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Abstract

Background: Measuring the amount of physical activity and its patterns using wearable sensor technology in real-world settings
can provide critical insights into health status.

Objective: This study’s aim was to develop and evaluate the analytical validity and transdemographic generalizability of an
algorithm that classifies binary ambulatory status (yes or no) on the accelerometer signal from wrist-worn biometric monitoring
technology.

Methods: Biometric monitoring technology algorithm validation traditionally relies on large numbers of self-reported labels
or on periods of high-resolution monitoring with reference devices. We used both methods on data collected from 2 distinct
studies for algorithm training and testing, one with precise ground-truth labels from a reference device (n=75) and the second
with participant-reported ground-truth labels from a more diverse, larger sample (n=1691); in total, we collected data from 16.7
million 10-second epochs. We trained a neural network on a combined data set and measured performance in multiple held-out
testing data sets, overall and in demographically stratified subgroups.

Results: The algorithm was accurate at classifying ambulatory status in 10-second epochs (area under the curve 0.938; 95% CI
0.921-0.958) and on daily aggregate metrics (daily mean absolute percentage error 18%; 95% CI 15%-20%) without significant
performance differences across subgroups.

Conclusions: Our algorithm can accurately classify ambulatory status with a wrist-worn device in real-world settings with
generalizability across demographic subgroups. The validated algorithm can effectively quantify users’ walking activity and help
researchers gain insights on users’ health status.

(JMIR Biomed Eng 2023;8:e43726) doi: 10.2196/43726
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Introduction

Quantifying physical activity can be highly informative about
both general health status and the condition of people with
specific diseases [1,2]. Characteristics of physical activity have

been shown to be prognostic factors in various chronic
conditions [3-13]. Yet reliably producing research-grade
measurements of physical activity in real-world settings remains
a challenge. Traditionally, the validation of such measurements
often relies on individual self-reports or is performed
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episodically and in artificial laboratory environments. These
approaches suffer from known challenges, such as subjectivity,
assessment bias, and unreliability [14-16].

Recently, the advent of wearable technology has made it
possible to measure physical activity to a previously untenable
extent [17,18]. Ambulatory activity in particular, namely
whether individuals are walking and how much, is a basic aspect
of physical activity that can be investigated in general
populations and in specific clinical settings. Wearable devices
can collect information passively during daily living and
generate a vast quantity of digital measurements that allow
researchers to probe functional physical activity generally and
ambulatory activity specifically. Using these digital measures
in research studies, however, requires analytical validation [19].
In their design, validation studies have to balance factors such
as feasibility and the resource-intensiveness of their data
collection approach with demonstrating validity in representative
populations.

To date, the majority of measurements in validation studies
have come from either short observation periods in laboratory
settings [20,21] or self-reported labels in real-world settings
[22]. Laboratory measurements often render observations with
exceptionally clean and easy-to-use ground-truth labels, but
algorithms trained on data of this kind do not always generalize
to everyday activities [23]. On the other hand, using
self-reported labels as the ground truth yields a closer reflection
of individual everyday activities, but these labels are often noisy
and less accurate [15,16,24]. There have been some examples
of reference devices deployed to generate accurate truth labels
in generalizable real-world settings [25,26], but this came at
the cost of intrusiveness and resource-intensive data processing
steps after collection, such as manual video footage tagging.
With all these considerations in mind, validation studies tend
to be highly heterogeneous, and need to be interpreted in
context.

Herein we report on the development and analytical validation
of an ambulatory status classification algorithm. This algorithm
classifies the ambulatory status of users of a wrist-worn device
in real-world environments. We carried out 2 separate studies
including participants from independent populations with
distinct sources of ground-truth labels for a deeper
characterization of the algorithm performance. One of the
studies, the pilot program study, used a relatively small and
demographically homogeneous cohort, where participants
provided a highly accurate ground-truth source from a reference
device. The other study was derived from the Project Baseline
Health Study (PBHS), a prospective, multicenter, longitudinal
study with participants of diverse backgrounds who were
representative of the entire health spectrum [27]; this was a
demographically diverse cohort that provided self-reported
labels as the ground-truth source. This cohort was also relatively
large, and we therefore expected it to yield results less
susceptible to outlier readouts. We present analytical validation
results of the performance of our algorithm against the highly

accurate ground-truth source (from the pilot), and we examine
the generalizability of the results across a study population of
demographically diverse individuals (in the PBHS).

Methods

Participant Cohorts
Two distinct studies were conducted, with training and testing
groups identified a priori within each study. Participants in both
studies wore the smartwatch (the Verily Study Watch) [27-30].

The first study was a pilot program (n=75) of adult volunteer
participants recruited among Verily Life Sciences employees
in 2 locations (South San Francisco, California, and Cambridge,
Massachusetts) without specific selection criteria. For this group,
ground-truth labels were collected from an ankle-worn reference
device (StepWatch 4). The Verily Study Watch and reference
device were worn simultaneously for 7 consecutive days to
ensure capture of both weekday and weekend behavior; for each
participant, days were included as evaluable if both devices
were worn synchronously for a minimum of 8 hours. No
demographic information on race or ethnicity was collected in
this study. The observation period ran from June to December
2019.

In order to expand the demographic representativeness of the
overall validation effort, the second study included a large and
diverse cohort (n=1691) consisting of participants from the
PBHS who consented to participate in this substudy [27]. The
period for data collection ran from May to December 2019.

Ethics Approval
The pilot program was determined to be exempt research that
did not require institutional review board review. Written
informed consent was obtained from all participants enrolled
in the PBHS; the PBHS was approved by both the WCG
institutional review board (approval tracking number 20170163,
work order number 1-1506365-1) and the institutional review
boards of each participating institution (Stanford University,
Duke University, and the California Health and Longevity
Institute) [27]. The PBHS was registered at ClinicalTrials.gov
(NCT03154346).

All methods complied with relevant guidelines and regulations;
the research involving human participants was performed in
accordance with relevant guidelines and regulations.
Experimental protocols were approved by appropriate
committees from Verily Life Sciences and by PBHS governance
(participating institutions are above).

Wearable Devices
The Verily Study Watch recorded acceleration data in both
cohorts via an onboard inertial measurement unit with a 30 Hz
3-axis accelerometer. For the PBHS population, the smartwatch
also contained a user interface allowing participants to tag their
activities on the watch (Figure 1A).
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Figure 1. (A) Sketch of the user interface of the study device used in the Project Baseline Health Study. (B) Data elements for the 2 studies. (C) Flow
of participant inclusion for the different cohorts and data sets in the 2 studies. AUC: area under the receiver operating characteristic curve; PBHS: Project
Baseline Health Study; QC: quality control.

The reference device for the pilot program was an ankle-worn
single-axis accelerometer (Modus StepWatch 4) that provided
step count as a reference label for algorithm development.

Reference Labels
In the pilot program, we generated reference labels on data
collected from the ankle-worn StepWatch: 10-second windows
were considered “ambulatory” if they had ≥3 steps on the

wearing foot and “nonambulatory” if they had <3 steps [31].
The default window size returned by this device was 10 seconds,
and this was deemed to provide good temporal granularity.

For the self-reported reference labels from the PBHS,
participants tagged their activities as 1 of 3 options listed by
the wrist device: “walk/run,” “still,” and “other.” Participants
could tag the start and end of an activity period directly on the
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watch, which enabled precise synchronization of the labels to
the raw sensor data stream. When necessary, participants could
edit or delete tags as needed (Figure 1B). For the purpose of
this analysis, “still” and “other” were grouped together under
the “nonambulatory” label, while “walk/run” was equated to
“ambulatory.”

The amount of data used from each of these studies is
summarized in Multimedia Appendix 1, Table S3.

Algorithm Development
Data from each study (pilot program, n=75; PBHS, n=1691)
were split into nonoverlapping training and testing data sets at
the participant level. For each study, data from approximately
half the participants were used for training the algorithm and
data from the other half were held out for algorithm testing. We
decided on a 50-50 split in order to retain statistical power in
the testing data, particularly considering the intended additional
analyses of different demographic subgroups (discussed below).

In the pilot program, the split into training and testing data sets
was based on participants’ daily step counts in order to mitigate
potential algorithmic biases caused by training primarily on
data from participants with either very low or very high activity
levels. The difference in the mean daily step counts between
the 2 halves of the split was 234 steps. For the PBHS cohort,
the split into training and testing data sets was done randomly,
as participants did not have daily aggregated results. We trained
multiple versions of the algorithm with combinations of different
subsets of training data and compared performance across these
different algorithms (Figure 1).

We developed an algorithm that classifies the ambulatory status
of device users in 10-second epochs (as ambulatory vs
nonambulatory). First, the following 14 features were extracted
from the Verily Study Watch’s acceleration data, in 10-second
epochs: 3 features related to deviations of the signal, 5 features
derived from power spectral density energy in frequency bands
typically associated with user ambulation (ie, walking or
running), 2 features that are signal percentiles (ie, 95th
percentiles), and 4 features that are differences between signal
percentiles (ie, IQR). These features were fed into a shallow
neural network model with 2 dense layers: ReLu nonlinearities
and softmax of outputs. The neural network was trained with a
batch size of 32. The Adam optimizer was used with a learning
rate of 0.001, and loss was calculated using categorical
cross-entropy. Training ran for 10 epochs. Alternative features
and neural network architectures were explored using the
training data, but larger feature sets or more complex
architectures did not result in higher performance, so this
algorithm was chosen.

The classifier threshold was optimized to minimize absolute
percentage error on daily ambulatory time on the training data
from the pilot study (vs the data from the reference device used
as the ground-truth source, as discussed above). For this
optimization process, we performed 5-fold cross-validation at
the participant level within the training data. We found the
minimum daily mean absolute percentage error (MAPE) across
the aggregated held-out data from all folds using a 1D grid
search procedure.

The signal-processing, feature selection, model training, and
hyperparameter tuning were all performed on training data sets
identified a priori.

Analyses
The demographic characteristics of the study cohorts were
analyzed using descriptive statistics.

We analyzed the following metrics to characterize the
performance of the algorithm, calculated on the held-out test
sets: area under the receiver operating characteristic curve
(AUC) for the overall study cohorts and across different
demographic subcohorts within the PBHS cohort (this was
chosen as the metric for comparison because, unlike other
measures, such as F1-score or accuracy, it is not susceptible to
differences in the chosen classifier threshold), mean accuracy,
and MAPE of daily ambulatory time, defined as the summing
of all 10-second windows that were labeled as “ambulatory” in
a day.

Analyses were performed in python using NumPy (version
1.21.5), pandas (version 1.1.5), SciPy (version 1.2.1),
scikit-learn (version 1.0.2), and tensorflow (version 2.10.0).

Confidence intervals were calculated using the bootstrap method
with 1000 resampling iterations. Resampling was done at the
participant level to ensure that all data from a single participant
were either included or excluded within each resampling
iteration.

Results

Characteristics of Participants From the Pilot Study
and the PBHS Cohort
Participants in the pilot study were mostly male (45/75, 64%),
with a mean age of 33 (SD 8.5) years. Participants from the
PBHS were more often female (1366/2502, 55%), with a mean
age of 54 (SD 17) years (Multimedia Appendix 1, Table S1).

Algorithm Training
Data from each study were separately split (approximately
50-50) into nonoverlapping training and testing data sets (Figure
1); this allocation was done at the participant level (n=75 from
the pilot study and n=1691 from the PBHS population). Out of
16.769 million 10-second epochs collected from the 2 studies,
8.841 million 10-second epochs were used for training across
all algorithm iterations generated (the data sets are described in
Multimedia Appendix 1, Table S3).

From the pilot program study, a total of 1,641,272
nonoverlapping 10-second epochs were collected (n=70
participants; Figure 1), of which 228,721 (13.9%) were
“ambulatory” according to the reference device–based labels.
We used 879,593 10-second epochs (from 35 unique
participants) for training (118,730, 13.5% of which were
“ambulatory”; Multimedia Appendix 1, Table S3).

We collected a total of 14,814,910 nonoverlapping 10-second
epochs from the PBHS (n=1531 participants; Figure 1), of which
7,079,216 (47.8%) were “ambulatory” according to the
participant-reported reference labels. The proportion of
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“ambulatory” labels in the PBHS was higher than in the pilot
program study (47.8% vs 13.9%), which is likely attributable
to the different labeling methods across studies. We expect that
labeling from the pilot study was more stringent to show true
ambulatory epochs, because these were determined directly by
the reference device readouts (ie, any 10-second epoch with
greater than or equal to 6 steps, relative to all 10-second epochs
collected during the wear time). In the PBHS, the proportion
of ambulatory labels was determined based on participant
self-reported, manually entered walk/run tags relative to all
entered tags. PBHS tagging, therefore, can be more vulnerable
to selection bias toward “ambulatory,” since participants may
favor reporting active over inactive states.

Data from the PBHS were not only divided into training and
testing sets, but, across each set, we considered 2 quality control
(QC) strata to test the impact of data quality on the development
and performance of the algorithm. An extremely light QC
selection, eliminating labels with gross apparent user errors
(such as tags that were longer than a full day), was applied to
generate the “QC-minimal” sub–data set, which therefore
included virtually all labels suitable for evaluation
(10,264/104,212, 9.8% of user-tagged events were eliminated,
and another 12,010/104,212, 11.5% were truncated); a more
stringent selection was applied to generate the “QC-high”
sub–data set (80,852/104,212, 77.6% of user-tagged events were
eliminated, and all tags were truncated to some degree; Figure
1 and Multimedia Appendix 1, Table S2). The 2 strata aimed
to parse out performance variability due to noise generated by
imperfectly self-reported reference labels (this was not a factor
for the labels from the reference device in the pilot program).

The resulting size of these QC training sub–data sets was
160,778 10-second epochs for QC-high (n=173 participants)
and 7,802,829 for QC-minimal (n=829 participants). Of these
labeled epochs, 102,783 (63.7%) and 3,863,964 (49.5%),
respectively, were ambulatory according to the
participant-reported tags (Figure 1 and Multimedia Appendix
1, Table S3).

Effect of Raw Data Quality on Algorithm Performance
We tested each of the algorithm iterations from the training
process above (originated using the 2 PBHS QC sub–data sets
and the pilot data set) across data from the held-out QC sub–data
sets from the PBHS and the pilot program by calculating AUC
values across all combinations. Namely, we tested each of the
following algorithms against the held-out data sets from the
pilot study and the PBHS QC-high and QC-minimal sub–data
sets (Figure 2): (1) trained with the PBHS QC-high sub–data
set, (2) trained with the PBHS QC-minimal sub–data set, (3)
trained with the pooled PBHS QC-high plus pilot data set, (4)
trained with the pooled PBHS QC-minimal plus pilot data set,
and (5) trained with just the pilot data set. For each algorithm
iteration, AUC values varied across the testing sub–data sets
(QC sub–data sets from the PBHS and pilot program), with
differences ranging from 0.047 to 0.187. For each test data set,
the AUC variations across the algorithm iterations (1) through
(5) were narrower, with differences ranging between 0.001 and
0.045. Therefore, data quality differences across the training
sub–data sets did not appear to affect algorithm performance,
as reflected in AUC variability, as much as data quality in the
testing sub–data sets.

Figure 2. (A) Heat map of AUC values for the algorithm iterations generated via different training sub–data sets from the PBHS when tested on each
of the separate testing cohorts. (B) AUC values for the algorithm iterations generated via different training sub–data sets from the PBHS when tested
on each of the separate testing cohorts, with error bars based on the 95% CI. Each testing cohort is shown with a different color or symbol. From top
to bottom, the red dotted lines indicate mean AUC values for the pilot, PBHS QC-high, and PBHS QC-minimal test data sets, respectively. The model
trained on combined PBHS QC-high and pilot training data (highlighted in yellow) was the version of the algorithm used for further analyses. AUC:
area under the receiver operating characteristic curve; PBHS: Project Baseline Health Study; QC: quality control.

Based on the testing results described above, we selected an
algorithm trained using combined data from one of the PBHS
sub–data sets (QC-high) plus the pilot program data set to
proceed to further analysis. This algorithm iteration (termed
“version 2022”) showed the highest testing performance

(evaluated by AUC) calculated with data from the pilot program
(the most precise and cleanest data set) without substantially
reduced performance on PBHS data (Figure 2). With this
approach, we prioritized testing the accuracy of the algorithm
against participants’ actual ambulatory status based on the
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reference device, not against the type of labels that are most
feasible to obtain (ie, self-reported labels), although we report
accuracy on both types of labels.

Algorithm Testing
Tested against the held-out data set from the pilot program
(Table 1), the selected algorithm had a sensitivity of 71% and

a specificity of 95%, for an overall accuracy of 91.5% (95% CI
90.3%-92.9%; Figure 3A) and an AUC of 0.938 (95% CI
0.921-0.958; Figure 3B) when classifying the ambulatory status
of 10-second epochs. When tested on the held-out data set from
the PBHS QC-high sub–data set, the selected algorithm had an
overall accuracy of 75.7% (95% CI 72.5%-78.6%) and an AUC
of 0.832 (95% CI 0.800-0.864).

Table 1. Algorithm performance measures.

AUC-PRCcAUC-ROCbF1-scorePPVaSpecificitySensitivityAccuracy

0.7810.9380.7010.6960.9480.70691.3%Pilot study

0.9010.8320.7880.8850.8020.73175.8%PBHSd QCe-high

aPPV: positive predictive value.
bAUC-ROC: area under the receiver operating characteristic curve.
cAUC-PRC: area under the precision-recall curve.
dPBHS: Project Baseline Health Study.
eQC: quality control.

Figure 3. (A) Accuracy of the algorithm selected for full analysis, as evaluated in the pilot cohort. Here, the color map denotes K, the number of
10-second epochs. Percentages are normalized across rows, which allows easy reading of the sensitivity and specificity values. (B) Receiver operating
characteristic curve and area under the curve of the algorithm selected for full validation, as evaluated in the pilot cohort. The red X denotes the true
positive rate and false positive rate of the algorithm at the chosen classifier threshold. AUC: area under the receiver operating characteristic curve.

The proportion of predicted ambulatory epochs of the selected
algorithm varied with the number of steps in the 10-second
epochs (Figure 4). The lowest proportion of predicted
ambulatory epochs happened in the 3 to 5 step range (36%-57%
sensitivity, ie, correct predictions as “ambulatory: yes”), and
the proportion of epochs classified as ambulatory grew with

additional steps in the 10-second window (67%-91% correct
predictions). Note that data from epochs with more than 11
recorded single-leg steps are not shown due to their low
frequency (the number of samples per step count is shown in
Multimedia Appendix 1, Figure S1).
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Figure 4. Predictions of the selected algorithm to classify 10-second epochs as ambulatory (or not) according to the number of steps in the 10-second
epochs based on the reference device data from the pilot program study. A perfectly performing algorithm would predict “ambulatory” for all epochs
with 3 or more steps on the wearing foot (indicated by the blue shadow), and nonambulatory for all epochs with fewer steps (indicated by the gray
shadow). Epochs with more than 11 recorded steps are not shown due to their small sample size (Multimedia Appendix 1, Figure S1).

When considering daily step aggregates as the metric of interest,
there was good agreement between the algorithm classifications

and the reference (R2=0.771), with a MAPE in daily ambulatory
time (minutes) of 18% (95% CI 15%-20%) and a median
absolute percentage error of 14% (Figure 5A and Figure 5B).
The mean absolute error (MAE) of daily ambulatory time was
19.5 (95% CI 15.0-23.2) minutes, and the median absolute error
was 14 minutes (Figure 5C). Consistent with the observations

at the 10-second epoch level, the magnitude of error in daily
ambulatory time (ie, the difference between algorithm-predicted
and actual values) was dependent on the actual daily ambulatory
time (as computed by the StepWatch; Figure 5D): the chance
for underestimating daily ambulatory time (in minutes) grew
as the reference daily ambulatory time increased. The largest
underestimation we observed was 138.5 minutes in absolute
time (relative error 32.5%).
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Figure 5. Agreement and error rates of the algorithm predictions. K is the number of user-days. (A) Agreement between the selected algorithm’s
predictions and the ground-truth source for daily ambulatory time in the pilot-testing data set. (B) Absolute percent error in daily ambulatory time:
median (pink box) and mean (purple box). (C) Absolute error in daily ambulatory time in minutes: median (purple box) and mean (pink box). (D)
Modified Bland-Altman plot showing error in daily ambulatory time (in minutes) as it relates to the ground-truth daily ambulatory time.

Performance of the Ambulatory Status Classification
Algorithm Across Demographic Subgroups
In order to characterize the generalizability of the algorithm’s
performance, we calculated AUC values for the selected
algorithm across demographic subgroups based on gender, age,
and race. Initially, in the testing data set from the pilot program
(Figure 6A), the results suggested a possible difference in
performance between male and female participants, as seen in
the lack of overlap of the 95% CIs. However, in a similar
analysis using the larger and more diverse testing data set from

the PBHS, which enabled subanalyses by participant gender,
race, and age, that difference was no longer present and the
results showed no meaningful performance difference across
any of the subgroups of age, gender, or race, as evidenced by
the overlapping 95% CIs (Figure 6B). A replication of the
majority population from the pilot study within the PBHS
showed an AUC of 0.8166 (95% CI 0.7501-0.8666) for White
males aged 31 to 65 years in the PBHS cohort, which was not
significantly different from the AUC of the PBHS cohort as a
whole (AUC 0.8339).
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Figure 6. Performance (AUC values) of the selected algorithm across different demographic subgroups. (A) The pilot study testing data set. (B) The
PBHS QC-high testing data set. AUC: area under the receiver operating characteristic curve; PBHS: Project Baseline Health Study; QC: quality control.

Discussion

This study presents the analytical validation in a real-world
setting of an algorithm to classify the ambulatory status of users
wearing a smartwatch. The algorithm performs well,
distinguishing between ambulatory and nonambulatory states
with high accuracy (75.7%-91.5% depending on the testing data
set). Furthermore, the approach taken to analytic validation
allowed us to investigate multiple subgroups, including age,
gender, and race, demonstrating that the high performance of
the algorithm is generalizable across a broad range of
demographics.

All existing validation studies of ambulatory status classification
from wrist-worn sensors have been either performed on young
and healthy populations [25] or in the laboratory or clinic
[20,21]. Yet measuring ambulatory status or daily ambulatory
time is most clinically relevant for people with walking
impairments—whether due to age, movement disorders,
cardiovascular illness, or other circumstances—and most
informative when done in an individual’s own environment (ie,
their real-world setting). Thus, a key innovation in this work is
our focus on using data captured in real-world settings (as
opposed to highly controlled clinic or laboratory settings) from
demographically diverse cohorts for the actual development
and validation of this algorithm.

Therefore, the novel contributions of this work are 2-fold. First,
we introduce a scalable framework for collecting reference
labels on ambulatory status via a reference device and via
user-reported data for training and validation. As part of that
approach, we used 2 separate and different modalities to measure
ground-truth status. This strategy enabled us to handle both
comprehensive and highly precise labels (in the pilot program),
as well as a larger volume of inherently noisy ones
(user-reported tags from the PBHS), both in real-world settings.
Our strong results across both sets of data indicate that this
innovative multimodal approach contributed to a robust

development scheme that may have boosted the performance
of the resulting algorithm. The long-term practical convenience
of a wrist-worn device (as opposed to an ankle-worn device or
a dedicated assessment period) may be advantageous for this
type of continuous generalizable monitoring [32-35], although
a thorough side-by-side analysis of these 2 reference standard
measurement methods to fully understand their correlation
remains as a topic for future studies.

Second, we leveraged this framework to provide large-scale
validation of the performance of the selected algorithm iteration,
addressing shortcomings in terms of generalization previously
reported in the literature [20,21,32]. Prior studies have used
algorithms to report on differences in physical activity by
different demographic subgroups but lacked validation data for
those algorithms across demographic subgroups [25,36-38]. To
our knowledge, this is one of the first studies to show a proper
validation approach to develop and test a generalizable algorithm
across demographic subgroups where algorithm output could
have differed by subgroup.

In addition, our approach highlights several points of interest
when developing validation methodologies for this type of
algorithm. The increased sample sizes and variability in data
quality achieved by combining 2 distinct data sets enabled
deeper characterization of the algorithm’s performance. One of
our studies generated data sets where truth labels were of high
quality and accuracy but were collected from a study population
limited in scope; the other study collected data from a large and
demographically diverse cohort (albeit a somewhat engaged
and self-selected participant group who volunteered and
expressed interest in the PBHS and its health technology
aspects), which allowed us to conduct subgroup analyses for
both training and testing. Our results reinforce the
well-established fact that modern machine-learning algorithms
can sometimes perform well even when trained on a noisy data
set [39]. This observation may be useful for researchers
navigating study design decisions and tradeoffs, including
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sample sizes and data labeling methods. For future research,
determining the role of data quality factors in the development
and characterization of this type of algorithm is an open issue
[18].

Our approach to the generation of reference labels was
pragmatic, using deployment-friendly ankle-worn devices or
user-reported tags. Neither of these was as resource-demanding
as other intensive approaches (ie, video monitoring), but
generated information of sufficient quality to conduct our
validation with relatively high time resolution (10-second
epochs). Of note, the intrinsic nature of the 2 methods used for
the generation of reference labels probably contributed to the
noticeable difference in the proportions of “ambulatory” labels
between the 2 studies (discussed in the Results), with the
proportion observed in the pilot program study being the one
closest to other literature reports [40].

When interpreting our results in the context of existing literature,
it is worth noting that most validation studies for this type of
algorithm have used step counts as the metric of interest
[31,36,41-53], while ambulatory time (or a related metric) is
the focus of a minority of reports [54,55]. In general, considering
the close correlation between step count and ambulatory time,
the performance of our algorithm could be placed on par with
other algorithms, yet detailed side-by-side appraisals of results
remain challenging; this research field is in need of
standardization [19,56,57].

This study also had limitations. First, in principle, the StepWatch
readouts used as ground truth may not have provided perfect

accuracy, even though there is extensive literature supporting
the use of StepWatch as a reference device [31,50,51,56,58-60].
Second, we observed fluctuations in the ambulatory status
classification algorithm performance based on daily ambulatory
time; this fluctuation was present when the algorithm detected
10-second epochs as ambulatory (or not) and was also
manifested in the daily aggregates of ambulatory time. While
this trend (shown in Figure 5) may have been driven, partially,
by outlying data points with high step counts in our sample,
which would be of little relevance in hypothetical clinical
scenarios, it may also have been due to low-step periods
containing mixed activities in which walking was not the only
or dominant source of hand motion. In addition, while the cutoff
used to read the StepWatch ambulatory classification relied on
existing literature [61], it may not be perfect in itself. In this
regard, it could be reassuring that the algorithm handled epochs
with step counts between 4 and 8 as a continuum, as this is
possibly reflective of the complexities of organic movement.

In sum, we have developed an accurate algorithm for the
detection of the ambulatory status of users of a wrist-worn
device in a free-living, real-world setting; the output is
generalizable across several user demographic characteristics.
The characterization of this algorithm was conducted in 2
distinct data sets, which lends credibility to the robustness and
applicability of the performance results obtained in this study
and illustrates the advantages of similar approaches to future
research in this field.
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Abbreviations
AUC: area under the receiver operating characteristic curve
IRB: institutional review board
MAE: mean absolute error
MAPE: mean absolute percentage error
PBHS: Project Baseline Health Study
PPV: positive predictive value
PRC: precision-recall curve
QC: quality control
ROC: receiver operating characteristic
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