reported improvements in handwriting for a small subset of
individuals. This pilot study was limited by a small sample size, and this should be taken into consideration with the interpretation
of the quantitative results. Combining vibratory devices, such as the Emma Watch, with task specific training, or personalizing
the frequency to one’s individual tremor may be important steps to consider when evaluating the effect of vibratory devices on
hand function or writing ability in future studies. While the Emma Watch may help attenuate action tremor, its efficacy in
improving fine motor or handwriting skills as a stand-alone tool remains to be demonstrated.

(JMIR Biomed Eng 2023;8:e40433)   doi:10.2196/40433
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Introduction

Parkinson disease (PD) is a progressive neurodegenerative
disease caused by the degeneration of dopamine in the substantia
nigra and striatum areas of the brain that results in a decrease
in the ability to control and coordinate movement [1,2]. PD
currently affects more than 6 million people worldwide [3] and
the incidence of PD is expected to double in the next 2 decades
[2]. The cause of PD appears to be multifactorial, with
behavioral, environmental, genetic, and lifestyle factors playing
a role [2]. PD is characterized by both motor and nonmotor
symptoms, however, the cardinal features include rigidity,
tremor, bradykinesia, and postural instability [4]. While many
forms of tremor may be present in PD, action tremor, which
includes postural, isometric, and kinetic tremor [5,6], occurs
during active, voluntary movement and is an impairment that
affects writing, hand function, activities of daily living, and
quality of life [4,7]. Furthermore, people with PD experience
psychosocial implications resulting from their tremor, including
negatively impacted relationships, self-image, and overall
well-being [8]. Action tremor is reported in 46% of individuals
with Hoehn and Yahr Stages 1 and 2, and up to 93% of people
in Stages 1-5 [7].

The pathophysiology of action tremor is uncertain but has a
clear difference from other motor symptoms of PD [9] as it is
thought to be modulated by nondopaminergic pathways and
does not correlate with dopamine depletion in the striatum;
rather, serotonin, noradrenaline, and acetylcholine appear to
play more of a role [9]. It may be caused by oscillations that
occur within internal sensorimotor feedback circuits during
movement [10,11] or by abnormal activity within the basal
ganglia and cerebello-thalamo-cortical circuit [9,12] Action
tremor frequency usually displays a 1.5 Hz higher frequency
than that of rest tremor, which is ~4-6 Hz [9]. Interventions for
the management of action tremor have been limited. Deep brain
stimulation to the subthalamic nucleus and globus pallidus have
shown improvement in action tremor severity at 6 and 12 months
post implantation, but is invasive, can lead to adverse events,
and is not suitable for everyone [11]. Dopaminergic medications
also have limited efficacy in improving action tremor-related
motor dysfunction [5,8,9,13], leaving a pressing need to address
these functional sequelae.

Equivocal findings have been reported for total body vibration
to improve motor function in people with PD [14], however
recent studies suggest targeted vibration methods may be
beneficial [15]. High-frequency vibration stimulation (also
known as haptic feedback), along with medication, have
improved movement initiation, movement speed, precision, and
decreased tremor for people with PD [15-17]. Vibration is a
form of sensory stimulation that results in increased sensory
input and activation of the muscle spindle fibers, and may
improve neuromotor functions in people with sensorimotor
deficits [18]. Providing high frequency vibration over the
forearm activates the muscle spindles and interrupts the central
nervous system’s interpretation of the proprioceptive position

of the limb in space, interpreting the vibration as sensory
information and producing a muscle contraction [15].

Use of haptic feedback may reduce resting tremor and is
considered safe and well tolerated when delivered in short
durations via wearable devices, but its effects on action tremor
has not been well studied [19,20]. The Emma Watch is a
wrist-worn wearable device developed by Microsoft Research
that provides constant high frequency vibration to each side of
the wrist; preliminary findings suggest it may reduce movement
speed and improve precision of performance in drawing and
tracing tasks in people with PD [17]. However, efficacy of the
Emma Watch on people with PD is unclear; therefore, this pilot
study evaluated the use of the Emma Watch in people with PD
who present with symptomatic and disruptive action tremor
during handwriting, drawing, and hand function tasks.

Methods

Participants
In total, 9 people with PD were recruited for this pilot study,
which began just prior to the COVID-19 pandemic. We had
expected to enroll a total of 20 participants; however, human
subjects research was suspended in New York City during the
pandemic. The inclusion criteria were (1) formal diagnosis of
PD from a neurologist and (2) the presence of action tremor in
one or both hands, with a rating of >1 on the Movement
Disorders Society–sponsored Revision of the Unified
Parkinson’s Disease Rating Scale part III item 3.16 (rating of
tremor). Exclusion criteria were: (1) history of comorbid
neurological conditions, that is, including stroke or other
neurodegenerative disease, (2) acute orthopedic conditions on
the dominant hand, (3) chronic orthopedic conditions affecting
the ability to write, (4) implantation of a pacemaker or deep
brain stimulator, or (5) inability or unwillingness of the
participant or legal guardian to give written informed consent.
Individuals were recruited from the community via flyers and
neurologists from Columbia University Irving Medical Center
were informed of our study and could refer their patients.

Ethical Considerations
This study was approved by the institutional review board at
Teachers College, Columbia University (IRB#19-266) and all
participants signed informed consent. Privacy and confidentiality
standards were protected throughout the research study, and all
study data collected were deidentified. Participants were
compensated US $50 for their participation in this study.

Emma Watch Device
The Emma Watch is a lightweight watch-like device worn
around the dominant wrist. The device uses 5 small linear
resonant actuators, each with a 205 Hz vibration frequency and
controlled by a driver with an auto resonance engine. The
vibration's strength and modulation are controlled via a
Microsoft Surface tablet app (Microsoft), which connects to the
Emma Watch via Bluetooth. The vibration is initiated at the
start of movement and delivered throughout the task. The linear
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resonant actuators were run by a haptic driver at 100%, 64.7%,
and 50% duty cycle, producing 3 vibration amplitudes: ~1.51
g (high intensity), ~0.38 g (low intensity), and 0 g (no vibration)
modulated with a 500-millisecond/500-millisecond on/off
vibration cycle in a counterbalanced order.

Study Design
Individuals participated in two 90-minute sessions, performed
on different days, but only 1 day for each participant was
analyzed for this pilot study. Participants were tested within 1
hour after administration of their regular disease-specific
medication. All participants donned the Emma Watch, along
with 3 wearable inertial measurement units (APDM Opal
sensors; APDM Wearable Technologies), one on each wrist and
their trunk. All assessments were video recorded using a GoPro
camera (GoPro). Participants completed baseline clinical
assessments, along with a series of handwriting and fine motor
assessments, with the Emma Watch counterbalanced on 3
vibration conditions. The ~0.38 g (low) is a very mild vibration
and acted as a control condition [21].

Assessments
We obtained demographic information from each participant,
including age, gender, hand dominance, current list of
medications, and education level. The effect of tremor on daily
living activities was evaluated using the Bain and Finley
Activities of Daily Living Scale [22] and self-reported hand
function was evaluated using the Manual Ability Measure [23]
(see Multimedia Appendix 1).

Tablet Analysis
Participants completed 3 repetitions of handwriting and drawing
tasks using a stylus and a digitizing tablet (Microsoft Surface).
Participants were instructed to conduct the tasks as quickly and
accurately as possible. Tasks included drawing horizontal or
vertical lines, tracing a star, spiral, writing “elelelel” in cursive,
and printing a standardized sentence. Each task was completed
3 times at 3 different vibration intensities: with the Emma Watch
counterbalanced at a high intensity, a low intensity (sham), and
their baseline with no vibration. Digital analysis captured
kinematic [24], dynamic, and spatial attributes of drawing and
writing samples to calculate mathematical indices that quantify
upper limb motor function. The tablet recorded the pen’s x- and
y-position and timestamp without wires or other attachments.
The Windows app stored and converted data into readable files
for analysis.

Analysis of the tablet recordings was performed with Python
3.7 (Python Software Foundation). The pen’s position in the x-
and y-direction was converted to Euclidian distance at each
point. The median sampling frequency of the x- and y-coordinate
data was 142 Hz. To ensure a constant sampling frequency, the
distance was resampled to a constant 142 Hz, using linear
interpolation. Pointwise velocity was calculated as pointwise

Euclidian distance divided by pointwise time interval. Velocity
data were smoothed using a 3.5-Hz cut off, 5th order, low-pass
Butterworth filter to remove high frequency fluctuations. We
used this cut off to quantify slow movements related to writing.
Measures calculated were (1) duration (seconds) of each drawing
task, defined as the time taken to complete the drawing, from
stylus down to stylus up, including pauses between strokes; (2)
number of pauses, where a pause is any lift off of the stylus
while drawing; (3) pause duration (seconds), defined as the sum
of all pause times; (4) mean velocity (pixels/second) of each
drawing task, defined as the mean of each pointwise velocity;
and (5) fluency, defined as the number of local maxima (peaks)
in the velocity profile. These peaks were found by comparison
of neighboring values without any threshold.

Accelerometry Analysis
Preprocessing of the APDM Opal Sensor data was carried out
in MATLAB (MathWorks R2020A). Raw signals from the
accelerometers were set to horizontal and vertical coordinates
by the sensors’ preexisting algorithms, which use the
magnetometers and gyroscopes to identify x-, y-, and z-reference
positions. Right and left wrist streams were extracted and
processed in MATLAB. Accelerometry streams, sampled at
128 Hz, were filtered through a 3.5 Hz cut off, zero-phase,
low-pass Butterworth filter. This filtering profile is consistent
with previous uses of APDM inertial measurement unit sensors
in identifying anticipatory postural adjustments. The
accelerometer and video data were synched through a series of
claps, performed to identify the start of each drawing task. The
start of a clap was designated if it met a power threshold of 0.17
in the accelerometry stream and was followed by 110
consecutive data points above the threshold.

The processing of the APDM Opal Sensor data was done using
R (R Foundation for Statistical Computing) and Python (Python
Software Foundation). Further, 32 metrics were calculated for
each of the 3 axes of acceleration and jerk signals using
mhealthtools [25] R package. These include the mean,
complexity, mobility, roughness, rugosity, Shannon entropy of
the frequency probability distribution, mean frequency, and the
energy present in the twenty-four 0.5 Hz-bands between 2 Hz
and 12 Hz. The signal’s fluency was computed in a similar way
to the tablet drawings streams.

Statistical Analysis
Statistical tests were conducted using R (version 4.02). Linear
mixed-effects models were used to compare means of task
outcomes (duration, number of pauses, pause duration, mean
velocity, and number of peaks) between vibration intensities
(zero, low, and high) within the 5 tasks (rectangle, spiral, star,
elelelel, and handwriting; see Table 1). Linear mixed effects
models used vibration frequency as a categorical variable,
generated a random intercept, and used the “lme4” package on
R [26].
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Table 1. Duration, velocity, and peaks for tablet tasks.

High intensity, mean (SD)Low intensity, mean (SD)No vibration, mean (SD)Task

Spiral

37.1 (21.1)37.2 (20.4)38.8 (23.7)Duration (seconds)

1.2 (2.0)0.8 (1.2)1.6 (2.8)Pause number

0.012 (0.02)0.008 (0.01)0.014 (0.02)Pause time (seconds)

2.2 (0.2)2.2 (0.2)2.2 (0.1)Scaled peaks (peaks/s)

82.4 (48.1)85.3 (52.1)85.8 (50.6)Number of peaks

171.8 (71.2)171.0 (73.6)168.0 (65.1)Mean velocity (pixels/s)

Handwriting

18.3 (5.7)17.3 (5.0)18.2 (4.9)Duration (seconds)

24.4 (2.0)24.6 (1.9)25.2 (1.2)Pause number

0.2 (0.03)0.2 (0.02)0.2 (0.03)Pause time (seconds)

1.5 (0.2)1.5 (0.2)1.4 (0.2)Scaled peaks (peaks/s)

26.5 (9.0)24.9 (7.3)25.2 (8.3)Number of peaks

195.1 (68.9)195.3 (78.3)201.5 (80.7)Mean velocity (pixels/s)

APDM Spiral

Acceleration

23.3 (2.7)22.2 (3.4)23.5 (3.7)Complexity

0.06 (0.1)0.08 (0.1)0.03 (0.05)Roughness

0.012 (0.008)0.01 (0.008)0.009 (0.006)Rugosity

15.0 (1.5)14.4 (1.9)15.6 (2.4)Mobility

2.1 (0.3)2.1 (0.4)2.3 (0.5)Frequency

0.56 (0.02)0.55 (0.04)0.57 (0.04)Entropy

148.5 (82.7)135.1 (82.2)172.0 (102.6)Peaks

4.2 (0.5)4.2 (0.5)4.7 (0.5)Normalized peaks

Jerk

40.0 (10.3)40.3 (21.1)41.8 (10.1)Complexity

92.9 (173.0)121.4 (200.3)60.5 (122.5)Roughness

0.30 (0.22)0.32 (0.22)0.21 (0.12)Rugosity

24.0 (2.7)23.5 (4.6)25.1 (4.3)Mobility

3.4 (0.3)3.3 (0.5)3.5 (0.6)Frequency

0.60 (0.03)0.59 (0.04)0.60 (0.03)Entropy

Results

In total, 9 people with PD were tested: 4 males and 5 females
with a mean age of 67 (SD 9.4) years. The results showed no
differences in any of the outcomes of interest measured with
the tablet (duration, mean velocity, number of peaks, pause
time, and number of pauses), or with APDM (acceleration and
jerk). The only exception was APDM normalized acceleration
peaks, where a main effect of intensity was found [sham: 4.67
(0.52), low: 4.18 (0.53), and high: 4.21 (0.50)]. However, a post
hoc Tukey test revealed no pairwise-differences between
frequencies.

In total, 3 out of 9 participants reported noticeable or marginal
improvement, 4 out of 9 reported enjoyment in device use; 8
out of 9 reported device comfort, and no problems with the
device were reported. For those individuals who reported
perceived improvement, a stratified sample of tremor severity
should be used in future studies to clarify which participants
may garner efficacious results.

Figure 1 shows 2 representative participants who demonstrated
a visual improvement on the spiral tasks in the high versus sham
condition, with corresponding objective data of task duration,
pause duration, pause count, mean velocity, and number of
peaks. Participant 4 reported perceived improvement and
expressed greater functional difficulty on their assessment or
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baselines scores (see Multimedia Appendix 1). Alternatively,
participant 5 had a visual improvement in spiral quality;
however, did not report perceived improvement. This visual
difference was observed within a small subset of participants,

some of whom reported perceived improvement. Reports
included a “benefit on straight lines,” “difference on spiral and
star,” that “continuous motion (was) easier,” and the “most
impact of tremor (was on) spiral.”

Figure 1. This figure represents responders to high vibration for spiral drawings.

Discussion

Principal Findings
This pilot study investigated the use of the Emma Watch during
fine motor and handwriting tasks for PD-induced action tremor.
We recruited a range of people with PD with varying degrees
of action tremor. The participants performed 5 different
handwriting tasks on a digitized tablet with the use of the Emma
Watch on the dominant wrist. The Emma Watch provided
vibration at high, low, and zero intensity in a counterbalanced
order. The device was found to be safe, and there were no
adverse reactions. When interpreting our quantitative results,

it is important to consider the small sample size of 9 people
with PD. There was a main effect for differences in normalized
acceleration peaks measured by APDM Opal sensors, however
a post hoc Tukey test revealed no pairwise differences between
vibration intensities. Visual differences were observed within
a small subset of participants, some of whom reported perceived
improvement.

Comparison to Prior Work
The basal ganglia play a critical role in automatic and volitional
motor performance, making automatic motor tasks, such as
walking and handwriting difficult for people with PD. In
addition, the loss of dopamine from PD causes a decrease in
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activation of the circuity that runs through the sensorimotor
cortex and the basal ganglia; thus, increasing the response from
the sensory system may alter the feedback loop and improve
automatic motor responses [27]. In previous studies, the use of
somatosensory cues has been successful in compensation
strategies for improving gait impairments for people with PD
[28]. Peripheral vibration is a form of sensory stimulation that
provides proprioceptive input and may improve neuromotor
function in people with sensorimotor deficits [18]. In a previous
study in people with PD who had resting tremor, use of full
body vibrotactile stimulation via 4 wearable devices on both
wrists and ankles was found to be safe, feasible, and to possibly
attenuate resting tremor [20]; however, people with action
tremor were not included.

The Emma Watch has been hypothesized to mitigate tremor by
mediating sensory signals in the cerebello-thalamo-cortical
circuit, which has been linked to the origination of action tremor
[29,30]. A recent study found that 80 Hz of vibration was
sufficient to demonstrate improved motor performance as well
as decreased beta oscillatory activity over the contralateral
sensorimotor cortex compared to 20 Hz in people with PD,
suggesting that higher frequency peripheral vibration increases
the excitability of the sensorimotor cortex [15]. In another study,
randomized frequency peripheral vibration from the
TheraBracelet, when used in conjunction with a therapy, was
found to be safe and feasible for upper extremity motor recovery
post stroke [31]. In addition, in a previous study in people with
PD, the Emma Watch, at 200 Hz at 60 bpm modulation, was
found to have a significant improvement on movement speed
and precision of motor performance during tracing motor control
tasks when compared to 200 Hz at 20 bpm modulation [17].
Therefore, we hypothesized that the high intensity condition
would be sufficient to improve motor function and performance
in our study. As per recent evidence suggestions, sensory based
strategies, including high-intensity vibration, may potentially
improve motor learning and motor performance on automatic
motor tasks [15,17,31]. This study is one of the first to report
high-intensity vibration during fine motor and handwriting tasks
for the primary aim of reducing action tremor in people with
PD.

Strengths and Limitations
While we found no difference in task performances with the
device on versus off in our 9 participants, a visual difference in
accuracy was observed within a small subset, who further
reported perceived improvement in handwriting or drawing
skills. It is unclear why some participants with action tremor
experienced improvements while others did not. Perhaps it may
be that individuals who have a lower perceived hand function
ability, or greater tremor severity, perform better with use of
the device.

There are multiple limitations in this study that should be
considered when interpreting the results. First, the results of

this study are limited due to the small sample size as we did not
reach our planned recruitment goal due to the COVID-19
pandemic; therefore, future studies would benefit from a larger
sample size to increase the statistical power. Second, other
limitations included technical difficulties spanning app failure,
device malfunction, and data-saving issues. Unfortunately, these
technical difficulties further reduced the amount of data
available.

Third, the Emma Watch was used for a relatively short time
period, and hypothetically, it is possible that length of time
under stimulus may affect its efficacy. Alternatively, a learning
effect might develop while using the Emma Watch as the body
adapts to both the vibration stimulus and to the repetition of
drawing the same 5 tasks multiple times. Lastly, handwriting
was performed on a tablet with a stylus, which has notable
differences to handwriting performance using pen and paper,
such as paper orientation and feedback from the pen. However,
kinematic analysis could not be performed without use of a
digitized tablet [24].

Future Directions
Future studies should consider focusing on individuals with
greater tremor severity, as 1 participant in our study who
demonstrated visual improvement had an action tremor of 2
and was at Hoehn and Yahr Stage 3. Additionally, the vibration
may need to be individually tailored to the participant to
maximize benefits. A stratified sample of tremor severity should
be used to clarify which participants may benefit from this or
similar devices. Future studies may also consider including
individuals with action tremor who have a diagnosis of Essential
Tremor, as there may be a difference in the response generated
from the Emma Watch. According to Chen et al [32], there was
a difference in the velocity of spiral drawing between patients
with essential tremor and those with PD who had similar severity
in their action tremor. We initially did include people with
essential tremor in our study, and wanted to compare the 2
populations; however, due to technical difficulties and the
COVID-19 pandemic halting human research, we did not have
sufficient data to analyze and compare to people with PD.

While we recognize that the small sample size and technical
difficulties limit the interpretation of our results, there were
visually depicted and subjectively reported improvements for
a small subset of participants that are important to recognize.
As action tremor severely affects quality of life and functional
independence for people with PD, it is increasingly important
to report on any interventions that may potentially improve
functional abilities [8]. Future studies must focus on finding
safe and efficacious ways to address this clinical need and
should explore the efficacy of combining the Emma Watch with
task-specific training or other intervention tools, as this may
attenuate action tremor. However, the Emma Watch efficacy
in improving fine motor or handwriting skills as a stand-alone
tool remains to be demonstrated.
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Abstract

Background: The opioid epidemic is a growing crisis worldwide. While many interventions have been put in place to try to
protect people from opioid overdoses, they typically rely on the person to take initiative in protecting themselves, requiring
forethought, preparation, and action. Respiratory depression or arrest is the mechanism by which opioid overdoses become fatal,
but it can be reversed with the timely administration of naloxone.

Objective: In this study, we described the development and validation of an opioid overdose detection radar (ODR), specifically
designed for use in public restroom stalls. In-laboratory testing was conducted to validate the noncontact, privacy-preserving
device against a respiration belt and to determine the accuracy and reliability of the device.

Methods: We used an ODR system with a high-frequency pulsed coherent radar sensor and a Raspberry Pi (Raspberry Pi Ltd),
combining advanced technology with a compact and cost-effective setup to monitor respiration and detect opioid overdoses. To
determine the optimal position for the ODR within the confined space of a restroom stall, iterative testing was conducted,
considering the radar’s bounded capture area and the limitations imposed by the stall’s dimensions and layout. By adjusting the
orientation of the ODR, we were able to identify the most effective placement where the device reliably tracked respiration in a
number of expected positions. Experiments used a mock restroom stall setup that adhered to building code regulations, creating
a controlled environment while maintaining the authenticity of a public restroom stall. By simulating different body positions
commonly associated with opioid overdoses, the ODR’s ability to accurately track respiration in various scenarios was assessed.
To determine the accuracy of the ODR, testing was performed using a respiration belt as a reference. The radar measurements
were compared with those obtained from the belt in experiments where participants were seated upright and slumped over.

Results: The results demonstrated favorable agreement between the radar and belt measurements, with an overall mean error
in respiration cycle duration of 0.0072 (SD 0.54) seconds for all recorded respiration cycles (N=204). During the simulated
overdose experiments where participants were slumped over, the ODR successfully tracked respiration with a mean period
difference of 0.0091 (SD 0.62) seconds compared with the reference data.

Conclusions: The findings suggest that the ODR has the potential to detect significant deviations in respiration patterns that
may indicate an opioid overdose event. The success of the ODR in these experiments indicates the device should be further
developed and implemented to enhance safety and emergency response measures in public restrooms. However, additional
validation is required for unhealthy opioid-influenced respiratory patterns to guarantee the ODR’s effectiveness in real-world
overdose situations.

(JMIR Biomed Eng 2023;8:e51754)   doi:10.2196/51754
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Introduction

The opioid crisis is a growing problem worldwide, with
devastating consequences. In the United States alone, fatal
overdoses involving opioids claimed the lives of over 80,000
people in 2021 [1]. This problem has been escalating since the
1990s and has seen a fourfold increase from 2010 to 2021, with
the rate showing no sign of abating [1]. The more recent surge
in opioid-related mortality is largely a result of the rising
prevalence of synthetic opioids such as fentanyl, which are
substantially more potent than natural opiates [2-4]. Fentanyl
and fentanyl analogs are found to be 50-10,000 times more
potent than morphine [2,4,5]. These synthetic opioids are added
to street drugs without the user’s knowledge to enhance the
effects of the drug [6]. As a result, individuals who consume
drugs laced with synthetic opioids are at a significantly greater
risk of overdosing, as their usual dose may have an unexpected
and dangerously high potency [5,6].

The principal mechanism by which opioid overdoses become
fatal is respiratory depression through suppression of the region
of the brain responsible for respiration rhythm regulation [7],
referred to as opioid-induced respiratory depression (OIRD).
In the early stages of an overdose, individuals lose consciousness
and experience slowed respiration, which can lead to
dangerously low blood oxygen levels [7]. Consequently, the
individual will experience hypoxia, hypercapnia, and, if left
untreated, complete respiration cessation and suffocation [7,8].

Fortunately, there is a fast-acting opioid antagonist called
naloxone that reverses the effects of opioid toxicity. Naloxone
has a stronger affinity to bond with the same receptor sites in
the brain than opioids, thereby blocking the effects of opioids
and restoring proper respiration functionality [9-11]. While the
effect of naloxone is temporary, lasting around 30-90 minutes,
it provides sufficient time for emergency medical personnel to
be contacted, arrive, and assume treatment [9-11]. To administer
naloxone and save a survivor’s life, the early detection of an
overdose is imperative before OIRD has caused blood oxygen
levels to drop significantly. When the brain is deprived of
oxygen for 3 minutes, consciousness is lost, and lasting brain
damage is to be expected [12]. After 10 minutes of oxygen
deprivation, if the individual is still alive, they will likely be in
a coma and experience permanent brain damage [12]. Therefore,
it is crucial that the overdose survivor be discovered as soon as
possible to administer naloxone and restore respiration and
oxygen flow to the brain.

Many initiatives have been introduced with the goal of
improving safety surrounding drug use, such as digital overdose
monitoring services, syringe services programs, and supervised
injection facilities or safe consumption sites. Digital overdose
monitoring services include phone lines where a person can
remain on the phone with someone informed of their location
and other pertinent information while they use drugs [13]. If
the person using drugs becomes unresponsive, the volunteer on
the line can contact emergency services and provide the
overdose survivor’s location. Syringe services programs supply
people who inject drugs with sterile injection supplies to prevent
needle reuse and inhibit the transmission of diseases such as

HIV and hepatitis [14]. Supervised injection facilities supply
trained medical supervision while people use drugs, providing
a safe and sterile environment equipped with overdose
prevention measures such as naloxone [14,15]. While these safe
injection facilities improve safety for people who use drugs and
choose to take advantage of them, many people prefer to use
drugs in more private settings, such as their homes, or in public
facilities, such as restrooms [16]. An exploratory study was
completed in New York where business managers were
interviewed, and 58% of those questioned had encountered drug
use in the restroom of their place of work, indicating the
significance of the public restroom drug use problem [17].

The prevention of opioid overdoses in public restrooms has
become an increasingly important focus of research and
development in response to the opioid crisis [17]. While some
businesses have used methods to deter drug use, such as the use
of blue lights in restrooms to make veins less visible, restricting
restroom access, and even removing stall doors, others have
implemented strategies to enhance the safety of individuals who
use drugs [17]. For example, supplying naloxone in restrooms
and the implementation of antimotion detectors have been
proposed as potential solutions [17]. However, while antimotion
detectors such as the Brave Sensor or the South End Clinic
Anti-Motion Sensor have shown promise in detecting potential
overdoses, their lack of specificity means they are prone to
triggering many false positives [18,19]. To address this issue,
a more precise detection method that monitors respiration,
specifically detecting OIRD, could be implemented to enhance
opioid overdose identification accuracy and alert staff. This will
ultimately produce a more rapid and effective response, as
required to reverse overdoses [20].

Respiration monitoring is a customary practice in medical
settings and is done using capnography, a medical monitoring
technology that uses infrared light to measure the carbon dioxide
concentration in expired breath [21]. The capnograph outputs
a waveform of carbon dioxide concentration over time, which
is representative of inspiration and expiration periods used to
calculate respiration rate [21]. If the patient does not require
assistance breathing, capnography can be measured with nasal
cannulas, or if they are on a ventilator, an adaptor is added to
the mouthpiece [21]. While this method has high accuracy in
respiration rate monitoring because it tracks respiration
waveforms, it requires specialized and expensive equipment
[21]. Furthermore, it needs contact with the participant and
therefore is not suitable for monitoring in a public restroom.

A simplified means of measuring respiration rate during physical
activity is through the use of a respiration belt. The nonelastic
belt is affixed around the participant’s thorax or abdomen and
uses a strain sensor to detect the corresponding expansion and
contraction of the chest wall during respiration. The sensitive
strain gauges in the respiration belts allow them to work well
to monitor all levels of respiration if they are tightly worn,
including measuring OIRD [22]. Although respiration belts do
not offer insight into breath composition as provided by
capnography, they provide valuable information regarding
respiration rate, depth, and patterns. The noninvasive nature of
respiration belts makes them a convenient and appropriate
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solution for a diverse range of applications; however, the belt
still requires contact with the participant to monitor respiration.

To identify OIRD in a public restroom setting, a device only
needs to measure respiration rate, not breath composition.
However, it must be practical, have sufficient precision and
sensitivity, and most importantly, be noncontact. Some systems
cover most of these requirements but cause concerns for privacy,
such as computer vision technologies that can monitor
respiration from pixel intensity between frames [23]. Others
preserve privacy but are not noncontact, such as pulse oximetry
and capnography, which track respiration with a finger monitor
or nasal cannulas [23]. A novel noncontact and
privacy-preserving smartphone app has been developed for
monitoring respiration rates during opioid use and generating
alerts in the event of dangerously low respiration rates [24].
This innovative tool leverages short-wave active sonar
technology combined with frequency shifts to enhance the
sensitivity of the measurement system [24]. This app allows for
remote supervision of opioid use in any setting, with the user
positioning their phone to face their chest and the app tracking
respiration rate by measuring the distance to the user’s chest.
The smartphone app requires users to be in a setting where they
can position their phone properly and requires a sufficiently
charged smartphone. According to a study regarding people
who use substances’ acceptability of technological solutions,
less than 50% of the people interviewed owned a cellphone
[25]. Of those who had a smartphone and access to the internet,
less than 70% would consider using it for monitoring their drug
use [25]. Most critically, this approach requires active
participation from the person using drugs. While this app has
the potential to enhance safety during opioid use in any location,
like safe injection facilities, it requires forethought and does
not address the needs of individuals who are not actively
engaged in taking responsibility for their own safety.

We developed a novel approach for detecting and preventing
public opioid overdose fatalities. A stand-alone radar device is
to be installed in a public restroom stall that can monitor the
respiration rate of individuals and subsequently trigger an alert
for bystanders to administer naloxone when overdose respiration
patterns are detected. The design and development of this device
involved several challenges, particularly with respect to ensuring
the privacy and anonymity of the individuals being monitored.
To overcome these challenges, pulsed coherent radar technology
is proposed as a viable, privacy-preserving solution. This
compact, low-cost, and high-precision modality allows for the
monitoring of respiration rates by detecting changes in the
direction of chest movement. The pulsed coherent radar sensor
works by emitting a series of high-frequency pulses sweeping
through a bandwidth around a set center frequency [26]. The
pulses are reflected by body tissues back to the receiver, creating
a signal to be analyzed by the system [26]. This technique is
derived from the Doppler shift principle, which measures the
change in frequency of the received signal caused by chest
motion. This technology also controls the phase of the
transmitted and received signals, allowing for high-accuracy
measurements and extreme sensitivity to very small movements
[26]. Because the sensor only records distances, it protects the
participant’s privacy. Another benefit of the radar sensor is that

the radio waves only reflect off materials with high reflectivity,
such as metal, water, and human tissue. This feature allows the
radar to sense chest movement and monitor breathing through
clothing, even heavy winter coats, making it a viable
rescue-alerting solution for many scenarios where a person
experiences opioid toxicity in a public restroom.

This paper details the development and preliminary exploratory
testing of a radar-based opioid overdose detection device for
public restrooms. We provide information about the design
process, the respiration tracking ability of the sensor and
algorithm, the device’s accuracy in a confined restroom stall
and its optimal position, and the device’s ability to monitor
respiration during a simulated opioid overdose. The aim of this
study is to assess the feasibility of an overdose detection radar
(ODR) for use in public restrooms.

Methods

Overview
The ODR development was informed by a thorough review of
relevant literature and consultation with medical practitioners.
Through interviews with emergency medical responders and
emergency department physicians, we gained valuable insight
regarding the appropriate respiration rate thresholds at which
to trigger an opioid overdose alert. We also learned details about
the expected position, respiratory condition, and sequence of
events that happen to a participant experiencing an opioid
overdose. The accuracy of the respiration rate measured by the
ODR was assessed in this study.

Design
Minimizing the size of the device was important to consider
throughout the component selection and design process, as the
intended use of the device is for small public restroom stalls.

Technology Selection
The selection of the Raspberry Pi Zero 2 W (Raspberry Pi Ltd)
and Acconeer’s A111 pulsed coherent radar breakout sensor
(SparkFun Electronics) for monitoring respiration was based
on their performance specifications and compact size. During
the exploration phase, the specifications and software
development kits for several radar sensors with operating
frequencies of both 24 GHz and 60 GHz were compared. The
Acconeer A111 60GHz pulsed coherent radar sensor was
selected for this application because of its robust software
development kit, configurability for the application, and high
measurement accuracy, with the 60GHz allowing for the
sensitivity and resolution to measure very small movements.

Form Factor and Other Considerations
The enclosure for the ODR was carefully designed to ensure it
was discreet and unobtrusive, resembling common restroom
fixtures such as air fresheners and smoke alarms (Figure 1). The
device was intentionally crafted to not display any visible lights
or lenses to avoid concern about identifying information being
recorded. While the device does collect and store some data as
required for the radar technology, it only records distance data
to monitor respiration. The data involved are similar to that used
by an automatic flush sensor or motion sensor for lights;
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therefore, we expect no issues with installing such technology
in public restrooms. A key consideration in the enclosure design
was its suitability for public settings, requiring it to be
tamper-resistant, durable, easy to clean, and securely mountable
to restroom stall walls. For this, we designed a compact (10 cm

× 11 cm × 6 cm) hemicylindrical enclosure. The enclosure is
currently 3D-printed with polylactic acid, a durable and
cost-effective material. Further iterations may progress to an
injection-molded design.

Figure 1. Image of the enclosure and internal components, consisting of the Raspberry Pi Zero 2W, Acconeer’s A111 sensor, and an uninterruptible
power supply battery package. For prototyping, the enclosure includes different mounting angles for the electronics. Iterative testing found that the
45-degree angle gave more consistent and accurate measurements.

Position
According to the sensor specifications, the optimal position for
the ODR is directly facing the participant’s chest within the
programmed range. However, it was found through consultation
with professionals that the device must be designed with
consideration that the individual will likely lose consciousness
before their respiration rate drops to dangerous levels. Thus,
the device must accurately measure respiration when the person
is slumped in all different directions within the stall. Due to the
bounded capture area of the radar, 65 degrees horizontal and
53 degrees vertical, it was difficult to monitor the entire volume
of the stall. Therefore, the scope was limited to scenarios where
the participant was slumped over while remaining on the toilet
seat. In-laboratory experiments were conducted using a mock
restroom stall setup following building standards for public
restroom stalls: 890-940 mm wide, 1500 mm long, and with an
860 mm door opening [27].

The participant was seated in the restroom stall setup (Figure
2) with the ODR attached to the wall at different distances,
heights, and angles from the participant’s chest. The device was
secured to the side wall using Velcro strips, allowing for easy
repositioning. To determine an optimal position, the targeted
respiration rate was held constant at 15 breaths per minute (bpm)
by following audible cues to inhale and exhale. Once the device
accurately detected respiration while the participant was seated
upright, the participant slumped in various directions to ensure
respiration could be tracked accurately in different body
positions. The measured respiration rate was monitored to ensure
it continued to accurately measure approximately 15 bpm while
the participant slumped in various directions to approximate an
overdose. If the device failed to track respiration while the
participant was slumped in any direction, the device position
was adjusted, and the experiment was repeated until respiration
was consistently tracked in all slumped positions.
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Figure 2. Mock restroom stall setup according to building code regulations (890-940 mm wide and 1500 mm long), with the toilet centered between
the side walls.

Respiration
The respiration tracking algorithm implemented for opioid
overdose monitoring is a customized version of Acconeer’s
A111 SDK breathing module. Acconeer’s Python algorithm
uses distance measurements to monitor the respiratory cycle by
tracking the relative distance of the reflecting body [28]. An
exhale is registered when the distance of the reflecting body
increases, indicating that the chest surface is moving away from
the sensor, while an inhale is registered when the distance
decreases, indicating that the chest is moving toward the sensor.
To avoid incorporating body movements into the respiration
tracking, the algorithm imposes constraints on the distance of
the motion used to calculate respiration, limiting it to a range
between 0.75 mm and 20 mm. Each breath cycle is defined by
1 inhale and 1 exhale, which are identified based on the change
in distance. The duration of a breath cycle is subsequently used
to compute the current respiration rate. The algorithm accounts
for variations in respiratory patterns that may lead to brief
inaccuracies in the calculated respiration rate. To customize the
device for the opioid overdose detection application, we added
respiration rate thresholds and respiration cessation triggers for
detecting breathing patterns consistent with opioid overdoses.

Respiration validation was completed for 2 positions. The first
validation testing protocol for the device included a healthy
participant outfitted with the Go Direct respiration belt (Vernier)
and seated upright in a chair directly in front of the radar device
at a distance of 1.5 m. The participant was instructed to breathe
at a comfortable pace for approximately 5 seconds until both
measurement devices began recording, and then to hold their
breath for 3 seconds. This breath-hold event was included to
allow the data sources to be synced in analysis and remove any
delays caused by setup or calibration time after the algorithm
was started.

The second respiration validation protocol was modified to
include the radar in its final position. This was completed to
ensure that respiration measurements were accurate for multiple

participants. Participants were outfitted with the Go Direct
respiration belt for validation purposes and followed the same
protocol as previously described. Each participant recorded 2
tests with the device fixed in the mock stall in its mounting
position and the participant seated upright on the mock toilet.
Breathing motion captured from the radar was compared with
the peaks recorded from the respiration belt, and the error
between respiration periods was computed.

OIRD is a life-threatening condition characterized by a
significant decrease in breathing rate caused by opioids. To
establish a reliable threshold for triggering an overdose alert,
consultation was sought from medical professionals. According
to medical experts and literature, a sustained respiration rate of
less than 8 bpm is considered dangerous and requires immediate
intervention [29]. Accordingly, the overdose detection algorithm
has been designed to trigger an alert when the respiration rate
falls below this threshold for 15 seconds or 2 full breaths. The
inclusion of 2 breaths enables the algorithm to discern a
momentary low respiration rate reading caused by intentional
motion from an actual overdose event, including a sustained
lowered rate. Additionally, the algorithm is programmed to
trigger an alert if no respiration motion is detected for 10
seconds, providing an added layer of protection if respiration
drops too quickly to track.

The duration of the respiration period is crucial in computing
the respiration rate. Therefore, we elected to assess the error by
analyzing the mean difference between the respiration periods
calculated from the respiration belt and the overdose radar. The
direction of the error was included because it is important to
know whether the respiration rate over several breath cycles
will remain accurate, regardless of an error in a single respiration
cycle duration.

Overdose Simulation
Validation testing was performed on the ODR’s ability to
monitor respiration rate in the mock stall while the participants
simulated an overdose by slumping in all directions. The
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protocol for this validation test includes outfitting the participant
with the respiration belt, sitting upright in the mock stall, and
breathing at a comfortable pace for 30 seconds. The participant
is then signaled to simulate falling unconscious by slumping
forward, then backward, left, and right, holding each position
for 30 seconds and breathing at a comfortable pace. The ODR’s
respiration tracking algorithm and the respiration belt recorded
data throughout all positions and movements, and the data was
analyzed to determine the agreement between the algorithm and
belt respiration periods in each position.

Ethical Considerations
Because of the challenges of running a study in a public
restroom, including privacy and health concerns, to confirm the
performance of the ODR, preliminary testing was conducted
in-laboratory on 3 of the authors (JO, JK, and YF), who are all
healthy and consented to perform validation tests and
approximate an overdose scenario in a mock restroom stall. All
the data recorded in the preliminary testing contained no
identifying information and only recorded respiration patterns.
To ensure the safety of the human participants, the ODR was
designed using approved, commercially available devices, and
any testing was done to help inform the development of the
device. Therefore, as per Article 6.11 of the Tri-Council Policy
Statement on Ethical Conduct for Research Involving Humans,
we did not require approval from the Research Ethics Board for
this exploratory testing [30]. Additionally, the testing procedures
did not require the participants to perform any potentially
dangerous respiration patterns to replicate an opioid overdose.
Participants were able to breathe at a self-selected, comfortable
pace throughout all experiments, and while the radar is
unaffected by what type of clothing is worn, participants wore
light to medium-weight long-sleeved clothing for the described
tests.

Results

Overview
The experimental procedures outlined in this study involved
the use of 2 distinct data sources: the respiration belt, which
measures force in Newtons, and the radar, which measures
distance in millimeters. Although the sources provide differing
data signals, both can provide valuable information on breath
timing and can be used to calculate the duration of each
respiration cycle or period. We retained the sign of the difference
instead of studying the absolute difference since a slight
deviation in the peak could yield 1 positive and 1 negative
difference while still resulting in the same respiration rate. The
respiration period is important in the context of the overdose
detection algorithm, where the respiration rate is a critical
feature.

Position
The initial placement of the radar device was at chest height,
tilted at an angle of 45 degrees away from the wall, directed
toward the chest. The sensor-chest distance was situated within
the range of 0.75-1.5 m. However, when the participant slumped
forward, the radar was aimed directly at the top of the head,
which did not display any motion related to respiration. To
address this limitation, we iteratively adjusted the radar height
and tilt angle to target the chest directly. Eventually, the optimal
position was determined to be 85 cm horizontally from the front
of the chest (center of seat) while seated upright, 85 cm above
the top of the toilet seat, angled 30 degrees down from
horizontal, and at a 45-degree angle setting within the device
pointing out from the wall toward the toilet (Figure 3). The
30-degree downward angle facilitated a direct path toward 35
cm above the toilet seat, specifically targeting the chest and
abdomen at a distance of approximately 1 m. This elevated
position allows the chest to be monitored when the participant
is upright or slumped backward and the back to be monitored
if the participant collapses forward.
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Figure 3. Radar positioning. The optimal position for the radar device in the mock restroom stall was found to be 85 cm in front of the center of the
seat, 85 cm above the top of the seat, and angled 30 degrees down toward the toilet. Additionally, inside the casing, the sensor was angled at 45 degrees
out from the wall to target the participant’s chest while seated on the toilet. Through testing, this position was capable of consistently monitoring
respiration with the participant in many different slumped positions.

Respiration
In the initial benchtop validation experiment, a participant was
seated upright in a comfortable position while their respiration
was recorded simultaneously by the respiration belt and radar.
A total of 67 respiration periods were analyzed over 6
experiments (2 per participant). These tests revealed a favorable
agreement in peak distance between the radar and the respiration
belt, with a mean error in cycle duration of 0.0045 (SD 0.42)
seconds (Figure 4; representative test displayed in Figure 5).

A secondary set of validation tests was conducted to evaluate
the tracking accuracy of the radar sensor’s position in detecting
respiration. Participants were seated upright in the mock stall,
with the radar device placed in its optimal position. Participants
were instructed to breathe at a comfortable pace, and their breath
periods were measured and compared using both the respiration
belt and radar methods. A total of 85 respiration cycles were
analyzed for the position validation testing, and good agreement
was observed across all tests (Figure 4). The mean breath period
error was found to be 0.012 (SD 0.42) seconds, and a
representative test is presented in Figure 6.

Figure 4. Errors in measurement between the radar and the respiration belt for the duration of each respiration cycle monitored were split into each of
the test protocols. The mean error for all tests is minimal, with similar SDs between tests. The SD is larger as it demonstrates that the error in cycle
duration can be positive or negative, but overall, it balances out to a very small mean error, having a small effect on the respiration rate over time.
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Figure 5. Representative respiration experiment: breathing motion captured by overdose radar (blue) and respiration belt (red) in the first plot. The
participant was breathing comfortably while seated upright, directly 1.5 m in front of the radar sensor. The second plot shows the respiration cycle
period in seconds calculated from peak-to-peak distance for both radar-measured (blue) and belt-measured (red) breathing movements. The error is
shown in black, and the mean error is 0.018 (SD 0.18) seconds.

Figure 6. Representative position experiment: the top plot shows breathing motion captured by overdose radar (blue) and respiration belt (red). The
participant was seated upright in the mock restroom stall with the sensor mounted at 85 cm forward, 85 cm above, and angled 30 degrees down toward
the toilet seat. The second plot shows the respiration cycle period in seconds calculated from peak-to-peak distance for both radar-measured (blue) and
belt-measured (red) breathing movements. The error is shown in black, and the mean error for the test is –0.018 (SD 0.38) seconds.
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Overdose Simulation
In the final evaluation, the radar position was evaluated under
simulated overdose scenarios by instructing participants to
slump over in various directions while wearing the respiration
belt for validation. The radar device was capable of tracking
respiration even as participants transitioned into different
slumped positions, causing much shallower respiration with
minimal calibration delay, as demonstrated in Figure 7. Across
all overdose simulation tests, which encompassed a total of 204

respiration cycles, the respiration was effectively tracked, with
a mean period difference of 0.0091 (SD 0.62) seconds (Figure
4). It is worth noting that the slightly larger error can be
attributed to the inherent noise present in the radar signal during
positional changes, which was anticipated.

Overall, after analyzing the error for all respiration cycles,
including all 3 protocols, the error was 0.0072 (SD 0.54)
seconds.

Figure 7. Representative overdose simulation experiment: the top plot shows breathing motion captured by overdose radar (blue) and respiration belt
(red). The participant was seated upright in the mock restroom stall for 30 seconds before slumping forward, backward, left, and right, holding each
position, and breathing comfortably for 30 seconds. The bottom plot shows the respiration cycle period in seconds calculated from peak-to-peak distance
for both radar-measured (blue) and belt-measured (red) breathing movements. The error is shown in black, and the mean error for the test is 0.017 (SD
0.64) seconds. This signifies that while the cycle errors can vary positively and negatively, they balance out to a small mean error of 0.017 seconds,
showing that the cycle error has a minimal effect on calculated respiration rate over time.

Discussion

Overview
With further development and tuning, the ODR has the potential
to detect opioid overdoses in public restrooms with accurate
respiration tracking, finding a mean error of 0.0091 (SD 0.62)
seconds when monitoring respiration cycle duration in overdose
simulation experiments. This study has demonstrated that
respiration can be accurately monitored within a restroom stall
using a pulsed coherent radar sensor and a Raspberry Pi. The
identification of OIRD could be used to alert staff or bystanders
to the emergency and mobilize a rescue response.

Principal Findings
Following an iterative process to ensure monitoring of all
slumped positions, the final device mounting position for the
ODR was determined to be on the side wall of the stall. The
device was mounted 85 cm above the toilet seat and 85 cm in
front of the surface of the chest or center of the seat, angled

down by 30 degrees. While concerns were initially raised
regarding the placement of the device in locations that may not
be feasible for all public restrooms, regulations for larger
handicap stalls to have support bars next to the toilet on the
adjacent wall alleviated these concerns as it meant that toilets
would always be a standard distance from the wall [27].

The benchtop validation experiments demonstrated the
capability of the radar to monitor respiration with accuracy and
consistency in controlled settings. The signal processing
involved in the A111 breathing algorithm might cause slight
variations in the duration of the respiration cycle, as filtering
the signal could lead to flattening of the peak, which may cause
offset peak locations. Nevertheless, given that the respiration
rate is a crucial feature for detecting overdoses, the slight shift
in peak location would not significantly impact the calculated
respiration rate as it would be counterbalanced by a negative
shift in the adjacent period rather than accumulate drift.
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The peak-to-peak distances are important, but the waveform
morphology and peak magnitudes were disregarded because
each method measures distinct physiological data; the radar
measures the distance to the chest in millimeters, while the
respiration belt gauges the external force exerted by the chest
wall in Newtons. Therefore, in this preliminary testing, the peak
distances measured by the radar were compared with the peak
distances recorded by the respiration belt.

Exploratory validation testing was conducted to compare ODR
motion-derived respiration periods with those collected using
a respiration belt. Good agreement between the 2 methods was
observed for both benchtop testing with the participant seated
upright directly in front of the sensor as well as in a mock
restroom setup with the ODR mounted to the wall. Minimal
deviations in respiratory cycle duration were observed. The
variance in error is due to single peaks being shifted, resulting
in positive and negative errors in adjacent respiration cycles.
While this error is important to identify, it does not significantly
impact the overdose detection algorithm’s analysis of respiration
rate, as the errors are not sustained for a window long enough
to affect the algorithm’s functioning (15 seconds).

The principal source of error in the overdose simulation
experiments, as seen in Figure 7, was related to participant
movements changing to a different slumped position. It is worth
noting that the device uses relative movement tracking to
monitor respiration, requiring recalibration to ensure accurate
tracking across different positions. The study participants
encountered difficulty assuming a stable slumped position
immediately after moving and often resorted to readjusting for
1-2 seconds before settling into a stable position that could be
maintained for the 30-second test period. This poses a challenge
in differentiating whether the radar’s recovery time after each
position change is delayed due to its calibration process or
because the participant is still in motion. While the device’s
loss of respiration tracking during large movements was
expected, it was able to rapidly restore accurate tracking.

Limitations and Future Work
This preliminary testing included limitations that will be
considered in the design of a future pilot study conducted on a
larger and more diverse sample size. First, the overdose
simulation experiments were not representative of a fatal opioid
overdose. Second, while the device does have a battery backup,
it currently relies on being connected to a power supply. Third,
the device’s field of view, while tuned well for a restroom stall,
would not accommodate a larger-than-standard space. Finally,
we have not yet consulted with people involved in harm
reduction or people who use drugs regarding the details of the
implementation and alert system. We have considered how these
limitations will be addressed moving forward.

The overdose simulation tests did not replicate an actual opioid
overdose scenario because healthy participants found it
strenuous to repeat the respiration patterns observed during fatal
overdoses. Instead, the participants were instructed to breathe
at a comfortable pace during the experiments. This was
beneficial as they were able to breathe shallowly rather than
gasping for large breaths to maintain a slow respiration rate.
The shallow breathing was beneficial to include in the study

because it confirmed that the radar had a high sensitivity to
respiration movement, accurately measuring even very weak
respiration activity. Because the preliminary testing conducted
used healthy participants breathing normally when the device’s
primary objective is to capture irregular and unhealthy
respiration patterns, a future study is planned to validate the
device on unhealthy patients. In the pilot study, unhealthy
respiratory patterns will be monitored by the ODR and compared
against the gold standard respiratory tracking output.

The next consideration to be addressed is the power supply of
the device. For these experiments, the ODR was connected to
a power supply using a USB cord and included a battery backup.
To facilitate the device’s implementation and use, it will be
modified to be battery-powered. The high-sensitivity
measurements and on-board processing required to calculate
respiration rates consume a considerable amount of battery
power; therefore, we plan to integrate a less power-intensive
presence detection component into the algorithm that triggers
respiration monitoring upon detecting human entry into the
restroom stall. Once an opioid overdose is detected during
respiration monitoring, the device will temporarily switch back
to presence detection to verify human presence before alerting.
This feature optimizes battery life and reduces false positives
that could occur when the device continues to track respiration
after a person has left the stall.

Because this device was designed to monitor a standard public
restroom stall, the position and field of view were selected
accordingly. A limitation of this device’s position in a larger
stall is that individuals may collapse into an open space, fall to
the floor, and potentially be out of the detection range.
Unfortunately, this scenario cannot currently be accommodated
in the device design as the detection range is limited and needs
to be centered around where the participant’s chest is when
seated upright to capture all other positions. Importantly, the
device can measure respiration in all body positions of someone
using the toilet, meaning that the device is able to monitor
healthy and unhealthy people regardless of their position.

While this study is limited to the development and evaluation
of the ODR device, forethought has been considered about its
application. We aim to gather insight from businesses and people
who use drugs on how to implement this device in a way where
we can maximize its life-saving potential. While it would be
beneficial to notify patrons of the device’s presence and
functionality, it can be understood that business owners may
not appreciate advertising their facilities as a safe space for drug
use. Conversely, people who use drugs could be deterred by
such a device if they are concerned it may result in police
presence with the stigma surrounding drug use. Regardless of
the mentioned concerns, both groups of people can recognize
the device as a life-saving measure that can make a significant
impact on the safety of the community.

The technology design is currently limited to implementation
in a public restroom stall to detect opioid overdoses. However,
other applications could be possible with slight design
modifications to change specifications such as the detection
area, device position, or battery size. These modifications could
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allow the continual monitoring of other sites such as addiction
treatment facility rooms, hospital rooms, and holding cells.

Conclusion
This study describes the design, development, and exploratory
research of a device with promising potential to monitor
respiration rate in a restroom stall setting and detect opioid
overdose events. The ODR successfully monitors respiration
in a restroom stall setup when the participants are in a variety
of slumped positions consistent with overdoses. The
development of this opioid ODR considers the physiological
aspects of opioid overdoses as recommended by medical
professionals, and the device is tailored to accurately monitor
respiration, the main indicator of opioid overdose.

The end goal of this device concept is to add an additional layer
of safety to public restrooms, enabling the timely administration
of naloxone and the mobilization of rescue teams in response
to overdose emergencies. Future pilot and research studies will
help design the device to detect overdoses in public restroom
stalls. Given the rapidly escalating opioid epidemic, it is
essential to seek and develop innovative solutions that can help
protect the public and facilitate prompt and effective responses
to overdose events. The results of this study represent a crucial
step forward in this regard, and further investigations are
warranted to validate the device’s performance under a variety
of conditions and settings, including being evaluated on people
who use drugs to ensure we can accurately track the afflicted
respiration patterns.
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Abstract

Background: Accurate and portable respiratory parameter measurements are critical for properly managing chronic obstructive
pulmonary diseases (COPDs) such as asthma or sleep apnea, as well as controlling ventilation for patients in intensive care units,
during surgical procedures, or when using a positive airway pressure device for sleep apnea.

Objective: The purpose of this research is to develop a new nonprescription portable measurement device that utilizes relative
humidity sensors (RHS) to accurately measure key respiratory parameters at a cost that is approximately 10 times less than the
industry standard.

Methods: We present the development, implementation, and assessment of a wearable respiratory measurement device using
the commercial Bosch BME280 RHS. In the initial stage, the RHS was connected to the pneumotach (PNT) gold standard device
via its external connector to gather breathing metrics. Data collection was facilitated using the Arduino platform with a Bluetooth
Low Energy connection, and all measurements were taken in real time without any additional data processing. The device’s
efficacy was tested with 7 participants (5 men and 2 women), all in good health. In the subsequent phase, we specifically focused
on comparing breathing cycle and respiratory rate measurements and determining the tidal volume by calculating the region
between inhalation and exhalation peaks. Each participant's data were recorded over a span of 15 minutes. After the experiment,
detailed statistical analysis was conducted using ANOVA and Bland-Altman to examine the accuracy and efficiency of our
wearable device compared with the traditional methods.

Results: The perfused air measured with the respiratory monitor enables clinicians to evaluate the absolute value of the tidal
volume during ventilation of a patient. In contrast, directly connecting our RHS device to the surgical mask facilitates continuous
lung volume monitoring. The results of the 1-way ANOVA showed high P values of .68 for respiratory volume and .89 for
respiratory rate, which indicate that the group averages with the PNT standard are equivalent to those with our RHS platform,
within the error margins of a typical instrument. Furthermore, analysis utilizing the Bland-Altman statistical method revealed a
small bias of 0.03 with limits of agreement (LoAs) of –0.25 and 0.33. The RR bias was 0.018, and the LoAs were –1.89 and
1.89.

Conclusions: Based on the encouraging results, we conclude that our proposed design can be a viable, low-cost wearable medical
device for pulmonary parametric measurement to prevent and predict the progression of pulmonary diseases. We believe that
this will encourage the research community to investigate the application of RHS for monitoring the pulmonary health of
individuals.

(JMIR Biomed Eng 2023;8:e47146)   doi:10.2196/47146

KEYWORDS

relative humidity sensor; design; develop; development; tidal volume; pulmonary volume; COPD; pulmonary; respiratory; sensor;
sensors; wearables; humidity; medical device; development; breathing; wearable; ventilation; air
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Introduction

Theory
In 2020, respiratory disorders impacted approximately 550
million individuals globally and caused 4 million annual deaths.
The COVID-19 pandemic led to an increase in health care
expenditure, particularly in the field of respiratory diseases [1].
The pandemic expedited the development of respiratory
diseases, and despite persistent respiratory and neurological
problems, many patients have been discharged [2,3].
Simultaneously, obstructive sleep apnea (OSA) [4] affects a
significant proportion of adults and is related to increased
morbidity and mortality worldwide.

These significant global health care issues warrant the pursuit
of solutions to prevent and optimize health care pathways [5].
Lung volume measurement is especially important for patients
with respiratory diseases [6,7], with OSA and under ventilation
[8], or in intensive care units (ICUs) [9]. Spirometers can
evaluate breathing in patients with asthma or chronic obstructive
pulmonary disease (COPD) [10]. Patients with OSA using an
automatic positive airway pressure (A-PAP) or continuous
positive airway pressure (C-PAP) device must be awake to
execute deep breathing (inhale and exhale) to be tested with a
spirometer [11]. Wearable devices that assess respiratory rate
(RR) using validated methods have been developed recently
[12-15], but they do not measure lung volume [16]. Thus, a
wearable device that gives comprehensive lung volume data to
improve quality of life, monitor remotely, and avoid respiratory
disease progression would be highly desirable [17,18].

In this work, we present a simple and inexpensive sensor
platform that can be used to quantify pulmonary inspiration,
expiration, and lung volumes. Our device uses a relative
humidity sensor (RHS) to detect breathing and calculate tidal
volumes (TVs), expiratory reserve volumes (ERVs), and
inspiratory reserve volumes (IRVs) [19]. To the best of our
knowledge, the innovative aspects of this study are the direct
measurement of respiratory cycles and the exact derivation of
TD, ERV, IRV, and vital capacity (VC) data from the calculation
of the breathing surface [16,20].

Prior Work
There are numerous techniques for assessing respiratory function
and detecting lung disorders such as COPD and asthma [1].
Pulmonary function tests need accurate breathing volume and
flow measurements using a basic spirometer [21], requiring the
patient to inhale deeply and then expel as forcefully as possible
via the mouthpiece over a period of time. This is an inexpensive,
noninvasive test that can be administered in a medical facility
or at home. However, the requirements of this test can still be
hard for some patients who cannot fully empty their lungs during
the procedure. This limits the usefulness of this well-known
diagnostic tool [22]. Additionally, laboratory blood tests can
be used to evaluate respiratory health. However, because this
is an intrusive procedure, it cannot be used to indefinitely
monitor patients outside of hospitals.

The number of rib cage movements per minute is another crucial
indicator that indicates respiratory and heart health, via RR

[23,24]. RR monitoring can be accomplished using ICU-specific
equipment [25]. Mathematical correlations of
photoplethysmography (PPG) and electrocardiography (ECG)
data yield accurate RR values [26-28]. Numerical methods
estimate the RR from PPG and ECG using the following 3
physiological modulations of breathing: amplitude modulation,
frequency modulation, and baseline wander [29,30]. The noise
in the PPG and ECG signals affects the accuracy of these RR
measures [31], and considerable signal processing is needed to
extract meaningful information from the noise and improve the
measurements [32,33].

Measuring RR alone cannot assess lung capacity, a critical
indication of COPD status and development [34]. Respiratory
depression can be detected by lung volume measurements such
as TV, ERV, IRV, and VC. Pulmonary function tests measure
lung volume, capacity, flow rates, and gas exchange. Spirometry
has low accuracy and significant latency and cannot be utilized
during sleep [35]. Plethysmography, which measures
intrathoracic gas during airflow obstruction, is used to calculate
lung volume [36]. Modern wearable devices like CO2 gas
sensors analyze CO2 or O2 fluctuations during inspiration and
expiration to estimate lung capacities [37]. Computed
tomography radiography, which is invasive and time-consuming,
is another option [38,39].

A much easier method measures the RR directly from the
moisture content of the breath [20,40,41]. Patients are typically
attached to various monitoring devices in ICUs and during
surgery to continually monitor their pulse, blood pressure,
breathing rate, and oxygen saturation. Typically, humidity
sensors are included in the tube adaptor entry of respirator face
masks (Figure 1) [42].

Continuously measuring the humidity of the exhaled air provides
an accurate measurement of the patient's RR. In addition, it was
recently shown that TV might potentially be effectively
estimated from surface measurement during the normal
breathing cycle [43]. Exhaled air has a relative humidity (RH)
of 100% and is saturated with water [44]. This exhaled humidity
is a function of pulmonary capacity and is proportional to RR
and lung volume [20,45]. Most crucially, atmospheric pressure,
external temperature, and sex-dependent fluctuations alter the
signal amplitude's maximum RH content [46].

A huge network of internet-connected objects, including
Bluetooth Low Energy devices, sensors, and global positioning
systems, is the goal of emerging Internet of Things (IoT)
paradigms [40,41]. Medical IoT devices that use cloud compute
power could improve chronic respiratory illness detection and
therapy. In medical IoT devices, embedded electronics like
accelerometers [17,42-44] and temperature sensors [45,46] are
used in new ways. Using a chest-mounted belt, an accelerometer
may record rib cage movement to determine breathing rate. The
inhalation-exhalation temperature differential can also be
monitored [47]. We can estimate the key pulmonary indicators
from studying the relationship among temperature, pressure,
and humidity of a person [48]. The only IoT-compatible methods
for measuring lung capacity are somewhat sophisticated
spirometry [49], capnometry [50], and impedance
pneumography devices [51,52]. In this new paradigm, data
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collection occurs simultaneously in real time and over an
extended period of time, enabling a move from a reactive
treatment strategy to an early warning and detection mode that

maximizes results while minimizing the related human and
financial costs [53].

Figure 1. Commercial face masks typically used (A) in intensive care units with the (B) ventilation connector including respiratory rate, humidity, and
pressure measurement sensors and (C) at home by patients with obstructive sleep apnea. All products are manufactured by ResMed Ltd.

Hypothesis
The key hypothesis of our work was that the changes in RH
during breathing provide an indication of pulmonary disorders
in a patient. Moreover, we also believed that the change in RH
during deep inhale-exhale cycles of breathing can be used to
measure pulmonary volume, especially TV, ERV, and IRV.
The combination of measurements provides the total pulmonary
VC. To prove our hypothesis, we designed a low-cost wearable
device that uses a single RHS to provide accurate and
sophisticated lung volume (TV, ERV, IRV, and VC) and RR
measurements. To validate our strategy, we incorporated the
electronic prototype into an OSA face mask with our own flow
adapter (Figure 2), which is designed to prevent moisture
retention and keep the sensor close to the mouth and nose.

The gap between the mask and humidity sensor was defined to
avoid saturation of the humidity sensor. In fact, we tested
different tube sizes to support the sensor, so as to avoid
phenomena saturation during deep exhalations. We based our
adapter on the venturi effect [54]. Various flow measurements
were carried out to create this adapter, from which the sensor
is attached and onto which the mask is fitted. This method is
also used to easily change the mask from one person to another.

We used statistical analysis methods including Bland Altman,
1-way ANOVA, and box plots to validate our results. The
preliminary results of the experiments with multiple participants
showed that our hypothesis was correct, and the same was
corroborated by the statistical tests. With more participants and
sophisticated models, we will be able to classify pulmonary
disorders based on changes in RH.

Figure 2. Humidity sensor adapter connected to the obstructive sleep apnea face mask to reduce the amount of trapped moisture: (A) outside view of
the airflow adapter with the reduction and humidity sensor, (B) inside view of the airflow adapter with the reduction and humidity sensor, and (C)
airflow adapter with the reduction and humidity sensor and the heater connected.
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Methods

Experimental Setup
We used the humidity sensor to estimate lung volumes, a key
respiratory function, by monitoring inspiratory and expiratory
humidity [47]. Figure 3 shows the electronic prototype inserted
into an OSA face mask to keep the sensor close to the mouth
and nose. The BME280 humidity sensor was protected from
face mask moisture by a 3D-printed airflow adapter. Bluetooth
data transmission and SD card data recording were enabled by
an Arduino Nano Bluetooth Low Energy interfaced to the
sensor. Figure 3A provides a schematic overview, and Figure
3B depicts our prototype. We developed the device using a
proven health care IoT architecture strategy that combines data
acquisition, low energy, and embedded systems [55]. Figure
3A shows the medical-compatible BME280 sensor measuring
RH, ambient temperature, and barometric pressure [56,57].
Additionally, it has quick start-up and recovery times, with a
63% recovery occurring in roughly 1 second [58]. BME280 is
a widely used, commercial humidity sensor that retains a
long-term stability of ±0.5% RH per year and a low
signal-to-noise ratio of 0.02% RH, as provided in the sensor's
data sheet [58]. The range of the RH measurement at an overall
level is 89 (SD 7.8).

The sensor's embedded data preprocessing is enabled by an
NRF52832 microcontroller unit used in other medical devices
[59]. The microcontroller unit stores data on the SD card for
later retrieval when a Bluetooth connection is unavailable. The
smartphone's wireless connection and real-time data recording
app were developed in Android Studio. The IEEE 754 standard

requires converting the data transmitted via Bluetooth from
HEX to float [60]. Data cleaning, processing, and automated
parameter calculation were done via Python scripting.

We worked on the raw data to highlight all possible anomalies
and artifacts. As the humidity sensor is placed on the front of
the mask, separated by a support to prevent saturation of the
sensor during deep exhalation, no movement artifacts were
detected. The only artefacts measured were those associated
with breathing, which can sometimes present saccades that
highlight the absence of ventilatory recovery.

A standard commercial breathing monitoring device
(pneumotach [PNT]; Hans Rudolph) was used to independently
calculate the lungs' volume and RR for comparison with our
sensing platform's results. Figure 4A shows the PNT controller
and heater [61]. Figure 4B shows the Hans Rudolph PA-1 PNT
Amplifier [62]. Standard PNT devices monitor respiratory
parameters at 1 kHz [62,63].

For best results, our sensor should be placed behind the PNT
heater using an adapter to lower face mask humidity. This
adaptor in the face mask allowed precise humidity measurement
during respiration, enhancing sensor sensitivity and limiting
saturation. This design integrates our humidity measuring device
into the surgical face mask and connects via the PNT, as shown
in Figures 4 and 5. All participants were instructed to breathe
deeply every 30 seconds to determine TV, IRV, and ERV, then
they were instructed to breathe normally for the rest of the
15-minute test. The VC is the sum of the IRV and ERV
parameters. The RH sensor sampled data at 5 kHz, and the PNT
sampled data at 1 kHz during the tests.

Figure 3. (A) Schematics of the proposed health care Internet of Things architecture and (B) our prototype. BLE: Bluetooth Low Energy; OSA:
obstructive sleep apnea.
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Figure 4. Commercial pneumotach (PNT) used for reference baseline measurements: (A) PNT controller and heater and (B) PA-1 PNT amplifier. The
photos were taken from Hans Rudolph website [61].

Figure 5. Testing procedures, including the (A) global measurement setup and (B) face mask connected to the heater and relative humidity sensor
adapter.

Recruitment
All study participants, comprising 5 men and 2 women, were
healthy and had no preexisting respiratory conditions. Their
mean height was 171 (SD 10) cm, and their mean weight was

75 (SD 20) kg. The mean BMI was 25 (SD 4) kg/m2. The mean
age of this population was 38 (SD 8) years. All participants
were tested under identical conditions under medical
supervision.

The experiment was conducted according to a specific protocol
that ensured “identical” conditions for all participants involved.
First, implementation of the mask was dealt with in 2 parts.
Each participant was given a dedicated, single-use mask. The
sensor part of the mask, affixed to the mount, was reusable and
did not need to be cleaned. To monitor its operation, a data
acquisition system was used to confirm that the sensor
maintained the same humidity saturation as the room
environment.

All measurements were taken at the same RH, in the same
location, and under the same automated climatization conditions.
These conditions included temperature, humidity, and
atmospheric pressure. To ensure this uniformity, all
measurements were conducted on the same day.

Regarding the selection of participants, they were chosen based
on specific criteria to ensure their homogeneity. Participants
had no respiratory history and were in good physical condition.

They all used the same seated position and the same chair and
were exposed to the same environmental conditions as other
participants.

In terms of equipment setup, the equipment was placed
uniformly for all participants. A preliminary step in the protocol
confirmed that the baseline conditions (temperature and
humidity in the room) were the same for all participants before
starting the experiment. A new mask was used for each
measurement to eliminate any risk of cross-contamination or
interference.

Physical parameters such as height, weight, and blood pressure
were measured before data collection, and all participants were
allowed 5 minutes of relaxation before starting.

Ethics Approval

The experiments presented in this paper were approved by the
research ethics committee at École de Technologie Supérieure
(approval number: H20230603).

Statistical Analysis
We compared the means and IQRs from the commercial PNT
and our prototype using a box plot. We also compared the deep
breathing area (DBA) and RR series using a 1-way ANOVA
[64]. The hypothesis was tested with an optimal P value of .05
in the ANOVA analysis. DBA and RR Bland-Altman charts
were plotted against the PNT for all participants.
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Methodology
A cleaning protocol was used for the mask before each
measurement to remove contamination risks. The following
method derives respiratory parameters from sensor-measured
RH and PNT: According to the experimental section, the RH
was measured throughout the 15-minute test. Counting maxima
over a time segment gives the RR. We calculated TV by
calculating the area under the curve between 2 consecutive
minima using normal breathing data. All lung volumetric
parameters were calculated using the rectangle method, which
is presented in mathematical form in equation 1 [65].

where i indicates the sample number, x indicates the time
duration of measurement in seconds, f indicates the function to
compute the RH value at time x, and m indicates the total
number of samples.

Deep inhalation and exhalation areas determine IRV and ERV
parameters, and the VC is the sum of both. The beginning and
end of each deep inspiration and expiration cycle were indicated
by a sign change in the signal's second derivative [5]. Counting

minima in beats per minute over a chosen time can also
determine the RR, as shown in equation 2.

where x indicates the time duration of thr measurement in
seconds.

Indeed, RR and TV have been used to validate respiratory
parameters. As shown in Figure 6, lung volumes and RR were
calculated by measuring deep inhalation and exhalation
breathing and the respiratory cycle over 1 minute. The room
temperature remained at 21.5 °C. External humidity control in
the test room was turned off because the mask uses a heater to
control humidity.

Our prototype's reset button synchronized data collection timers
with the PNT. A computer saved the PNT's benchmark
respiratory parameters. Volume capacity is indicated by the
areas of the orange rectangle in Figure 6A, which represents
the closed DBA signal that begins with inhalation and ends with
deep exhalation. RH and PNT had the best correlation (R=0.84)
when calculating the area using the rectangle method. The
triangle method had a lower correlation coefficient (R=0.40).

Figure 6. Respiratory parameters calculations from the (A) commercial pneumotach (PNT) recordings and (B) relative humidity sensor–based prototype.

Results

Bland-Altman Analysis
Population-based Bland-Altman analysis was used for the
participant data [66]. We used the mean difference and limits
of agreement (LoAs) to quantify the humidity sensor-PNT
correlation. Bland-Altman graph analysis is a simple way to
assess the bias between the average differences and estimate an
interval of agreement in which 95% of the sensor data
differences fall relative to the PNT data. Both data sets were

analyzed using unit difference and percent difference charts.
Figure 7 shows the Bland-Altman analysis for the
DBA-normalized plots to help estimate the within-subject and
between-subject variability. Bias and variability terms were
fixed to zero when they did not increase the objective function
by more than 2 points, and bias and variance variability were
assumed to be normal and log-normally distributed [66]. The
DBA's overall analysis yielded a bias of 0.03 with LoAs of
–0.25 and 0.33. The RR bias was 0.018, and the LoAs were
–1.89 and 1.89.
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Figure 7. The Bland-Altman plot and calculations comparing the values from the relative humidity sensor with those from the pneumotach for the (A)
deep breathing area and (B) respiratory rate. The blue line indicates the bias, and the dotted lines indicate the limits of agreement.

Statistical Analysis
We compared the PNT's experimental DBA and RR data with
our RHS-based IoT prototype. Figure 8 shows box plots
comparing the medians and IQRs from the commercial PNT
with those from our prototype. The average DBA values from
the PNT and our sensor were 0.56 (SD 0.29) and 0.59 (SD 0.28),
respectively, showing similar values. The average RR with PNT
was 17.61 (SD 1.73), and the average RR with our prototype
was 17.58 (SD 1.71). This shows that our IoT sensor can
accurately measure the participants' respiratory parameters.

Furthermore, the 1-way ANOVA analysis was useful to compare
the similarities between the DBA and RR data sets, as shown
in Table 1 [64]. After reviewing the ANOVA results, we still
needed to understand subgroup differences among the different
experimental and control groups. For the ANOVA, we used an
optimal P value of .05 to test the hypothesis. The results showed
values of F1,39=0.016 and F1,347=0.01, indicating that the
differences between the group averages were negligible [67].
We could not reject the null hypothesis because the
corresponding P values of .64 for DBA and .89 for RR were
greater than .05 [67]. Thus, we concluded that there were no
statistically significant differences between the mean DBA and
RR measurements taken by the commercial PNT and our IoT
sensor prototype.

Finally, Figure 9 shows the root mean square error (RMSE) for
the DBA and RR measurements, when comparing the
commercial PNT with our RHS prototype. The trend includes
the highest and lowest RR values. Abnormal breathing patterns
during DBA and RR measurements cause data anomalies. The
PNT and RHS prototype anomalies are shown in Figure 10.
Errors in the DBA and RR can also be caused by variations in
the participant's breathing pattern during the test [65]. This
pattern appeared only once during our measurement, represented
by the outlier points outside of the RMSE and DBA regions
present in Figure 10. Most devices are very sensitive to changes
in breathing patterns, especially during flow measurements
because the face mask makes it hard to breathe normally. It is
possible to ameliorate this error by averaging the volume and
RR measurements over a longer period. Future generations
could leverage sensor fusion, multitenancy (sequential usage
of different sensors), or deep learning predictive value structures
to continuously monitor patients' vital signs [68]. After
examining the volumes (ERV, IRV, TV, VC) and RR
measurements, we concluded that our IoT RHS-based device
offers a unique way to properly measure essential respiratory
parameters using a low-cost sensor and without heavy-duty
medical devices.
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Figure 8. Box plots comparing the calculated (A) deep breathing area (DBA) and (B) respiratory rate values from the relative humidity sensor prototype
with those from the pneumotach for all participants in the test data set.

Table 1. Results from the 1-way ANOVAs of respiratory volume and rate measurements.

P valueFMSbdfSSaSource of variation

Respiratory volume (L)

.680.0160.01410.02Between groups

——c0.08383.13Within groups

———393.15Total

Respiratory rate (beats per minute)

.890.010.00110.002Between groups

——0.1134639.09Within groups

———34739.09Total

aSS: sum of squares.
bMS: mean squares.
cNot applicable.

Figure 9. The plot shows the root mean square error (RMSE) of the (A) deep breathing area (DBA) and (B) respiratory rate (RR) values, comparing
our relative humidity sensor (RHS) prototype against the commercial pneumotach (PNT).

JMIR Biomed Eng 2023 | vol. 8 | e47146 | p.78https://biomedeng.jmir.org/2023/1/e47146
(page number not for citation purposes)

Vaussenat et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 10. Two examples of breathing pattern anomalies during the deep breathing area and respiratory rate measurements using (A) the commercial
pneumotach device and (B) our own relative humidity–based sensing device. The maximum point shows the value of the inspiratory reserve volume,
while the minimum represents the expiratory reserve volume during deep breathing measurements; during a normal breathing pattern, the graph shows
the tidal volume.

Discussion

Principal Findings
First, we showed that we can measure respiratory parameters
using the proposed RHS-based device. To calculate the TV, we
used the area under the RH curve using the rectangle method,
as described. Second, we compared the measurements from the
proposed device with those from the gold standard PNT for all
participants. The Bland-Altman analysis showed that the
measurements were within the LoAs and the bias was very low.
Furthermore, the results from the ANOVA indicated that the P
values were above the threshold value of P<.05. Both statistical
experiments confirmed that the group average measurements
from the PNT and our proposed device were similar within
statistical limits (ie, we can use our proposed device to measure
respiratory parameters with an accuracy that is close to that of
the gold standard). This is further corroborated by the box plots
of the DBA and RR values. Most importantly, our device is 100
times [61,62] less expensive than the PNT device.

Comparison With Prior Work
The literature suggests that continuous and precise lung volume
and RR monitoring is difficult. Lung volume, a critical
indication of COPD status and development, cannot be assessed
by RR alone [34]. TV, ERV, IRV, and VC can indicate
respiratory depression. Researchers have measured lung volume
with a spirometer, but it is inaccurate, has a large latency, and
cannot be used while the patient is asleep [35]. Our method
improves continuous lung volume monitoring by not requiring
the patient to be supine. It also measures lung volume without
a costly sensor or imaging tests.

Strengths and Limitations
Our device is a low-cost medical device. It provides an
opportunity to measure respiratory parameters in real time. The
device uses a widely used and tested commercial humidity
sensor that is stable and has a high signal-to-noise ratio. We
tested the device with a variety of participants with different

demographic characteristics and of different sexes to ensure
that the results are reproducible. Despite all the strengths, there
are certain limitations to our device. First, the framework of our
device is not suitable for commercial applications as there is a
large number of ad hoc components. There is scope to improve
the design of the device by incorporating the sensors in the
fabrication of the mask. Second, detailed study of the device
with a larger number of participants and varying environmental
conditions is required for further testing and calibration.

Future Work
Due to the restrictions inherent to variations in breathing patterns
and device sensitivity, we foresee the development of our own
array of humidity sensors, coupled with deep learning data
processing, with the goal of resolving any problems associated
with breathing pattern deviations. This will enable extrapolation
of the unusable measurements to ensure the same level of
precision as linear results. This array of humidity sensors printed
on a flexible base would permit the incorporation into materials
for surgical masks without affecting the usability. Limitations
may include a high-humidity environment, which may increase
the risk of saturating the humidity sensor. A combination of
pressure and temperature measurements would limit this bias.
Ideally, the sensor should be integrated into the mask so that it
can be used in real-life conditions, without obstructing the
ventilatory connection. Increasing the sample size will not
validate the use of the sensor, but the inclusion of profiles with
respiratory disorders would make it possible to obtain
measurements with less obvious variations in amplitude and
thus include situations in which respiratory disorders could be
detected [12].

Conclusions
Wearable IoT medical technologies are developing as viable
options not just to monitor patients at home after hospitalization
but also to boost the affordability and accessibility of quality
health care. In fact, the development of more effective and less
expensive wearable medical devices could allow patients to
monitor their health at home. In recent years, the number of

JMIR Biomed Eng 2023 | vol. 8 | e47146 | p.79https://biomedeng.jmir.org/2023/1/e47146
(page number not for citation purposes)

Vaussenat et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


wearable medical devices for chronic disease monitoring has
expanded. Last, improved medically certified sensors will
facilitate the development of better and less expensive medical
IoT devices. In our investigation, we utilized a single sensor to
simultaneously detect pressure, temperature, and humidity. The
literature indicates that temperature is frequently used to
measure RR [45]. The results indicate that our RHS can measure
RR within statistically acceptable control limits. The results of
the 1-way ANOVA indicate that the group means of the PNT
are equivalent to our RHS within the standard margin of error
of the instrument. This is further supported by the Bland-Altman
analysis, which revealed low values of 0.03 and 0.018 for the
bias and RR, respectively. The data analysis revealed that the
evolution of RRs over time for the PNT and our low-cost RHS
follows a similar pattern. This is, as far as we are aware, the
first study to investigate the use of RHS for reliably monitoring

respiratory volumes on a medical IoT platform. We plan to
examine the applicability of the RHS sensor to detect more
complex respiratory disorders using deep learning in a future
phase of development.

In terms of utility, it is evident that continuous and precise
monitoring of lung capacity and RR represents a significant
basic obstacle. Nonetheless, it presents a tremendous opportunity
to monitor patients with OSA in intensive care or during surgery.
Lung volumes, namely TV, can be utilized to manage respiratory
pauses or identify the breathing pattern in patients with OSA
who utilize C-PAP or A-PAP devices, which, when combined
with artificial intelligence, can detect apnea occurrences and
enhance A-PAP performance. Regarding ventilated patients,
assessing TV will allow for better control of ventilatory
weaning.
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Abstract

Background: In Japan, individuals with mild COVID-19 illness previously required to be monitored in designated areas and
were hospitalized only if their condition worsened to moderate illness or worse. Daily monitoring using a pulse oximeter was a
crucial indicator for hospitalization. However, a drastic increase in the number of patients resulted in a shortage of pulse oximeters
for monitoring. Therefore, an alternative and cost-effective method for monitoring patients with mild illness was required. Previous
studies have shown that voice biomarkers for Parkinson disease or Alzheimer disease are useful for classifying or monitoring
symptoms; thus, we tried to adapt voice biomarkers for classifying the severity of COVID-19 using a dynamic time warping
(DTW) algorithm where voice wavelets can be treated as 2D features; the differences between wavelet features are calculated as
scores.

Objective: This feasibility study aimed to test whether DTW-based indices can generate voice biomarkers for a binary
classification model using COVID-19 patients’ voices to distinguish moderate illness from mild illness at a significant level.

Methods: We conducted a cross-sectional study using voice samples of COVID-19 patients. Three kinds of long vowels were
processed into 10-cycle waveforms with standardized power and time axes. The DTW-based indices were generated by all pairs
of waveforms and tested with the Mann-Whitney U test (α<.01) and verified with a linear discrimination analysis and confusion
matrix to determine which indices were better for binary classification of disease severity. A binary classification model was
generated based on a generalized linear model (GLM) using the most promising indices as predictors. The receiver operating
characteristic curve/area under the curve (ROC/AUC) validated the model performance, and the confusion matrix calculated the
model accuracy.

Results: Participants in this study (n=295) were infected with COVID-19 between June 2021 and March 2022, were aged 20
years or older, and recuperated in Kanagawa prefecture. Voice samples (n=110) were selected from the participants’ attribution
matrix based on age group, sex, time of infection, and whether they had mild illness (n=61) or moderate illness (n=49). The
DTW-based variance indices were found to be significant (P<.001, except for 1 of 6 indices), with a balanced accuracy in the
range between 79% and 88.6% for the /a/, /e/, and /u/ vowel sounds. The GLM achieved a high balance accuracy of 86.3% (for
/a/), 80.2% (for /e/), and 88% (for /u/) and ROC/AUC of 94.8% (95% CI 90.6%-94.8%) for /a/, 86.5% (95% CI 79.8%-86.5%)
for /e/, and 95.6% (95% CI 92.1%-95.6%) for /u/.

Conclusions: The proposed model can be a voice biomarker for an alternative and cost-effective method of monitoring the
progress of COVID-19 patients in care.

(JMIR Biomed Eng 2023;8:e50924)   doi:10.2196/50924
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Introduction

Background
COVID-19 originated in Wuhan, China, in December 2019 and
turned into a worldwide pandemic. As of December 2022, the
number of people infected with this disease reached
approximately 650 million, of whom more than 6.64 million
had lost their lives. Although the number of new infections
appeared to have abated in the spring of 2023, the past explosion
of infections strained medical care systems in several countries.
To cope with this pressure, these countries have changed their
responses toward infected patients based on the severity of their
illness. In Japan, as defined in Table 1, which shows the
Ministry of Health, Labour and Welfare guidelines on the
severity of COVID-19 [1], responses were divided into 4
categories of severity, ranging from mild to serious illness. Mild

illness is defined as “an oxygen saturation of 96% or more, or
a clinical condition of no respiratory symptoms or coughing
without shortness of breath (SoB) but no evidence of pneumonia
in either case,” and moderate illness I is defined as “an oxygen
saturation of greater than 93% but less than 96%, or a clinical
condition of shortness of breath or pneumonia.” Moderate illness
II is defined as “oxygen saturation of 93% or less, or oxygen
administration is required.” The target population for this study
was individuals who were recovering at home or in recuperation
facilities. Therefore, they were theoretically patients with mild
illness. Still, due to worsening conditions or shortcomings of
medical services, this population included patients with
moderate illness I who should have been treated in a hospital.
Therefore, accurately classifying these 2 adjacent severity
categories (mild illness and moderate illness I) is essential in
determining appropriate measures, such as early hospitalization,
by detecting worsening conditions in patients with mild illness.

Table 1. Definitions of the severity of COVID-19 infections.

Clinical conditionOxygen saturation, %Severity

Absence of respiratory symptoms or presence of coughing without shortness of breath, but
no evidence of pneumonia in either case

≥96Mild illness

Shortness of breath and pneumonia are evident93-96Moderate illness I

Oxygen administration is required≤93Moderate illness II

Admission to intensive care unit or requirement of a ventilatorN/ASerious illness

Oxygen saturation (SpO2) measurements using a pulse oximeter
were crucial for assessing the severity of illness. Daily
measurements of SpO2 and body temperature, along with the
assessment of physical conditions, were essential for monitoring
disease progression from mild illness to moderate illness I over
approximately 1 week or more during the recuperation period.
However, the explosive increase in the number of COVID-19
patients made it difficult to distribute pulse oximeters to all
patients with mild illness, especially young patients who were
forced to recuperate at their homes rather than in health care
facilities. This unexpected shortage of pulse oximeters has
motivated us to devise alternative and cost-effective ways to
monitor for worsening medical condition in persons exhibiting
mild illness.

Voice Biomarkers
Previous research on Parkinson disease, Alzheimer disease,
depression, and other psychiatric disorders such as stress [2-7]
has shown that voice biomarkers can be leveraged to
noninvasively and cost-effectively identify the presence or
absence of diseases, classify symptoms, and monitor conditions.

Voice biomarkers could also be an alternative method to detect
changes in disease severity from mild illness to moderate illness
I in COVID-19, which is a respiratory disease and has been
reported to cause acoustic changes in the voice due to
inflammation of the pharynx in the vocal tract, vocal cords, or
both, as well as a lower expiratory volume due to pneumonia
[8]. Moreover, significant differences in jitter (fluctuation of
the fundamental frequency on the time axis), shimmer
(fluctuation of the amplitude on the power axis), and
harmonic-to-noise ratio (HNR) were reported between healthy
subjects and those with COVID-19 [8-11]. There are also reports
that COVID-19 can be detected from acoustic data obtained
from a patient’s cough [12].

Dynamic Time Warping
Dynamic time warping (DTW) is an effective algorithm for
measuring the similarity between 2 patterns. The DTW distance,
which is a computational result obtained by the DTW algorithm
using 2 waveform features, progressively approaches zero as
the features become more similar, whereas it increases as the
features become less similar (Figure 1).
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Figure 1. Illustration of the DTW distance, with 3 target example waves compared to a reference wave. DTW: dynamic time warping.

This metric has been widely used since the 1980s in fields such
as motion recognition, speech recognition, and time-series data
analysis [13-15]. For example, it was reported that DTW could
differentiate between healthy people and people with walking
disabilities with high accuracy by processing differences in the
gait patterns acquired by accelerometer sensors on smartphones
[13]. The effectiveness of an automated scoring system applied
in conjunction with the DTW algorithm for evaluating the
progress of speech audiometric rehabilitation was reported to
be similar to that of conventional manual scoring methods [14].
It has also been reported that complementing the mel-frequency
cepstral coefficient (MFCC) algorithm with the DTW algorithm
improved voice recognition performance. The DTW algorithm
has been introduced as a feature-matching technique for voice
recognition [15]. The feature-matching performance of the DTW
algorithm (ie, the scoring method for 2D feature similarity) may
function effectively for the desired classification of long vowel
samples.

Goal of This Study
This feasibility study aimed to test whether DTW-based voice
biomarkers can be used to achieve a binary classification of
mild illness and moderate illness I for COVID-19 at a significant
level.

Methods

Study Design
We conducted a cross-sectional study using the voice samples
of COVID-19 patients.

Participants
This study recruited participants through a brochure that was
distributed exclusively to COVID-19 patients who were aged

20 years and older, were positive for SARS-CoV-2 in PCR
testing, and recuperated at designated facilities or at home in
Kanagawa prefecture, Japan, between June 2021 and March
2022. Patients who consented to the study’s objectives were
requested to register for participation using the QR code on the
brochure through their smartphones. The participants were asked
to provide their daily vital signs data, including voice recordings
during the recuperation period, but were also given the option
to withdraw from the study (opt out) at any time of their own
accord. A ¥1000 (US $6.68) Amazon gift card was given to
participants as compensation. Because this study only included
patients with mild illness or moderate illness I, who did not
require hospitalization, patients with moderate illness II were
not included. The participants were divided into 2 groups, the
mild group and moderate I group, according to the definitions
given in Table 1.

Data Collection
Those who agreed to participate in the study were asked to
install a smartphone app and enter their basic information, vital
signs data (temperature and SpO2), symptom scores, and voice
recordings on the first day of recuperation. From the second
day onward, the participants were required to enter their vital
signs data, symptom scores, and voice recordings daily until
the last day of recuperation. Voice data were stored together
with text data indicating the symptoms and vital signs on a
dedicated server with high security. The voice recordings were
in the WAV format with a sampling rate of 48 kHz and a bit
depth of 16 bits using the 3 long vowels /a/, /e/, and /u/.
Participants were asked to explain their reasoning if they wished
to withdraw from the study. Table 2 shows the timing and data
entry items of the participants.
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Table 2. Timing and items for the input data and information from participants.

DescriptionTiming and items

Baseline

Orientation • The researchers explained the purpose of the study and obtained participant consent

Basic information • Sex
• Age
• Symptom onset date
• Diagnosis confirmation date
• Treatment start date

On a daily basis during recuperation

Vital sign data • Body temperature
• Blood oxygen saturation

Questionnaire • Change in symptoms
• Symptomatic or not
• Respiratory distress
• Taste or olfactory disorders
• Cough or sputum
• Chest pain
• Runny nose or nasal congestion
• Sore throat
• Nausea or vomiting
• Diarrhea
• Appetite
• Fatigue
• Headache
• Joint pain
• Rash
• Red eyes

Voice recording • Three long vowels: /a/, /e/, /u/

Dropout during recuperation

Dropout • Confirm the reason for dropping out from the research

Waveform Sample Cutout and Standardization
To calculate the DTW distance, a 10-cycle waveform sample
was extracted for each date from the participants’ long-vowel
recordings in the WAV format using Audacity (version 3.1.3;
Audacity Team) at a sampling rate of 48 kHz (Figure 2). Then,

standardization was achieved along the power axis within the
range of –1 to +1 as the maximum amplitude, and the time axis
involved 1000 data points that were multiplied by 1/48,000
seconds, considering the length of a 10-cycle waveform. To
read and standardize the WAV data, R (version 4.4.2; R Core
Team) with the tuneR package (version 1.4.0) was used.

Figure 2. Screenshot showing 10-cycle waveform data extracted for each date from each patient’s voice recording of vowels.

Calculation of the DTW Distance for 2 Groups
After standardizing the power and time of the 110 waveform
samples, the DTW distance was calculated for each sample
paired with those of the remaining 109 samples. The DTW
distances that were obtained were divided into 2 categories
based on 2 kinds of labels for the 109 waveform samples.

Therefore, each sample was assigned 2 variables for DTW
distance. In the mild group, these were 61 or 60 DTW distances,
and in the moderate I group, these were 48 or 49 DTW distances.
The average and variance of the DTW distances were calculated
for each group. For the mild group, the average index (ie, the
mild-group filtering [MiF] average) and variance index (ie, MiF
variance) of the DTW distance were obtained, whereas for the
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moderate I group, the average index (ie, moderate-group filtering
[MoF] average) and variance index (MoF variance) of the DTW
distance were obtained. These 4 indices were obtained from a
single waveform sample. The indices for the 3 vowels, /a/, /e/,
and /u/, were prepared and are represented as shown in Table

3. Thus, 12 indices were used in the subsequent analyses. The
average values and variances of the DTW distances for the 2
groups were statistically investigated to determine whether they
exhibited significant values for the 2-group classification
scheme.

Table 3. Twelve indices generated from 3 vowels and 4 indices.

VowelsIndices

/u//e//a/

/u/-MiF average/e/-MiF average/a/-MiF averageMiFa average

/u/-MoF average/e/-MoF average/a/-MoF averageMoFb average

/u/-MiF variance/e/-MiF variance/a/-MiF varianceMiF variance

/u/-MoF variance/e/-MoF variance/a/-MoF varianceMoF variance

aMiF: mild-group filtering.
bMoF: moderate-group filtering.

Data Analysis

Linear Discriminant Analysis Considering the Average
and Variance Indices of the DTW Distance
The Mann-Whitney U test was used to determine whether there
was any statistical significance between the mild and moderate
I groups. This test was performed on 12 indices that measured
the average and variance of the DTW distance for the 3 vowels
/a/, /e/, and /u/. A significance level of 1% was established, with
the null hypothesis of no statistical significance between the 2
groups. Box plots and linear discriminant analysis (LDA) were
used to determine the indicators of the 3 vowels most effective
for determining statistical significance between the 2 groups.
The confusion matrix obtained from the LDA results was
displayed with a specific index for the true positive rate (TPR),
true negative rate (TNR), and balanced accuracy (BA). The
boxplot function was calculated and plotted using the R ggplot
package (version 3.4.0), and the LDA function was calculated
using the R MASS package (version 7.3).

Generalized Linear Model With the DTW distance
The significant indices from the 4 categories of DTW distance
were used to distinguish between severity levels (mild or
moderate I). These indices were then used as explanatory
variables to create generalized linear models (GLMs) for each
vowel. A 5-fold cross-validation method with 110 waveform
samples was used to train the model for each vowel, which was
then used to predict the severity classification. R was used for
GLM modeling and label prediction. The pROC package
(version 1.18.0) for R was used to obtain the receiver operating
characteristic (ROC) curve and calculate the area under the
curve (AUC), whereas confusion matrices were generated using
the Caret package (version 6.0) for R.

Ethics Approval
The study was conducted in accordance with the Declaration
of Helsinki and was approved by the Ethics Committee of
Kanagawa University of Human Services (SHI 3-001, dated

May 27, 2021, and SHI 26, dated November 25, 2021). Informed
consent was obtained from all participants involved in the study.

Results

Participants
In June 2021 and March 2022, approximately 540,000
COVID-19 patients were recorded in Kanagawa prefecture.
After requesting approximately 10,000 people to participate in
the study, our study recruited 295 participants in the same
period, of whom 291 were eligible to participate because
participants who did not meet the inclusion criteria, such as
minors, those with invalid data registration, or those who
withdrew midway through evaluation, were excluded.

Seventy-four participants who reported no symptoms of
coughing, throat pain, chest pain, or SoB during recuperation
were assigned to the mild group. Of the 217 participants who
reported any symptoms, 68 of them with symptoms of SoB were
assigned to the moderate I group. Of the 149 participants who
reported symptoms other than SoB, 6 of them with SpO2 values
less than 96% were assigned to the moderate I group, and 143
participants who reported SpO2 values of no less than 96% were
assigned to the mild group. The 291 participants were classified
into 2 groups: 217 as mild and 74 as moderate I. Figure 3 shows
a flowchart of study participation.

The primary periods of infection in Japan were during the Delta
period, from July to December 2021, and the Omicron period,
from January to June 2022. According to previous reports
[16,17], COVID-19 exhibits varying levels of infectivity,
severity, and symptoms, depending on the type of mutant strain
present. We identified the time of infection in Japan and
carefully matched the 291 study participants who had already
been labeled into 2 groups. Table 4 shows the attribution matrix
for the participants by the time of infection, sex, and severity.
Table 5 shows the attribution matrix for the same sample based
on the time of infection, sex, and age group. Finally, 110
participants (61 with mild illness and 49 with moderate illness
I) were included in the study.
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Figure 3. Flowchart showing classification of 291 participants into the mild illness and moderate illness I groups. “Four symptoms” refers to the 4
major symptoms: coughing, throat pain, chest pain, and shortness of breath. SpO2: oxygen saturation.

Table 4. Participants’ attribution matrix by the time of infection, sex, and severity (n=110).

Omicron periodb (n=64), participants, nDelta perioda (n=46), participants, nSeverity

Mild illness (n= 61)

1614Male

1813Female

3427Total

Moderate illness I (n=49)

1610Male

149Female

3019Total

aDelta period: July 2021 to December 2021.
bOmicron period: January 2022 to June 2022.
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Table 5. Participants’ attribution matrix by the time of infection, sex, and age group (n=110).

Omicron periodb (n=64), participants, nDelta perioda (n=46), participants, nAge group (years)

20-29

109Male

1516Female

2525Total

30-39

94Male

91Female

185Total

40-49

67Male

52Female

119Total

50-59

43Male

33Female

76Total

60-69

20Male

00Female

20Total

≥70

11Male

00Female

11Total

aDelta period: July 2021 to December 2021.
bOmicron period: January 2022 to June 2022.

Linear Discriminant Analysis Considering the Average
and Variance Indices of the DTW Distance

Distribution of the Average and Variance Indices of the
DTW Distance
Table 6 displays the Mann-Whitney U test results for the 2
groups based on 3 vowels and 4 indicators. Of the 12 indices,
6 were found to be significant; they included /u/-MiF average,

/a/-MiF variance, /e/-MiF variance, /a/-MoF variance, /e/-MoF
variance, and /u/-MoF variance. The only index that was
significant among the average indices was /u/-MiF average,
while /u/-MiF variance was the only insignificant index among
the variance indices. This indicates that the variance indices
were more significant overall.

Figures 4 and 5 illustrate the distributions of MiF average and
MoF average, as well as MiF variance and MoF variance, for
the 2 groups.
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Table 6. Results of the Mann-Whitney U test for mild illness and moderate illness I group classification.

Vowels, P valuesIndices

/u//e//a/

<.001.71.03MiFa average

.03.43.60MoFb average

.45<.001<.001MiF variance

<.001<.001<.001MoF variance

aMiF: mild-group filtering.
bMoF: moderate-group filtering.

Figure 4. Distribution in the 2 groups of the average index for the dynamic time warping distance (MiF average and MoF average). MiF: mild-group
filtering; MoF: moderate-group filtering.

Figure 5. Distribution in the 2 groups of the variance indices for the dynamic time warping distance (MiF variance and MoF variance) *P<.001. MiF:
mild-group filtering; MoF: moderate-group filtering.
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Results for LDA
Figure 6 shows a scatter plot of the average indices, and Figure
7 shows a scatter plot of the variance indices of the DTW
distance, along with the confusion matrix, TPR, TNR, and BA
values of the LDA. The straight line represents the discriminant

line obtained using LDA. The variance indices of the DTW
distance provided overall superior results for the classification
indicators, including TPR, TNR, and BA, of the confusion
matrix compared to the average indices. The ease of
classification can be visually verified by observing the plots
achieved via LDA.

Figure 6. Linear discriminant analysis results and confusion matrix of the MiF average and MoF average indices. BA: balanced accuracy; MiF:
mild-group filtering; MoF: moderate-group filtering; TPR: true positive rate; TNR: true negative rate.

Figure 7. Linear discriminant analysis results and confusion matrix of the MiF-variance and MoF-variance indices. BA: balanced accuracy; MiF:
mild-group filtering; MoF: moderate-group filtering; TPR: true positive rate; TNR: true negative rate.

GLM With the Variance Index of the DTW Distance
We used the variance indices of the DTW distance as predictors
of the GLM model because they achieved better classification

performances than the average indices. Figure 8 shows the ROC
and AUC values of the GLM model for each vowel with the
confusion matrix, including the TPR, TNR, and BA data. The
models of all 3 vowels provided high model performance in
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terms of the AUC and mid-to-high accuracy for TPR, TNR, and BA.

Figure 8. ROC/AUC results of the generalized linear model with confusion matrices for the mild-group filtering variance and moderate-group filtering
variance indices. AUC: area under the curve; BA: balanced accuracy; FPR: false positive rate; TPR: true positive rate; TNR: true negative rate; ROC:
receiver operating characteristics curve.

Discussion

Principal Results
This feasibility study demonstrated that the DTW distance–based
voice biomarkers generated by the GLM had a balanced
accuracy ranging from 80.2% to 88% and high model
performance, indicated by the AUC ranging from 86.5% to
96.5%, for 3 vowels when classifying between mild illness and
moderate illness I in COVID-19 patients.

Comparison With Prior Work

Key 1D Features of Acoustic Parameters
Sondhi et al [10] and Pah et al [18] found that the classification
of subjects with and without COVID-19 was possible using
jitter, shimmer, and HNR indices; however, they did not
demonstrate classification using models incorporating these
parameters. Pah et al [18] stated, “The statistical analysis and
SVM classification indicated that the voice features of sustained
phoneme corresponding to vocal tract modulation (Mel
Frequency Cepstral Coefficient (MFCC), Formants, Vocal-tract
Length, and Intensity-SD) could potentially be adopted as a
COVID-19 biomarker compared to the features of vocal fold
vibration (jitter, shimmer, pitch, HNR, and NHR)” [18]. This
suggests that a simple model using only jitter, shimmer, and
HNR is not able to differentiate between subjects with and
without disease. Therefore, we believe that approaches such as
machine learning and deep learning are essential for performing
pathophysiological analyses such as classification, presence or

absence determination, and monitoring using key 1D features
of acoustic parameters, such as MFCC and formants.

2D Feature Matching of DTW algorithms
In this study, the variance indices of the DTW distance were
significantly different from the average indices. It appears that
diseases have a wide-ranging impact on the voices of patients,
making it challenging to assess and categorize voices at the
desired level. To address this issue, machine learning–based
voice analysis systems that focus on learning 1D parameters
such as jitter and shimmer have been used, and tuning using
single-dimensional key features such as spectral and prosodic
speech features may be conducted [18-21]. Conversely, our 2D
feature matching of the waveform using DTW algorithms may
provide a more direct and practical method in the domain of
binary classifications.

Advantages of the Standardization of Waveform Samples
By standardizing the time and power axes of the waveform
samples in the DTW algorithm before computing, the
fundamental frequency (F0) and volume were consequently
transformed as parts of the elements forming a 10-cycle
waveform in the unit envelope. Confounding factors derived
from fundamental frequencies that vary by sex and age can be
avoided as much as possible in advance, allowing the direct
evaluation of the classification results by the DTW distance
[8,19,22,23]. For this study, we examined 110 wavelet samples
to determine the coefficient of variation (CV) of F0 estimates
before and after standardization. Our goal was to analyze the
variety of F0 distribution based on sex and age groups. Our
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results indicated that the CV of the wavelets without
standardization ranged from 10.31% to 11.4% for the 3 long
vowels /a/, /e/, and /u/, which is considered a significant
confounding factor. However, after standardization, the CV
ranged from 0.81% to 2.4%, which was significantly reduced
and, therefore, effective in minimizing confounding factors.
Multimedia Appendix 1 provides more details and comparison
figures.

Why Select a 10-Cycle Waveform as a Unit Sample?
Our previous pilot study using the DTW algorithm to
differentiate between the voices of subjects with and without
COVID-19 investigated the use of different waveforms with 1,
3, 5, 10, 20, 30, and 50 cycles. Among these waveform cycles,
10 and 20 cycles resulted in reasonable discrimination between
the subjects with and without COVID-19 for all 3 subjects
tested. (A summary of the test results is shown in Multimedia
Appendix 2.) We selected a 10-cycle waveform, rather than a
20-cycle waveform, in order to reduce as much as possible the
total computing cost incurred when using the DTW algorithm
(see the section “Computing Cost”).

Robustness to Noise
While recent smartphones have improved recording features
that can aid in voice analysis [24], it should be noted that the
environmental noises present during the recording process were
not completely controllable because the voice samples used in
this study were self-recorded by the participants with their own
smartphones. As Qi [25] reported, “DTW was evaluated using
both synthetic and natural voices, and significant reductions in
noise were achieved.” Because the DTW distance is considered
to be robust to noise, it may be more practical when used for
classification purposes with voices obtained from the real world
compared to acoustic parameters such as jitter, shimmer, and
HNR, which are considered to be sensitive to environmental
noise [8,18].

Sample Size Consideration
There are known statistical correlations between significance
level, power, effect size, and sample size [26]. We tested the
validity of the sample size used in this study of 110 participants
(61 in the mild group and 49 in the moderate I group). We
calculated an effect size of 0.666 with the significance level of
1% used in this study and a power of 0.8, which generally meets
requirements from a statistical point of view [27]. For the
calculation, the pwr package (version 1.3.0) of R was used. A
Cohen d score of 0.5 is regarded as a medium effect size, and
0.8 is regarded as a large effect size [28]. Therefore, we believe
that the sample size used in this study was appropriate because
the effect size of 0.666 is between medium and large. (These
validation processes are disclosed in Multimedia Appendix 3.)

Future Expectations
DTW distance–based voice biomarkers may effectively
supplement pulse oximeters as an objective indicator when
distinguishing moderate illness I from mild illness among

patients during recuperation. Even if pulse oximeters are scarce,
this biomarker can be accessed through a patient’s smartphone.
If persons with disease recuperating at home can detect a
worsening of symptoms to moderate illness I based on changes
in their voice, they will be able to determine whether they should
seek medical care. In addition, this system may allow health
care providers to use voice biomarkers in addition to body
temperature and pulse oximeter readings as objective and
quantitative indicators to properly diagnose worsening
symptoms and expedite inpatient treatment.

Limitations

Computing Cost
In this study, our approach involved standardizing waveform
samples, comprehensively computing the DTW distance for
each sample, and subsequently using the resulting indices to
determine the severity of illness using a GLM. However, this
approach is considered computationally expensive, making it
unsuitable for integration into standalone smartphone apps.
Nevertheless, it can be used in the cloud. Despite current
limitations, significant advancements in network transmission
speed and information technology suggest that it may soon be
practically applicable. Another potential solution for reducing
computation time is to measure the DTW distance from a greater
variety of representative samples as the number of cases
increases. However, this remains a topic for future study.

Patient Bias
Although the definition of moderate illness I that was used in
this study is based on pulse oximeter readings (SpO2 93%-96%)
or subjective reports from patients of their clinical condition
(ie, SoB, as shown in Table 1), errors during labeling of the
voice samples due to patient bias may have occurred as different
individuals may have varying methods of describing the
sensation of SoB. Unfortunately, this issue is difficult to
overcome considering the use of patient-reported data. However,
the inclusion of objective indicators such as voice biomarkers
during the diagnosis-making process may allow for more
objective labeling of data in the future.

Conclusions
Medical treatments for COVID-19 vary depending on the
severity of the illness. Patients with mild illness may need only
to recuperate at home or a designated facility, whereas patients
with moderate illness I may need to be hospitalized. In this
study, the DTW distance–based voice biomarker was tested for
distinguishing between mild and moderate illness I. A balanced
accuracy ranging from 80.2% to 88% was achieved, and the
model performance indicated by the AUC ranged from 86.5%
to 96.5% for the vowels /a/, /e/, and /u/. This voice biomarker
system can be used in case of an unexpected shortage of pulse
oximeters as an alternative and cost-effective method for
monitoring worsening medical conditions in patients with mild
illness that are recuperating at home or a medical facility.
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BA: balanced accuracy
EPV10: events per variable 10
DTW: dynamic time warping
GLM: generalized linear model
HNR: harmonic-to-noise ratio
LDA: linear discriminant analysis
MiF: mild-group filtering
MFCC: mel-frequency cepstral coefficient
MoF: moderate-group filtering
ROC: receiving operator curve
SoB: shortness of breath
SpO2: oxygen saturation
TPR: true positive rate
TNR: true negative rate
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Abstract

Background: Parkinson disease (PD) is the second most common neurodegenerative disease, affecting approximately 1% of
the world’s population. Increasing evidence suggests that aerobic physical exercise can be beneficial in mitigating both motor
and nonmotor symptoms of the disease. In a recent pilot study of the role of exercise on PD, we sought to confirm exercise
intensity by monitoring heart rate (HR). For this purpose, we asked participants to wear a chest strap HR monitor (Polar Electro
Oy) and the Fitbit Charge 4 (Fitbit Inc) wrist-worn HR monitor as a potential proxy due to its convenience. Polar H10 has been
shown to provide highly accurate R-R interval measurements. Therefore, we treated it as the gold standard in this study. It has
been shown that Fitbit Charge 4 has comparable accuracy to Polar H10 in healthy participants. It has yet to be determined if the
Fitbit is as accurate as Polar H10 in patients with PD during rest and exercise.

Objective: This study aimed to compare Fitbit Charge 4 to Polar H10 for monitoring HR in patients with PD at rest and during
an intensive exercise program.

Methods: A total of 596 exercise sessions from 11 (6 male and 5 female) participants were collected simultaneously with both
devices. Patients with early-stage PD (Hoehn and Yahr ≤2) were enrolled in a 6-month exercise program designed for patients
with PD. They participated in 3 one-hour exercise sessions per week. They wore both Fitbit and Polar H10 during each session.
Sessions included rest, warm-up, intense exercise, and cool-down periods. We calculated the bias in the HR of the Fitbit Charge
4 at rest (5 min) and during intense exercise (20 min) by comparing the mean HR during each of the periods to the respective
means measured by Polar H10 (HRFitbit – HRPolar). We also measured the sensitivity and specificity of Fitbit Charge 4 to detect
average HRs that exceed the threshold for intensive exercise, defined as 70% of an individual’s theoretical maximum HR. Different
types of correlations between the 2 devices were investigated.

Results: The mean bias was 1.68 beats per minute (bpm) at rest and 6.29 bpm during high-intensity exercise, with an
overestimation by Fitbit Charge 4 in both conditions. The mean bias of the Fitbit across both rest and intensive exercise periods
was 3.98 bpm. The device’s sensitivity in identifying high-intensity exercise sessions was 97.14%. The correlation between the
2 devices was nonlinear, suggesting Fitbit’s tendency to saturate at high values of HR.

Conclusions: The performance of Fitbit Charge 4 is comparable to Polar H10 for assessing exercise intensity in a cohort of
patients with PD (mean bias 3.98 bpm). The device could be considered a reasonable surrogate for more cumbersome chest-worn
devices in future studies of clinical cohorts.
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Introduction

Background
Parkinson disease (PD) is the second most common
neurodegenerative disease and affects approximately 1% of the
world’s population [1]. The main symptoms characterizing this
disease are bradykinesia, rigidity, tremor, and postural instability
as well as nonmotor symptoms, such as anxiety, depression,
sleep disturbance, and fatigue. Evidence suggests that aerobic
physical exercise can be beneficial in mitigating motor
symptoms and slowing the progression of the disease [1-3].

The extent of benefits observed differs depending on the exercise
type, intensity, and duration. Various recent clinical trials have
concluded that moderate- to high-intensity exercise several
times per week, when maintained over extended periods, is
associated with slower deterioration of motor symptoms in PD
[4,5].

Since different types of exercise interventions at varying
intensity levels are used in clinical trials for PD and other
clinical populations, there is a need for objective methods to
monitor the intensity of physical activity. The popularity of
wearable devices has grown, as they have become more
affordable, useful, and less intrusive [6]. However, it is still
necessary to establish the reliability of these devices in tracking
physiological parameters during both clinical trials and personal
use.

Wearables can measure many different parameters, such as heart
rate (HR), number of steps, calories expended, and quality of
sleep. HR is considered an essential indicator of physiological
adjustment and intensity of effort [7]. HR is correlated linearly
with moderate- and vigorous-intensity physical exercise and is
a valuable option to monitor the intensity of activities (eg,
cycling, swimming, and activities that are not ambulatory) that
may not be easily measured with other methods, such as
accelerometry [8]. Following the American Heart Association
guidelines, vigorous exercise intensity can be defined as 70%
to 85% of the maximum HR [9]. Many different tools can be
used to assess HR, such as electrocardiogram (ECG) monitors;
chest, shoulder and arm straps; and wrist watches.

In this study, we compared Polar H10 (Polar Electro Oy) and
Fitbit Charge 4 (Fitbit Inc), two types of wearable devices that
are commonly used as activity trackers and HR monitors.

The Polar Heart rate (referred to as Polar H10 in this paper) is
a chest strap that uses ECG technology to measure the R-R
interval. The Polar H10 has been reported to be highly correlated
to 3-lead ECG Holter monitor (r=0.997) and is now considered
the gold standard for assessment of R-R intervals in sports
settings [10] as well as maintaining a certain accuracy in older
adults affected by cardiac disease [11]. Despite its accuracy,
the Polar H10 monitor is often perceived as too cumbersome

to use, and it may cause discomfort, especially for older people
[12]. Since it needs to be strapped across the sternum, it may
be difficult to tolerate over extended periods [12]. On the other
hand, as a wrist-worn tracker, Fitbit Charge 4 (referred to as
Fitbit in this paper) is more convenient and comfortable to wear,
and it promotes patient compliance in studies requiring
prolonged measurements [13]. According to Düking et al [14],
wrist-worn wearables, being able to provide direct biofeedback,
have the potential to increase participation in exercise.

Fitbit Charge 4 is a recent model of the Fitbit Charge HR series,
released in March 2020. It is a wrist-worn device that detects
HR by measuring the volume changes in blood vessels via a
photoplethysmography (PPG) optical HR sensor [7]. Originally
designed to motivate people to exercise, Fitbits are increasingly
used as measurement devices in physical activity and health
promotion research; they are also used for guiding patient-health
professional interactions [15].

Fitbits are commonly used for research purposes [16], but there
is no consensus in the scientific literature regarding their
accuracy for quantifying HR and confirming high intensity.
Some authors have concluded that the device provides values
of HR comparable with criterion field-based measures, while
others have found that Fitbit does not satisfy the validation
criteria, especially during higher exercise intensities [17]. There
is even less information on the accuracy of the device in older
individuals affected by chronic diseases [13]. Further evaluation
is needed.

Ensuring the accuracy of exercise session intensity assessment
is crucial in clinical studies involving sports activities and
clinical populations. It has yet to be determined if Fitbit has
comparable accuracy to Polar H10 in selecting high-intensity
sessions in patients with PD or in clinical populations, generally.

Objective
This paper aims to compare Fitbit Charge 4 to Polar H10 for
monitoring HR, confirming high-intensity exercises in patients
with PD engaging in an intense exercise program and supporting
its potential utility as an activity tracker for use in large clinical
trials with similar cohorts.

Methods

Population and Study Design
The data for this paper were acquired as part of a larger study
to evaluate the role of physical exercise in PD, in which we
sought to confirm exercise intensity by monitoring HR. In brief,
a total of 11 participants, 6 of whom were male, aged 58-68
years, all with early-stage PD (defined according to the
Movement Disorder Society criteria [18]) were recruited.
Participants were excluded based on the criteria of the larger
study, as follows: (1) heavy drinking or illicit drug use, (2)
neurologic or psychiatric disorders other than PD, (3) diseases
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interfering with one’s ability to exercise, (4) contraindication
to positron emission tomography or magnetic resonance imaging
scans, (5) severe motor symptoms (tremor and dyskinesia) likely
to introduce motion artifacts in imaging data, (6) unsafe to come
off dopaminergic medication, (7) BMI>30 (practical issues with
the neuroimaging equipment), (8) extreme exercisers, and (9)
Hoehn and Yahr disease stage>2 (stage 2 corresponds to mild
bilateral disease with intact balance [19]). None of the
participants had a history of arrhythmias or any other cardiac
conditions that could potentially affect the measurements of the
devices. Additionally, none of them were under medication,
such as AV nodal blockade therapy, which might have altered
the HR detection capabilities of Polar H10 and Fitbit Charge 4.

Each participant engaged in exercise for a period of 6 months,
with at least 3 Beat Parkinson’s Today (BPT) exercise sessions
per week. The BPT program is an established exercise program
that combines those aspects that have been shown to be the most
effective in achieving symptom improvement in PD [20], such
as high-intensity interval training and boxing [21,22]. Each
session included a mix of these 2 activities, which could be
adapted to any fitness level. Functional interval training circuits
were designed specifically to improve explosiveness, gait, and
strength. Trainers continuously encouraged participants to work
at their own personal level of maximum intensity while
attempting to reach a target HR.

To compare the performances of devices, participants were
equipped with a Fitbit and a Polar H10. The Fitbit was worn on
the wrist and positioned a finger’s width above the wrist bone,
as recommended by the company. The wrist-worn tracker was
situated on the side less affected by PD. The Polar HR sensor
was placed over the sternum and held in place by a chest strap.
The exercise sessions lasted 60 minutes, including warm-up, at
least 20 minutes of high-intensity exercise, boxing, and
cool-down. When unable to attend classes, participants were
encouraged to exercise on their own and monitor their HR using
both wearables.

Ethical Considerations
All procedures with human subjects were approved by the
Human Investigations Committee of Yale University (approval
number 2000028563).

HR Data Processing From Wearables
The data from Fitbit Charge 4 were collected by synchronizing
each watch with an anonymized web-based account for each
participant and downloaded via the mobile app Pulse Watch
[23]. The data from Polar H10 were exported using the mobile
app Elite HRV. The Fitbit data were sampled every minute by
the Pulse Watch app.

The data from Elite HRV were converted from R-R intervals
to beats per minute (bpm) and were filtered using a Python
function called Butterworth filter to remove high-frequency
artifacts. The order was set to 5, and the filter was applied at a
frequency of 0.1 Hz. The resulting data set was in units of bpm
collected per 10 seconds and was then sampled every minute.
The Fitbit data were sampled every minute by the Pulse Watch
app.

The validity of Fitbit was compared with Polar H10 in terms of
averages between single data points. For each session, HR
averages (HRμ) from both the first 5 minutes, generally
coinciding with the rest period before the start of the exercises,
and from the 20 minutes of the highest-intensity exercise were
calculated. The 20 minutes of the highest-intensity exercise
were extracted from the data by calculating the HR average for
consecutive 20-minute intervals, starting from the initial interval,
then shifting forward by 1 minute at a time, and then picking
the highest average.

The session averages were then collected, and the values from
the 2 different devices were paired. Data alignment, filtering,
and calculations were performed with Python (Jupyter
Notebook). The precise timestamps for recordings from both
devices were available and were used for data alignment. Out
of a possible 792 paired sessions, a total of 596 paired sessions
were obtained. Data were lost due to multiple
factors—nonattendance of the participants, misplacement of
the devices, and injuries. The data obtained were contributed
roughly equally by all the participants, with a mean of 54
sessions per participant (Table 1).

To ensure the capability of Fitbit, compared to Polar H10, in
evaluating the intensity of an exercise session, every HR average
(HRμ) was normalized (HRN) by different percentages of each
participant’s own theoretical maximum HR (HRth/max) using the
following formula:

where the term HRth/max is given by the following: HRth/max =
220 – age

A session was considered positive if the ratio was >1 and
negative if the ratio was <1. Measurements with the Polar H10
were considered to be the gold standard. Therefore, a session
was a “true positive” if the ratio was >1 for both devices, “true
negative” if the ratio was <1 for both devices, “false positive”
if the ratio was >1 for Fitbit and <1 for Polar H10, and “false
negative” if the ratio was <1 for Fitbit and >1 for Polar H10.
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Table 1. Mean difference and limits of agreement (LoA) calculated individually by participant.

LoA (bpm)Mean difference at
high-intensity exercise
conditions (bpm)

LoA (bpm)Mean difference at base-

line conditions (bpma)

Recorded sessions, nAge (years)Participant

–17.3 to 18.7–2.52–20.4 to 14.82.778158Participant 1

–13.9 to 35.7–11.26–19.4 to 16.9–1.254373Participant 2

–31.6 to 30.80.42–26.4 to 30.11.935560Participant 3

–4.65 to 16.5–5.93–16.2 to 13.5–1.353863Participant 4

–7.46 to 37.6–16.37–12 to 11.90.055663Participant 5

–9.50 to 41.3–15.94–14.1 to 15.30.619876Participant 6

–36.2 to 17.39.44–31.3 to 17.4–6.946156.3Participant 7

–10.2 to 25.2–12.14–20.4 to 4.40–8.012868Participant 8

–6.18 to 17.5–5.65–25.4 to 22.9–1.254366.6Participant 9

–12.9 to 49.3–20.10–21.9 to 16.1–2.715666.6Participant 10

–27.4 to 15.55.91–18.3 to 19.90.823668Participant 11

aBpm: beats per minute.

HR Data Comparisons Between Wearables
All statistical analyses were conducted using Microsoft Excel
16 and MatLab (Mathworks, 2018b). To guarantee consistency
of the results and the calculations of HR averages at baseline
and high-intensity conditions, exercise sessions lasting less than
20 minutes were excluded from the analysis.

A Bland-Altman plot was used to evaluate the agreement
between the two methods of measurement, with the limits of
agreement (LoA) defined as the mean difference plus or minus
1.96 SD of the difference. The mean difference in HR between
the Fitbit and Polar H10 was calculated for the cohort and every
participant, both at baseline (rest period) and during
high-intensity conditions. A final average of the two mean
differences was assessed and considered to be the mean bias.
Evaluations were conducted for both intrasubject and
intersubject variability (Table 1).

The relationship between both devices at baseline and during
high-intensity conditions was determined. The quality of the

linear fit was assessed with the R2 value, considering the data
from baseline and high-intensity conditions separately.
Subsequently, the entire data set of session HR averages was
fitted with linear, logarithmic, negative exponential, and sigmoid
model functions to explore different types of relationships
between the two devices. The Akaike information criterion
(AIC) value was used to assess the relative quality of the fits.

Sensitivity and Specificity
To determine Fitbit’s sensitivity, specificity, positive predictive
value (PPV) and negative predictive value (NPV) in identifying
high-intensity exercise sessions, European and American
Guidelines cutoffs were applied [24]. Polar H10 was considered
to be the gold standard.

To illustrate the sensitivity and specificity of the Fitbit, a
receiver operating characteristic (ROC) curve was created for

different levels of target HR. The area under the curve (AUC)
was used as an indicator of Fitbit’s capability for distinguishing
between high-intensity and low-intensity exercise sessions.

Results

The Bland-Altman plots revealed that the mean bias between
the Fitbit and Polar H10 was 1.68 bpm (LoA –21.52 bpm to
18.8 bpm) at baseline conditions and 6.29 bpm (LoA –22.02
bpm to 36.2 bpm) under high-intensity exercise (Figure 1).
Overall, the mean bias of the Fitbit was 3.98 bpm.

When data from baseline and high-intensity conditions were
taken separately, the linear correlations were, respectively, as

follows: R2=0.45 (baseline); R2=0.23 (high-intensity condition;
Figure 2).

The fit of the combined high-intensity and baseline data to a
sigmoid model resulted in the lowest AIC value (AIC=6.03e+03;
Figure 3).

When the mean differences were calculated individually by
participant, there was evidence of intersubject and intrasubject
variability (Table 1).

With 70% of maximum HR as the tailored threshold indicating
high intensity and considering Polar H10 as the gold standard,
the sensitivity, specificity, PPV, and NPV of the Fitbit were
97%, 11%, 89%, and 35%, respectively. With 85% of the
maximum HR as the threshold, the sensitivity, specificity, PPV,
and NPV of the Fitbit were 78%, 56%, 62%, and 73%,
respectively (Table 2).

These indicators of performance at the 2 different thresholds
can be visualized graphically in Figure 4. As expected, when
the threshold was set higher, the number of true positives
decreased, and the sensitivity of the Fitbit decreased.

The ROC curve (Figure 5) depicts the performance of Fitbit
Charge 4 for varying HR thresholds. The AUC was 0.71.
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Figure 1. Bland-Altman plots for the difference in heart rate average by every session. The solid line represents the mean bias. The dashed lines
represent the limits of agreement. Dots of different colors represent different participants. (A) Bland-Altman plots at baseline conditions and (B) at
high-intensity conditions. Bpm: Beats per minute.

Figure 2. Linear correlations between heart rate measurements of Fitbit Charge 4 and Polar H10. The dots represent each exercise session, the solid
line represents the ideal correlation (X=Y), and the dashed line is the observed correlation. Dots of different colors represent different participants. (A)
Linear correlation plot at baseline and (B) during high-intensity exercise. Bpm: Beats per minute.
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Figure 3. Model fits of Fitbit Charge 4 versus Polar H10. (A) linear, (B) logarithmic, (C) A-exponential, and (D) sigmoid. The blue dots represent
heart rate averages from every session; the red solid lines represent the fitted curves. Akaike information criterion (AIC) values and fitting equations
are shown as well. Bpm: Beats per minute.

Table 2. Sensitivity and specificity of Fitbit Charge 4 given 70% and 85% of the maximum heart rate (HR) as thresholds.

NPVb

(%)
PPVa

(%)

Specificity (%)Sensitivity (%)False negatives,
n

True negatives,
n

False positives,
n

True positives,
n

Threshold

35891197.11586350970% of the
maximum HR

736256786417213422385% of the
maximum HR

aPPV: positive predictive value.
bNPV: negative predictive value.
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Figure 4. (A) The number of true positives, false positives, true negatives, and false negatives based on a target of 70% of maximum heart rate (HR)
and (B) based on a target of 85% of the maximum HR. The y-axis and x-axis are normalized; the dots represent the normalized value of each exercise
session. The blue dots represent the true positives (>1 for both devices); the red dots represent the false positives (>1 for Fitbit Charge 4 and <1 for
Polar H10); the yellow dots represent the true negatives (>1 for both devices); and the green dots represent the false negatives (<1 for Fitbit Charge 4
and >1 for Polar H10).

Figure 5. Receiver operating characteristic curve of Fitbit Charge 4 taking Polar H10 as the gold standard. AUC: area under the curve.
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Discussion

Principal Results
To our knowledge, this is the first evaluation of Fitbit Charge
4 with a population of individuals with PD. We found the bias
to be approximately 3.98 bpm during intense exercise. The
magnitude of bias in the Fitbit is consistent with a report from
a meta-analysis published in 2022 [16] (mean bias 3.39 bpm;
LoA –24.3 bpm to 17.53 bpm). Thus, we conclude that the bias
of the device, while remaining statistically significant in
comparison to more precise devices, like Polar H10, is not
influenced by PD and its associated symptoms, such as tremors
and rigidity. Rather, it may be a limitation of the manufacturer’s
software process for processing data from the PPG technology.
The algorithm adopted by the company to estimate HR from
the PPG measurements is confidential, but some authors
suggested that it may rely on the P-P intervals of the PQRST
wave (atrial contractions). Not all the P peaks are consistently
present and detectable when the frequency increases. ECGs, on
the other hand, register the full PQRST wave and quantify the
final HR by using the interval between R peaks, making it less
prone to these artifacts. R peaks (ventricular contractions) are
the best detectable peaks in the PQRS wave. Consequently, the
calculation of the HR by PPG can be influenced by inaccurate
sampling and recording of the P peaks [7]. Moreover, the
performance of Fitbit, as with all wrist-based devices, is
dependent on correct placement on the wrist. Therefore, when
wrist movements are greater, measurement accuracy may be
compromised. Devices like Polar H10, which are placed on the
chest, may be less prone to movement artifacts [25].

Bland-Altman analysis showed that Fitbit tended to overestimate
the values of HR compared to Polar H10 in high-intensity
conditions. This result contradicts most of the previous reports
[7,15,16]. The overestimation could be due to the peculiar
characteristics of this study population (older adults affected
by PD). These 2 conditions are known to potentially increase
the heterogeneity of Fitbit accuracy results [16]. In previous
studies, Fitbit overestimated time spent on moderate to vigorous
activity in clinical populations with functional limitations,
compared to the criterion devices [26]. Even though in our
cohort, the disease appeared not to have an impact on Fitbit’s
magnitude of error, it could have altered the sign of the error.
There are some additional conditions of our study to consider.
The maximum HR values reached by our participants cannot
be compared with those reached by a cohort of young, healthy
individuals. If HR values had been higher, we might have
observed an underestimation by Fitbit. Another important factor
to consider is the particular Fitbit model. The only Fitbit Charge
4 validation study was conducted in 2022 [17], which evaluated
the device on 23 young participants (average age 24.2 years)
without any underlying health conditions.

The linear correlation between the two devices was poor,
especially in high-intensity exercise conditions (baseline:

R2=0.45; high-intensity conditions: R2=0.23; Figure 2). From
our statistical analysis, the sigmoid fit, which resulted in the
lowest AIC, best described the relationship between Fitbit and
Polar H10 (Figure 3). The tendency of Fitbit to saturate at the

highest HR values suggests a diminishing ability of Fitbit to
resolve high HR values. This finding is in agreement with the
existing literature [27]. The reduced precision of Fitbit in
measuring high HR values may be attributed to motion artifacts
due to physical movement, particularly those involving arm
movements, as well as potential misalignment between the skin
and the optical sensor [27]. Another hypothesis suggests that
wrist-worn devices may not be as sensitive to sudden changes
in exercise intensity [25], which occur frequently in
high-intensity interval training, as used in our study. Peripheral
resistance is lower at the wrist, which reduces pulse pressure
changes and alters blood pulse detection. [25]. Although the
sigmoid function was the best fit for the data acquired in this
cohort, we caution against using the sigmoid model to
extrapolate the relationship between the Fitbit and chest strap
HRs beyond the range of HR values acquired in this study. In
other words, if future studies in patients with PD seek to acquire
Fitbit data only (no chest strap data) and want to use this model
to predict the chest strap HR, the authors recommend only
applying the model to data with HR in the range of 60 bpm to
160 bpm.

We also examined the ability of Fitbit to discriminate HR during
high-intensity sessions, via the ROC curve. An AUC of 0.5
generally indicates no discrimination; an AUC of 0.7 to 0.8
indicates acceptable discrimination; an AUC of 0.8 to 0.9
indicates excellent discrimination; and an AUC of more than
0.9 indicates exceptional discrimination [28]. The Fitbit’s
measurement can be considered acceptable (AUC 0.71; Figure
5). Consequently, this device is acceptable in identifying
correctly high-intensity exercise sessions and could be used
with caution in large clinical trials in patients with PD.

Limitations
Our study is not without limitations. First, the number of
sessions is not equally distributed between participants. Thus,
some participants may have exerted a greater impact on the total
mean difference between the devices than others, as shown in
Table 1.

We considered the first 5 minutes of every exercise session as
the baseline, during which participants were instructed to sit
and breathe. However, there were instances of participants
arriving late or forgetting to activate the device at the start of
the session, potentially confounding the baseline measurements.
Consequently, the values of HR recorded during baseline
conditions may have been artifactually high.

When participants were unable to attend classes, they were
encouraged to exercise independently while monitoring HR
using both devices. However, during these unsupervised
sessions, we were unable to ensure the proper fit of both devices,
potentially affecting the accuracy of the measurements obtained.

The data processing involved multiple stages of averaging,
ranging from a subsecond level to a per-minute level and
ultimately to an exercise-session level. Although this averaging
approach allowed us to accomplish the study objectives, it may
have potentially compromised the precision and reliability of
our comparisons.
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Due to the inclusion and exclusion criteria of the previous study,
only 11 participants, affected by mild PD were taken into
account. It is possible that the outcomes would have been
different with the inclusion of participants with severe PD,
affected by motor symptoms likely to introduce motor artifacts
in wearables data. Given the small number of participants and
the peculiar characteristics of the cohort, our findings may not
be applicable to all patients with PD. For future studies, it may
be crucial to involve participants at more advanced stages of
the disease to effectively assess Fitbit’s performance under these
conditions.

Lastly, the cohort in our study demonstrated significant
intrasubject and intersubject variability, attributed to factors
such as age, sex, and physical condition. Intrasubject variability

is represented by each participant’s LoA and intersubject
variability is depicted as each participant’s HR mean difference
(Table 1). The wide LoA observed in the mean bias of Fitbit
Charge 4 emphasizes some reasons for cautious interpretations
of the results.

Conclusions
The magnitude of bias and the LoA for Fitbit were consistent
with those of previous studies, and the performance of Fitbit
fell within the range of 4 bpm, compared to Polar H10 for
assessing intense exercise in a cohort of patients with PD. A
wrist-worn device, Fitbit, offers clear advantages in terms of
wearability and practicality. In future studies involving clinical
populations, the device could be considered as a reasonable
alternative to the more intrusive chest strap technology.
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ECG: electrocardiogram
HR: heart rate
LoA: limits of agreement
NPV: negative predictive value
PD: Parkinson disease
PPG: photoplethysmography
PPV: positive predictive value
ROC: receiver operating characteristic
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Abstract

Background: Clinicians face barriers when assessing lung maturity at birth due to global inequalities. Still, strategies for testing
based solely on gestational age to predict the likelihood of respiratory distress syndrome (RDS) do not offer a comprehensive
approach to addressing the challenge of uncertain outcomes. We hypothesize that a noninvasive assessment of skin maturity may
indicate lung maturity.

Objective: This study aimed to assess the association between a newborn’s skin maturity and RDS occurrence.

Methods: We conducted a case-control nested in a prospective cohort study, a secondary endpoint of a multicenter clinical trial.
The study was carried out in 5 Brazilian urban reference centers for highly complex perinatal care. Of 781 newborns from the
cohort study, 640 were selected for the case-control analysis. Newborns with RDS formed the case group and newborns without
RDS were the controls. All newborns with other diseases exhibiting respiratory manifestations were excluded. Skin maturity was
assessed from the newborn's skin over the sole by an optical device that acquired a reflection signal through an LED sensor. The
device, previously validated, measured and recorded skin reflectance. Clinical data related to respiratory outcomes were gathered
from medical records during the 72-hour follow-up of the newborn, or until discharge or death, whichever occurred first. The
main outcome measure was the association between skin reflectance and RDS using univariate and multivariate binary logistic
regression. Additionally, we assessed the connection between skin reflectance and factors such as neonatal intensive care unit
(NICU) admission and the need for ventilatory support.

Results: Out of 604 newborns, 470 (73.4%) were from the RDS group and 170 (26.6%) were from the control group. According
to comparisons between the groups, newborns with RDS had a younger gestational age (31.6 vs 39.1 weeks, P<.001) and birth
weight (1491 vs 3121 grams, P<.001) than controls. Skin reflectance was associated with RDS (odds ratio [OR] 0.982, 95% CI

0.979-0.985, R2=0.632, P<.001). This relationship remained significant when adjusted by the cofactors antenatal corticosteroid

and birth weight (OR 0.994, 95% CI 0.990-0.998, R2=0.843, P<.001). Secondary outcomes also showed differences in skin
reflectance. The mean difference was 0.219 (95% CI 0.200-0.238) between newborns that required ventilatory support versus
those that did not and 0.223 (95% CI 0.205-0.241) between newborns that required NICU admission versus those that did not.

Skin reflectance was associated with ventilatory support (OR 0.996, 95% CI 0.992-0.999, R2=0.814, P=.01) and with NICU

admission (OR 0.994, 95% CI 0.990-0.998, R2=0.867, P=.004).

Conclusions: Our findings present a potential marker of lung immaturity at birth using the indirect method of skin assessment.
Using the RDS clinical condition and a medical device, this study demonstrated the synchrony between lung and skin maturity.

Trial Registration: Registro Brasileiro de Ensaios Clínicos (ReBEC) RBR-3f5bm5; https://tinyurl.com/9fb7zrdb

International Registered Report Identifier (IRRID): RR2-10.1136/bmjopen-2018-027442

JMIR Biomed Eng 2023 | vol. 8 | e52468 | p.110https://biomedeng.jmir.org/2023/1/e52468
(page number not for citation purposes)

Neves et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

mailto:neves.gabriela87@gmail.com
http://www.w3.org/Style/XSL
http://www.renderx.com/


(JMIR Biomed Eng 2023;8:e52468)   doi:10.2196/52468

KEYWORDS

newborn infant; prematurity; neonatal respiratory distress syndrome; skin physiological phenomena; photometer; gestational age

Introduction

Respiratory system maturation occurs in late gestation in
preparation for the time of birth [1], extending into early
childhood [2]. Essential for normal lung development, epigenetic
mechanisms are influenced by the environment throughout
gestation and postnatally [3]. Therefore, whether term or
preterm, newborns might have immature ventilatory function
that may foster respiratory instability [1].

Difficulties in assessing lung maturity arise when a single
parameter is considered since the systems and organs may be
at different stages of matureness. This is noticeable when
judging maturity by gestational age when divergent pulmonary
functional maturity is found between peers of the same age [4].
At different stages of development, organs can be affected by
growth and differentiation factors released from other organs,
as suggested by studies with multidimensional scaling and
hierarchical cluster analysis of growth patterns during the fetal
period [5].

Regarding the ability to interact with the external environment
through the skin, a full-term newborn presents a complete or
near entirely competent epidermal barrier at birth. The skin
barrier at maturity, with an efficient stratum corneum achieved
at around 34 weeks [6], prevents transepidermal water loss from
the skin surface, maintaining the newborn’s temperature [7].
An immature skin barrier at birth leads to hypothermia, which
in turn increases the likelihood of developing respiratory distress
syndrome (RDS), intraventricular hemorrhage, late-onset sepsis,
and mortality [8].

Similar to the skin, the lung shows signs of readiness for
extrauterine life in the last trimester of gestation [9], with peak
of alveoli maturation and surfactant production at 35 weeks of
gestation [10]. Reduced surfactant, the major cause of RDS,
causes low functional residual lung capacity, increasing the
work of breathing and leading to terminal airway collapse. As
a result, an increased ventilation-perfusion mismatch can lead
to the need for ventilatory support [11], which in turn increases
the metabolic and caloric demand to maintain temperature [12].
Although the point of view of care for lung immaturity is often
related to the inability of the epidermal barrier to retain heat,
there are few studies in this regard. Taesch et al (1972) [13]
demonstrated that skin age is an indicator of lung age by
studying rabbits [13].

In terms of access to lung maturity assessment, as well as
advanced neonatal care, there is inequality around the world
[14]. In these circumstances, knowing the risks of respiratory
morbidity with accuracy might help in making more balanced
decisions and determining the most appropriate care. Still,
testing strategies based on gestational age for predicting the
likelihood of RDS do not provide a complete approach to
addressing the dilemma of indeterminate outcomes [10]. In
response, noninvasive assessment methods have been proposed.

A new photobiological device proved to correctly classify
preterm newborns with 91.4% accuracy using a mathematical
algorithm based on skin maturity and clinical adjusters [15]. In
this context, the ability to accurately assess skin maturation and
the potential synchrony of skin-lung development enables the
study of a possible marker of lung maturation. The aim of this
study was to assess the relationship between newborn skin
maturity and RDS.

Methods

Setting
This study was carried out in 5 Brazilian urban reference centers
for highly complex perinatal care in different regions: in the
southeast, Hospital de Clínicas of Universidade Federal de
Minas Gerais (as coordinator) and Hospital Sofia Feldman; in
the south, Hospital of Universidade Luterana do Brasil; in the
center-west, the Hospital Materno Infantil de Brasília; and in
the northeast, the University Hospital of Universidade Federal
do Maranhão.

Ethics Approval
The trial protocol received approval from the independent ethics
review board at each reference center under the number
81347817.6.1001.5149 at the Brazilian National Research
Council. The procedures followed the Helsinki Declaration of
1975, as revised in 2013 [16], and all parents provided informed
consent on behalf of their newborns before participating in the
clinical trial.

Study Design
This was a case-control nested in a prospective cohort study to
investigate a secondary outcome within a single-blinded
multicenter clinical trial investigation with a single group and
single arm. The clinical trial protocol was disclosed in the World
Health Organization’s International Clinical Trial
Platform—Brazilian Clinical Trials (registered under trial
number RBR-3f5bm5).

Participants
In the primary cohort, a concurrent and sequential process
enrolled newborns who were up to 24 hours old, had a
gestational age of at least 24 weeks as determined by standard
ultrasound, and were recruited between January 2, 2019, and
May 30, 2021. Skin maturity assessment was conducted within
the first 24 hours of life, regardless of the newborn’s location,
whether it was in an incubator, heated crib, bassinet in the
hospital room, or on the mother’s lap. All participants were
followed for a period of 72 hours or until discharge or death,
whichever occurred first, for the assessment of lung maturity.
The examiner, who was blind to the results of the skin
assessment, collected respiratory outcome data from medical
charts. This study focused on the 72-hour follow-up data. More
details about the study protocol can be found in a previous
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publication [17]. The timeframe of enrolment, intervention with
the optical device, and respiratory outcome measurements is

depicted in Table 1, adapted from Reis et al [18].

Table 1. Study timeline.

Study period

AllocationClose-outAssessmentEnrolment

Analysis72 hours0 hours0 hoursTime point

Enrolment

XEligibility

XInformed consent

XOptical device intervention

Assessment and analysis

XXOptical device data acquisition

XXStandard ultrasound

XXCase-control nested study

We included newborns diagnosed with RDS based on clinical
and radiological criteria after reviewing their clinical records.
Newborns with immature lungs diagnosed with RDS formed
the case group, and newborns with mature lungs without a
respiratory diagnosis were randomly paired by gestational age
ranges to form the control group. Newborns with
extrapulmonary conditions, tachypnea due to causes other than
prematurity, and diagnosis of infection were excluded.

Skin Assessment
The skin assessment occurred with an optical device previously
detailed [15] (Figure 1). Briefly, to obtain the skin reflectance,
an LED sensor of wavelengths 400 to 1200 nm was touched to
the newborn's sole for a few seconds to trigger 10 automated
measurements. We performed 3 measurements, resulting in 30

automatic values to obtain the average reflection. The processor
then captured the variations resulting from the interaction of
the skin and LED light and kept it in storage for analysis. The
data processor estimated lung maturity using machine learning
algorithms. The evaluation advocated minimal manipulation,
being performed in the position where the newborn was, after
hand hygiene and sensor disinfection. The best body position
to assess skin reflectance and possible influences, such as
humidity, temperature, ambient light, and the skin tone of the
newborn, were evaluated beforehand [19,20]. The reliability of
skin assessment with the device was previously reported. The
intraobserver and interobserver variability were 1.97% (95%
CI 1.84%-2.11%) and 2.6% (95% CI 2.1%-3.1%), respectively
[15].
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Figure 1. Steps of skin assessment in 8 steps: (1) the device touches the skin; (2) the standard body position for assessing skin reflectance in newborns
is the sole; (3) 3 measurements are taken simultaneously; (4) the LED light interacts with the skin, scattering the light, and the returned light (reflectance)
toward the sensor is processed by a control unit and stored for analysis; (5) the user inputs clinical data, such as birth weight and prenatal corticosteroid
use; (6) the user collects vital data during the procedure; (7) the data are recorded and stored for analysis; and (8) the data processor estimates lung
maturity using machine learning algorithms, associating light reflection and respiratory outcomes.

The results obtained by the equipment were concealed from the
researchers. The readings were stored in the processor and later
transmitted to an electronic database, where they were stored
on data servers. The results, apart from being inaccessible to
the examiner, were also not shared with the professionals
responsible for the child’s care in the actual scenario. This
approach ensured that the study did not interfere with the clinical
decisions made by the health care professionals.

Clinical Data
To ensure proper data acquisition, all examiners were trained
according to good clinical practice as recommended by the
Brazilian Regulatory Health Agency [17]. Data related to
respiratory outcomes were collected from medical records.
During data curation, the senior clinician analyzed and
confirmed the RDS diagnosis according to the guidelines
previously described in the study protocol [21]. The framework
of the clinical variables and skin acquisitions is available in
Multimedia Appendix 1, as documented in the previous report
by Reis et al [15].

We developed dedicated software to collect structured clinical
data and associate them with the skin reflection of each newborn
from 5 perinatal centers simultaneously. Examiners used
individual sets of instruments, including a tablet, optical device,
and paper versions of the clinical data forms. A double approach,
on paper and electronically, allowed verification of clinical data
for reliability and validity and was later validated by specialists
in data curation.

Primary Outcome
The primary outcome was the association between RDS
occurrence and skin light reflection.

The diagnosis of RDS was based on a previously published
clinical trial protocol [21]. In brief, it considered clinical,
laboratory, and radiological findings. The observations made
during the first 72 hours of life included tachydyspnea, the need
for oxygen or ventilatory support after 24 hours of age, the
requirement for surfactant replacement, and abnormal X-ray
findings. The main radiological signs included underinflated
lungs and a pattern of diffuse “ground glass” reticulogranular
opacities, along with reduced lung volume and air
bronchograms.

Secondary Outcomes
The secondary outcomes were the association between the skin
reflectance and NICU admission and the need for ventilatory
support. Both invasive and noninvasive ventilatory supports
were taken into account, including supplemental oxygen by
nasal cannula or hood, nasal continuous positive airway
pressure, noninvasive ventilation with biphasic positive airway
pressure, and invasive mechanical ventilation through the
endotracheal tube.

Statistical Analysis
Descriptive statistics were used to explore the demographic and
clinical characteristics of newborns according to groups of
interest among the RDS and control groups. The analysis was
performed by calculating the frequencies and percentages of
categorical variables. The central tendency, mean (SD), median
(IQR), and dispersion were calculated for quantitative variables.
The independent sample t test or Mann-Whitney test was used

to compare continuous variables, and the χ2 test or Fisher exact
test was used to compare categorical variables according to the
nature of their distribution.
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The inferential statistical analysis evaluated the relationship
between skin reflectance and outcome occurrence. The sensor
acquisition produced by the skin reflection was the independent
variable. Logistic regression was used to identify potential
influencers of RDS occurrence as birth weight and antenatal
corticoid exposition. Similar analyses were conducted with the
secondary outcomes, NICU admission and ventilatory support
needs. Inference was estimated by calculating odds ratios (ORs)

with 95% CIs. The Nagelkerke R2 was used to measure how
well the independent variables explained the variance in the
model. A Wald test was used to confirm if a set of independent

variables were collectively significant for the model. The
variables corresponding to P values <.05 in the univariate
analysis were selected for the multivariate analysis, and analyses
were performed using the available data with imputation of the
missing data. The statistical software SPSS 25.0 (IBM) was
used for the analysis.

Results

At the end of the cohort study of 781 newborns, 640 were
selected for the case-control analysis according to the eligibility
criteria (Figure 2).

Figure 2. Flow diagram of participants included in the 72-hour follow-up study.

The main characteristics of antenatal care and newborn infants
are shown in Table 2. There were 5 missing data points from 4
newborns, including information on the use of antenatal
corticosteroid therapy for fetal maturation exposition (ACTMF),
the presence of diabetes, the first minute Apgar score, and the
fifth minute Apgar score. According to comparisons between
groups, newborns with RDS had a younger gestational age (31.6

vs 39.1 weeks, P<.001) and lower birth weight (1491 vs 3121
grams, P<.001) than controls. During the 72-hour follow-up,
significantly different rates were found between groups
regarding NICU admission (RDS: n=170, 100%; control: n=16,
3.4%; P<.001), mortality (RDS: n=5, 9.2%; control: n=0, 0%;
P<.001), and the need for ventilatory support (RDS: n=160,
100%; control: n=6, 1.3%; P<.001).
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Table 2. Clinical characteristics of the studied newborns.

P value (RDS vs control)Controls (n=470)RDSa (n=170)Total (n=640)Variable

Maternal characteristics, n (%)

<.00145 (9.6)147 (87)192 (30)ACTMFb

<.00149 (10.4)41 (24.1)90 (14.1)Diabetes

<.00163 (13.4)66 (38.8)129 (20.2)HDPc

<.00134 (7.2)67 (39.4)101 (15.8)Multiple gestation

Demographic data at birth

<.00139.1 (37.4-40.1)31.6 (29.9-33.4)38.1 (33.8-39.9)GAd (weeks), median (IQR)

<.00181 (17.2)169 (99.4)250 (39.1)Preterm, n (%)

.53231 (49.1)89 (52.4)320 (50)Sex, male, n (%)

<.0013121 (561)1491 (513)2688 (905)Birth weight (g), median (IQR)

<.001Birth weight classification, n (%)

416 (99)4 (1)420 (65.6)>2500 g

51 (10.9)79 (46.5)130 (20.3)LBWe

3 (0.6)55 (32.4)58 (9.1)VLBWf

0 (0)32 (18.8)32 (5)ELBWg

<.0019 (8-9)8 (6-9)9 (8-9)1-minute Apgar score, median (IQR)

<.0019 (9-10)9 (8-10)9 (9-10)5-minute Apgar score, median (IQR)

<.001108 (23)160 (94.1)268 (41.9)Neonatal resuscitation first steps, n (%)

<.00120 (4.3)75 (44.1)95 (14.8)Neonatal resuscitation steps, PPVi, n (%)

<.0012 (0.4)24 (14.1)26 (4.1)Neonatal resuscitation steps, intubation, n (%)

<.0010 (0)2 (1.2)2 (0.3)Advanced resuscitation, n (%)

Follow-up within 72 hours, n (%)

<.00116 (3.4)170 (100)186 (29.1)NICUj admission

<.001395 (84)0 (0)395 (61.7)Discharge

.070 (0)5 (2.9)5 (0.8)Mortality

<.00114 (3)152 (89.4)166 (25.9)Incubator

<.0016 (1.3)170 (100)176 (27.5)Ventilatory support

<.0013 (0.6)51 (30)54 (8.4)MVk

<.0010 (0)43 (25.3)43 (6.7)NIVl

<.0013 (0.6)153 (90)156 (24.4)CPAPm

<.0010 (0)2 (1.2)2 (0.3)NCn

<.0010 (0)73 (42.9)73 (11.4)Surfactant therapy

aRDS: respiratory distress syndrome.
bACTMF: antenatal corticosteroid therapy for fetal maturation exposition.
cHDP: hypertensive disorders of pregnancy.
dGA: gestational age.
eLBW: low birth weight (<2500 g).
fVLBW: very low birth weight (<1500 g).
gELBW: extremely low birth weight (<1000 g).
hNot available.
iPPV: positive pressure ventilation.
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jNICU: neonatal intensive care unit.
kMV: invasive mechanical ventilation.
lNIV: noninvasive mechanical ventilation with bilevel-positive airway pressure.
mCPAP: continuous positive airway pressure.
nNC: oxygen by nasal cannula.

Concerning the primary outcome, different reflectance of the
skin over the sole was observed between the groups studied
(Figure 3). The reflectance range for the RDS group was
0.588-1.208 with a mean of 0.945 (SD 0.118), and that for the

control group was 0.717-1.274 with a mean of 1.172 (SD 0.103).
The mean difference of reflectance between groups was –0.227
(95% CI –0.246 to –0.208; P<.001).

Figure 3. Primary outcome: newborn skin reflection acquired on the sole of the foot on the first day of life for the case and control groups.

The univariate analysis showed a correlation between skin
reflection and RDS. The skin reflectance was associated with
RDS in the univariate analysis (OR 0.982, 95% CI 0.979-0.985,

R2=0.632, P<.001) as well as in the cofactor-adjusted analysis

(OR 0.994, 95% CI 0.990-0.998, R2=0.843, P<.001) (Table 3).
Skin reflection was associated with RDS regardless of the
inclusion of ACTMF and birth weight in the multivariate model.

Table 3. Univariate and multivariate analyses of the association between skin maturity and the occurrence of respiratory distress syndrome acquired
by the optical device.

Multivariate analysisUnivariate analysisVariable

R2P value
(Wald test)

OR (95% CI)R2P value
(Wald test)

ORa (95% CI)

0.843.0010.994 (0.990-0.998)0.632<.0010.982 (0.979-0.985)Skin reflectionb

<.0010.996 (0.996-0.997)0.825<.0010.995 (0.994-0.996)Birth weight

.022.854 (1.207-6.749)0.621<.00163.106 (36.655-108.646)ACTMFc

aOR: odds ratio.
bOR and 95% CI values for skin reflection are × 103.
cACTMF: antenatal corticosteroid therapy for fetal maturation exposition.

Secondary outcome data showed differences in skin reflectance
between the studied groups for both ventilatory support use (yes

vs no; Figure 4) and NICU admission (yes vs no; Figure 5).
Regarding ventilatory support, the skin reflectance ranged from
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0.588 to 1.305 with a mean of 0.952 (SD 0.009) and 0.717 to
1.474 with a mean of 1.172 (SD 0.005), for the yes and no
groups, respectively. The mean difference was 0.219 (95% CI
0.200-0.238; P<.001). For NICU admission, the skin reflectance

ranged from 0.588 to 1.304 with a mean of 0.953 (SD 0.009)
and 0.717 to 1.473 with a mean of 1.176 (SD 0.005) for the yes
and no groups, respectively. The mean difference was 0.223
(95% CI 0.205-0.241; P<.001).

Figure 4. Secondary outcome: newborn skin reflection acquired on the sole of the foot in the first 24 hours of life according to ventilatory support use
(yes or no).

Figure 5. Secondary outcome: newborn skin reflection acquired on the sole of the foot in the first 24 hours of life according to NICU admission (yes
or no). NICU: neonatal intensive care unit.
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The univariate and multivariate analyses of secondary outcomes
are summarized in Tables 4 and 5 for ventilatory support use
and NICU admission, respectively. Skin reflection was
associated with the need for ventilatory support in the univariate

analysis (OR 0.983, 95% CI 0.981-0.986, R2=0.598, P<.001)
as well as in the cofactor-adjusted analysis (OR 0.996, 95% CI

0.992-0.999, R2=0.814, P=.01). Similarly, there was an
association between skin maturity and NICU admission in the

univariate analysis (OR 0.928, 95% CI 0.979-0.985, R2=0.635,
P<.001) and multivariate analysis (OR 0.994, 95% CI

0.990-0.998, R2=0.867, P=.004).

Table 4. Univariate and multivariate analyses of the association between skin maturity and the need for ventilatory support during the first 72 hours
of life.

Multivariate analysisUnivariate analysisVariable

R2P value
(Wald test)

OR (95% CI)R2P value
(Wald test)

ORa (95% CI)

0.814.010.996 (0.992-0.999)0.598<.0010.983 (0.981-0.986)Skin reflectionb

<.0010.997 (0.996-0.998)0.801<.0010.996 (0.995-0.993)Birth weight

.012.677 (1.209-5.924)0.607<.00156.108 (33.307-94.520)ACTMFc

aOR: odds ratio.
bOR and 95% CI values for skin reflection are × 103.
cACTMF: antenatal corticosteroid therapy for fetal maturation exposition.

Table 5. Univariate and multivariate analyses of the association between skin maturity and neonatal intensive care unit admission during the first 72
hours of life.

Multivariate analysisUnivariate analysisVariable

R2P value (Wald test)OR (95% CI)R2P value
(Wald test)

ORa (95% CI)

0.867.0040.994 (0.990-0.998)0.635<.0010.928 (0.979-0.985)Skin reflectionb

<.0010.996 (0.995-0.997)0.852<.0010.995 (0.994-0.996)Birth weight

.022.908 (1.223-6.9155)0.648<.00172.288 (42.238-123.715)ACTMFc

aOR: odds ratio.
bOR and 95% CI values for skin reflection are × 103.
cACTMF: antenatal corticosteroid therapy for fetal maturation exposition.

Discussion

Principal Findings
The main aim of this study was to demonstrate the use of skin
maturity assessment as a potential marker of lung maturation.
We found an association between skin immaturity and the
occurrence of RDS, as well as a similar association with other
respiratory outcomes, such as NICU admission and the need
for ventilatory support. Skin reflectance at newborns’ soles,
assessed within the first 24 hours of life using an optical device,
indicated its maturity. Respiratory outcomes related to lung
maturity at 72 hours of life were obtained from medical records.
These results could enhance neonatal care, as knowledge of
lung maturity, regardless of the newborn’s gestational age, can
facilitate individualized care in the first hours of life.

Our findings reinforce the theory of the parallel development
of the organs, highlighting the similarity between stages, which
may allow the indirect evaluation of an organic system based
on the measurements of another, regardless of age [13]. Studies
in animal models have shown the similarity in the process of
lipid production between the stratum corneum and pulmonary
surfactant [22]. Predicting surfactant deficiency before

respiratory deterioration depends on a combination of clinical
signs and lung imaging [23]. Therefore, a timely indication of
surfactant therapy may be postponed due to various factors,
such as the lack of specificity in the initial phase of the imaging
methods, the absence of the exam in low- and middle-income
countries, and the masked signs of RDS severity by early
continuous positive airway pressure protocols [24,25]. In this
context, skin assessment appears to be a potential alternative,
as this study demonstrated an association between skin
reflectance and the need for ventilatory support in the first 72
hours of life. To the best of our knowledge, this is a pioneering
study of pulmonary assessment using an indirect and
noninvasive method.

This study presented no intention of predicting RDS or other
complications related to pulmonary immaturity since it had a
nested case-control design. Removing confounding diseases,
such as sepsis, malformations, and other respiratory diagnoses,
was essential to analyze the relationship between skin maturity
and RDS. This analysis plan was stated in the clinical trial
protocol [18]. Additionally, ACTMF and birth weight were
included in the multivariate model to investigate the independent
and adjusted association of skin-lung maturity. A comprehensive
sample of newborns with train-test procedures on machine
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learning approaches is still necessary to provide valuable models
of RDS prediction using skin reflection.

Furthermore, this study found an association between skin
reflection and NICU admission when adjusted by the cofactors
of birth weight and ACTMF. Previous reports demonstrated the
likelihood of preterm newborns, especially those with low birth
weight, requiring NICU monitoring due to hypothermia [22].
This population is prone to uncontrolled heat loss, leading to
hypoglycemia and hypoxemia, resulting in metabolic acidosis
and associated respiratory distress [26]. Predicting which infants
will become symptomatic of RDS is not always possible before
birth. If not recognized and managed quickly, respiratory distress
can escalate to respiratory failure and cardiopulmonary arrest
[27]. Clinical evaluation of fetal lung maturity based on the
analysis of the lecithin to sphingomyelin ratio and lamellar body
count demands amniocentesis, which is an invasive procedure
that poses potential risks, such as preterm labor, fetomaternal
hemorrhage, or even death [28]. Furthermore, there is a large
difference in sensitivity and specificity among laboratory
analyses depending on the test [25]. Therefore, antenatal
assessment of fetal lung maturity is limited, and we believe that
a noninvasive method to assess lung maturity at birth can meet
the actual clinical needs.

Medical technologies for monitoring fetal and maternal health
are not equally accessible [29]. In low- and middle-income
countries, among the challenges is the transfer of the newborn
to specialized services due to suboptimal modes of transport
and difficult and time-consuming routes [30]. Therefore, early
assessment of lung maturity could improve resource allocation,
supporting the indication for transport, and potentially lowering
the mortality risk. The studied device can be easily applied by
several health professionals, favoring assistance especially in
low-resource settings. This study is the first step in this context,

showing a possible agreement between lung and skin maturation,
relying on RDS strictly due to immaturity.

Limitations
To assess pulmonary readiness for the extrauterine life, our data
analysis was based on the RDS scenario strictly caused by
immaturity and is therefore unable to predict the occurrence of
RDS. Since this case-control study excluded other neonatal
conditions, a comprehensive analysis including all causes of
respiratory distress at birth is necessary.

Strengths
As far as we know, this was the first study to demonstrate the
phenomenon of association between skin and lung maturity
assessed postnatally. Through an accessible technological tool
that can be integrated into current clinical practice, a therapeutic
possibility arises for the indirect assessment of lung maturity.

Despite the case-control methodology, data collection was
prospective, the research protocol was previously published,
and the team was trained and certified [17].

Future Directions
To develop and validate a predictive model for RDS, a study
that includes all causes of respiratory distress at birth is
necessary. We already have a study underway for this purpose.

Conclusion
This study showed the potential for identifying RDS and
immediate respiratory complications in the first 72 hours of life
through skin assessment based on the synchronous development
of the lungs and skin. The results, however, may not be
applicable for predicting RDS, ventilatory support use, or NICU
admission.
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Abstract

Background: Numerous studies have explored image processing techniques aimed at enhancing ultrasound images to narrow
the performance gap between low-quality portable devices and high-end ultrasound equipment. These investigations often use
registered image pairs created by modifying the same image through methods like down sampling or adding noise, rather than
using separate images from different machines. Additionally, they rely on organ-specific features, limiting the models’
generalizability across various imaging conditions and devices. The challenge remains to develop a universal framework capable
of improving image quality across different devices and conditions, independent of registration or specific organ characteristics.

Objective: This study aims to develop a robust framework that enhances the quality of ultrasound images, particularly those
captured with compact, portable devices, which are often constrained by low quality due to hardware limitations. The framework
is designed to effectively process nonregistered ultrasound image pairs, a common challenge in medical imaging, across various
clinical settings and device types. By addressing these challenges, the research seeks to provide a more generalized and adaptable
solution that can be widely applied across diverse medical scenarios, improving the accessibility and quality of diagnostic imaging.

Methods: A retrospective analysis was conducted by using a cycle-consistent generative adversarial network (CycleGAN)
framework enhanced with perceptual loss to improve the quality of ultrasound images, focusing on nonregistered image pairs
from various organ systems. The perceptual loss was integrated to preserve anatomical integrity by comparing deep features
extracted from pretrained neural networks. The model’s performance was evaluated against corresponding high-resolution images,
ensuring that the enhanced outputs closely mimic those from high-end ultrasound devices. The model was trained and validated
using a publicly available, diverse dataset to ensure robustness and generalizability across different imaging scenarios.

Results: The advanced CycleGAN framework, enhanced with perceptual loss, significantly outperformed the previous
state-of-the-art, stable CycleGAN, in multiple evaluation metrics. Specifically, our method achieved a structural similarity index
of 0.2889 versus 0.2502 (P<.001), a peak signal-to-noise ratio of 15.8935 versus 14.9430 (P<.001), and a learned perceptual
image patch similarity score of 0.4490 versus 0.5005 (P<.001). These results demonstrate the model’s superior ability to enhance
image quality while preserving critical anatomical details, thereby improving diagnostic usefulness.

Conclusions: This study presents a significant advancement in ultrasound imaging by leveraging a CycleGAN model enhanced
with perceptual loss to bridge the quality gap between images from different devices. By processing nonregistered image pairs,
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the model not only enhances visual quality but also ensures the preservation of essential anatomical structures, crucial for accurate
diagnosis. This approach holds the potential to democratize high-quality ultrasound imaging, making it accessible through low-cost
portable devices, thereby improving health care outcomes, particularly in resource-limited settings. Future research will focus
on further validation and optimization for clinical use.

(JMIR Biomed Eng 2024;9:e58911)   doi:10.2196/58911

KEYWORDS

generative networks; cycle generative adversarial network; image enhancement; perceptual loss; ultrasound scans; ultrasound
images; imaging; machine learning; portable handheld devices

Introduction

Ultrasound imaging is crucial in medical diagnostics due to its
noninvasive nature and high accuracy. It provides point-of-care
assessments that have been increasingly adopted by health care
professionals [1,2]. Historically, technology has been limited
to large, expensive devices typically found in specialized
medical settings. However, there has been a transformative shift
toward the development and adoption of compact, handheld
ultrasound devices [3,4]. These smaller devices promise to
democratize access to medical imaging by making it more
affordable and widely available. Yet, the miniaturization and
cost-effectiveness often come at the expense of image quality,
a trade-off primarily attributable to hardware constraints [5-7].

Machine learning algorithms have been explored to enhance
low-quality images without the need for hardware improvements
[8]. For instance, generative adversarial networks (GANs) [9]
have been used to create high-quality reconstructions of
ultrasound images and videos, providing a cost-efficient avenue
for the enhancement of portable ultrasound devices [10-12].
The cycle-consistent generative adversarial network
(CycleGAN) framework, which is particularly useful for
image-to-image translations without requiring paired data, has
become increasingly popular [13]. The technology has been
applied across a spectrum of tasks including, style transfer [14],
where the appearance of one image is transformed to match
another style, and object transfiguration [13,15,16], which
involves changing 1 object in an image into another while
retaining the overall structure. In medical imaging, CycleGANs
have been used in tasks such as pixel-wise translation in
echocardiography [17]. CycleGANs have also been applied in
cross-modality medical image translation such as converting
computed tomography to magnetic resonance imaging [18].
The architecture has even found use in histopathology to
standardize microscopy staining for more accurate diagnoses
[19].

We hypothesize that the integration of computational algorithms,
particularly CycleGAN, can mitigate the disparities in images
acquired from different medical imaging devices. Traditional
training approaches for these models artificially introduce
corruption into medical images to create pixel-wise pairs
[20-22]. However, these methods typically fail to encapsulate
the different characteristics of images acquired using different
devices. Acquiring paired images using different devices leads
to technical issues as images are captured at different time
instances with varying orientations, leading to structural changes
that cannot be completely resolved using image registration.

In this work, we benchmark several key models that are highly
relevant to our task of ultrasound image enhancement. Pix2Pix
[4] uses conditional adversarial networks for paired
image-to-image translation, making it effective for directly
comparing low- and high-quality images. CycleGAN [5] enables
unpaired image-to-image translation, which is crucial when
paired datasets are not available. Registration GAN (RegGAN)
[6] focuses on medical image translation by aligning structural
content using a registration network, and multilevel
structure-preserved GAN (MSPGAN) [7] introduces a multilevel
structure-preserved GAN for domain adaptation in intravascular
ultrasound analysis. However, the current state-of-the-art is the
stability-enhanced CycleGAN [1], which specifically addresses
domain transformation challenges in unpaired ultrasound
images, making it particularly relevant and effective for our
specific application.

Evaluation metrics play a critical role in assessing the
effectiveness of image enhancement models. Commonly used
metrics include structural similarity index (SSI), peak
signal-to-noise ratio (PSNR), and locally normalized
cross-correlation (LNCC) [5,10-12,23]. While these metrics are
widely accepted, they primarily capture low-frequency
information and may not adequately reflect true image quality,
particularly in preserving high-frequency details, which are
crucial for medical diagnostics. Models that perform well on
these traditional metrics may produce visually appealing images
but fail to retain essential high-frequency content, leading to a
loss of critical diagnostic information and perceptual quality
[24]. To address this limitation, we incorporate the learned
perceptual image patch similarity (LPIPS) [24] metric in our
evaluations. LPIPS is designed to capture perceptual differences
that align more closely with human visual perception, ensuring
that our method not only performs well quantitatively but also
produces qualitatively superior images, preserving both low-
and high-frequency details essential for accurate medical
analysis.

To overcome these challenges, our approach leverages
perceptual loss, which can eliminate the need for registration
and more accurately relate images from disparate domains.
Traditional loss functions used in CycleGAN can result in
hallucinated features in the enhanced images [25]. By
incorporating perceptual loss [24], more interpretable images
are generated that are more robust to registration artifacts [26].
This method can enhance the reliability and consistency of
images from handheld ultrasound devices to bridge the gap with
expensive high-end systems for greater equity in access to health
care.
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Methods

Study Design
In this study, we aim to address the challenge of enhancing
ultrasound image quality, particularly for images captured by
compact, portable devices that often suffer from lower quality
due to hardware limitations. To achieve this, we used a
CycleGAN framework enhanced with perceptual loss. This
approach focuses on processing nonregistered image pairs from
various organ systems, ensuring that the enhanced images retain
anatomical integrity and closely mimic high-resolution outputs.
Our method is designed to be robust, versatile, and applicable
across diverse clinical settings.

Model Overview
Our framework for generating high-quality images is a
modification of the CycleGAN architecture, designed to map
between 2 distinct imaging domains. In ultrasound image
enhancement, these domains correspond to low-quality (domain
L) and high-quality (domain H) images. The model uses 2
generators, GL and GH, and 2 discriminators, DL and DH (Figure
1). Note that the generators GL and GH share the same model
architecture. Similarly, the discriminators DL and DH share the

same model architecture. The generator GL is responsible for
converting an image from domain H, which represents
high-quality images, to domain L, characterized by low-quality
images. Conversely, the generator GH performs the opposite
transformation, taking an image from domain L and converting
it to align with domain H. This bidirectional transformation
process is essential for the task of image enhancement, as it
allows for the improvement of low-quality images by translating
them into their high-quality counterparts. The discriminators
aim to distinguish real images in their respective domains from
those transformed by the generators. A unique feature of this
approach is the cycle consistency loss [13], which plays a crucial
role in image quality enhancement. This loss ensures that when
an image is translated to the other domain and then reverted to
its original domain, it closely resembles the original image.
Specifically, for enhancing low-quality images to high-quality
images, the cycle consistency loss maintains the integrity of the
image content throughout the transformation process. This
prevents the introduction of artifacts and ensures that the
enhanced image retains the essential features of the original
low-quality image, resulting in a high-quality output that remains
true to the source. After training, the GH generator is used to
enhance images, maintaining essential structural attributes while
improving clarity and resolution.

Figure 1. An overview of the cycle generative adversarial network model training and loss computation framework. The solid black arrows indicate
the flow of data. The dashed red arrows indicate the flow of information for loss computation.

Model Description
GANs have seen transformative advancements, with CycleGAN
[13] representing a significant milestone in facilitating
unsupervised image-to-image translations. The GAN
architecture comprises 2 primary modules: the generator and
the discriminator.

The generator (Figure 2A) architecture is inspired by the
generator used by Isola et al [27]. The generator network is
structured as a UNet [28], divided into encoding and decoding
phases, incorporating detailed mechanisms for both
down-sampling and up-sampling the input data. The encoder
initiates with a 64-channel 2D convolutional layer designed to
capture broad contextual details. This phase uses multiple
down-sampling layers, each comprising a convolutional layer
with instance normalization and leaky rectified linear unit
(ReLU) activation functions. The instance normalization layers

stabilize the training process by normalizing the feature maps,
while leaky ReLU activations introduce nonlinearity and
mitigate the vanishing gradient problem. To enhance model
robustness, dropout layers are included in deeper layers of the
encoder. The down-sampling process reduces the spatial
dimensions while increasing the depth, thereby emphasizing
hierarchical feature extraction. In the decoding phase, the model
uses transposed convolutional layers for up-sampling, which
restores the spatial dimensions. Each up-sampling step involves
skipping connections from the corresponding down-sampling
layers, preserving detailed features from earlier stages. These
layers also incorporate instance normalization and ReLU
activations, where ReLU functions introduce nonlinearity,
promoting sparse activations and efficient learning. The final
layer uses a tanh activation function, scaling the output values
to [–1, 1], suitable for image generation tasks. This design
ensures effective image enhancement by maintaining
high-quality feature extraction and reconstruction.
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The discriminator (Figure 2B) distinguishes between real and
generated images. We use spectral normalization [29] to ensure
stability during training. Its architecture begins with a
convolutional layer that compresses spatial information and
expands depth followed by a leaky ReLU activation layer.
Subsequent layers maintain the use of spectral normalization
to ensure 1 – Lipschitz continuity. This constraint on the spectral
norm of each layer’s weights helps to balance the generator and

discriminator during training. The PatchGAN [27,30] style
discriminator output is a 30×30 grid with a depth of 1, which
provides a spatial map indicating the likelihood of each region
in the input image being real or generated. This final
classification output allows for a more detailed evaluation of
the image, helping to distinguish between authentic and synthetic
content across different spatial locations.

Figure 2. The model architectures. The (A) generator and (B) discriminator model architectures. The figure legend lists the different layers in the
models. ReLU: rectified linear unit.

Loss Function

Perceptual Loss
Conventional methodologies like mean squared error (MSE)
and SSI rely on pixel-wise alignment which makes them
unsuitable for nonregistered image pairs acquired using different
devices. The LPIPS metric addresses these constraints by
evaluating the perceptual similarity between images [24]. LPIPS
leverages deep features extracted from pretrained convolutional
networks, such as the visual geometry group network [31]. The
LPIPS metric comparing images X and Y is given by the
following equation.

where Fi and wi denotes the feature maps and optimized weights

from the ith layer of the pretrained network. Deep feature maps
are systematically extracted from every layer within the network,
ensuring a comprehensive reflection of the multi-scale
characteristics of human perceptual judgment. These features
are then unified through linear combination, optimizing the
weights to align with perceptual judgments assessed by human
evaluators. The LPIPS metric consistently outranks traditional
metrics, showcasing superior performance across an array of
perceptual judgment tasks [26]. This loss is calculated between
real images L and H, and those generated through the CycleGAN
framework’s generators as follows.

where H' represents GH(L) and L' represents GL(H).

Generator Loss
The generator’s loss function is a linear combination of several
distinct loss terms, each playing a pivotal role in optimizing
image translation between the 2 domains. First, adversarial loss
Ladv (DH,DL) induces the discriminators to perceive generated
images as genuine, whether they are translated from low to high
quality or vice versa.

Ladv (DH,DL) = MSE(1,DH) + MSE(1,DL)

Specifically, MSE calculates the discrepancy between the
discriminator’s predictions and an array of ones. The array of
ones represents the target output for real images, indicating that
the discriminator should classify these images as genuine. By
comparing the discriminator’s predictions to this ideal output,
the MSE helps measure how far the generated images are from
being perceived as real. These terms push the generator to
produce images that can convince the discriminator they belong
to the high-quality domain, thereby improving the realism and
quality of the generated images. Using an array of ones ensures
that the generator is continuously driven to reduce the difference
between its output and real high-quality images, enhancing its
performance over time. The cycle loss Lcycle (GH,GL) prevents
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the loss of critical image features by ensuring that an image
translated to the other domain and back yields the original
image.

where . and . The L1 loss LL1(GH,GL) ensures that the
generated images are closer to true high-quality images in an
L1 distance sense.

Finally, the aggregate generator loss, L(GH,GL,DH,DL), is
computed by combining all individual loss terms weighed by
their respective lambda constants.

By using this multifaceted loss function, the model ensures that
the generators achieve high-quality image translations while
preserving the intrinsic characteristics of the source domain.

Discriminator Loss
The discriminator loss function is designed to evaluate the
authenticity of images, incorporating the principle of label
smoothing to further enhance the model’s generalizability. The
discriminator is tasked with distinguishing between real images
from the dataset and synthetic images generated by the
corresponding generator.

For each domain, the discriminator computes scores for both
real and synthetic images. Conventionally, discriminators are
trained using hard labels, where real images are labeled as “1”
and synthetic images as “0.” However, hard labels can cause
vulnerability to adversarial perturbations—small, intentional
changes to the input that can deceive the model into making
incorrect predictions—and lead to overconfidence, where the
discriminator becomes excessively certain in its predictions.
Label smoothing improves the generalization and robustness
of neural networks by preventing overconfidence in predictions.
Szegedy et al [32] demonstrated its effectiveness in reducing
overfitting and enhancing performance in image classification.
Similarly, Salimans et al [33] applied 1-sided label smoothing
in the training of GANs, which helped stabilize training and
improve the quality of generated images. These studies support
the use of label smoothing as a strategy to mitigate the negative
effects of hard labels. In our framework, if the mean scores of
both real and synthetic images for the high-quality domain are
less than 0.9, the label 1.0 is used. Otherwise, a smoothing factor
of 0.9 is applied, meaning the real images are given a target
value slightly less than 1, to prevent overconfidence and promote
model robustness. The total discriminator loss, L(DH,DL), is

then computed by aggregating the individual MSE losses .

and . for high and low-quality domains, respectively.

Implementation Details
All models were trained for 300 epochs with a batch size of 4
images. We used the Adam optimizer for model optimization,

with a learning rate (3×10–4) set for both the generators and the
discriminators. A beta value of 0.9 for the first and 0.999 for
the second moments were used in each optimizer. A learning
rate scheduler reduced learning rates by half (γ=.5) every 100
epochs, to allow adaptability during training. Weights were
assigned to each loss term: λadv=1 for adversarial loss, λcycle=10
for cycle-consistency loss, λL1=2 for L1 loss, and λper=10 for
perceptual loss. The overall dataset was split with 70% for model
training, 10% for model validation, and 20% for the hold-out
test set. Gradient scaling was used to optimize the model’s
precision and speed. Code implementation will be made publicly
available.

Evaluation
The synthetic high-quality images generated by the model are
evaluated using 4 key metrics: SSI, LNCC, PSNR, and LPIPS.
Each of these metrics provides a unique perspective on the
fidelity and quality of the generated images compared to the
ground truth.

• SSI evaluates the structural fidelity between the generated

image H' and the actual high-quality image H. It considers
3 aspects: luminance, contrast, and structure. The SSI is
computed as follows.

where µH and µH' are the mean intensities, and are the

variances, and is the covariance between H' and H. The
constants C1 and C2 are used to stabilize the division.

• LNCC measures the local similarity in intensity patterns
between the generated and actual high-quality images. This
metric is particularly sensitive to local differences in
intensity, making it useful for detecting fine-grained
discrepancies. LNCC is calculated by dividing the
cross-correlation of local image patches by the product of
their local SDs.

where . and . are the local means of the patches.

• PSNR quantifies the error signal strength between the
generated and actual images, derived from the MSE. It is
defined as follows.

where MAXI is the maximum possible pixel value of the image,

and MSE (H, H') is the mean squared error between H' and H.
A higher PSNR indicates that the generated image is closer to
the high-quality reference.

• LPIPS [24] is a perceptual metric that compares deep
features extracted from a neural network rather than directly
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comparing pixel values. This approach better aligns with
human perception of image similarity. LPIPS is computed
by passing both the generated and actual images through a
pretrained deep network and measuring the distance
between their respective feature representations. Lower
LPIPS values indicate higher perceptual similarity.

Together, these metrics provide a comprehensive evaluation of
the generated images, which is particularly relevant for our
image enhancement task, where unregistered low-high quality
image pairs are compared. SSI and LNCC assess how well the
structural and intensity patterns are preserved during
enhancement, even when images are not perfectly aligned.
PSNR quantifies the reduction in error relative to the original
image, indicating overall fidelity. LPIPS, on the other hand,
evaluates perceptual quality, ensuring that the enhancement
appears natural and realistic to human observers, even in
challenging scenarios with misaligned inputs.

Ethical Considerations
This study did not involve the collection of new data from
human participants. The dataset used is publicly available and
provided as part of the 26th International Conference on Medical
Image Computing and Computer Assisted Intervention
(MICCAI 2023) USEnhance Challenge [34,35]. Therefore, no
ethics review or approval was required for this study. As the
study used publicly available data provided by the organizers
of the challenge, informed consent specific to this research was
not required. It is assumed that the original informed consent
for data collection includes provisions for secondary analysis
without requiring additional consent. All images used in this
study are fully deidentified with no personal health information
included. The dataset provided by the challenge organizers
ensured anonymity, thus protecting the privacy and

confidentiality of any potential human participants. There was
no direct interaction with human participants in this study;
hence, no compensation was provided. No images in this study
or its supplementary materials allow for the identification of
individual participants. All data are deidentified and anonymous,
ensuring that no individual can be recognized from the images
used.

Results

Overview
This study uses a dataset consisting of 2100 ultrasound images,
including 1050 pairs of low- and high-quality images (Table 1
[34]). These images were collected from 131 patients with
suspected thyroid tumors, carotid plaque, or breast cancer, along
with healthy participants. During scans, volunteers were
instructed to hold their breath for approximately 10 seconds to
minimize deformation, and landmark points were noted for
nonrigid registration to ensure the creation of accurate data
pairs. This well-curated dataset provides a robust foundation
for this study. This dataset was provided by the organizers of
the MICCAI 2023 USEnhance Challenge [34]. Our baseline
compares low-quality images directly to high-quality images
without any enhancement or learning-based processing, serving
as the starting point for evaluating the effectiveness of various
models, including our approach. The models benchmarked in
this study include Pix2Pix [27], MSPGAN [11], CycleGAN
[13], RegGAN [23], and stable CycleGAN [12]. Among these,
MSPGAN, RegGAN, and stable CycleGAN are the most recent
advancements and are considered state-of-the-art for this task.
To rigorously assess the improvements offered by our method,
we computed the statistical significance of our results using the
1-sided Wilcoxon signed rank test.

Table 1. Dataset summary across different ultrasound devices and organs.

Ultrasound image pairs, n (%)Patients (n=131), n (%)High-end deviceLow-end deviceOrgan

Total
(n=1050)

Testing
(n=210)

Training
(n=840)

291 (27.7)58 (27.6)233 (27.7)33 (25.2)Toshiba Aplio 500mSonics MU1Thyroid

286 (27.2)57 (27.1)229 (27.3)54 (41.2)Toshiba Aplio 500SSUNCarotid

271 (25.8)54 (25.7)217 (25.8)21 (16)General Electric LOGIQ E9SSUNAbdomen

202 (19.2)41 (19.5)161 (19.2)23 (17.6)Aixplorer ultrasound system
(SuperSonic Imaging SA)

mSonics MU1Breast

Quantitative Results
In the evaluation of the SSI, our proposed method achieved a
score of 0.2889 (Table 2), surpassing the reference low baseline
(0.2363; P<.001), as well as CycleGAN (0.2622; P<.001) and
stable CycleGAN (0.2502; P<.001). This places our method on
par with the top-performing models like Pix2Pix (0.2862;
PP>.99), MSPGAN (0.2796; P<.001), and RegGAN (0.2809;
P<.001). Among the methods evaluated, stable CycleGAN
exhibited the lowest SSI score, indicating the least effective
structural preservation. Pix2Pix, on the other hand, performed
slightly better than MSPGAN and RegGAN, highlighting its
strength in maintaining structural details. For LNCC, our method

recorded a score of 0.8454, which is significantly higher than
the reference low baseline (0.7836; P<.001) and comparable to
the scores achieved by MSPGAN (0.8535; P>.99) and Pix2Pix
(0.8491; P>.99). While MSPGAN led in LNCC, the differences
between the top performing methods are minimal, underscoring
the similar performance levels across these models. Notably,
CycleGAN and stable CycleGAN scored 0.8271 (P<.001) and
0.8145 (P<.001), respectively, showing lower but still
competitive performance.

In terms of PSNR, the proposed method achieved a score of
15.8935, which is a marked improvement over the reference
low baseline (14.2978; P<.001). Although Pix2Pix (16.3914;
P>.99) and MSPGAN (16.2602; P>.99) reported higher PSNR
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values, indicating lower overall error between the generated
and high-quality images, the differences between these models
and our approach are modest. RegGAN also performed well
with a score of (16.2721; P>.99), while CycleGAN (14.9126;
P<.001) and stable CycleGAN (14.9430; P<.001) had lower
PSNR values, indicating higher error rates. Finally, for the
LPIPS metric, our method demonstrated the best performance
with a score of 0.4490, significantly lower than Pix2Pix (0.4664;
P<.001), MSPGAN (0.4709; P<.001), and RegGAN (0.4855;
P<.001). This indicates that our method produced images that

were perceptually closer to high-quality outputs. CycleGAN
and stable CycleGAN reported LPIPS scores of 0.4828 (P<.001)
and 0.5005 (P<.001), respectively, with stable CycleGAN
showing the least favorable performance among all models in
terms of perceptual quality. Across these metrics, while certain
models like Pix2Pix and MSPGAN excel in specific metrics
such as LNCC and PSNR, our approach consistently delivers
competitive performance, particularly in SSI and LPIPS, making
it a robust framework for ultrasound image enhancement.

Table 2. Performance evaluation of models on the test set.

LPIPSe↓fPSNRd↑SSIc↑LNCCa↑bModel configurations

0.5080g14.2978g0.2363g0.7836gReference low

0.4664g16.39140.28620.8491Pix2Pix [27]

0.4709g16.26020.2796g0.8535MSPGANh [11]

0.4828g14.9126g0.2622g0.8271gCycleGANi [13]

0.4855g16.27210.2809g0.8475RegGANj [23]

0.5005g14.9430g0.2502g0.8145gStable CycleGAN [12]

0.449015.89350.28890.8454Proposed method

aLNCC: locally normalized cross-correlation.
b↑: higher scores are better.
cSSI: structural similarity index.
dPSNR: peak signal-to-noise ratio.
eLPIPS: learned perceptual image patch similarity
f↓: lower scores are better.
gStatistically significant improvement.
hMSPGAN: multilevel structure-preserved generative adversarial network.
iCycleGAN: cycle-consistent generative adversarial network.
jRegGAN: registration generative adversarial network.

Qualitative Results
Qualitative analysis further illustrates the differences in the
generated images across the models. As shown in Figures 3 and
4, methods such as Pix2Pix, MSPGAN, and RegGAN, despite
their higher scores in SSI, LNCC, and PSNR, often produce
images that lack anatomical detail and introduce distortions that
may affect clinical interpretation. In contrast, methods like
CycleGAN, Stable CycleGAN, and our proposed approach

maintain the integrity of anatomical structures, ensuring that
the generated images closely resemble the original high-quality
images. Our approach is particularly effective in preventing the
loss of critical diagnostic information, which is essential for
accurate medical assessments. While quantitative metrics
provide a useful evaluation framework, the qualitative results
underscore the importance of preserving anatomical integrity,
an area where our method excels.
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Figure 3. A comparative visualization of ultrasound scans from the test set, showcasing the performance of different enhancement frameworks on the
same high-low quality image pair. Each subfigure corresponds to a different model’s output, allowing for a direct comparison of the anatomical
preservation and image quality achieved by each approach. (A) reference low, (B) Pix2Pix [27], (C) MSPGAN [11], (D) RegGAN [23], (E) reference
high, (F) CycleGAN [13], (G) stable CycleGAN [12], and (H) proposed method. CycleGAN: cycle-consistent generative adversarial network; MSPGAN:
multilevel structure-preserved generative adversarial network; RegGAN: registration generative adversarial network.

Figure 4. A comparative visualization of ultrasound scans from the test set, showcasing the performance of different enhancement frameworks on the
same high-low quality image pairs. (A) Thyroid, (B) carotid, (C) liver, (D) kidney, and (E) breast. CycleGAN: cycle-consistent generative adversarial
network; MSPGAN: multilevel structure-preserved generative adversarial network; RegGAN: registration generative adversarial network.
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Discussion

In this study, we developed and evaluated an advanced
CycleGAN framework enhanced with perceptual loss to address
the challenge of varying image quality in ultrasound imaging
across different devices. Our primary objective was to improve
the quality of low-resolution ultrasound images captured by
portable devices while preserving anatomical integrity, which
is critical for accurate clinical diagnostics. The results from our
evaluation demonstrated that the integration of perceptual loss
enhanced the quality of the generated images, achieving strong
performance in key metrics such as SSI and LPIPS, though
slightly lower in LNCC and PSNR compared to other models.
These outcomes suggest that our approach represents a
significant step toward bridging the gap between low- and
high-quality ultrasound images, making it particularly beneficial
for portable, handheld devices that often struggle with image
quality due to hardware limitations.

The use of perceptual loss in our model allowed for a more
direct and meaningful comparison between low- and
high-quality images, which contrasts with previous studies that
treated these domains as independent [12]. By leveraging paired
images from different devices, our model was able to learn the
nuances of quality differences in a manner that closely mirrors
real-world clinical scenarios. This pairing led to significant
improvements in metrics such as SSI and LPIPS, indicating that
our model preserves structural fidelity and local intensity
patterns more effectively than current state-of-the-art
approaches. However, it is important to note that while some
models, such as Pix2Pix, MSPGAN, and RegGAN, achieve
high scores in SSI, LNCC, and PSNR, they often do so at the
expense of anatomical integrity. These models tend to remove
or alter critical anatomical structures, leading to a loss of
valuable diagnostic information. In contrast, our approach retains
the anatomical content while producing comparable performance
in these metrics and outperforming all other models in LPIPS,

which measures perceptual quality. This balance between
maintaining anatomical fidelity and achieving high image quality
is a significant strength of our method, making it more suitable
for clinical applications where accuracy is paramount.

Despite these promising results, there are some limitations to
our approach that need to be addressed in future work. The
reliance on perceptual loss, while beneficial for maintaining
image fidelity, introduces additional computational complexity,
leading to longer training times. This requirement could be a
limitation in scenarios where computational resources are limited
or rapid model deployment is necessary. Additionally, while
our model has demonstrated strong performance across a
well-curated dataset, the findings need to be validated through
extensive real-world applications across diverse datasets and
imaging conditions to ensure robustness and generalizability.
Furthermore, the current model is designed to work across
various organ systems and diseases, but future research could
explore the development of more specialized models tailored
to specific clinical contexts, potentially optimizing performance
for targeted diagnostic tasks.

To conclude, this work introduced an advanced
CycleGAN-based framework that effectively enhances
ultrasound image quality across devices by using perceptual
loss to train on paired images. Our findings demonstrate the
feasibility of bridging the image quality gap between low- and
high-quality ultrasound images, thereby improving the
accessibility and equity of high-quality diagnostic imaging. As
we move forward, it will be crucial to conduct clinical validation
of this approach across a wide range of medical scenarios and
explore its application to other imaging modalities. This result
could pave the way for integrating our model into routine
clinical practice, ultimately enhancing diagnostic accuracy and
improving patient outcomes. By making high-quality imaging
more accessible, particularly through portable ultrasound
devices, our approach holds the potential to significantly impact
health care delivery and patient care on a global scale.
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Abstract

Background: Physiological motion of the lumbar spine is a topic of interest for musculoskeletal health care professionals since
abnormal motion is believed to be related to lumbar complaints. Many researchers have described ranges of motion for the lumbar
spine, but only few have mentioned specific motion patterns of each individual segment during flexion and extension, mostly
comprising the sequence of segmental initiation in sagittal rotation. However, an adequate definition of physiological motion is
still lacking. For the lower cervical spine, a consistent pattern of segmental contributions in a flexion-extension movement in
young healthy individuals was described, resulting in a definition of physiological motion of the cervical spine.

Objective: This study aimed to define the lumbar spines’physiological motion pattern by determining the sequence of segmental
contribution in sagittal rotation of each vertebra during maximum flexion and extension in healthy male participants.

Methods: Cinematographic recordings were performed twice in 11 healthy male participants, aged 18-25 years, without a
history of spine problems, with a 2-week interval (time point T1 and T2). Image recognition software was used to identify specific
patterns in the sequence of segmental contributions per individual by plotting segmental rotation of each individual segment
against the cumulative rotation of segments L1 to S1. Intraindividual variability was determined by testing T1 against T2. Intraclass
correlation coefficients were tested by reevaluation of 30 intervertebral sequences by a second researcher.

Results: No consistent pattern was found when studying the graphs of the cinematographic recordings during flexion. A much
more consistent pattern was found during extension, especially in the last phase. It consisted of a peak in rotation in L3L4, followed
by a peak in L2L3, and finally, in L1L2. This pattern was present in 71% (15/21) of all recordings; 64% (7/11) of the participants
had a consistent pattern at both time points. Sequence of segmental contribution was less consistent in the lumbar spine than the
cervical spine, possibly caused by differences in facet orientation, intervertebral discs, overprojection of the pelvis, and muscle
recruitment.

Conclusions: In 64% (7/11) of the recordings, a consistent motion pattern was found in the upper lumbar spine during the last
phase of extension in asymptomatic young male participants. Physiological motion of the lumbar spine is a broad concept,
influenced by multiple factors, which cannot be captured in a firm definition yet.

Trial Registration: ClinicalTrials.gov NCT03737227; https://clinicaltrials.gov/ct2/show/NCT03737227

International Registered Report Identifier (IRRID): RR2-10.2196/14741
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Introduction

Physiological motion of the lumbar spine is of interest for
musculoskeletal health care professionals. Motion of the lumbar
spine is dependent on multiple structures, for example facet
joint orientation, spinal-pelvic relations, intervertebral disc
loading, and muscle recruitment. Although the concept of
physiological motion is used in many instances, a proper
definition is still lacking. Over the last 90 years, several attempts
to define physiological motion have been made. In 1931, Dittmar
et al [1] were the first to use sagittal radiographs to analyze the
normal range of flexion and extension for the lumbar spine.
Subsequently, more motion research followed using other
techniques including computed tomography and magnetic
resonance–based 3D imaging [2-4]. Based on these data,
segmental ranges of motion with a high intra, and interindividual
variability were described [5,6]. For this reason, researchers
started to investigate sequences, like sequence of segmental
initiation of motion. Studies that report sequence of segmental
initiation of motion in flexion and extension also showed
variable results. The lack of consistent segmental ranges of
motion or sequence hampers the definition of physiological
motion of the lumbar spine [7-17].

Our research group described a consistent sequence of segmental
contribution in the lower cervical spine during extension using
sagittal cinematographic recordings [18]. This research was
used to create a definition of physiological motion in young
healthy individuals without spinal complaints. To our
knowledge, similar analysis of the sequence of segmental
contribution for the lumbar spine has not been carried out
previously.

This study aimed to analyze the sequence of segmental
contribution of L1 to S1 in sagittal rotation during flexion and
extension in individual participants. A consistent pattern of
segmental contribution in asymptomatic participants could be
seen as a definition of psychological motion. In the future, this
pattern could be used to investigate potential abnormal motion
in lumbar conditions. It might be possible to better diagnose
instability and the impact of it on lumbar spine motion.
Furthermore, we can determine if differences in motion lead to
back pain and can be resolved by physiotherapy.

Methods

Ethics Approval
The study was approved by the Medical Research Ethics
Committee of Zuyderland Hospital and Zuyd University of
Applied Sciences, the Netherlands (METCZ20180094).

Participant Inclusion
The study protocol was published [19]. After approval, this
study included men, aged between 18 and 25 years, with a BMI

<25 kg/m2, with no medical history of spine problems, and able

to perform maximum lumbar flexion and extension without
complaints. No medical history of spine problems was defined
as no visits to a doctor or physical therapist for spine complaints,
no former spine surgery, total scores of Oswestry Disability
Index and Visual Analogue Scale for back pain of zero, and a
Kellgrens’ classification of 0-1 in levels L4L5 and L5S1 on
cinematographic recordings evaluated by 2 spine surgeons (TB,
HvS, and WvH) [20-22]. Female participants were excluded to
protect their ovaries from direct radiation exposure. Potential
participants were excluded if x-rays of the abdomen, pelvis,
hip, lumbar, or sacral spine were taken in the previous year or
in cases of active spinal infection, immature bone, lumbar tumor,
previous lumbar radiotherapy, congenital lumbar spine
abnormality, or planned pregnancy of the participants’ partner
in the coming year. Sample size, based on previous studies, was
set on 11 participants [13,14,23].

Informed consent was acquired from all participants.
Radiological data were stored along with the number of
participants and recordings. Handling of personal data will
comply with the guidelines of the Dutch Personal Data
Protection Act.

Study Procedures
Flexion and extension cinematographic recordings were acquired
twice for each participant during afternoons and evenings. An
interval of 2 weeks was maintained to determine reproducibility
and consistency of the sequence between 2 time points (T1 and
T2) [18,24]. Cinematographic recordings were made from a
lateral perspective to obtain sagittal images, using the Philips
Allura Xper FD20 x-ray system. The following settings were
used: frames of 1024×1024 pixels, 7.5 frames per second, tube
voltage of 75-90 kV, filter of 0.9 mm copper + 1 mm aluminum,
and a detector distance of 48 cm. The total radiation dose for
participants was categorized in category 2A, using the
Neurocritical Care Society guidelines on risks of radiation dose
(0.1-1.0 mSv) [25]. During cinematographic recordings,
participants were seated in a customized wooden chair, designed
to keep the pelvis in a fixed position (Figure 1). A 3-point
fixation was located on the anterior superior iliac spine, posterior
inferior iliac spine, and the upper legs, which could be adjusted
to the participants’physique. Participants were asked to remove
clothes that could disturb the cinematographic recordings. From
a neutral seating position with the knees in 90 degrees flexion,
participants were asked to perform maximum extension,
followed by maximum flexion, and then a return to maximum
extension in 14 seconds, using a metronome. Maximum flexion
and extension was determined as the maximum achievable
position of the participant and practiced before the final
cinematographic recordings. During the active motion task,
arms were crossed in front of the chest (Figure 1). This duration
was chosen based on the pulse frequency of the image technique
(7.5 pulses per second) and the number of necessary images
(104 images) for image recognition.
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Figure 1. Customized wooden chair with 3-point fixation of the pelvis. The 3-point fixation is located on the anterior superior iliac spine, posterior
inferior iliac spine, and the upper legs.

Radiological Data Processing and Analysis
For this research, we have previously developed custom software
that uses image recognition algorithms to track vertebrae during
flexion and extension [26]. The software follows bony structures
within user-defined template areas throughout all frames, using
a best-fit principle to match normalized gradient field images.
To define these template areas, the user draws polygons around
all vertebrae on the median frame of the recording [26]. After
the software has completed tracking these structures, they can
be manually evaluated. Corrections can be made if necessary.

Finally, graphs are made for both flexion and extension
cinematographic recordings for each individual participant to
identify specific patterns in the sequence of segmental
contributions. Segmental rotation of each individual segment
(L1 to S1) between each pair of successive frames was plotted
against the cumulative rotation in segments L1 to S1 together.
A more detailed description of the image recognition software
can be found in a previously published study [26]. Analyses
were first performed for T1 and tested against T2. Time spent
on radiological data processing and analysis was 2 to 3 days
per cinematographic recording. Analyses were performed by
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researcher IC, with reevaluation of 30 intervertebral sequences
by a second researcher (TB) to determine reproducibility, using
a two-way mixed intraclass correlation coefficient (ICC). An
ICC above 0.60 was considered adequate. A consistent motion
pattern was defined as a similar pattern shown in at least 80%
(8/10) of the cinematographic recordings in 2 time points. This
was comparable with the results of the cervical spine [18].

Results

A total of 11 participants were recruited and included, all
undergoing 2 cinematographic recordings. This resulted in a
total of 22 recordings, of which 1 (P1-recording 1) was excluded
from analyses, since L1 could not be followed in the field of
view. No consistent pattern was found when studying the graphs
of the cinematographic recordings during flexion (Multimedia
Appendix 1). During extension, segments L4L5 and L5S1
showed an inconsistent pattern (Multimedia Appendix 2).
Leaving L4L5 and L5S1 out of the analyses, a much more

consistent pattern on the sequence of segmental contribution
was found, especially in the last phase of the extension motion.
It consisted of a peak in rotation in L3L4, followed by a peak
in L2L3, and finally, in L1L2 (Figure 2; Multimedia Appendix
3). Only the sequence of the peaks was important, not the height
of the peaks itself, since a peak represents the largest
contribution of a specific segment at a specific point in the total
motion despite the height. As discussed in the study of Boselie
et al [18], peaks with a rotation lower than 0.3 were deemed to
fall within the measurement error and were not taken into
consideration. In total, 71% (15/21) of extension graphs showed
the abovementioned sequence, which represents 80% (8/10) at
T1 and 64% (7/11) at T2 (Multimedia Appendix 3). At both
time points, P5 and P7 did not show a consistent motion
sequence with different motion patterns at each time point. P9
only showed a consistent motion sequence in T1. ICC was
determined for each segment in 5 cinematographic recordings
(Table 1).

Figure 2. Sagittal rotation in segments in the upper lumbar spine (segments L1 to L4) during extension of the lumbar spine in healthy young male
participants (P2-T1). On the y-axis, the rotation is shown in degrees between successive frames. On the x-axis, cumulative degrees of extension in block
L1 to L4 are shown. Peaks of the graphs per segments (L1L2, L2L3, and L3L4) depict maximum contribution of the segment in a specific phase of the
extension. At the last phase of the extension, the L3L4 peak was followed by an L2L3 peak and finally the L1L2 peak. Each series of values undergoes
smoothing by means of a low-pass Gaussian digital filter.

Table 1. Intraclass correlation coefficients (ICC) per segment of 5 randomly chosen cinematographic recordings. An ICC below 0.60 is determined as
inadequate and indicated in italics.

Cinematographic recordingsSegments

Mean11-28-14-13-22-1

0.6120.5500.6620.3890.8580.601L1L2

0.7210.7220.6620.8080.6150.799L2L3

0.7820.6940.9320.8860.8190.577L3L4

0.6950.5530.9170.8760.4370.691L4L5

0.5880.2680.9020.7500.2580.763L5S1
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Discussion

Principal Findings
The aim of this study was to ascertain the sequence of segmental
contribution and to possibly understand physiological motion
in sagittal rotation during maximum flexion and extension of
the lumbar spine in asymptomatic male participants. Results
showed a consistent pattern in 71% (15/21) of the recordings
during the last phase of the extension with a peak in rotation in
L3L4, followed by a peak in L2L3, and finally, in L1L2.
However, this pattern was consistent in only 64% (7/11) of the
recordings over the 2 time points.

Previous studies have used different imaging techniques to
describe the range of motion and the sequence of initiation of
motion of individual segments during flexion and extension of
the lumbar spine. Dvorak et al [16], Pearcy et al [15], and Staub
et al [11] described range of motion in rotation during maximal
passive flexion and extension of each level. Since range of
motion differed between studies and resulted in a high inter,
and intraindividual variability, a more consistent method to
define physiological motion was pursued. Initiation of motion
was described by several previous studies. Because of limitations
(eg, reporting pooled data instead of individual sequences,
limited range of motion, analyses of part of the lumbar spine,
and describing intervertebral rotation at specific time points or
specific ranges of motion instead of between successive frames),
results differ between studies with high inter and intraindividual
variability [7-10,13,14,17].

In a cervical spine study [18], a more consistent sequence of
segmental contribution during the end of the extension, namely
in 80% of the participants in T1 and 90% in T2, was found using
the same measurement method and setup as this study. The
reliability, sensitivity, and specificity of this measurement
method showed high scores, with a reliability, determined in
Fleiss Kappa, of 0.80-0.84, average sensitivity of 90%, and
average specificity of 85% [18]. We believe that these findings
show that this method is accurate and reproducible to determine
the sequence of segmental contribution in cervical spine. Even
though the setup of this study was similar, we found less
consistent motion patterns in the lumbar spine. We believe
several variables between the cervical spine and lumbar spine
contribute to our differences in consistency in motion patterns.
These variables are as follows: facet orientation, intervertebral
discs loadings, the spino-pelvic relationship, and muscle
recruitment.

Cervical facet joint surfaces between C3 and T1 have a 45
degrees angle to the transverse plane [27]. In the lumbar spine,
the superior articular process is medially orientated, and the
inferior articular process is laterally orientated in the sagittal
plane, with right angles to the transverse plane [28]. These
differences in orientation result in less constrained facet joints
of the lumbar spine, resulting in a greater freedom of motion,
which could explain a less consistent movement compared to
the cervical spine [27]. The uncinate process and uncovertebral
joints, found from C3 to C7, also provide stability and mobility
of the cervical spine by functioning as a guide rail during flexion
and extension and limit rotation and bending, resembling a

saddle joint [29]. Since these structures are not present in the
lumbar spine, it could lead to less consistent motion patterns
due to less constraint of the motion segments. Intervertebral
discs of the cervical spine and lumbar spine are both wedged
shaped with a larger anterior side of the disc compared to the
posterior side [30]. In addition, both discs are elliptical shaped,
with a larger cross-sectional area of lumbar intervertebral discs
than cervical spine [30]. In this study, it is possible that the axial
loading of the intervertebral disc is altered by fixation of the
pelvis and the seating position. Nachemson et al [27] described
a relative increase in intervertebral disc pressure, ascending
from supine to standing to sitting position and from neutral
position to flexion. Furthermore, forced anteversion or
retroversion of the pelvis caused by the fixed position could
influence motion patterns of the lumbar spine during flexion
and extension. There is no study that compares motion of the
lumbar spine in a standing versus sitting position. The pelvis
and abdominal structures also led to overprojection in segment
L5S1, making it challenging to trace these segments with the
computer software. For this reason, ICCs were determined in
this study, resulting in an average ICC of all segments mostly
above 0.60, except for L5S1. Furthermore, analyses showed
that the lower lumbar spine segments, L4L5 and L5S1, showed
inconsistent patterns throughout all recordings. When excluding
them from analyses, a more consistent pattern from L1 to L4
appeared. In addition to the difficulty due to overprojection at
L5S1, the motion of L4L5 and L5S1 is influenced by more
variables compared to the upper lumbar spine, leading to less
consistency. The lower lumbar segments function as a kinematic
transition zone from a highly mobile region (ie, upper lumbar
spine) to an immobile sacroiliac region [31]. For this reason, it
is also plausible that pathology mostly occurs in lower lumbar
segments.

Finally, muscle recruitment differs between the cervical and
lumbar spine. In the cervical spine, the range of rotations is
mostly influenced by muscle recruitment, except for the end
stages of the motion, which are influenced by gravity [27]. In
the lumbar spine, rotation is controlled by muscle recruitments
throughout the whole motion. Muscle recruitment and strength
is affected by age, sex, motivation, pain, as well as muscle and
joint physiology and geometry [27]. This means that mostly
interindividual motion differences can be explained by
differences in muscle recruitment and strength, which plays a
larger part in the lumbar spine compared to the cervical spine
motion. In addition, the 4 abdominal muscles (ie, rectus
abdominis as well as external and internal oblique and transverse
abdominal muscle) have a great influence on flexion of the
lumbar spine, with an increased muscle recruitment per degree
of flexion [27]. This could also be an explanation for the fact
that lumbar flexion patterns are less consistent than lumbar
extension patterns.

Strengths and Limitations
There are multiple strengths to this study. First, the intention
of this study was to determine motion patterns of L1 to S1,
instead of a selection of vertebrae by using a sufficient field of
view. However, especially segment L5S1 was difficult to track
due to the overprojection of the pelvis and abdominal structures.
Additionally, it is possible that L5S1 also had less focus since
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this segment was placed at the maximum bottom of the field of
view. This resulted in a mean ICC below 0.60 for L5S1 and an
inconsistent motion pattern throughout the recordings.

Second, this study described motion patterns during maximum
flexion and extension of an individual instead of the usually
reported fixed ranges to determine physiological motion.
Maximum flexion and extension represents the lumbar motion
in daily activity better, as it does not limit a person to move
within a strict range. Furthermore, patients could move

differently because they had to stay within a range of motion,
which could influence the muscle recruitment. The downside
of using maximum range motion patterns is the possibility of
segments moving outside the field of view. This happened once
in P1-T1 (Figure 3), resulting in the exclusion of this
cinematographic recording from final analyses. However, Figure
2 shows a peak in L3L4, followed by a peak in L2L3 during
the last phase of extension, comparable with the abovementioned
most consistent sequence of motion.

Figure 3. Sagittal rotation in segments in the upper lumbar spine (segments L2 to L4, since L1 fell outside the field of view during extension of the
lumbar spine in P1-T1). On the y-axis, the rotation is shown in degrees between successive frames. On the x-axis, cumulative degrees of extension in
block L2 to L4 are shown. Peaks of the graphs per segments (L2L3 and L3L4) depict maximum contribution of the segment in a specific phase of the
extension. At the end of the extension, the peak of L3L4 was followed by a peak of L2L3. Each series of values undergoes smoothing by means of a
low-pass Gaussian digital filter.

Finally, since sequence of segmental contribution in the cervical
spine showed consistent motion patterns in the study of Boselie
et al [18], we used the same imaging technique for recordings,
the same computer tracking software, and the same research
team in this study [18]. Additionally, cinematographic
recordings of all participants were supervised by the same team
(IC and CH Christoph) and performed with the use of the same
customized chair. The included participants were all male,

around the same age, and with a BMI below 25 kg/m2 to
minimize the influence of age, sex, and body habitus on muscle
recruitment and overprojection of abdominal structures. Female
participants were excluded to protect their ovaries from direct
radiation exposure. However, Staub et al [11], Troke et al [5],
Dvorak et al [16], and Wong et al [8] showed no statistically
significant difference between sexes in motion of the lumbar
spine.

This study also had some limitations. First, sagittal balance
parameters were not determined during this study, as femoral
heads were not shown in the cinematographic recording. A fixed
pelvis could influence the motion of the lumbar spine by forced
anteversion or retroversion, which could have been determined
using these parameters. Second, the measurement method used
to develop the graphics was a time-consuming method. For this
reason, the possibility of using artificial intelligence should be

investigated to determine if it could lower the workload without
losing reliability of the measurements. However, this would be
more important for cervical spine analyses, as lumbar spine
analyses using this method showed less consistent motion
patterns, and therefore, it will have less clinical relevance. It
could be possible that another analyzing method should be used
to determine physiological motion of the lumbar spine. It has
been suggested that center of rotation (COR), defined as the
point around which motion segments of the lumbar spine move,
could quantify the kinematic features of the lumbar spine [32].
COR of the lumbar spine was the main topic in many previous
studies. However, conditions to determine COR varied between
studies (eg, symptomatic and asymptomatic participants,
different motion tasks, as well as before and after surgery). A
current systematic review [32] is analyzing and summarizing
data of these different studies to determine if COR could be
used to define physiological motion of the lumbar spine.
Unfortunately, results are not yet available.

Third, this study was conducted with 11 participants, resulting
in 22 cinematographic recordings over 2 time points. Despite
this small sample size, we believe that expansion of the study
group would not have led to more conclusive results, since there
were also intraindividual variabilities between the 2 time points
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besides interindividual variabilities, and previous research
showed consistent results with similar group sizes.

Conclusions
This study aimed to provide physiological motion patterns of
the lumbar spine based on the sequence of segmental
contribution. A total of 64% (7/11) of the cinematographic
recordings of asymptomatic young male participants showed a
consistent pattern at both time points during the last phase of
extension, with a peak in rotation in L3L4, followed by a peak
in L2L3, and finally, in L1L2. Since 36% (4/11) of the

cinematographic recordings did not show a consistent pattern,
we believe that physiological motion of the lumbar spine is a
broad concept, which cannot be stated in a firm definition using
this method. Even in healthy participants, multiple factors are
responsible for inconsistencies in lumbar spine motion patterns,
which can be aggravated in case of lumbar pathology. For this
reason and because of the time-consuming method for analysis,
we believe the clinical relevance in this form will be limited,
and it should not be used as a diagnostic tool to distinguish
between physiological and pathological motions.
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