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Abstract

Background: In Japan, individuals with mild COVID-19 illness previously required to be monitored in designated areas and
were hospitalized only if their condition worsened to moderate illness or worse. Daily monitoring using a pulse oximeter was a
crucial indicator for hospitalization. However, a drastic increase in the number of patients resulted in a shortage of pulse oximeters
for monitoring. Therefore, an alternative and cost-effective method for monitoring patients with mild illness was required. Previous
studies have shown that voice biomarkers for Parkinson disease or Alzheimer disease are useful for classifying or monitoring
symptoms; thus, we tried to adapt voice biomarkers for classifying the severity of COVID-19 using a dynamic time warping
(DTW) algorithm where voice wavelets can be treated as 2D features; the differences between wavelet features are calculated as
scores.

Objective: This feasibility study aimed to test whether DTW-based indices can generate voice biomarkers for a binary
classification model using COVID-19 patients’ voices to distinguish moderate illness from mild illness at a significant level.

Methods: We conducted a cross-sectional study using voice samples of COVID-19 patients. Three kinds of long vowels were
processed into 10-cycle waveforms with standardized power and time axes. The DTW-based indices were generated by all pairs
of waveforms and tested with the Mann-Whitney U test (α<.01) and verified with a linear discrimination analysis and confusion
matrix to determine which indices were better for binary classification of disease severity. A binary classification model was
generated based on a generalized linear model (GLM) using the most promising indices as predictors. The receiver operating
characteristic curve/area under the curve (ROC/AUC) validated the model performance, and the confusion matrix calculated the
model accuracy.

Results: Participants in this study (n=295) were infected with COVID-19 between June 2021 and March 2022, were aged 20
years or older, and recuperated in Kanagawa prefecture. Voice samples (n=110) were selected from the participants’ attribution
matrix based on age group, sex, time of infection, and whether they had mild illness (n=61) or moderate illness (n=49). The
DTW-based variance indices were found to be significant (P<.001, except for 1 of 6 indices), with a balanced accuracy in the
range between 79% and 88.6% for the /a/, /e/, and /u/ vowel sounds. The GLM achieved a high balance accuracy of 86.3% (for
/a/), 80.2% (for /e/), and 88% (for /u/) and ROC/AUC of 94.8% (95% CI 90.6%-94.8%) for /a/, 86.5% (95% CI 79.8%-86.5%)
for /e/, and 95.6% (95% CI 92.1%-95.6%) for /u/.

Conclusions: The proposed model can be a voice biomarker for an alternative and cost-effective method of monitoring the
progress of COVID-19 patients in care.

(JMIR Biomed Eng 2023;8:e50924) doi: 10.2196/50924
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Introduction

Background
COVID-19 originated in Wuhan, China, in December 2019 and
turned into a worldwide pandemic. As of December 2022, the
number of people infected with this disease reached
approximately 650 million, of whom more than 6.64 million
had lost their lives. Although the number of new infections
appeared to have abated in the spring of 2023, the past explosion
of infections strained medical care systems in several countries.
To cope with this pressure, these countries have changed their
responses toward infected patients based on the severity of their
illness. In Japan, as defined in Table 1, which shows the
Ministry of Health, Labour and Welfare guidelines on the
severity of COVID-19 [1], responses were divided into 4
categories of severity, ranging from mild to serious illness. Mild

illness is defined as “an oxygen saturation of 96% or more, or
a clinical condition of no respiratory symptoms or coughing
without shortness of breath (SoB) but no evidence of pneumonia
in either case,” and moderate illness I is defined as “an oxygen
saturation of greater than 93% but less than 96%, or a clinical
condition of shortness of breath or pneumonia.” Moderate illness
II is defined as “oxygen saturation of 93% or less, or oxygen
administration is required.” The target population for this study
was individuals who were recovering at home or in recuperation
facilities. Therefore, they were theoretically patients with mild
illness. Still, due to worsening conditions or shortcomings of
medical services, this population included patients with
moderate illness I who should have been treated in a hospital.
Therefore, accurately classifying these 2 adjacent severity
categories (mild illness and moderate illness I) is essential in
determining appropriate measures, such as early hospitalization,
by detecting worsening conditions in patients with mild illness.

Table 1. Definitions of the severity of COVID-19 infections.

Clinical conditionOxygen saturation, %Severity

Absence of respiratory symptoms or presence of coughing without shortness of breath, but
no evidence of pneumonia in either case

≥96Mild illness

Shortness of breath and pneumonia are evident93-96Moderate illness I

Oxygen administration is required≤93Moderate illness II

Admission to intensive care unit or requirement of a ventilatorN/ASerious illness

Oxygen saturation (SpO2) measurements using a pulse oximeter
were crucial for assessing the severity of illness. Daily
measurements of SpO2 and body temperature, along with the
assessment of physical conditions, were essential for monitoring
disease progression from mild illness to moderate illness I over
approximately 1 week or more during the recuperation period.
However, the explosive increase in the number of COVID-19
patients made it difficult to distribute pulse oximeters to all
patients with mild illness, especially young patients who were
forced to recuperate at their homes rather than in health care
facilities. This unexpected shortage of pulse oximeters has
motivated us to devise alternative and cost-effective ways to
monitor for worsening medical condition in persons exhibiting
mild illness.

Voice Biomarkers
Previous research on Parkinson disease, Alzheimer disease,
depression, and other psychiatric disorders such as stress [2-7]
has shown that voice biomarkers can be leveraged to
noninvasively and cost-effectively identify the presence or
absence of diseases, classify symptoms, and monitor conditions.

Voice biomarkers could also be an alternative method to detect
changes in disease severity from mild illness to moderate illness
I in COVID-19, which is a respiratory disease and has been
reported to cause acoustic changes in the voice due to
inflammation of the pharynx in the vocal tract, vocal cords, or
both, as well as a lower expiratory volume due to pneumonia
[8]. Moreover, significant differences in jitter (fluctuation of
the fundamental frequency on the time axis), shimmer
(fluctuation of the amplitude on the power axis), and
harmonic-to-noise ratio (HNR) were reported between healthy
subjects and those with COVID-19 [8-11]. There are also reports
that COVID-19 can be detected from acoustic data obtained
from a patient’s cough [12].

Dynamic Time Warping
Dynamic time warping (DTW) is an effective algorithm for
measuring the similarity between 2 patterns. The DTW distance,
which is a computational result obtained by the DTW algorithm
using 2 waveform features, progressively approaches zero as
the features become more similar, whereas it increases as the
features become less similar (Figure 1).
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Figure 1. Illustration of the DTW distance, with 3 target example waves compared to a reference wave. DTW: dynamic time warping.

This metric has been widely used since the 1980s in fields such
as motion recognition, speech recognition, and time-series data
analysis [13-15]. For example, it was reported that DTW could
differentiate between healthy people and people with walking
disabilities with high accuracy by processing differences in the
gait patterns acquired by accelerometer sensors on smartphones
[13]. The effectiveness of an automated scoring system applied
in conjunction with the DTW algorithm for evaluating the
progress of speech audiometric rehabilitation was reported to
be similar to that of conventional manual scoring methods [14].
It has also been reported that complementing the mel-frequency
cepstral coefficient (MFCC) algorithm with the DTW algorithm
improved voice recognition performance. The DTW algorithm
has been introduced as a feature-matching technique for voice
recognition [15]. The feature-matching performance of the DTW
algorithm (ie, the scoring method for 2D feature similarity) may
function effectively for the desired classification of long vowel
samples.

Goal of This Study
This feasibility study aimed to test whether DTW-based voice
biomarkers can be used to achieve a binary classification of
mild illness and moderate illness I for COVID-19 at a significant
level.

Methods

Study Design
We conducted a cross-sectional study using the voice samples
of COVID-19 patients.

Participants
This study recruited participants through a brochure that was
distributed exclusively to COVID-19 patients who were aged

20 years and older, were positive for SARS-CoV-2 in PCR
testing, and recuperated at designated facilities or at home in
Kanagawa prefecture, Japan, between June 2021 and March
2022. Patients who consented to the study’s objectives were
requested to register for participation using the QR code on the
brochure through their smartphones. The participants were asked
to provide their daily vital signs data, including voice recordings
during the recuperation period, but were also given the option
to withdraw from the study (opt out) at any time of their own
accord. A ¥1000 (US $6.68) Amazon gift card was given to
participants as compensation. Because this study only included
patients with mild illness or moderate illness I, who did not
require hospitalization, patients with moderate illness II were
not included. The participants were divided into 2 groups, the
mild group and moderate I group, according to the definitions
given in Table 1.

Data Collection
Those who agreed to participate in the study were asked to
install a smartphone app and enter their basic information, vital
signs data (temperature and SpO2), symptom scores, and voice
recordings on the first day of recuperation. From the second
day onward, the participants were required to enter their vital
signs data, symptom scores, and voice recordings daily until
the last day of recuperation. Voice data were stored together
with text data indicating the symptoms and vital signs on a
dedicated server with high security. The voice recordings were
in the WAV format with a sampling rate of 48 kHz and a bit
depth of 16 bits using the 3 long vowels /a/, /e/, and /u/.
Participants were asked to explain their reasoning if they wished
to withdraw from the study. Table 2 shows the timing and data
entry items of the participants.
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Table 2. Timing and items for the input data and information from participants.

DescriptionTiming and items

Baseline

Orientation • The researchers explained the purpose of the study and obtained participant consent

Basic information • Sex
• Age
• Symptom onset date
• Diagnosis confirmation date
• Treatment start date

On a daily basis during recuperation

Vital sign data • Body temperature
• Blood oxygen saturation

Questionnaire • Change in symptoms
• Symptomatic or not
• Respiratory distress
• Taste or olfactory disorders
• Cough or sputum
• Chest pain
• Runny nose or nasal congestion
• Sore throat
• Nausea or vomiting
• Diarrhea
• Appetite
• Fatigue
• Headache
• Joint pain
• Rash
• Red eyes

Voice recording • Three long vowels: /a/, /e/, /u/

Dropout during recuperation

Dropout • Confirm the reason for dropping out from the research

Waveform Sample Cutout and Standardization
To calculate the DTW distance, a 10-cycle waveform sample
was extracted for each date from the participants’ long-vowel
recordings in the WAV format using Audacity (version 3.1.3;
Audacity Team) at a sampling rate of 48 kHz (Figure 2). Then,

standardization was achieved along the power axis within the
range of –1 to +1 as the maximum amplitude, and the time axis
involved 1000 data points that were multiplied by 1/48,000
seconds, considering the length of a 10-cycle waveform. To
read and standardize the WAV data, R (version 4.4.2; R Core
Team) with the tuneR package (version 1.4.0) was used.

Figure 2. Screenshot showing 10-cycle waveform data extracted for each date from each patient’s voice recording of vowels.

Calculation of the DTW Distance for 2 Groups
After standardizing the power and time of the 110 waveform
samples, the DTW distance was calculated for each sample
paired with those of the remaining 109 samples. The DTW
distances that were obtained were divided into 2 categories
based on 2 kinds of labels for the 109 waveform samples.
Therefore, each sample was assigned 2 variables for DTW

distance. In the mild group, these were 61 or 60 DTW distances,
and in the moderate I group, these were 48 or 49 DTW distances.
The average and variance of the DTW distances were calculated
for each group. For the mild group, the average index (ie, the
mild-group filtering [MiF] average) and variance index (ie, MiF
variance) of the DTW distance were obtained, whereas for the
moderate I group, the average index (ie, moderate-group filtering
[MoF] average) and variance index (MoF variance) of the DTW
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distance were obtained. These 4 indices were obtained from a
single waveform sample. The indices for the 3 vowels, /a/, /e/,
and /u/, were prepared and are represented as shown in Table
3. Thus, 12 indices were used in the subsequent analyses. The

average values and variances of the DTW distances for the 2
groups were statistically investigated to determine whether they
exhibited significant values for the 2-group classification
scheme.

Table 3. Twelve indices generated from 3 vowels and 4 indices.

VowelsIndices

/u//e//a/

/u/-MiF average/e/-MiF average/a/-MiF averageMiFa average

/u/-MoF average/e/-MoF average/a/-MoF averageMoFb average

/u/-MiF variance/e/-MiF variance/a/-MiF varianceMiF variance

/u/-MoF variance/e/-MoF variance/a/-MoF varianceMoF variance

aMiF: mild-group filtering.
bMoF: moderate-group filtering.

Data Analysis

Linear Discriminant Analysis Considering the Average
and Variance Indices of the DTW Distance
The Mann-Whitney U test was used to determine whether there
was any statistical significance between the mild and moderate
I groups. This test was performed on 12 indices that measured
the average and variance of the DTW distance for the 3 vowels
/a/, /e/, and /u/. A significance level of 1% was established, with
the null hypothesis of no statistical significance between the 2
groups. Box plots and linear discriminant analysis (LDA) were
used to determine the indicators of the 3 vowels most effective
for determining statistical significance between the 2 groups.
The confusion matrix obtained from the LDA results was
displayed with a specific index for the true positive rate (TPR),
true negative rate (TNR), and balanced accuracy (BA). The
boxplot function was calculated and plotted using the R ggplot
package (version 3.4.0), and the LDA function was calculated
using the R MASS package (version 7.3).

Generalized Linear Model With the DTW distance
The significant indices from the 4 categories of DTW distance
were used to distinguish between severity levels (mild or
moderate I). These indices were then used as explanatory
variables to create generalized linear models (GLMs) for each
vowel. A 5-fold cross-validation method with 110 waveform
samples was used to train the model for each vowel, which was
then used to predict the severity classification. R was used for
GLM modeling and label prediction. The pROC package
(version 1.18.0) for R was used to obtain the receiver operating
characteristic (ROC) curve and calculate the area under the
curve (AUC), whereas confusion matrices were generated using
the Caret package (version 6.0) for R.

Ethics Approval
The study was conducted in accordance with the Declaration
of Helsinki and was approved by the Ethics Committee of
Kanagawa University of Human Services (SHI 3-001, dated

May 27, 2021, and SHI 26, dated November 25, 2021). Informed
consent was obtained from all participants involved in the study.

Results

Participants
In June 2021 and March 2022, approximately 540,000
COVID-19 patients were recorded in Kanagawa prefecture.
After requesting approximately 10,000 people to participate in
the study, our study recruited 295 participants in the same
period, of whom 291 were eligible to participate because
participants who did not meet the inclusion criteria, such as
minors, those with invalid data registration, or those who
withdrew midway through evaluation, were excluded.

Seventy-four participants who reported no symptoms of
coughing, throat pain, chest pain, or SoB during recuperation
were assigned to the mild group. Of the 217 participants who
reported any symptoms, 68 of them with symptoms of SoB were
assigned to the moderate I group. Of the 149 participants who
reported symptoms other than SoB, 6 of them with SpO2 values
less than 96% were assigned to the moderate I group, and 143
participants who reported SpO2 values of no less than 96% were
assigned to the mild group. The 291 participants were classified
into 2 groups: 217 as mild and 74 as moderate I. Figure 3 shows
a flowchart of study participation.

The primary periods of infection in Japan were during the Delta
period, from July to December 2021, and the Omicron period,
from January to June 2022. According to previous reports
[16,17], COVID-19 exhibits varying levels of infectivity,
severity, and symptoms, depending on the type of mutant strain
present. We identified the time of infection in Japan and
carefully matched the 291 study participants who had already
been labeled into 2 groups. Table 4 shows the attribution matrix
for the participants by the time of infection, sex, and severity.
Table 5 shows the attribution matrix for the same sample based
on the time of infection, sex, and age group. Finally, 110
participants (61 with mild illness and 49 with moderate illness
I) were included in the study.
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Figure 3. Flowchart showing classification of 291 participants into the mild illness and moderate illness I groups. “Four symptoms” refers to the 4
major symptoms: coughing, throat pain, chest pain, and shortness of breath. SpO2: oxygen saturation.

Table 4. Participants’ attribution matrix by the time of infection, sex, and severity (n=110).

Omicron periodb (n=64), participants, nDelta perioda (n=46), participants, nSeverity

Mild illness (n= 61)

1614Male

1813Female

3427Total

Moderate illness I (n=49)

1610Male

149Female

3019Total

aDelta period: July 2021 to December 2021.
bOmicron period: January 2022 to June 2022.
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Table 5. Participants’ attribution matrix by the time of infection, sex, and age group (n=110).

Omicron periodb (n=64), participants, nDelta perioda (n=46), participants, nAge group (years)

20-29

109Male

1516Female

2525Total

30-39

94Male

91Female

185Total

40-49

67Male

52Female

119Total

50-59

43Male

33Female

76Total

60-69

20Male

00Female

20Total

≥70

11Male

00Female

11Total

aDelta period: July 2021 to December 2021.
bOmicron period: January 2022 to June 2022.

Linear Discriminant Analysis Considering the Average
and Variance Indices of the DTW Distance

Distribution of the Average and Variance Indices of the
DTW Distance
Table 6 displays the Mann-Whitney U test results for the 2
groups based on 3 vowels and 4 indicators. Of the 12 indices,
6 were found to be significant; they included /u/-MiF average,

/a/-MiF variance, /e/-MiF variance, /a/-MoF variance, /e/-MoF
variance, and /u/-MoF variance. The only index that was
significant among the average indices was /u/-MiF average,
while /u/-MiF variance was the only insignificant index among
the variance indices. This indicates that the variance indices
were more significant overall.

Figures 4 and 5 illustrate the distributions of MiF average and
MoF average, as well as MiF variance and MoF variance, for
the 2 groups.
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Table 6. Results of the Mann-Whitney U test for mild illness and moderate illness I group classification.

Vowels, P valuesIndices

/u//e//a/

<.001.71.03MiFa average

.03.43.60MoFb average

.45<.001<.001MiF variance

<.001<.001<.001MoF variance

aMiF: mild-group filtering.
bMoF: moderate-group filtering.

Figure 4. Distribution in the 2 groups of the average index for the dynamic time warping distance (MiF average and MoF average). MiF: mild-group
filtering; MoF: moderate-group filtering.

Figure 5. Distribution in the 2 groups of the variance indices for the dynamic time warping distance (MiF variance and MoF variance) *P<.001. MiF:
mild-group filtering; MoF: moderate-group filtering.
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Results for LDA
Figure 6 shows a scatter plot of the average indices, and Figure
7 shows a scatter plot of the variance indices of the DTW
distance, along with the confusion matrix, TPR, TNR, and BA
values of the LDA. The straight line represents the discriminant

line obtained using LDA. The variance indices of the DTW
distance provided overall superior results for the classification
indicators, including TPR, TNR, and BA, of the confusion
matrix compared to the average indices. The ease of
classification can be visually verified by observing the plots
achieved via LDA.

Figure 6. Linear discriminant analysis results and confusion matrix of the MiF average and MoF average indices. BA: balanced accuracy; MiF:
mild-group filtering; MoF: moderate-group filtering; TPR: true positive rate; TNR: true negative rate.

Figure 7. Linear discriminant analysis results and confusion matrix of the MiF-variance and MoF-variance indices. BA: balanced accuracy; MiF:
mild-group filtering; MoF: moderate-group filtering; TPR: true positive rate; TNR: true negative rate.

GLM With the Variance Index of the DTW Distance
We used the variance indices of the DTW distance as predictors
of the GLM model because they achieved better classification

performances than the average indices. Figure 8 shows the ROC
and AUC values of the GLM model for each vowel with the
confusion matrix, including the TPR, TNR, and BA data. The
models of all 3 vowels provided high model performance in
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terms of the AUC and mid-to-high accuracy for TPR, TNR, and BA.

Figure 8. ROC/AUC results of the generalized linear model with confusion matrices for the mild-group filtering variance and moderate-group filtering
variance indices. AUC: area under the curve; BA: balanced accuracy; FPR: false positive rate; TPR: true positive rate; TNR: true negative rate; ROC:
receiver operating characteristics curve.

Discussion

Principal Results
This feasibility study demonstrated that the DTW distance–based
voice biomarkers generated by the GLM had a balanced
accuracy ranging from 80.2% to 88% and high model
performance, indicated by the AUC ranging from 86.5% to
96.5%, for 3 vowels when classifying between mild illness and
moderate illness I in COVID-19 patients.

Comparison With Prior Work

Key 1D Features of Acoustic Parameters
Sondhi et al [10] and Pah et al [18] found that the classification
of subjects with and without COVID-19 was possible using
jitter, shimmer, and HNR indices; however, they did not
demonstrate classification using models incorporating these
parameters. Pah et al [18] stated, “The statistical analysis and
SVM classification indicated that the voice features of sustained
phoneme corresponding to vocal tract modulation (Mel
Frequency Cepstral Coefficient (MFCC), Formants, Vocal-tract
Length, and Intensity-SD) could potentially be adopted as a
COVID-19 biomarker compared to the features of vocal fold
vibration (jitter, shimmer, pitch, HNR, and NHR)” [18]. This
suggests that a simple model using only jitter, shimmer, and
HNR is not able to differentiate between subjects with and
without disease. Therefore, we believe that approaches such as
machine learning and deep learning are essential for performing
pathophysiological analyses such as classification, presence or

absence determination, and monitoring using key 1D features
of acoustic parameters, such as MFCC and formants.

2D Feature Matching of DTW algorithms
In this study, the variance indices of the DTW distance were
significantly different from the average indices. It appears that
diseases have a wide-ranging impact on the voices of patients,
making it challenging to assess and categorize voices at the
desired level. To address this issue, machine learning–based
voice analysis systems that focus on learning 1D parameters
such as jitter and shimmer have been used, and tuning using
single-dimensional key features such as spectral and prosodic
speech features may be conducted [18-21]. Conversely, our 2D
feature matching of the waveform using DTW algorithms may
provide a more direct and practical method in the domain of
binary classifications.

Advantages of the Standardization of Waveform Samples
By standardizing the time and power axes of the waveform
samples in the DTW algorithm before computing, the
fundamental frequency (F0) and volume were consequently
transformed as parts of the elements forming a 10-cycle
waveform in the unit envelope. Confounding factors derived
from fundamental frequencies that vary by sex and age can be
avoided as much as possible in advance, allowing the direct
evaluation of the classification results by the DTW distance
[8,19,22,23]. For this study, we examined 110 wavelet samples
to determine the coefficient of variation (CV) of F0 estimates
before and after standardization. Our goal was to analyze the
variety of F0 distribution based on sex and age groups. Our

JMIR Biomed Eng 2023 | vol. 8 | e50924 | p. 10https://biomedeng.jmir.org/2023/1/e50924
(page number not for citation purposes)

Watase et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


results indicated that the CV of the wavelets without
standardization ranged from 10.31% to 11.4% for the 3 long
vowels /a/, /e/, and /u/, which is considered a significant
confounding factor. However, after standardization, the CV
ranged from 0.81% to 2.4%, which was significantly reduced
and, therefore, effective in minimizing confounding factors.
Multimedia Appendix 1 provides more details and comparison
figures.

Why Select a 10-Cycle Waveform as a Unit Sample?
Our previous pilot study using the DTW algorithm to
differentiate between the voices of subjects with and without
COVID-19 investigated the use of different waveforms with 1,
3, 5, 10, 20, 30, and 50 cycles. Among these waveform cycles,
10 and 20 cycles resulted in reasonable discrimination between
the subjects with and without COVID-19 for all 3 subjects
tested. (A summary of the test results is shown in Multimedia
Appendix 2.) We selected a 10-cycle waveform, rather than a
20-cycle waveform, in order to reduce as much as possible the
total computing cost incurred when using the DTW algorithm
(see the section “Computing Cost”).

Robustness to Noise
While recent smartphones have improved recording features
that can aid in voice analysis [24], it should be noted that the
environmental noises present during the recording process were
not completely controllable because the voice samples used in
this study were self-recorded by the participants with their own
smartphones. As Qi [25] reported, “DTW was evaluated using
both synthetic and natural voices, and significant reductions in
noise were achieved.” Because the DTW distance is considered
to be robust to noise, it may be more practical when used for
classification purposes with voices obtained from the real world
compared to acoustic parameters such as jitter, shimmer, and
HNR, which are considered to be sensitive to environmental
noise [8,18].

Sample Size Consideration
There are known statistical correlations between significance
level, power, effect size, and sample size [26]. We tested the
validity of the sample size used in this study of 110 participants
(61 in the mild group and 49 in the moderate I group). We
calculated an effect size of 0.666 with the significance level of
1% used in this study and a power of 0.8, which generally meets
requirements from a statistical point of view [27]. For the
calculation, the pwr package (version 1.3.0) of R was used. A
Cohen d score of 0.5 is regarded as a medium effect size, and
0.8 is regarded as a large effect size [28]. Therefore, we believe
that the sample size used in this study was appropriate because
the effect size of 0.666 is between medium and large. (These
validation processes are disclosed in Multimedia Appendix 3.)

Future Expectations
DTW distance–based voice biomarkers may effectively
supplement pulse oximeters as an objective indicator when
distinguishing moderate illness I from mild illness among

patients during recuperation. Even if pulse oximeters are scarce,
this biomarker can be accessed through a patient’s smartphone.
If persons with disease recuperating at home can detect a
worsening of symptoms to moderate illness I based on changes
in their voice, they will be able to determine whether they should
seek medical care. In addition, this system may allow health
care providers to use voice biomarkers in addition to body
temperature and pulse oximeter readings as objective and
quantitative indicators to properly diagnose worsening
symptoms and expedite inpatient treatment.

Limitations

Computing Cost
In this study, our approach involved standardizing waveform
samples, comprehensively computing the DTW distance for
each sample, and subsequently using the resulting indices to
determine the severity of illness using a GLM. However, this
approach is considered computationally expensive, making it
unsuitable for integration into standalone smartphone apps.
Nevertheless, it can be used in the cloud. Despite current
limitations, significant advancements in network transmission
speed and information technology suggest that it may soon be
practically applicable. Another potential solution for reducing
computation time is to measure the DTW distance from a greater
variety of representative samples as the number of cases
increases. However, this remains a topic for future study.

Patient Bias
Although the definition of moderate illness I that was used in
this study is based on pulse oximeter readings (SpO2 93%-96%)
or subjective reports from patients of their clinical condition
(ie, SoB, as shown in Table 1), errors during labeling of the
voice samples due to patient bias may have occurred as different
individuals may have varying methods of describing the
sensation of SoB. Unfortunately, this issue is difficult to
overcome considering the use of patient-reported data. However,
the inclusion of objective indicators such as voice biomarkers
during the diagnosis-making process may allow for more
objective labeling of data in the future.

Conclusions
Medical treatments for COVID-19 vary depending on the
severity of the illness. Patients with mild illness may need only
to recuperate at home or a designated facility, whereas patients
with moderate illness I may need to be hospitalized. In this
study, the DTW distance–based voice biomarker was tested for
distinguishing between mild and moderate illness I. A balanced
accuracy ranging from 80.2% to 88% was achieved, and the
model performance indicated by the AUC ranged from 86.5%
to 96.5% for the vowels /a/, /e/, and /u/. This voice biomarker
system can be used in case of an unexpected shortage of pulse
oximeters as an alternative and cost-effective method for
monitoring worsening medical conditions in patients with mild
illness that are recuperating at home or a medical facility.

JMIR Biomed Eng 2023 | vol. 8 | e50924 | p. 11https://biomedeng.jmir.org/2023/1/e50924
(page number not for citation purposes)

Watase et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Acknowledgments
We would like to thank Editage for English language editing. We would like to express our gratitude to Mindy Fang for introducing
us to the pleasures of statistical analysis programming in R. We are deeply grateful to the Kanagawa prefectural government
officials for their cooperation in this study despite their busy work on COVID-19 matters.

Data Availability
The data sets generated during and/or analyzed during this study are not publicly available due to privacy and ethical restrictions
but are available from the corresponding author on reasonable request.

Authors' Contributions
TW and ST contributed to conceptualization and review and editing. TW contributed to methodology, software, validation, formal
analysis, original draft preparation, and visualization. YO and ST contributed to investigation and resources. YO contributed to
data curation. ST contributed to supervision, project administration, and funding acquisition. All authors have read and agreed
to the manuscript.

Conflicts of Interest
YO was employed by PST Inc. This study was conducted in collaboration between PST and Kanagawa University of Human
Services, but no funding for this study was received from PST.

Multimedia Appendix 1
Standardization and confounding.
[PDF File (Adobe PDF File), 291 KB-Multimedia Appendix 1]

Multimedia Appendix 2
Validation for waveform cycles.
[PDF File (Adobe PDF File), 249 KB-Multimedia Appendix 2]

Multimedia Appendix 3
Sample size consideration.
[PDF File (Adobe PDF File), 167 KB-Multimedia Appendix 3]

References

1. Japan A Guide to Medical Care of COVID-19, Version 8. Ministry of Health, Labour and Welfare of Japan. URL: https:/
/www.mhlw.go.jp/content/000936655.pdf [accessed 2023-10-12]

2. Ding H, Mandapati A, Karjadi C, Ang TFA, Lu S, Miao X, et al. Association between acoustic features and
neuropsychological test performance in the Framingham heart study: Observational study. J Med Internet Res 2022 Dec
22;24(12):e42886 [FREE Full text] [doi: 10.2196/42886] [Medline: 36548029]

3. Ma A, Lau KK, Thyagarajan D. Voice changes in Parkinson's disease: What are they telling us? J Clin Neurosci 2020
Feb;72:1-7 [doi: 10.1016/j.jocn.2019.12.029] [Medline: 31952969]

4. Kappen M, van der Donckt J, Vanhollebeke G, Allaert J, Degraeve G, Madhu N, et al. Acoustic speech features in social
comparison: how stress impacts the way you sound. Sci Rep 2022 Dec 20;12(1):22022 [FREE Full text] [doi:
10.1038/s41598-022-26375-9] [Medline: 36539505]

5. Higuchi M, Nakamura M, Shinohara S, Omiya Y, Takano T, Mitsuyoshi S, et al. Effectiveness of a voice-based mental
health evaluation system for mobile devices: Prospective study. JMIR Form Res 2020 Jul 20;4(7):e16455 [FREE Full text]
[doi: 10.2196/16455] [Medline: 32554367]

6. Shinohara S, Nakamura M, Omiya Y, Higuchi M, Hagiwara N, Mitsuyoshi S, et al. Depressive mood assessment method
based on emotion level derived from voice: Comparison of voice features of individuals with major depressive disorders
and healthy controls. Int J Environ Res Public Health 2021 May 19;18(10):5435 [FREE Full text] [doi:
10.3390/ijerph18105435] [Medline: 34069609]

7. Hajjar I, Okafor M, Choi JD, Moore E, Abrol A, Calhoun VD, et al. Development of digital voice biomarkers and associations
with cognition, cerebrospinal biomarkers, and neural representation in early Alzheimer's disease. Alzheimers Dement
(Amst) 2023;15(1):e12393 [FREE Full text] [doi: 10.1002/dad2.12393] [Medline: 36777093]

8. Asiaee M, Vahedian-Azimi A, Atashi SS, Keramatfar A, Nourbakhsh M. Voice quality evaluation in patients with COVID-19:
An acoustic analysis. J Voice 2022 Nov;36(6):879.e13-879.e19 [FREE Full text] [doi: 10.1016/j.jvoice.2020.09.024]
[Medline: 33051108]

JMIR Biomed Eng 2023 | vol. 8 | e50924 | p. 12https://biomedeng.jmir.org/2023/1/e50924
(page number not for citation purposes)

Watase et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=biomedeng_v8i1e50924_app1.pdf&filename=ea0f44ae19d0dd1bfa0fdb34df888b17.pdf
https://jmir.org/api/download?alt_name=biomedeng_v8i1e50924_app1.pdf&filename=ea0f44ae19d0dd1bfa0fdb34df888b17.pdf
https://jmir.org/api/download?alt_name=biomedeng_v8i1e50924_app2.pdf&filename=079912fa2e3741027103f1df52c1031c.pdf
https://jmir.org/api/download?alt_name=biomedeng_v8i1e50924_app2.pdf&filename=079912fa2e3741027103f1df52c1031c.pdf
https://jmir.org/api/download?alt_name=biomedeng_v8i1e50924_app3.pdf&filename=8f80f6ab9d7dec66d3c55366c6d97fbd.pdf
https://jmir.org/api/download?alt_name=biomedeng_v8i1e50924_app3.pdf&filename=8f80f6ab9d7dec66d3c55366c6d97fbd.pdf
https://www.mhlw.go.jp/content/000936655.pdf
https://www.mhlw.go.jp/content/000936655.pdf
https://www.jmir.org/2022/12/e42886/
http://dx.doi.org/10.2196/42886
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36548029&dopt=Abstract
http://dx.doi.org/10.1016/j.jocn.2019.12.029
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31952969&dopt=Abstract
https://doi.org/10.1038/s41598-022-26375-9
http://dx.doi.org/10.1038/s41598-022-26375-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36539505&dopt=Abstract
https://formative.jmir.org/2020/7/e16455/
http://dx.doi.org/10.2196/16455
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32554367&dopt=Abstract
https://www.mdpi.com/resolver?pii=ijerph18105435
http://dx.doi.org/10.3390/ijerph18105435
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34069609&dopt=Abstract
https://europepmc.org/abstract/MED/36777093
http://dx.doi.org/10.1002/dad2.12393
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36777093&dopt=Abstract
https://europepmc.org/abstract/MED/33051108
http://dx.doi.org/10.1016/j.jvoice.2020.09.024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33051108&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


9. Kaur S, Larsen E, Harper J, Purandare B, Uluer A, Hasdianda MA, et al. Development and validation of a
respiratory-responsive vocal biomarker-based tool for generalizable detection of respiratory impairment: Independent
case-control studies in multiple respiratory conditions including asthma, chronic obstructive pulmonary disease, and
COVID-19. J Med Internet Res 2023 Apr 14;25:e44410 [FREE Full text] [doi: 10.2196/44410] [Medline: 36881540]

10. Sondhi S, Salhan A, Santoso CA, Doucoure M, Dharmawan DM, Sureka A, et al. Voice processing for COVID-19 scanning
and prognostic indicator. Heliyon 2021 Oct;7(10):e08134 [FREE Full text] [doi: 10.1016/j.heliyon.2021.e08134] [Medline:
34632133]

11. Tohidast SA, Mansuri B, Memarian M, Ghobakhloo AH, Scherer RC. Voice quality and vocal tract discomfort symptoms
in patients with COVID-19. J Voice 2021 Oct 13:S0892 [FREE Full text] [doi: 10.1016/j.jvoice.2021.09.039] [Medline:
34776316]

12. Erdoğan YE, Narin A. COVID-19 detection with traditional and deep features on cough acoustic signals. Comput Biol
Med 2021 Sep;136:104765 [FREE Full text] [doi: 10.1016/j.compbiomed.2021.104765] [Medline: 34416571]

13. Adhikary S, Ghosh A. Dynamic time warping approach for optimized locomotor impairment detection using biomedical
signal processing. Biomed Signal Process Control 2022 Feb;72:103321 [doi: 10.1016/j.bspc.2021.103321]

14. Venail F, Legris E, Vaerenberg B, Puel J, Govaerts P, Ceccato J. Validation of the French-language version of the
OTOSPEECH automated scoring software package for speech audiometry. Eur Ann Otorhinolaryngol Head Neck Dis 2016
Apr;133(2):101-106 [FREE Full text] [doi: 10.1016/j.anorl.2016.01.001] [Medline: 26879579]

15. Muda L, Begam M, Elamvazuthi I. Voice recognition algorithms using mel frequency cepstral coefficient (MFCC) and
dynamic time warping (DTW) techniques. arXiv. Preprint posted online Mar 22, 2010 [FREE Full text]

16. Ribeiro Xavier C, Sachetto Oliveira R, da Fonseca Vieira V, Lobosco M, Weber dos Santos R. Characterisation of Omicron
Variant during COVID-19 Pandemic and the Impact of Vaccination, Transmission Rate, Mortality, and Reinfection in
South Africa, Germany, and Brazil. BioTech 2022 Apr 26;11(2):12 [doi: 10.3390/biotech11020012]

17. Skarbinski J, Wood MS, Chervo TC, Schapiro JM, Elkin EP, Valice E, et al. Risk of severe clinical outcomes among persons
with SARS-CoV-2 infection with differing levels of vaccination during widespread Omicron (B.1.1.529) and Delta
(B.1.617.2) variant circulation in Northern California: A retrospective cohort study. Lancet Reg Health Am 2022
Aug;12:100297 [FREE Full text] [doi: 10.1016/j.lana.2022.100297] [Medline: 35756977]

18. Pah ND, Indrawati V, Kumar DK. Voice features of sustained phoneme as COVID-19 biomarker. IEEE J Transl Eng Health
Med 2022;10:4901309 [FREE Full text] [doi: 10.1109/JTEHM.2022.3208057] [Medline: 36304844]

19. Omiya Y, Mizuguchi D, Tokuno S. Distinguish the severity of illness associated with novel coronavirus (COVID-19)
infection via sustained vowel speech features. Int J Environ Res Public Health 2023 Feb 15;20(4):3415 [FREE Full text]
[doi: 10.3390/ijerph20043415] [Medline: 36834110]

20. Hu H, Chang S, Wang C, Li K, Cho H, Chen Y, et al. Deep learning application for vocal fold disease prediction through
voice recognition: Preliminary development study. J Med Internet Res 2021 Jun 08;23(6):e25247 [FREE Full text] [doi:
10.2196/25247] [Medline: 34100770]

21. Costantini G, Dr VC, Robotti C, Benazzo M, Pietrantonio F, Di Girolamo S, et al. Deep learning and machine learning-based
voice analysis for the detection of COVID-19: A proposal and comparison of architectures. Knowl Based Syst 2022 Oct
11;253:109539 [FREE Full text] [doi: 10.1016/j.knosys.2022.109539] [Medline: 35915642]

22. Abitbol J, Abitbol P, Abitbol B. Sex hormones and the female voice. J Voice 1999 Sep;13(3):424-446 [doi:
10.1016/s0892-1997(99)80048-4] [Medline: 10498059]

23. Berti LC, Spazzapan EA, Queiroz M, Pereira PL, Fernandes-Svartman FR, Medeiros BRD, et al. Fundamental frequency
related parameters in Brazilians with COVID-19. J Acoust Soc Am 2023 Jan;153(1):576 [doi: 10.1121/10.0016848]
[Medline: 36732219]

24. Uloza V, Ulozaitė-Stanienė N, Petrauskas T, Kregždytė R. Accuracy of acoustic voice quality index captured with a
smartphone - measurements with added ambient noise. J Voice 2023 May;37(3):465.e19-465.e26 [doi:
10.1016/j.jvoice.2021.01.025] [Medline: 33676807]

25. Qi Y. Time normalization in voice analysis. J Acoust Soc Am 1992 Nov;92(5):2569-2576 [doi: 10.1121/1.404429] [Medline:
1479120]

26. Serdar CC, Cihan M, Yücel D, Serdar MA. Sample size, power and effect size revisited: simplified and practical approaches
in pre-clinical, clinical and laboratory studies. Biochem Med (Zagreb) 2021 Feb 15;31(1):010502 [FREE Full text] [doi:
10.11613/BM.2021.010502] [Medline: 33380887]

27. Dumas-Mallet E, Button KS, Boraud T, Gonon F, Munafò MR. Low statistical power in biomedical science: a review of
three human research domains. R Soc Open Sci 2017 Feb;4(2):160254 [FREE Full text] [doi: 10.1098/rsos.160254] [Medline:
28386409]

28. Calin-Jageman RJ. The new statistics for neuroscience majors: Thinking in effect sizes. J Undergrad Neurosci Educ
2018;16(2):E21-E25 [FREE Full text] [Medline: 30057503]

Abbreviations
AUC: area under the curve

JMIR Biomed Eng 2023 | vol. 8 | e50924 | p. 13https://biomedeng.jmir.org/2023/1/e50924
(page number not for citation purposes)

Watase et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

https://www.jmir.org/2023//e44410/
http://dx.doi.org/10.2196/44410
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36881540&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S2405-8440(21)02237-4
http://dx.doi.org/10.1016/j.heliyon.2021.e08134
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34632133&dopt=Abstract
https://europepmc.org/abstract/MED/34776316
http://dx.doi.org/10.1016/j.jvoice.2021.09.039
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34776316&dopt=Abstract
https://europepmc.org/abstract/MED/34416571
http://dx.doi.org/10.1016/j.compbiomed.2021.104765
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34416571&dopt=Abstract
http://dx.doi.org/10.1016/j.bspc.2021.103321
https://linkinghub.elsevier.com/retrieve/pii/S1879-7296(16)30001-1
http://dx.doi.org/10.1016/j.anorl.2016.01.001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26879579&dopt=Abstract
https://arxiv.org/abs/1003.4083
http://dx.doi.org/10.3390/biotech11020012
https://linkinghub.elsevier.com/retrieve/pii/S2667-193X(22)00114-4
http://dx.doi.org/10.1016/j.lana.2022.100297
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35756977&dopt=Abstract
https://europepmc.org/abstract/MED/36304844
http://dx.doi.org/10.1109/JTEHM.2022.3208057
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36304844&dopt=Abstract
https://www.mdpi.com/resolver?pii=ijerph20043415
http://dx.doi.org/10.3390/ijerph20043415
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36834110&dopt=Abstract
https://www.jmir.org/2021/6/e25247/
http://dx.doi.org/10.2196/25247
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34100770&dopt=Abstract
https://europepmc.org/abstract/MED/35915642
http://dx.doi.org/10.1016/j.knosys.2022.109539
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35915642&dopt=Abstract
http://dx.doi.org/10.1016/s0892-1997(99)80048-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10498059&dopt=Abstract
http://dx.doi.org/10.1121/10.0016848
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36732219&dopt=Abstract
http://dx.doi.org/10.1016/j.jvoice.2021.01.025
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33676807&dopt=Abstract
http://dx.doi.org/10.1121/1.404429
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=1479120&dopt=Abstract
https://europepmc.org/abstract/MED/33380887
http://dx.doi.org/10.11613/BM.2021.010502
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33380887&dopt=Abstract
https://royalsocietypublishing.org/doi/abs/10.1098/rsos.160254?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.1098/rsos.160254
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28386409&dopt=Abstract
https://europepmc.org/abstract/MED/30057503
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30057503&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


BA: balanced accuracy
EPV10: events per variable 10
DTW: dynamic time warping
GLM: generalized linear model
HNR: harmonic-to-noise ratio
LDA: linear discriminant analysis
MiF: mild-group filtering
MFCC: mel-frequency cepstral coefficient
MoF: moderate-group filtering
ROC: receiving operator curve
SoB: shortness of breath
SpO2: oxygen saturation
TPR: true positive rate
TNR: true negative rate
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