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Abstract

Background: Accurate and portable respiratory parameter measurements are critical for properly managing chronic obstructive
pulmonary diseases (COPDs) such as asthma or sleep apnea, as well as controlling ventilation for patients in intensive care units,
during surgical procedures, or when using a positive airway pressure device for sleep apnea.

Objective: The purpose of this research is to develop a new nonprescription portable measurement device that utilizes relative
humidity sensors (RHS) to accurately measure key respiratory parameters at a cost that is approximately 10 times less than the
industry standard.

Methods: We present the development, implementation, and assessment of a wearable respiratory measurement device using
the commercial Bosch BME280 RHS. In the initial stage, the RHS was connected to the pneumotach (PNT) gold standard device
via its external connector to gather breathing metrics. Data collection was facilitated using the Arduino platform with a Bluetooth
Low Energy connection, and all measurements were taken in real time without any additional data processing. The device’s
efficacy was tested with 7 participants (5 men and 2 women), all in good health. In the subsequent phase, we specifically focused
on comparing breathing cycle and respiratory rate measurements and determining the tidal volume by calculating the region
between inhalation and exhalation peaks. Each participant's data were recorded over a span of 15 minutes. After the experiment,
detailed statistical analysis was conducted using ANOVA and Bland-Altman to examine the accuracy and efficiency of our
wearable device compared with the traditional methods.

Results: The perfused air measured with the respiratory monitor enables clinicians to evaluate the absolute value of the tidal
volume during ventilation of a patient. In contrast, directly connecting our RHS device to the surgical mask facilitates continuous
lung volume monitoring. The results of the 1-way ANOVA showed high P values of .68 for respiratory volume and .89 for
respiratory rate, which indicate that the group averages with the PNT standard are equivalent to those with our RHS platform,
within the error margins of a typical instrument. Furthermore, analysis utilizing the Bland-Altman statistical method revealed a
small bias of 0.03 with limits of agreement (LoAs) of –0.25 and 0.33. The RR bias was 0.018, and the LoAs were –1.89 and
1.89.

Conclusions: Based on the encouraging results, we conclude that our proposed design can be a viable, low-cost wearable medical
device for pulmonary parametric measurement to prevent and predict the progression of pulmonary diseases. We believe that
this will encourage the research community to investigate the application of RHS for monitoring the pulmonary health of
individuals.

(JMIR Biomed Eng 2023;8:e47146) doi: 10.2196/47146
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Introduction

Theory
In 2020, respiratory disorders impacted approximately 550
million individuals globally and caused 4 million annual deaths.
The COVID-19 pandemic led to an increase in health care
expenditure, particularly in the field of respiratory diseases [1].
The pandemic expedited the development of respiratory
diseases, and despite persistent respiratory and neurological
problems, many patients have been discharged [2,3].
Simultaneously, obstructive sleep apnea (OSA) [4] affects a
significant proportion of adults and is related to increased
morbidity and mortality worldwide.

These significant global health care issues warrant the pursuit
of solutions to prevent and optimize health care pathways [5].
Lung volume measurement is especially important for patients
with respiratory diseases [6,7], with OSA and under ventilation
[8], or in intensive care units (ICUs) [9]. Spirometers can
evaluate breathing in patients with asthma or chronic obstructive
pulmonary disease (COPD) [10]. Patients with OSA using an
automatic positive airway pressure (A-PAP) or continuous
positive airway pressure (C-PAP) device must be awake to
execute deep breathing (inhale and exhale) to be tested with a
spirometer [11]. Wearable devices that assess respiratory rate
(RR) using validated methods have been developed recently
[12-15], but they do not measure lung volume [16]. Thus, a
wearable device that gives comprehensive lung volume data to
improve quality of life, monitor remotely, and avoid respiratory
disease progression would be highly desirable [17,18].

In this work, we present a simple and inexpensive sensor
platform that can be used to quantify pulmonary inspiration,
expiration, and lung volumes. Our device uses a relative
humidity sensor (RHS) to detect breathing and calculate tidal
volumes (TVs), expiratory reserve volumes (ERVs), and
inspiratory reserve volumes (IRVs) [19]. To the best of our
knowledge, the innovative aspects of this study are the direct
measurement of respiratory cycles and the exact derivation of
TD, ERV, IRV, and vital capacity (VC) data from the calculation
of the breathing surface [16,20].

Prior Work
There are numerous techniques for assessing respiratory function
and detecting lung disorders such as COPD and asthma [1].
Pulmonary function tests need accurate breathing volume and
flow measurements using a basic spirometer [21], requiring the
patient to inhale deeply and then expel as forcefully as possible
via the mouthpiece over a period of time. This is an inexpensive,
noninvasive test that can be administered in a medical facility
or at home. However, the requirements of this test can still be
hard for some patients who cannot fully empty their lungs during
the procedure. This limits the usefulness of this well-known
diagnostic tool [22]. Additionally, laboratory blood tests can
be used to evaluate respiratory health. However, because this
is an intrusive procedure, it cannot be used to indefinitely
monitor patients outside of hospitals.

The number of rib cage movements per minute is another crucial
indicator that indicates respiratory and heart health, via RR

[23,24]. RR monitoring can be accomplished using ICU-specific
equipment [25]. Mathematical correlations of
photoplethysmography (PPG) and electrocardiography (ECG)
data yield accurate RR values [26-28]. Numerical methods
estimate the RR from PPG and ECG using the following 3
physiological modulations of breathing: amplitude modulation,
frequency modulation, and baseline wander [29,30]. The noise
in the PPG and ECG signals affects the accuracy of these RR
measures [31], and considerable signal processing is needed to
extract meaningful information from the noise and improve the
measurements [32,33].

Measuring RR alone cannot assess lung capacity, a critical
indication of COPD status and development [34]. Respiratory
depression can be detected by lung volume measurements such
as TV, ERV, IRV, and VC. Pulmonary function tests measure
lung volume, capacity, flow rates, and gas exchange. Spirometry
has low accuracy and significant latency and cannot be utilized
during sleep [35]. Plethysmography, which measures
intrathoracic gas during airflow obstruction, is used to calculate
lung volume [36]. Modern wearable devices like CO2 gas
sensors analyze CO2 or O2 fluctuations during inspiration and
expiration to estimate lung capacities [37]. Computed
tomography radiography, which is invasive and time-consuming,
is another option [38,39].

A much easier method measures the RR directly from the
moisture content of the breath [20,40,41]. Patients are typically
attached to various monitoring devices in ICUs and during
surgery to continually monitor their pulse, blood pressure,
breathing rate, and oxygen saturation. Typically, humidity
sensors are included in the tube adaptor entry of respirator face
masks (Figure 1) [42].

Continuously measuring the humidity of the exhaled air provides
an accurate measurement of the patient's RR. In addition, it was
recently shown that TV might potentially be effectively
estimated from surface measurement during the normal
breathing cycle [43]. Exhaled air has a relative humidity (RH)
of 100% and is saturated with water [44]. This exhaled humidity
is a function of pulmonary capacity and is proportional to RR
and lung volume [20,45]. Most crucially, atmospheric pressure,
external temperature, and sex-dependent fluctuations alter the
signal amplitude's maximum RH content [46].

A huge network of internet-connected objects, including
Bluetooth Low Energy devices, sensors, and global positioning
systems, is the goal of emerging Internet of Things (IoT)
paradigms [40,41]. Medical IoT devices that use cloud compute
power could improve chronic respiratory illness detection and
therapy. In medical IoT devices, embedded electronics like
accelerometers [17,42-44] and temperature sensors [45,46] are
used in new ways. Using a chest-mounted belt, an accelerometer
may record rib cage movement to determine breathing rate. The
inhalation-exhalation temperature differential can also be
monitored [47]. We can estimate the key pulmonary indicators
from studying the relationship among temperature, pressure,
and humidity of a person [48]. The only IoT-compatible methods
for measuring lung capacity are somewhat sophisticated
spirometry [49], capnometry [50], and impedance
pneumography devices [51,52]. In this new paradigm, data
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collection occurs simultaneously in real time and over an
extended period of time, enabling a move from a reactive
treatment strategy to an early warning and detection mode that

maximizes results while minimizing the related human and
financial costs [53].

Figure 1. Commercial face masks typically used (A) in intensive care units with the (B) ventilation connector including respiratory rate, humidity, and
pressure measurement sensors and (C) at home by patients with obstructive sleep apnea. All products are manufactured by ResMed Ltd.

Hypothesis
The key hypothesis of our work was that the changes in RH
during breathing provide an indication of pulmonary disorders
in a patient. Moreover, we also believed that the change in RH
during deep inhale-exhale cycles of breathing can be used to
measure pulmonary volume, especially TV, ERV, and IRV.
The combination of measurements provides the total pulmonary
VC. To prove our hypothesis, we designed a low-cost wearable
device that uses a single RHS to provide accurate and
sophisticated lung volume (TV, ERV, IRV, and VC) and RR
measurements. To validate our strategy, we incorporated the
electronic prototype into an OSA face mask with our own flow
adapter (Figure 2), which is designed to prevent moisture
retention and keep the sensor close to the mouth and nose.

The gap between the mask and humidity sensor was defined to
avoid saturation of the humidity sensor. In fact, we tested
different tube sizes to support the sensor, so as to avoid
phenomena saturation during deep exhalations. We based our
adapter on the venturi effect [54]. Various flow measurements
were carried out to create this adapter, from which the sensor
is attached and onto which the mask is fitted. This method is
also used to easily change the mask from one person to another.

We used statistical analysis methods including Bland Altman,
1-way ANOVA, and box plots to validate our results. The
preliminary results of the experiments with multiple participants
showed that our hypothesis was correct, and the same was
corroborated by the statistical tests. With more participants and
sophisticated models, we will be able to classify pulmonary
disorders based on changes in RH.

Figure 2. Humidity sensor adapter connected to the obstructive sleep apnea face mask to reduce the amount of trapped moisture: (A) outside view of
the airflow adapter with the reduction and humidity sensor, (B) inside view of the airflow adapter with the reduction and humidity sensor, and (C)
airflow adapter with the reduction and humidity sensor and the heater connected.
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Methods

Experimental Setup
We used the humidity sensor to estimate lung volumes, a key
respiratory function, by monitoring inspiratory and expiratory
humidity [47]. Figure 3 shows the electronic prototype inserted
into an OSA face mask to keep the sensor close to the mouth
and nose. The BME280 humidity sensor was protected from
face mask moisture by a 3D-printed airflow adapter. Bluetooth
data transmission and SD card data recording were enabled by
an Arduino Nano Bluetooth Low Energy interfaced to the
sensor. Figure 3A provides a schematic overview, and Figure
3B depicts our prototype. We developed the device using a
proven health care IoT architecture strategy that combines data
acquisition, low energy, and embedded systems [55]. Figure
3A shows the medical-compatible BME280 sensor measuring
RH, ambient temperature, and barometric pressure [56,57].
Additionally, it has quick start-up and recovery times, with a
63% recovery occurring in roughly 1 second [58]. BME280 is
a widely used, commercial humidity sensor that retains a
long-term stability of ±0.5% RH per year and a low
signal-to-noise ratio of 0.02% RH, as provided in the sensor's
data sheet [58]. The range of the RH measurement at an overall
level is 89 (SD 7.8).

The sensor's embedded data preprocessing is enabled by an
NRF52832 microcontroller unit used in other medical devices
[59]. The microcontroller unit stores data on the SD card for
later retrieval when a Bluetooth connection is unavailable. The
smartphone's wireless connection and real-time data recording
app were developed in Android Studio. The IEEE 754 standard

requires converting the data transmitted via Bluetooth from
HEX to float [60]. Data cleaning, processing, and automated
parameter calculation were done via Python scripting.

We worked on the raw data to highlight all possible anomalies
and artifacts. As the humidity sensor is placed on the front of
the mask, separated by a support to prevent saturation of the
sensor during deep exhalation, no movement artifacts were
detected. The only artefacts measured were those associated
with breathing, which can sometimes present saccades that
highlight the absence of ventilatory recovery.

A standard commercial breathing monitoring device
(pneumotach [PNT]; Hans Rudolph) was used to independently
calculate the lungs' volume and RR for comparison with our
sensing platform's results. Figure 4A shows the PNT controller
and heater [61]. Figure 4B shows the Hans Rudolph PA-1 PNT
Amplifier [62]. Standard PNT devices monitor respiratory
parameters at 1 kHz [62,63].

For best results, our sensor should be placed behind the PNT
heater using an adapter to lower face mask humidity. This
adaptor in the face mask allowed precise humidity measurement
during respiration, enhancing sensor sensitivity and limiting
saturation. This design integrates our humidity measuring device
into the surgical face mask and connects via the PNT, as shown
in Figures 4 and 5. All participants were instructed to breathe
deeply every 30 seconds to determine TV, IRV, and ERV, then
they were instructed to breathe normally for the rest of the
15-minute test. The VC is the sum of the IRV and ERV
parameters. The RH sensor sampled data at 5 kHz, and the PNT
sampled data at 1 kHz during the tests.

Figure 3. (A) Schematics of the proposed health care Internet of Things architecture and (B) our prototype. BLE: Bluetooth Low Energy; OSA:
obstructive sleep apnea.
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Figure 4. Commercial pneumotach (PNT) used for reference baseline measurements: (A) PNT controller and heater and (B) PA-1 PNT amplifier. The
photos were taken from Hans Rudolph website [61].

Figure 5. Testing procedures, including the (A) global measurement setup and (B) face mask connected to the heater and relative humidity sensor
adapter.

Recruitment
All study participants, comprising 5 men and 2 women, were
healthy and had no preexisting respiratory conditions. Their
mean height was 171 (SD 10) cm, and their mean weight was

75 (SD 20) kg. The mean BMI was 25 (SD 4) kg/m2. The mean
age of this population was 38 (SD 8) years. All participants
were tested under identical conditions under medical
supervision.

The experiment was conducted according to a specific protocol
that ensured “identical” conditions for all participants involved.
First, implementation of the mask was dealt with in 2 parts.
Each participant was given a dedicated, single-use mask. The
sensor part of the mask, affixed to the mount, was reusable and
did not need to be cleaned. To monitor its operation, a data
acquisition system was used to confirm that the sensor
maintained the same humidity saturation as the room
environment.

All measurements were taken at the same RH, in the same
location, and under the same automated climatization conditions.
These conditions included temperature, humidity, and
atmospheric pressure. To ensure this uniformity, all
measurements were conducted on the same day.

Regarding the selection of participants, they were chosen based
on specific criteria to ensure their homogeneity. Participants
had no respiratory history and were in good physical condition.

They all used the same seated position and the same chair and
were exposed to the same environmental conditions as other
participants.

In terms of equipment setup, the equipment was placed
uniformly for all participants. A preliminary step in the protocol
confirmed that the baseline conditions (temperature and
humidity in the room) were the same for all participants before
starting the experiment. A new mask was used for each
measurement to eliminate any risk of cross-contamination or
interference.

Physical parameters such as height, weight, and blood pressure
were measured before data collection, and all participants were
allowed 5 minutes of relaxation before starting.

Ethics Approval

The experiments presented in this paper were approved by the
research ethics committee at École de Technologie Supérieure
(approval number: H20230603).

Statistical Analysis
We compared the means and IQRs from the commercial PNT
and our prototype using a box plot. We also compared the deep
breathing area (DBA) and RR series using a 1-way ANOVA
[64]. The hypothesis was tested with an optimal P value of .05
in the ANOVA analysis. DBA and RR Bland-Altman charts
were plotted against the PNT for all participants.
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Methodology
A cleaning protocol was used for the mask before each
measurement to remove contamination risks. The following
method derives respiratory parameters from sensor-measured
RH and PNT: According to the experimental section, the RH
was measured throughout the 15-minute test. Counting maxima
over a time segment gives the RR. We calculated TV by
calculating the area under the curve between 2 consecutive
minima using normal breathing data. All lung volumetric
parameters were calculated using the rectangle method, which
is presented in mathematical form in equation 1 [65].

where i indicates the sample number, x indicates the time
duration of measurement in seconds, f indicates the function to
compute the RH value at time x, and m indicates the total
number of samples.

Deep inhalation and exhalation areas determine IRV and ERV
parameters, and the VC is the sum of both. The beginning and
end of each deep inspiration and expiration cycle were indicated
by a sign change in the signal's second derivative [5]. Counting

minima in beats per minute over a chosen time can also
determine the RR, as shown in equation 2.

where x indicates the time duration of thr measurement in
seconds.

Indeed, RR and TV have been used to validate respiratory
parameters. As shown in Figure 6, lung volumes and RR were
calculated by measuring deep inhalation and exhalation
breathing and the respiratory cycle over 1 minute. The room
temperature remained at 21.5 °C. External humidity control in
the test room was turned off because the mask uses a heater to
control humidity.

Our prototype's reset button synchronized data collection timers
with the PNT. A computer saved the PNT's benchmark
respiratory parameters. Volume capacity is indicated by the
areas of the orange rectangle in Figure 6A, which represents
the closed DBA signal that begins with inhalation and ends with
deep exhalation. RH and PNT had the best correlation (R=0.84)
when calculating the area using the rectangle method. The
triangle method had a lower correlation coefficient (R=0.40).

Figure 6. Respiratory parameters calculations from the (A) commercial pneumotach (PNT) recordings and (B) relative humidity sensor–based prototype.

Results

Bland-Altman Analysis
Population-based Bland-Altman analysis was used for the
participant data [66]. We used the mean difference and limits
of agreement (LoAs) to quantify the humidity sensor-PNT
correlation. Bland-Altman graph analysis is a simple way to
assess the bias between the average differences and estimate an
interval of agreement in which 95% of the sensor data
differences fall relative to the PNT data. Both data sets were

analyzed using unit difference and percent difference charts.
Figure 7 shows the Bland-Altman analysis for the
DBA-normalized plots to help estimate the within-subject and
between-subject variability. Bias and variability terms were
fixed to zero when they did not increase the objective function
by more than 2 points, and bias and variance variability were
assumed to be normal and log-normally distributed [66]. The
DBA's overall analysis yielded a bias of 0.03 with LoAs of
–0.25 and 0.33. The RR bias was 0.018, and the LoAs were
–1.89 and 1.89.
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Figure 7. The Bland-Altman plot and calculations comparing the values from the relative humidity sensor with those from the pneumotach for the (A)
deep breathing area and (B) respiratory rate. The blue line indicates the bias, and the dotted lines indicate the limits of agreement.

Statistical Analysis
We compared the PNT's experimental DBA and RR data with
our RHS-based IoT prototype. Figure 8 shows box plots
comparing the medians and IQRs from the commercial PNT
with those from our prototype. The average DBA values from
the PNT and our sensor were 0.56 (SD 0.29) and 0.59 (SD 0.28),
respectively, showing similar values. The average RR with PNT
was 17.61 (SD 1.73), and the average RR with our prototype
was 17.58 (SD 1.71). This shows that our IoT sensor can
accurately measure the participants' respiratory parameters.

Furthermore, the 1-way ANOVA analysis was useful to compare
the similarities between the DBA and RR data sets, as shown
in Table 1 [64]. After reviewing the ANOVA results, we still
needed to understand subgroup differences among the different
experimental and control groups. For the ANOVA, we used an
optimal P value of .05 to test the hypothesis. The results showed
values of F1,39=0.016 and F1,347=0.01, indicating that the
differences between the group averages were negligible [67].
We could not reject the null hypothesis because the
corresponding P values of .64 for DBA and .89 for RR were
greater than .05 [67]. Thus, we concluded that there were no
statistically significant differences between the mean DBA and
RR measurements taken by the commercial PNT and our IoT
sensor prototype.

Finally, Figure 9 shows the root mean square error (RMSE) for
the DBA and RR measurements, when comparing the
commercial PNT with our RHS prototype. The trend includes
the highest and lowest RR values. Abnormal breathing patterns
during DBA and RR measurements cause data anomalies. The
PNT and RHS prototype anomalies are shown in Figure 10.
Errors in the DBA and RR can also be caused by variations in
the participant's breathing pattern during the test [65]. This
pattern appeared only once during our measurement, represented
by the outlier points outside of the RMSE and DBA regions
present in Figure 10. Most devices are very sensitive to changes
in breathing patterns, especially during flow measurements
because the face mask makes it hard to breathe normally. It is
possible to ameliorate this error by averaging the volume and
RR measurements over a longer period. Future generations
could leverage sensor fusion, multitenancy (sequential usage
of different sensors), or deep learning predictive value structures
to continuously monitor patients' vital signs [68]. After
examining the volumes (ERV, IRV, TV, VC) and RR
measurements, we concluded that our IoT RHS-based device
offers a unique way to properly measure essential respiratory
parameters using a low-cost sensor and without heavy-duty
medical devices.
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Figure 8. Box plots comparing the calculated (A) deep breathing area (DBA) and (B) respiratory rate values from the relative humidity sensor prototype
with those from the pneumotach for all participants in the test data set.

Table 1. Results from the 1-way ANOVAs of respiratory volume and rate measurements.

P valueFMSbdfSSaSource of variation

Respiratory volume (L)

.680.0160.01410.02Between groups

——c0.08383.13Within groups

———393.15Total

Respiratory rate (beats per minute)

.890.010.00110.002Between groups

——0.1134639.09Within groups

———34739.09Total

aSS: sum of squares.
bMS: mean squares.
cNot applicable.

Figure 9. The plot shows the root mean square error (RMSE) of the (A) deep breathing area (DBA) and (B) respiratory rate (RR) values, comparing
our relative humidity sensor (RHS) prototype against the commercial pneumotach (PNT).
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Figure 10. Two examples of breathing pattern anomalies during the deep breathing area and respiratory rate measurements using (A) the commercial
pneumotach device and (B) our own relative humidity–based sensing device. The maximum point shows the value of the inspiratory reserve volume,
while the minimum represents the expiratory reserve volume during deep breathing measurements; during a normal breathing pattern, the graph shows
the tidal volume.

Discussion

Principal Findings
First, we showed that we can measure respiratory parameters
using the proposed RHS-based device. To calculate the TV, we
used the area under the RH curve using the rectangle method,
as described. Second, we compared the measurements from the
proposed device with those from the gold standard PNT for all
participants. The Bland-Altman analysis showed that the
measurements were within the LoAs and the bias was very low.
Furthermore, the results from the ANOVA indicated that the P
values were above the threshold value of P<.05. Both statistical
experiments confirmed that the group average measurements
from the PNT and our proposed device were similar within
statistical limits (ie, we can use our proposed device to measure
respiratory parameters with an accuracy that is close to that of
the gold standard). This is further corroborated by the box plots
of the DBA and RR values. Most importantly, our device is 100
times [61,62] less expensive than the PNT device.

Comparison With Prior Work
The literature suggests that continuous and precise lung volume
and RR monitoring is difficult. Lung volume, a critical
indication of COPD status and development, cannot be assessed
by RR alone [34]. TV, ERV, IRV, and VC can indicate
respiratory depression. Researchers have measured lung volume
with a spirometer, but it is inaccurate, has a large latency, and
cannot be used while the patient is asleep [35]. Our method
improves continuous lung volume monitoring by not requiring
the patient to be supine. It also measures lung volume without
a costly sensor or imaging tests.

Strengths and Limitations
Our device is a low-cost medical device. It provides an
opportunity to measure respiratory parameters in real time. The
device uses a widely used and tested commercial humidity
sensor that is stable and has a high signal-to-noise ratio. We
tested the device with a variety of participants with different

demographic characteristics and of different sexes to ensure
that the results are reproducible. Despite all the strengths, there
are certain limitations to our device. First, the framework of our
device is not suitable for commercial applications as there is a
large number of ad hoc components. There is scope to improve
the design of the device by incorporating the sensors in the
fabrication of the mask. Second, detailed study of the device
with a larger number of participants and varying environmental
conditions is required for further testing and calibration.

Future Work
Due to the restrictions inherent to variations in breathing patterns
and device sensitivity, we foresee the development of our own
array of humidity sensors, coupled with deep learning data
processing, with the goal of resolving any problems associated
with breathing pattern deviations. This will enable extrapolation
of the unusable measurements to ensure the same level of
precision as linear results. This array of humidity sensors printed
on a flexible base would permit the incorporation into materials
for surgical masks without affecting the usability. Limitations
may include a high-humidity environment, which may increase
the risk of saturating the humidity sensor. A combination of
pressure and temperature measurements would limit this bias.
Ideally, the sensor should be integrated into the mask so that it
can be used in real-life conditions, without obstructing the
ventilatory connection. Increasing the sample size will not
validate the use of the sensor, but the inclusion of profiles with
respiratory disorders would make it possible to obtain
measurements with less obvious variations in amplitude and
thus include situations in which respiratory disorders could be
detected [12].

Conclusions
Wearable IoT medical technologies are developing as viable
options not just to monitor patients at home after hospitalization
but also to boost the affordability and accessibility of quality
health care. In fact, the development of more effective and less
expensive wearable medical devices could allow patients to
monitor their health at home. In recent years, the number of
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wearable medical devices for chronic disease monitoring has
expanded. Last, improved medically certified sensors will
facilitate the development of better and less expensive medical
IoT devices. In our investigation, we utilized a single sensor to
simultaneously detect pressure, temperature, and humidity. The
literature indicates that temperature is frequently used to
measure RR [45]. The results indicate that our RHS can measure
RR within statistically acceptable control limits. The results of
the 1-way ANOVA indicate that the group means of the PNT
are equivalent to our RHS within the standard margin of error
of the instrument. This is further supported by the Bland-Altman
analysis, which revealed low values of 0.03 and 0.018 for the
bias and RR, respectively. The data analysis revealed that the
evolution of RRs over time for the PNT and our low-cost RHS
follows a similar pattern. This is, as far as we are aware, the
first study to investigate the use of RHS for reliably monitoring

respiratory volumes on a medical IoT platform. We plan to
examine the applicability of the RHS sensor to detect more
complex respiratory disorders using deep learning in a future
phase of development.

In terms of utility, it is evident that continuous and precise
monitoring of lung capacity and RR represents a significant
basic obstacle. Nonetheless, it presents a tremendous opportunity
to monitor patients with OSA in intensive care or during surgery.
Lung volumes, namely TV, can be utilized to manage respiratory
pauses or identify the breathing pattern in patients with OSA
who utilize C-PAP or A-PAP devices, which, when combined
with artificial intelligence, can detect apnea occurrences and
enhance A-PAP performance. Regarding ventilated patients,
assessing TV will allow for better control of ventilatory
weaning.
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