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Abstract

Background: Degenerative cervical myelopathy (DCM) is a slow-motion spinal cord injury caused via chronic mechanical
loading by spinal degenerative changes. A range of different degenerative changes can occur. Finite element analysis (FEA) can
predict the distribution of mechanical stress and strain on the spinal cord to help understand the implications of any mechanical
loading. One of the critical assumptions for FEA is the behavior of each anatomical element under loading (ie, its material
properties).

Objective: This scoping review aims to undertake a structured process to select the most appropriate material properties for
use in DCM FEA. In doing so, it also provides an overview of existing modeling approaches in spinal cord disease and clinical
insights into DCM.

Methods: We conducted a scoping review using qualitative synthesis. Observational studies that discussed the use of FEA
models involving the spinal cord in either health or disease (including DCM) were eligible for inclusion in the review. We followed
the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews)
guidelines. The MEDLINE and Embase databases were searched to September 1, 2021. This was supplemented with citation
searching to retrieve the literature used to define material properties. Duplicate title and abstract screening and data extraction
were performed. The quality of evidence was appraised using the quality assessment tool we developed, adapted from the
Newcastle-Ottawa Scale, and shortlisted with respect to DCM material properties, with a final recommendation provided. A
qualitative synthesis of the literature is presented according to the Synthesis Without Meta-Analysis reporting guidelines.

Results: A total of 60 papers were included: 41 (68%) “FEA articles” and 19 (32%) “source articles.” Most FEA articles (33/41,
80%) modeled the gray matter and white matter separately, with models typically based on tabulated data or, less frequently, a
hyperelastic Ogden variant or linear elastic function. Of the 19 source articles, 14 (74%) were identified as describing the material
properties of the spinal cord, of which 3 (21%) were considered most relevant to DCM. Of the 41 FEA articles, 15 (37%) focused
on DCM, of which 9 (60%) focused on ossification of the posterior longitudinal ligament. Our aggregated results of DCM FEA
indicate that spinal cord loading is influenced by the pattern of degenerative changes, with decompression alone (eg, laminectomy)
sufficient to address this as opposed to decompression combined with other procedures (eg, laminectomy and fusion).

Conclusions: FEA is a promising technique for exploring the pathobiology of DCM and informing clinical care. This review
describes a structured approach to help future investigators deploy FEA for DCM. However, there are limitations to these
recommendations and wider uncertainties. It is likely that these will need to be overcome to support the clinical translation of
FEA to DCM.

(JMIR Biomed Eng 2024;9:e48146)   doi:10.2196/48146
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Introduction

Degenerative cervical myelopathy (DCM) occurs when arthritic
changes to the structure of the cervical spine injure the spinal
cord, causing a slowly progressive spinal cord injury (SCI) [1].
This leads to a range of different symptoms that can affect the
whole body, including loss of dexterity, imbalance, altered
sensation, bladder and bowel dysfunction, and pain [2].
Although DCM is estimated to affect 1 in 50 adults, <20% are
estimated to receive a diagnosis. This is likely, in part, as most
are only mildly affected [3,4]. Treatment is currently limited to
surgery but, due to inherent risks, is reserved for those with
progressive or moderate-to-severe disease [5]. Notably, <5%
of patients with DCM will make a complete recovery after
surgery, and instead are left with lifelong disabilities and
dependence having among the lowest quality of life scores of
any disease [6,7]. Consequently, this was recently estimated to
cost GBP £0.7 billion (approximately US $0.9 billion) per year
[8].

The etiology and pathophysiology of DCM are poorly
understood [1,9]. At a macroscopic level, this is a cohort that
displays progressive cervical myelopathy with degenerative
changes to the structure of their cervical spine, typically causing
some deformation of the spinal cord on magnetic resonance
imaging (MRI), which responds to decompressive surgery. This
led to the hypothesis that DCM is triggered by a chronic
mechanical injury, specifically compression loading.

However, this is likely to be an oversimplification. Spinal cord
compression is most commonly an incidental finding [3]; the
amount of compression visualized on the MRI poorly correlates
with the disease severity and does not predict the treatment
response [10-12]. Moreover, many other forms of mechanical
loading also occur, including stretching or shear loading. These
are recognized to be capable of causing tissue injury
independently [1]. For example, stretching is considered the
etiology of myelopathy in tethered cord syndrome and some
forms of deformity [13]. Consequently, it is more likely that
the mechanical trigger in DCM is the interaction of these
mechanical forces rather than one alone. As the structural
changes within the spine highly vary between patients, this is
likely to be a very individualized phenomenon [14]. This
presents a problem for clinical practice, as conventional
diagnostic tests such as MRI cannot measure mechanical stress;
however, the goal of surgery is to alleviate it [12,15].

Finite element analysis (FEA) is an engineering technique that
uses a computational model to derive the extent and severity of
mechanical stress from an assumed loading [16]. This has
frequently been applied to health care, including, to some extent,
SCI and, more recently, DCM [16-18]. FEA could have
important applications in DCM, both to improve our
understanding of the pathobiology and to represent an
individual’s injury and objectively inform surgical strategy.

To perform an FEA, a computer model incorporating the
geometry, motion, and material properties of each structure

must be created [17]. Geometry and motion, to a large extent,
can be defined based on an individual’s clinical imaging.
However, the material properties must be chosen from other
sources. These choices will influence the results of the FEA.
For spinal cord FEA to date, these choices have been made on
a project-by-project basis, typically informed by the experience
of the investigators, their interpretation and knowledge of the
literature, and their specific project aims. To inform the
development of FEA for DCM, we adopted an iterative approach
using a scoping review methodology with the following aims:

• To describe how FEA models have been constructed with
respect to spinal cord disease

• To identify and appraise the experimental literature that
has informed their material property choices to make
recommendations on the material properties for DCM FEA

• To aggregate the findings from studies using FEA to explore
DCM.

To the best of our knowledge, this represents a unique approach
to selecting the material properties for a clinical FEA model
and may represent an exemplar for similar initiatives.

Methods

A scoping review methodology was considered most appropriate
to meet these objectives [19]. This scoping review was reported
in accordance with the PRISMA-ScR (Preferred Reporting
Items for Systematic Reviews and Meta-Analyses extension for
Scoping Reviews) guidelines (Multimedia Appendix 1).

Search Strategy
The search was conducted using a modified population,
interventions, comparisons, and outcomes strategy, which states
that the research question for a review must include the
population, intervention, comparison, and outcome. Our research
question was, “what are the current findings and design
approaches for FEA in DCM?”, with the population being
patients with DCM, intervention being FEA, and outcomes
being current findings and design approaches. To more
comprehensively guide future decisions regarding the
application of FEA methods to DCM, we broadened our
inclusion criteria to incorporate any study that applied FEA to
the spinal cord (in either health or disease). Consequently, the
search terms were designed to capture observational studies that
had developed FEA models that included the spinal cord in
either health or disease, including DCM (Multimedia Appendix
2). Searches were conducted from inception (February 12, 2021)
to September 1, 2021, in the MEDLINE and Embase databases.
Search sensitivity was evaluated using 5 papers known to meet
the inclusion criteria; all papers were successfully captured
[18,20-23].

Inclusion and Exclusion Criteria
Papers were considered eligible for inclusion if they were
observational studies that discussed the use of FEA models that
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included the spinal cord of humans or animals in either health
or disease, including DCM.

Papers were excluded if they were written in a language other
than English, did not use FEA models, or did not include the
spinal cord in the FEA model. Furthermore, systematic reviews,
scoping reviews, editorials, and abstracts were excluded.

Study Screening and Data Extraction
Two reviewers (BMD and SS) independently performed title
and abstract screening with blinding using Rayyan (Rayyan
Systems Inc). A pilot screen of 100 publications was conducted
to ensure concordance between reviewers. Any disagreements
following unblinding were resolved by discussion between the
reviewers until mutual agreement was reached. In this review,
papers identified through our search strategy are termed “FEA
articles”.

From the included FEA articles, the references used to justify
a structure’s material properties were also screened to identify
experimental studies reporting original data acquired from
physical tissue tests. Studies exploring behavior computationally
but including their original physical experiments, even if
published elsewhere, were included. Studies that explored
properties solely on a computational basis were excluded. This
forward search continued within the references of a referenced
study if the reference did not meet this criterion and had cited
an alternative source.

Papers were retrieved for full-text screening and data extraction
using a piloted pro forma. Data extracted from the papers
included: author, year of publication, country, study objectives,
study design (eg, human or animal study), disease of interest
(if any), spinal segment (eg, cervical, thoracic, and lumbar),
reference for anatomy (eg, cadaveric specimen and imaging),
and details of how the FEA model was developed and validated
(including the material properties of the anatomical elements).

Data extraction focused on the properties specifically referenced
by the original FEA models and may not have included all the
material properties discussed in the paper. To understand an
investigator’s approach to model development, these were
distinguished as those used to define the model a priori (ie,
referenced data and the choice of material law and selected
coefficients) or those used to validate the final model (if
performed). However, for the purpose of selecting data to inform
an FEA model, these references were aggregated and termed
as “source articles” in this review.

In the absence of a standard quality assessment tool for
experimental studies of biomechanics, we developed a
classification to help appraise source articles that are most
appropriate for a DCM FEA model [24]. This included a risk
of bias assessment adapted from the Newcastle-Ottawa Scale,
focusing on selection and reporting bias (Multimedia Appendix
3) [25].

Data Analysis and Reporting
Due to significant heterogeneity between methodologies,
meta-analysis was not possible, and a qualitative Synthesis

Without Meta-Analysis (SWiM) was instead performed. Data
were aggregated, where applicable, qualitatively, quantitatively,
or using frequency statistics, as per the SWiM guidelines [26].

Given the small field size, with many papers published by single
groups, citation networks were created to graphically consider
which choices were made across the field and how they were
informed. Using this framework and our judgment, we ranked
source articles into approximate tertiles. For FEA articles that
had cited top-source articles and represented the material
properties using an equation, the performance of this equation
was further evaluated graphically by generating stress-strain
curves. These were exclusively either linear or hyperelastic. For
models using a linear elastic equation, the Young modulus was
used as the gradient of the stress-strain curve. For models using
a hyperelastic equation, a 3×3 element cube was created using
ABAQUS (Dassault Systèmes). The cube was stretched
uniaxially, with no constraint applied in the orthogonal
directions, linearly increasing the nominal strain in increments
of 0.04 to a maximum of 0.4. The outputs of this model were
then applied true stress as a function of the applied true strain.
Finally, any primary clinical papers that conducted FEA for the
investigation of DCM were aggregated separately and analyzed.

Data were displayed using a range of plots constructed using R
Studio (version 4.0.3; Posit).

Results

Overall Approach of FEA Models of Spinal Cord
Disease: Anatomy, Geometry, Motion, and Validation
The search returned 597 articles, of which 155 (25.9%) were
duplicates (Figure 1). Following screening, 41 FEA articles
were eligible for inclusion, of which 32 (78%) modeled the
human spinal cord; a further 45 (7.54%) source articles were
identified through citation search, of which 19 (42%) were
shortlisted as suitable. Of the FEA articles, approximately half
(21/41, 51%) focused on SCI [27-47]; 34% (14/41) on DCM
[18,20-22,48-57]; and 5% (2/41) each on scoliosis [58,59],
syringomyelia [60,61], and flexion myelopathy [62,63]. Most
models (25/41, 61%) included only the spinal cord, whereas
24% (10/41) included the surrounding anatomy at multiple
vertebral levels, and 17% (7/41) included the surrounding
anatomy at only 1 motion segment (ie, 2 adjacent vertebrae).
Physiological movement of the spine (flexion and extension)
was incorporated into 17% (7/41) of the models, but none
evaluated spinal cord oscillation. This was equally likely among
the DCM and SCI models (Multimedia Appendix 4).

The anatomy of each model was built using a combination of
imaging and cadaveric data in 27% (11/41) of the FEA articles.
Typically, imaging was used for bones and cadavers for soft
tissues, including the spinal cord. This included an open-source
reference library called BodyWorks [64] and a review of spinal
cord geometry [65]. MRI was used to define the spinal cord
specifically in 20% (8/41) of the FEA articles.
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Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram. FEA: finite element analysis.

For most FEA articles (33/41, 80%), the spinal cord was
modeled as gray matter and white matter separately and had a
defined pial layer (26/41, 63%) or was encased within the dural
layer (26/41, 63%). Defined pial and dural layers were used in
combination in only half of these articles (13/41, 32%).
Cerebrospinal fluid (CSF) was specifically modeled in 41%
(17/41) of the FEA articles, while other elements were variably
included. This choice was independent of the disease and
publication date (Multimedia Appendix 4). Elements were
modeled using solid shell elements, unless specified differently
in the Material Properties of Anatomical Elements With
Recommendations for DCM FEA section.

Validation methods were specified in 63% (26/41) of the FEA
articles, with 15% (6/41) using their own experiments and 9%
(20/41) using literature (Multimedia Appendix 5). These
references pointed to 17 articles, of which 7 (42%) provided
material property data for the spinal cord in healthy
circumstances and 3 (18%) in traumatic SCI circumstances. Of
the remaining 17 articles, 4 (24%) described motion of the spine
[66-69] and 1 (6%) described the spinal cord in flexion and
extension [70]. Of the 9 articles providing information on
healthy spinal cord properties, 7 (78%) were also used in other
studies to inform the selection of material property. No
DCM-specific validation data sets were identified.

Material Properties of Anatomical Elements With
Recommendations for DCM FEA

Spinal Cord
The material properties of the whole spinal cord were defined
in 22% (9/41) of the FEA articles. This was rarely justified, but
if so, qualified by its uncertain significance [71,72]. Typically,
a hyperelastic Ogden variant (4/9, 44%) or a linear elastic (3/9,
33%) function was used.

For the remaining models, gray and white matter were modeled
separately, except for the article that explored the impact of a
range of white matter material properties, where the material
law applied to gray matter was the same as that of white matter.
The remaining 32 models were mostly based on tabulated data
from the studies by Ichihara et al [72,73], and less frequently,
Bilston and Thibault [74], Tunturi [75], and Ozawa et al [76].
Alternatively, a hyperelastic Ogden variant (10/41, 24%) or a
linear elastic (4/41, 10%) function was used.

A total of 2 studies specifically compared different material
properties with respect to a transverse contusion model of SCI.
Jannesar et al [38] explored white matter properties on the basis
that single constitutive models may not account for the dynamic
(viscoelastic) and anisotropic properties. They identified that
this could be improved by adding reinforcing functions. A
second order reduced polynomial hyperelastic function
combined with a quadratic reinforcing function in a 4-term

Prony series performed best (0.89<R2<0.99), although this was
principally in relation to the high strain rates of an SCI. Fournely
et al [45] used a first-order Ogden function but varied the
stiffness of the gray matter with respect to the white matter.
Although this fell within the range of the validation data set,
they observed differing responses to the load. When the gray
matter was stiffer than the white matter, strain distribution was
more diffuse and maximal within the white matter. When the
stiffness was equivalent, strain was localized to the impact site.
When the white matter was stiffer than the gray matter, strain
was less localized, maximal within the gray matter and involved
the contralateral gray matter. This was the principal factor
determining behavior, ahead of other factors explored, including
spinal cord diameter, curvature, and impactor angle.

A total of 2 studies similarly explored the implications of
different gray and white matter material properties with respect
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to DCM, with similar findings discussed in the Findings From
the FEA Studies of DCM section [34,50].

A total of 14 source articles were identified describing the
material properties of the spinal cord or its subcomponents
(Multimedia Appendix 6 [46,72-75,77-90]), of which 3 (21%)
were shortlisted with relevance to an FEA for DCM [72-74].
Their interpretations varied across studies (Figure 2). The choice
of material laws and values of those who directly cited the

prioritized source articles and separately distinguished gray and
white matter are listed in Tables 1-2. Broadly, these align with
the source articles; however, there are differences across the
strain range (Multimedia Appendix 6). Of these FEA articles
representing material properties with an equation, studies by
Jannesar et al [29] and Khuyagbaatar et al [53] were selected
as these were most aligned for gray matter and white matter,
respectively.

Figure 2. Network analysis of finite element analysis models, which is linked to a shortlisted source article, for the white matter (A) and gray matter
(B) or the spinal cord as a whole (C). The original finite element analysis models are represented by their choice of material law as a star (linear elastic),
square (hyperelastic), diamond (tabulated), or triangle (other) and their disease of interest as degenerative cervical myelopathy (DCM; red), spinal cord
injury (SCI; blue), or other (green). These link to the primary source articles (dots). An intermediate article, that is, the one that did not include primary
experimental data, is pale gray. A shortlisted source article is black. Each figure is additionally available as an interactive file; refer to Multimedia
Appendix 7. The higher resolution version of this figure is available in Multimedia Appendix 8.
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Table 1. Extracted material equations for the gray matter.

De (MPa−1)μd (MPa)αcνbEa (MPa)VariantLawReferencePathologyStudy, year

0.905i,j0.044510.570.49—hOgden, first
Order

HyperelasticIchihara et al
[72], 2003

SCIgJannesar et al [29], 2021f

50.50.004114.70.45—Ogden, first
order

HyperelasticIchihara et al
[73], 2001

DCMkKhuyagbaatar et al [53],
2017

6.770.03067.520.45—Ogden, first
order

HyperelasticIchihara et al
[72], 2003

SCIJannesar et al [38], 2016

50.50.004114.70.45—Ogden, first
order

HyperelasticIchihara et al
[73], 2001

SCIKhuyagbaatar et al [39],
2016

—0.2188—0.4990.656—Linear elasticIchihara et al
[72], 2003

SCICzyz et al [42], 2008

6.470.03204.70.45—Ogden, first
order

HyperelasticBilston and
Thibault [74],
1996

SCIMaikos et al [43], 2008

—0.0222—0.4990.0667—Linear elasticBilston and
Thibault [74],
1996

SCIScifert et al [44], 2002

aE: Young modulus.
bν: Poisson ratio. Where missing, the value of ν was assumed to be 0.45.
cα: material exponent parameter.
dμ: ground shear hyperelastic modulus.
eD: compressibility constant.
fThe single preferred source of the authors based on modeling (Multimedia Appendix 6), where a range of equations were put forward.
gSCI: spinal cord injury.
hNot available.
iDenotes a suspected error in original text and input value given.
jValues in italics are input based on the identity for isotropic materials, D=3(1-2ν)/(μ{1+ν}), and for linear elastic, μ=E/(2{1+ν}).
kDCM: degenerative cervical myelopathy.
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Table 2. Extracted material equations for the white matter.

De (MPa−1)μd (MPa)αcνbEa (MPa)VariantLawReferencePathologyStudy, year

—1.4483h—0.454.2—gLinear elasticIchihara et al
[73], 2001

DCMfLiang et al [48], 2021

51.70.004012.50.45—Ogden, first
order

HyperelasticIchihara et al
[73], 2001

DCMKhuyagbaatar et al [52],
2017

51.70.004012.50.45—Ogden, first
order

HyperelasticIchihara et al
[73], 2001

SCIiKhuyagbaatar et al [39],
2016

— 0.0924—0.4990.277—Linear elasticIchihara et al
[72], 2003

SCICzyz et al [42], 2008

6.470.03204.70.45—Ogden, first
order

HyperelasticBilston and
Thibault [74],
1996

SCIMaikos et al [43], 2008

—0.0222—0.4990.0667—Linear elasticBilston and
Thibault [74],
1996

SCIScifert et al [44], 2002

aE: Young modulus.
bν: Poisson ratio. Where missing, the value of ν was assumed to be 0.45.
cα: material exponent parameter.
dμ: ground shear hyperelastic modulus.
eD: compressibility constant.
fDCM: degenerative cervical myelopathy.
gNot available.
hValues in italics are input based on the identity for isotropic materials, D=3(1-2ν)/(μ{1+ν}), and for linear elastic, μ=E/(2{1+ν}).
iSCI: spinal cord injury.

Pia
Of the 26 FEA articles with defined pia, 14 (54%) used a linear
elastic function, 9 (21%) did not report their method, and 2 (5%)
used a hyperelastic Ogden variant function. The remaining study
(1/26, 4%) used tabulated data from the study by Ichihara et al
[73].

A total of 4 source articles were identified for the pia
(Multimedia Appendix 6), of which 2 (50%) were shortlisted
as suitable [75,77]. The choice of material laws and the values
of those who directly cited these shortlisted source articles are
listed in Table 3. These equations have differences in how they
represent the source article (Multimedia Appendix 6). Of the
FEA articles representing material properties with an equation,
the study by Jannesar et al [38] was selected as the most
preferred.
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Table 3. Extracted material equations for the pia.

De (MPa−1)μd

(MPa)
αcνbEa (MPa)VariantLawReferencePathologyStudy, year

—35.71g—0.4100—fLinear elasticTunturi [75], 1978OtherHenao et al [58,59], 2017

———————Tunturi [75], 1978DCMhNishida et al [91], 2016

———————Tunturi [75], 1978DCMNishida et al [54], 2015

———————Tunturi [75], 1978DCMNishida et al [55], 2014

———————Tunturi [75], 1978DCMNishida et al [22], 2012

—35.71—0.4100—Linear elasticTunturi [75], 1978OtherHenao et al [58], 2018

———————Tunturi [75], 1978DCMKato et al [56], 2010

———————Tunturi [75], 1978OtherKato et al [62], 2008

———————Tunturi [75], 1978OtherKato et al [63], 2009

—15.12—0.339.3—Linear elasticKimpara et al [77],
2006

SCIJannesar et al [38], 2016i

aE: Young modulus.
bν: Poisson ratio. Where missing, the value of ν was assumed to be 0.45.
cα: material exponent parameter.
dμ: ground shear hyperelastic modulus.
eD: compressibility constant.
fNot available.
gValues in italics are input based on the identity for isotropic materials, D=3(1-2ν)/(μ{1+ν}), and for linear elastic, μ=E/(2{1+ν}).
hDCM: degenerative cervical myelopathy.
iThe single preferred source of the authors based on modelling (Multimedia Appendix 6).

Dura
Of the 26 models with defined dura, 18 (69%) used a linear
elastic function, 5 (19%) used a hyperelastic Ogden variant, and
3 (12%) did not report their method.

Persson et al [46] compared the performance of a linear and
hyperelastic function, which is summarized in the following
CSF section.

A total of 9 source articles were referenced (Multimedia
Appendix 6), of which 4 (44%) were shortlisted [78-81]. The
choice of material laws and values of those who directly cited
these prioritized source articles are listed in Table 4. These
equations have differences in how they represent the source
article (Multimedia Appendix 6). Of the FEA articles
representing material properties with an equation, the study by
Sparrey et al [33] was selected as preferred.
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Table 4. Extracted material equations for the dura.

De (MPa−1)μd (MPa)αcνbEa (MPa)VariantLawReferencePathologyStudy, year

—1.72 h—0.455—gLinear ElasticPersson et al
[92], 2020

DCMfStoner et al [20], 2020

—26.85—0.4980—Linear ElasticPersson et al
[92], 2020

DCMKhuyagbaatar et al [49],
2018

—79.66—0.45231—Linear ElasticWilcox et al [47],
2004

OtherHenao et al [58,59], 2017

—26.85—0.4980—Linear ElasticPersson et al
[92], 2020

DCMKhuyagbaatar et al [52],
2017

0.1721.20516.20.45—Ogden,1st
Order

Hyper-elasticHong et al [78],
2011 and Zarzur
et al [79], 1996

SCISparrey et al [33], 2016i

—48.97—0.45142—Linear ElasticWilcox et al [47],
2004

SCIYan et al [36], 2012

—79.66—0.45231—Linear ElasticWilcox et al [47],
2004

OtherHenao et al [58], 2018

—26.85—0.4980—Linear ElasticPersson et al
[92], 2020

SCIKhuyagbaatar et al [39],
2016

—26.85—0.4980—Linear ElasticPersson et al
[92], 2020

DCMKhuyagbaatar et al [57],
2015

—26.85—0.4980—Linear ElasticPersson et al
[92], 2020

SCIKhuyagbaatar et al [57],
2015

—48.97—0.45142—Linear ElasticWilcox et al [47],
2004

SCICzyz et al [42], 2008

—26.85—0.4980—Linear ElasticPersson et al
[92], 2020

SCIPersson et al [46], 2011

————Young modulus
in the radial di-
rection=142,
Young modulus
in the circumfer-
ential direc-
tion=142,
Young modulus
in the longitudi-
nal direc-
tion=0.7

—Anisotropic
Elastic

Wilcox et al [47],
2004

SCIWilcox et al [47], 2004

aE: Young modulus.
bν: Poisson ratio. Where missing, the value of ν was assumed to be 0.45.
cα: material exponent parameter.
dμ: ground shear hyperelastic modulus.
eD: compressibility constant.
fDCM: degenerative cervical myelopathy.
gNot available.
hValues in italics are input based on the identity for isotropic materials, D=3(1-2ν)/(μ{1+ν}), and for linear elastic, μ=E/(2{1+ν}).
iThe single preferred source of the authors based on modelling (Multimedia Appendix 6).

Dentate Ligament
Of the 13 FEA articles that included the dentate ligament, 12
(92%) used a linear elastic function and 1 (8%) used tabulated
data. Typically, these were modeled using shell elements (6/13,

46%) with geometric properties, but 8% (1/13) used link
elements and 15% (2/13) used spring elements.

A total of 2 source articles were referenced (Multimedia
Appendix 6), of which both were shortlisted [75,82]. The choice
of material laws and values of those who directly cited these
prioritized source articles are listed in Table 5.
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Table 5. Extracted material equations for the dentate.

De (MPa−1)μd (MPa)αcνbEa (MPa)VariantLawReferencePathologyStudy, year

—35.7 g—0.4100—fLinear elasticTunturi [75], 1978OtherHenao et al [58,59], 2017

—35.7—0.4100—Linear elasticTunturi [75], 1978OtherHenao et al [58], 2018

—2.0——5.8—Linear elasticTunturi [75], 1978SCIhGreaves et al [41], 2008

—38.5—0.3100—Linear elasticTunturi [75], 1978SCICzyz et al [42], 2008

aE: Young modulus.
bν: Poisson ratio. Where missing, the value of ν was assumed to be 0.45.
cα: material exponent parameter.
dμ: ground shear hyperelastic modulus.
eD: compressibility constant.
fNot available.
gValues in italics are input based on the identity for isotropic materials, D=3(1-2ν)/(μ{1+ν}), and for linear elastic, μ=E/(2{1+ν}).
hSCI: spinal cord injury.

Cerebrospinal Fluid
Of the 17 models that included CSF, 8 (47%) modeled it as a
Newtonian fluid. Alternatives included modeling CSF as a
pressurized fluid cavity (1/17, 6%), modeling it as a polynomial
equation of state (1/17, 6%), modeling it as smoothed particular
hydrodynamics (1/17, 6%), using a hyperelastic Mooney-Rivlin
model (3/17, 18%), or using a linear elastic equation (1/17, 6%).

Persson et al [46] and Jones et al [93] specifically explored the
implications of including a CSF cavity, with or without the dura.
To measure cord deformation, Persson et al [46] used an FEA
model with reference to a transverse bovine impaction model
of SCI, whereas Jones et al [93] performed their own bovine
and surrogate cord experiments. They observed that the presence
of CSF reduced stress and strain (Persson et al [46]) on the
spinal cord and deformation (Jones et al [93]) in the spinal cord.
Persson et al [46] demonstrated this was through a greater
longitudinal distribution, particularly when the dura was

included and modeled using a hyperelastic Ogden (as opposed
to linear elastic) function. Furthermore, Persson et al [46]
observed that cord deformation occurred upon contact with the
dura (before the CSF between the spinal cord and the dura was
redistributed). Jones et al [93] observed that the inclusion of
the dura only changed behavior if CSF was also included.

Furthermore, Arhiptsov and Marom [31] explored CSF pressure,
alongside the presence or absence of epidural fat, using a
computational contusion model of SCI based on a thoracic burst
fracture. Both CSF and epidural fat were modeled using
smoothed particular hydrodynamics. In a model without epidural
fat, spinal cord stress and strain increased with increasing CSF
pressure. However, in the model with epidural fat, spinal cord
stress and strain decreased with increasing CSF pressure.

A total of 5 source articles were referenced (Multimedia
Appendix 6), of which 3 (60%) were shortlisted [46,83,84]. The
choice of material laws and values of those who directly cited
these prioritized source articles are listed in Table 6.

Table 6. Extracted material equations for the cerebrospinal fluid.

Density (kg/m3)Viscosity (Pa/s)LawReferencePathologyStudy, year

—b0.001Newtonian FluidBloomfield et al [83], 1998DCMaKhuyagbaatar et al [52], 2017

——Polynomial Equation of
State

Persson et al [46], 2011SCIcArhiptsov [31], 2021

—0.001Newtonian FluidBloomfield et al [83], 1998,
Brydon et al [84], 1995

DCMKhuyagbaatar et al [39], 2016

10000.001Newtonian FluidBloomfield et al [83], 1998,
Brydon et al [84], 1995

SCIKhuyagbaatar et al [39], 2016

—0.001Newtonian FluidBloomfield et al [83], 1998,
Brydon et al [84], 1995

DCMKhuyagbaatar et al [57], 2015

—0.001Newtonian FluidBloomfield et al [83], 1998,
Brydon et al [84], 1995

SCIKhuyagbaatar et al [57], 2015

—0.001Newtonian FluidBloomfield et al [83], 1998SCIPersson et al [46], 2011

aDCM: degenerative cervical myelopathy.
bNot available.
cSCI: spinal cord injury.
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Posterior Longitudinal Ligament and Ligamentum
Flavum
The analysis focused on the posterior longitudinal ligament and
ligamentum flavum, given their specific involvement in the
pathobiology of DCM. In all 6 instances included, they were
included together and modeled in the same manner: using
piecewise linear plasticity (2/6, 33%), linear elastic function

(2/6, 33%), hyperelastic Ogden variant (1/6, 17%), or tabulated
data (1/6, 17%).

A total of 6 source articles were referenced (Multimedia
Appendix 6), of which 3 (50%) were shortlisted [85-87]. The
choice of material laws and values of those who directly cited
these prioritized source articles are listed in Tables 7 and 8.

Table 7. Extracted material equations for the ligamentum flavum.

De (MPa−1)μd (MPa)αcνbEa (MPa)VariantLawReferencePathologyStudy, year

—1.3 h——3.8—gLinear elasticYoganandan et al 1989
and 2000 [86,87]

SCIfGreaves et al [41], 2008

aE: Young modulus.
bν: Poisson ratio. Where missing, the value of ν was assumed to be 0.45.
cα: material exponent parameter.
dμ: ground shear hyperelastic modulus.
eD: compressibility constant.
fSCI: spinal cord injury.
gNot available.
hValues in italics are input based on the identity for isotropic materials, D=3(1-2ν)/(μ{1+ν}), and for linear elastic, μ=E/(2{1+ν}).

Table 8. Extracted material equations for the posterior longitudinal ligament.

De (MPa−1)μd (MPa)αcνbEa (MPa)VariantLawReferencePathologyStudy, year

—12.3 h——35.7—gLinear elasticPrzybylski et al [85],
1996 and Yoganandan
1989 and 2000 [86,87]

SCIfGreaves et al [41], 2008

aE: Young modulus.
bν: Poisson ratio. Where missing, the value of ν was assumed to be 0.45.
cα: material exponent parameter.
dμ: ground shear hyperelastic modulus.
eD: compressibility constant.
fSCI: spinal cord injury.
gNot available.
hValues in italics are input based on the identity for isotropic materials, D=3(1-2ν)/(μ{1+ν}), and for linear elastic, μ=E/(2{1+ν}).

Spinal Roots
A total of 7 models included spinal nerve roots, of which 2
(29%) distinguished between the intradural and extradural
components. These 2 models specifically explored the nature
of C5 palsy in relation to surgery for DCM [49,57]. Nerve roots

were all modeled with spring elements, either as a spring (5/7,
71%) or with a linear elastic equation (2/7, 29%).

A total of 2 source articles of equivalent quality were referenced
(Multimedia Appendix 6) [88,89]. The choice of material laws
and values of those who directly cited these prioritized source
articles are listed in Table 9.
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Table 9. Extracted material equations for the nerve roots.

Mass (g)Spring constantνbEa (MPa)LawReferencePathologyStudy, year

0.10.133——dSpringKulkarni [88], 2007DCMcLévy et al [18], 2021

——0.31.3Linear ElasticSingh [89], 2005DCMKhuyagbaatar et al [49], 2018

—0.133——SpringKulkarni [88], 2007OtherHenao et al [58,59], 2017

——0.31.3Linear ElasticSingh [89], 2005DCMKhuyagbaatar et al [52], 2017

—0.133——SpringKulkarni [88], 2007OtherHenao et al [58], 2018

aE: Young modulus.
bν: Poisson ratio; where missing, ν was assumed to be 0.45. For Kulkarni et al [88], the unit is uncertain, with a range of different units referenced
across its citations.
cDCM: degenerative cervical myelopathy.
dNot available.

Other Elements
Other elements included in some models were bone (14/41,
34%); intervertebral disks (IVDs; 13/41, 31%); and the
remaining spinal ligaments, such as the anterior longitudinal or
interspinous ligament.

The bone was generally modeled as a rigid body (8/14, 57%).
Of the 8 models, 3 (21%) subdivided the vertebrae into
anatomical subcomponents (eg, body, laminae, and spinous
process), and 5 (36%) distinguished between cortical and
cancellous bone, of which 3 (60%) applied an equation just to
the cortical bone (linear elastic in all cases) and 2 (40%) applied
a Johnson-Cook or plastic kinematic equation. We found no
eligible source articles using our search process.

The IVD were modeled as a single entity in 54% (7/13) of the
papers, typically as a rigid body (5/7, 71%) or using a linear
elastic equation (2/7, 29%). Alternatively, they were modeled
separately as nucleus pulposus and annulus fibrosus. Techniques
for the nucleus pulposus included a Mooney-Rivlin model (3/6,
50%), Ogden second-order variant (1/6, 17%), and fluid
elements (2/6, 33%). The annulus fibrosus included a
Mooney-Rivlin model (2/6, 33%), Ogden second-order variant
(1/6, 17%), Ogden third-order variant (1/6, 17%), and linear
elastic equation (2/6, 33%).

A total of 3 source articles were found for IVD, and 1 was
shortlisted (Multimedia Appendix 6) [90]. The choice of material
laws and values of those who directly cited these prioritized
source articles are listed in Table 10.

Table 10. Extracted material equations for the intervertebral disc.

De (MPa−1)μd (MPa)αcνbEa (MPa)VariantLawReferencePathologyStudy, year

—1.2 h——3.4—gLinear elasticSpilker et al [90], 1986SCIfGreaves et al [41], 2008

aE: Young modulus.
bν: Poisson ratio. Where missing, the value of ν was assumed to be 0.45.
cα: material exponent parameter.
dμ: ground shear hyperelastic modulus.
eD: compressibility constant.
fSCI: spinal cord injury.
gNot available.
hValues in italics are input based on the identity for isotropic materials, D=3(1-2ν)/(μ{1+ν}), and for linear elastic, μ=E/(2{1+ν}).

Findings From the FEA Studies of DCM
Of the DCM models, 60% (9/15) specifically focused on
ossification of the posterior longitudinal ligament (OPLL), a
specific subtype of DCM.

Stress and Static Cord Compression
A total of 8 models explored the relationship between the
amount of static spinal cord compression and spinal cord stress.
Kato et al [56] and Kim et al [21] used parametric models of
the spinal cord to explore the implications of OPLL (anterior)
compression at 2 adjacent vertebrae. The model was constrained
posteriorly, reflecting the lamina. They found that the stress
increased with increasing cord compression, with an apparent

exponential relationship. Minimal stress was detected at <40%
but dramatically increased at ≥50%. This relationship was
replicated by Nishida et al [91] using posterior compression,
by Liang et al [48] simulating a disk prolapse, and in a
multisegmental model of OPLL by Khuyagbaatar et al [52,57].
Furthermore, it was replicated in cervical spondylosis by Levy
et al [18] (Figure 3 [18,21,52,57]).

Maximal stress was observed in the gray matter and, to a lesser
extent, in the lateral and posterior funiculus. Nishida et al [91]
observed differences in the stress distribution at low
compression rates depending on the spinal cord level related to
differing morphology; however, beyond a compression rate of
30%, this was consistent (Figure 4).
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Okazaki et al [50] explored the implications of spinal cord aging
using a parametric model of the spinal cord. The model was
given white and gray matter properties based on a young or
aged bovine spinal cord specimen. They observed that stress

increased under a low amount of anterior compression in the
aged spinal cord and was more widely distributed throughout
the gray matter and white matter. In contrast, the gray matter
was unaffected in the young specimen.

Figure 3. Spinal cord compression and spinal cord stress in degenerative cervical myelopathy models. For models tabulating the von Mises stress at
different measures of static compression or canal stenosis (n=4) [18,21,52,57], the values were plotted on a line graph with a line of best fit representing
the average value (blue).

Figure 4. Spinal cord compression and location of spinal cord stress in degenerative cervical myelopathy models. The spinal cord was partitioned, per
hemicord, as gray matter and anterior, anterolateral, posterolateral, and posterior white matter. For each study, reporting the cross-sectional distribution
of Von Mises stress (n=12) and the location of stress that fell within the top 30% of measured stress was noted. These frequencies were aggregated by
compression pattern and displayed for (A) anterior diffuse and static, (B) anterior focal and static, and (C) circumferential and dynamic distribution and
location of stress as relative proportions.
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Stress and Dynamic Cord Compression
Nishida et al [22] used a parametric model to explore the
implications of ligamentum flavum buckling in neck extension
in the context of cervical stenosis. For this, the spinal cord was
restricted posteriorly by the ligamentum flavum and then
anteriorly, either by a central curvature (representing a disk
prolapse) or a flat lateral or flat cross-sectional constraint
(representing the ligament). The amount of ligamentum flavum
buckling was measured using a kinematic MRI. Spinal cord
stress was observed in all scenarios and was maximal using the
flat cross-sectional constraint.

Later, Nishida et al [54] used a parametric model of OPLL to
demonstrate that while dynamic and static compression alone
could stress the spinal cord, they could also act together,
although it was unclear whether this was additive or
multiplicative. In dynamic compression alone, stress was more
restricted to gray matter.

Stress and Shape of Cord Compression
Khuyagbaatar et al [57] and Kim et al [21] did not identify any
difference in OPLL shape or type with respect to observed spinal
cord stress. Furthermore, in the study by Nishida et al [22], the
distribution of stress was broadly comparable across the three
scenarios affecting the gray matter and anterior and
posterolateral aspects of the white matter tracts. In unilateral
compression only, the ipsilateral gray matter was affected. Levy
et al [18] explored gradually increasing anterior diffuse
(broad-based disk), anterior lateral, and circumferential
compression using a static multilevel model. Different
phenotypes of stress were observed, including peak stress, point
of onset, and rate of increase. The highest stress was observed
with an anterior diffuse or circumferential compression (Figure
4).

Stress and Surgical Decompression
Khuyagbaatar et al [39] used a multisegmental model to explore
the implications of hemilaminectomy, laminectomy, and
laminoplasty on spinal cord stress following a 1-, 2-, 3-, or
4-level posterior decompression for continuous OPLL. Stress
remained elevated following hemilaminectomy but was low
and equivalent between laminectomy and laminoplasty. The
postoperative deformity was not modeled.

Nishida et al [55] used a parametric model to explore the
implications of alignment following posterior decompression
for OPLL. They demonstrated that although stress decreased
significantly following decompression, it slightly increased in
the anterior funiculus, increasing in the gray matter and
posterolateral funiculi with progressive deformity. They
subsequently replicated this in a separate analysis [51],
demonstrating that kyphosis and increased mobility after
decompression would elevate the observed stress.

Khuyagbaatar et al [49,52] explored the effects of laminectomy
and laminoplasty, respectively, for the treatment of OPLL using
a multisegmental static compression model. They demonstrated
that all procedures reduced spinal cord stress significantly
(>90%), whether in lordotic (K Line positive) or kyphotic
deformity (K Line negative) [94]. However, stress was elevated

within the exiting C5 nerve root following laminectomy if there
was a kyphotic deformity and lateral-type OPLL following
laminoplasty. In both instances, the amount of nerve root stress
was related to the amount of anterior compression.

Stoner et al [20] used a multisegmental dynamic model (C2-T1)
to explore the implications of multilevel C4-7 cervical
spondylosis (anterior disk prolapses and osteophyte formation)
treated with C4-7 anterior cervical discectomy and fusion
(ACDF), laminoplasty, or ACDF with laminectomy. Notably,
all procedures caused stress to increase at adjacent levels above
those of healthy controls. However, a stand-alone ACDF caused
increased stress within the spinal cord at C3 to a level above
that of the preoperative DCM model in flexion.

Where possible, these were aggregated, demonstrating that the
spinal cord tolerated significant compression before stress
increased exponentially (Figure 3 [18,21,52,57]). Aggregating
the distributions of stress observed across studies, based on the
nature of compression, demonstrated differing stress
distributions (Figure 4). For static and diffuse anterior
compression, the bilateral posterior white matter and gray matter
were the most affected. For static and focal compression, the
anterior white matter and, to a lesser extent, the gray matter
were most affected. This was observed bilaterally despite a focal
or lateral element. For circumferential compression in a dynamic
model, the bilateral gray matter and posterior white matter were
the most affected.

Stress and Tissue Injury
Notably, although differential patterns of stress were observed
throughout these DCM models, the levels remained relatively
low (<0.5 MPa). DCM FEA models did not explore the
relationship between the observed stress and tissue injury.

Discussion

Overview
FEA is a promising technique used in DCM, although there
remain uncertainties regarding the ideal approach and its clinical
interpretation. This review highlights the numerous decisions
investigators must make when performing FEA, which can
affect findings and underpin the need for a systematic approach,
as applied in this study. On the basis of current evidence, we
have shortlisted our preferred material property choices for a
DCM model and conclude that a distinction between gray and
white matter is preferable.

Principal Findings and Comparison to Prior Work
A total of 15 studies were identified applying FEA to investigate
DCM. The insights from these studies broadly align with the
current evidence base. First, the spinal cord can tolerate some
compression. This is in keeping with clinical practice, where
asymptomatic spinal cord compression is far more common [3],
and the amount of cord compression is a poor surrogate for
disease severity or progression [1]. Second, the movement of
the subaxial cervical spine can augment the stress on the spinal
cord. This is in keeping with clinical practice, including the
concept of dynamic injury and the proposed role of
flexion/extension MRI or electrophysiology [95-98]. Finally,
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it demonstrated the significant effectiveness of decompression
surgery, regardless of the technique, and the comparatively
minor gains of using one technique over the other. This is in
keeping with clinical practice, where high-quality comparisons
of anterior versus posterior surgery are equivalent, and currently,
there is no strong evidence that routine stabilization (eg,
instrumented fusion vs laminoplasty vs laminectomy or ACDF
vs ACDF with a plate) is required [99-102], all pointing toward
the need for a personalized surgical approach [15].

Furthermore, although more nuanced findings were proposed
by the identified FEA studies and this would require in vivo
corroboration, the application of FEA in DCM appears well
founded overall. More widely, it also seems potentially valuable
and timely. The pathobiology of DCM is poorly understood,
with its investigation being among the top 10 global research
priorities [1]. Current preclinical models have many limitations.
For example, common recent models use an expandable polymer
inserted behind the spinal cord and within the canal to cause
cervical myelopathy. Therefore, this does not model anterior
compression, nor does it truly represent a chronic injury
mechanism. Furthermore, in clinical practice, clinical decisions
are based on imperfect tools [103]. For example, structural MRI
in a supine position defines the nature of degenerative changes
but not if, where, or how an SCI occurs. FEA could change this,
particularly given the parallel advances in the automatic
segmentation of MRI [12].

Furthermore, while this review highlights that FEA is a versatile
technique, investigators must make many decisions regarding
how it is applied. These decisions can alter the findings and,
therefore, must be carefully considered. At this stage, there seem
to be only a few pervasive insights. First, it seems prudent to
model the white matter and gray matter separately. Ichihara et
al [73] demonstrated that these structures have differing material
properties, and how they are defined alters the observed stress
and strain. Furthermore, these structures age differently, as
shown by Ozawa et al [76]. Histological studies of DCM have
shown differing disease features among the white matter and
gray matter, with the gray matter being the focus of more
significant cellular changes [9]. Moreover, aging is an important
factor in DCM, associated with greater disease severity, a greater
rate of progression, and poorer response to treatment [104].
There are also early indicators that accelerating aging is a
pathological process [1]. Therefore, the observation that the
gray matter was unaffected in the younger spinal cord specimen
is noteworthy [34,45,50].

Second, while some models have chosen to use linear elastic
equations, time-independent hyperelastic models more closely
reflected the known material properties of the spinal cord. These,
or simply tabulated data, were generally adopted by DCM
studies and supported by a single study that evaluated different
approaches [38]. Conceptually, taking a more faithful approach
to modeling the spinal cord material properties is likely to be
more applicable to DCM and its etiology, as contrasted with
traumatic SCI, spinal cord stress may be below the limits for
tissue injury (eg, asymptomatic spinal cord compression), and
above (eg, DCM). It is worth noting that none of these
approaches considers the impact of repetitive injuries, and it is
likely that time dependence in modeling is relevant [1]. Given

the timeline of DCM pathogenesis (years), this is likely beyond
the normal material scales.

Finally, similar to DCM, as the stresses involved are well below
the elastic limit of the bone, the vertebrae can be modeled simply
as rigid bodies. The critical aspect for bones is instead the way
that their geometry and movement affect the loading on the soft
tissues.

However, there remain many uncertainties for further evaluation.
These include the role of spinal cord oscillation, the
appropriateness of the reference material properties for DCM,
and the relationship between the measured stress and tissue
injury. First, no studies specifically consider spinal cord
oscillations [105]. The spinal cord oscillates cranio-caudally
with heart rate. Recent imaging studies have indicated that this
increased in the context of symptomatic stenosis, the nature of
which may correlate with clinical measures of disease severity
[106,107]. Spinal cord oscillation would likely result in a shear
force on the spinal cord.

Second, it is uncertain how applicable the material properties
are to DCM. Most elements are based on young healthy tissue
references. In contrast, the ligaments and disks, for example, in
DCM, are often degenerated and calcified, and, as
aforementioned, the structure of the spinal cord is also
recognized to change with age.

However, most importantly, none of these studies have
specifically explored how the measured stress is related to tissue
injury. Bridging this gap is critical, not only to fully confirm
the appropriateness of FEA for DCM but also to guide its
clinical interpretation [108]. All biological systems will have
some baseline stress or strain; therefore, establishing disease
thresholds will be critical to its development. The parallel
development of in vivo techniques to measure tissue injury can
complement this, for example, microstructural MRI and the less
developed but promising serum and CSF biomarkers; however,
this requires further prospective study.

Limitations
This study has some limitations. First, the search strategy
focused on FEA models of the spinal cord and used citations
to identify the source articles for all anatomical elements.
Consequently, relevant source articles on the behavior of
anatomical elements may have been missed. This is more likely
for elements that were further removed from the spinal cord,
such as the IVD, and experiments published more recently. This
was a pragmatic decision based on the fact that existing
investigators would likely have the best perspective on the
literature, that this is a small research field, and that detailed
biomechanical data on elements such as the IVD were unlikely
to be so relevant. Consistent decisions across different research
groups and findings across source articles would endorse this.
Furthermore, due to the nature of our synthesis, we were unable
to update our search. Although this may result in the omission
of newer FEA articles, we believe that our review provides a
useful approach for future investigators aiming to use FEA in
DCM. Second, the methods used to shortlist source articles
represent a framework we developed for the purpose of building
a DCM FEA model. Again, the popularity of the shortlisted
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articles across research groups provides some external
validation, but it is possible that different investigators would
reach different conclusions. For this reason, all source articles
are listed in Multimedia Appendix 6, with their respective direct
object identifiers. Third, this review aggregates data from a
range of different experimental approaches and aims. Therefore,
the analysis is largely qualitative, adhering to the SWiM
guidelines [26]. Consequently, some conclusions, such as the
relationship between the nature of spinal cord compression and
stress distribution, remain tentative.

Conclusions
FEA has significant potential to help unlock uncertainties around
the pathophysiology of DCM and inform clinical care. Currently,

the application of FEA to DCM remains in its infancy. This
review has adopted an intensive and iterative approach to help
future investigators use FEA in DCM, including the aggregation
of experimental data reporting on material properties and how
they have been interpreted thus far. While single
recommendations have been made, they have their limitations.
The choice of material properties will influence the model
performance, and investigators should consider their decisions
carefully, particularly as new evidence emerges. More broadly,
the methodology used in this review may be relevant to future
updates and other clinical FEA initiatives when selecting
material properties.
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Abstract

Background: Attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) are among the most
prevalent mental disorders among school-aged youth in South Korea and may play a role in the increasing pressures on teachers
and school-based special education programming. A lack of support for special education; tensions between teachers, students,
and parents; and limited backup for teacher absences are common complaints among Korean educators. New innovations in
technology to screen and treat ADHD and ASD may offer relief to students, parents, and teachers through earlier and efficient
diagnosis; access to treatment options; and ultimately, better-managed care and expectations.

Objective: This narrative literature review provides an account of medical device use and development in South Korea for the
diagnosis and management of ADHD and ASD and highlights research gaps.

Methods: A narrative review was conducted across 4 databases (PubMed, Korean National Assembly Library, Scopus, and
PsycINFO). Journal articles, dissertations, and government research and development reports were included if they discussed
medical devices for ADHD and ASD. Only Korean or English papers were included. Resources were excluded if they did not
correspond to the research objective or did not discuss at least 1 topic about medical devices for ADHD and ASD. Journal articles
were excluded if they were not peer reviewed. Resources were limited to publications between 2013 and July 22, 2024.

Results: A total of 1794 records about trends in Korean medical device development were categorized into 2 major groups:
digital therapeutics and traditional therapy. Digital therapeutics resulted in 5 subgroups: virtual reality and artificial intelligence,
machine learning and robot, gaming and visual contents, eye-feedback and movement intervention, and electroencephalography
and neurofeedback. Traditional therapy resulted in 3 subgroups: cognitive behavioral therapy and working memory; diagnosis
and rating scale; and musical, literary therapy, and mindfulness-based stress reduction. Digital therapeutics using artificial
intelligence, machine learning, and electroencephalography technologies account for the biggest portions of development in South
Korea, rather than traditional therapies. Most resources, 94.15% (1689/1794), were from the Korean National Assembly Library.

Conclusions: Limitations include small sizes of populations to conclude findings in many articles, a lower number of articles
discussing medical devices for ASD, and a majority of articles being dissertations. Emerging digital medical devices and those
integrated with traditional therapies are important solutions to reducing the prevalence rates of ADHD and ASD in South Korea
by promoting early diagnosis and intervention. Furthermore, their application will relieve pressures on teachers and school-based
special education programming by providing direct supporting resources to students with ADHD or ASD. Future development
of medical devices for ADHD and ASD is predicted to heavily rely on digital technologies, such as those that sense people’s
behaviors, eye movement, and brainwaves.

(JMIR Biomed Eng 2024;9:e60399)   doi:10.2196/60399
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Introduction

Background
Attention-deficit/hyperactivity disorder (ADHD) and autism
spectrum disorder (ASD) are some of the most prevalent mental
disorders among school-aged youth in South Korea. Insufficient
support for those with ADHD or ASD affects their delayed
improvement, and this circumstance may play a role in the
increasing pressures on teachers and school-based special
education programming. As teachers are the second most
important people who impact children’s early diagnosis and
intervention [1], teachers are under increasing pressure in South
Korea from parents and substandard special education resources,
leading them to protest [2]. The protests were prompted by the
news of a teacher who resorted to suicide over excessive
complaints from demanding parents while also trying to manage
students [3]. Sadly, this tragedy was followed by several more
incidents of teacher suicides [4]. The lack of support for special
education; tensions between teachers, students, and parents;
and the lack of backup for teacher absences are common
complaints among Korean educators [4]. New innovations in
technology to screen and treat ADHD and ASD may offer some
relief to students, parents, and teachers through earlier and
efficient diagnosis; access to treatment options; and ultimately,
better-managed care and expectations.

Prevalence of ADHD and ASD
ADHD is recognized by an ongoing pattern of inattention and
hyperactivity-impulsivity that interferes with development or
functioning [5]. ASD is defined as a developmental and
neurological disorder that affects how people communicate with
others, interact, behave, and learn [6]. The number of patients
with ADHD in South Korea has consistently increased, and the
total number has risen by 250% in 2022 [7]. Among this entire
population, people aged between 0 and 19 years accounted for
the majority of cases, ranging from 57% to 85% from 2018 to
2022 [8]. The prevalence of ASD in 2021 was 12.8%, which
translated to roughly 32,000 individuals [9]. The rate has
increased by 4.3% since 2010 [9]. According to the database of
registered people with developmental disabilities in June 2021,
the Ministry of Health and Welfare of South Korea announced
that 56.7% of the population with ASD were young individuals
aged between 0 and 19 years [10].

Objective
To set up improved special education systems for young people
with ADHD or ASD, experts claim that innovational medical
devices for ADHD and ASD are crucial to treating them in a
timely and proper manner [11,12]. While diverse types of
medical devices exist, including devices for assessment,
screening, and training, few studies have examined the use of
these medical devices in South Korea or trends in the
development of new devices for ADHD and ASD in South
Korea. This study provides a review of the literature focused
on gaps in the research related to medical device use and

development in South Korea for the diagnosis and management
of ADHD and ASD.

Methods

Search Strategy
A narrative review was conducted to examine the trends in
Korean medical device development focusing on medical
equipment for ADHD and ASD, using the National Assembly
Library, PubMed, Scopus, and PsycINFO. The detailed search
terms were presented in the Search Strategies section in
Multimedia Appendix 1. Data and studies were retrieved and
reviewed after screening years and language. Key search terms
included: ADHD, ASD or autism, early, diagnosis, treatment,
screening, medical device, intervention, and training. The list
of references from the 4 databases was cross-checked to identify
duplicates.

Eligibility Criteria
Journal articles and dissertations were included if they discussed
diverse types of medical devices for ADHD and ASD, were
peer reviewed, and were published in 2013 or later. Government
research and development project reports were also included if
they discussed relevant topics and were published in 2013 or
later. Only Korean or English papers were included. The
expected outcome from the included sources was updated
information on Korean medical equipment for ADHD and ASD
and an emphasis on examining the trends in Korean medical
equipment for ADHD and ASD. Non–peer-reviewed interview
articles were also included.

Resources were excluded if they did not correspond to the
research objective or did not discuss at least 1 topic about
medical devices for ADHD and ASD in the title or abstract.
Journal articles were excluded if they were not peer reviewed,
published before 2013, or written other than Korean or English.
Detailed eligibility criteria for study inclusion are described in
Multimedia Appendix 1.

Results

Selection of Sources of Evidence
The search identified 94.15% (1689/1794) records through the
National Assembly Library, 1.23% (22/1794) records through
PubMed, 3.12% (56/1794) records through Scopus, and 1.5%
(27/1794) records through PsycINFO (Figure 1). Of the total
1794 records, 1 (0.1%) duplicate record was found, and 20
(1.1%) records were removed after non–peer-reviewed resources
were screened. Of the remaining 1773 full-text records, 84.1%
(n=1492) were excluded based on their content. Among the
remaining 281 records, 213 were excluded: 37.1% (79/213) of
resources were unrelated to medical devices, 56.8% (121/213)
were irrelevant problems, and 6.1% (13/213) were non–South
Korea focused. Thus, 24.1% (68/281) of records were included
in this paper. Figure 1 depicts a flow diagram describing the
selection of sources of evidence.
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Figure 1. Flow diagram of narrative review describing the selection of sources of evidence.

Synthesis of Results

Overview
After a review of the records, 9 categories were developed post
hoc to describe trends in Korean medical device development
(Figure 2). The 9 groups included digital therapeutics; virtual
reality (VR) and artificial intelligence (AI); machine learning
and robot; gaming and visual contents; eye-feedback and

movement intervention; electroencephalography and
neurofeedback; cognitive behavioral therapy (CBT) and working
memory; diagnosis and rating scale; and musical, literary
therapy, and mindfulness-based stress reduction (MBSR). These
9 groups were recategorized into 2 big groups: digital
therapeutics and traditional therapy.

Table 1 summarizes the selected resources on the trends in
Korean medical device development for ADHD and ASD.
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Figure 2. Nine groups of the trends in Korean medical device development for attention-deficit/hyperactivity disorder (ADHD) and autism spectrum
disorder (ASD). MBSR: mindfulness-based stress reduction.
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Table 1. Overview of the selected resources.

TypeCountryTitleStudy, year

Doctoral dissertationSouth KoreaStudy of textbooks on the principles of digital therapeutics to respond
to ADHD and digital drama

Choi [13], 2022

Master’s thesisSouth KoreaThe efficacy of digital therapeutics for the treatment of attention
deficit hyperactivity: a systematic review and meta-analysis

Lee [14], 2022

Research reportSouth KoreaCurrent status and outlook for digital therapeuticsSon et al [15], 2023

Peer-reviewed articleMalaysiaPower of alignment: exploring the effect of face alignment on ASD
diagnosis using facial images

Rashid et al [16], 2024

InterviewSouth KoreaTo strive for the universalization of virtual reality therapy programsKim [17], 2019

Government R and Da

project report

South KoreaVR/AR platform technology based on bio-signal for mental health of
kids/silver generation

Korea Electronics Technology
Institute [18], 2020

Peer-reviewed articleUnited StatesEvaluation of an artificial intelligence-based medical device for diag-
nosis for autism spectrum disorder

Megerian et al [19], 2022

Master’s thesisSouth KoreaTowards standardizing attention-deficit/hyperactivity disorder diag-
nosis- a virtual reality, artificial intelligence application

Son [20], 2022

Peer-reviewed articleSouth KoreaDesign and implementation of VR-based life care contents for attention
deficit hyperactivity disorder (ADHD)

Park et al [21], 2019

Peer-reviewed articleSouth KoreaImplications of VR-based psychotherapeutic effects for ADHD and
CD among adolescents

Ryu [22], 2022

Peer-reviewed articleSouth KoreaArtificial intelligence analysis of biosignals for automated detection
and automated diagnosis of ADHD and CD

Ryu and Hwang [23], 2021

Peer-reviewed articleUnited StatesEffect of wearable digital intervention for improving socialization in
children with autism spectrum disorder a randomized clinical trial

Voss et al [24], 2019

Master’s thesisSouth Koreavirtual reality based digital therapeutics system for diagnosing atten-
tion-deficit hyperactivity disorder

Yoo [25], 2020

Government R and D
project report

South KoreaDevelopment of mobile VR neurocognitive battery and establishment
of database, implementation of AI-based early diagnosis/prevention
system for cognitive control vulnerable groups utilizing digital repre-
sentation modeling

Yonsei University Office of Re-
search Affairs [26], 2019

Peer-reviewed articleUnited StatesWearable biosensing to predict imminent aggressive behavior in
psychiatric inpatient youths with autism

Imbiriba et al [27], 2023

Peer-reviewed articleSouth KoreaExploring the applicability of Tele-presence robot intervention for
at-risk children with ADHD

Kim et al [28], 2016

Doctoral dissertationSouth KoreaDevelopment of a contract-less sensing system and a classifier using
deep learning for robot-based ADHD screening

Lee [29], 2022

Peer-reviewed articleSouth KoreaDevelopment of a machine-learning predictive model for first-grade
children at risk for ADHD

Lee et al [30], 2021

Peer-reviewed articleSouth KoreaExploring the performance difference on the active based task with
a robot for ADHD screening

Shin et al [31], 2018

Master’s thesisSouth KoreaSupervised classification of childhood ADHD using robot-assisted
tests

Yeom [32], 2018

InterviewSouth KoreaADHD can be treated like playing a game in daily lifeJung [33], 2022

Peer-reviewed articleSouth KoreaA study on the effect of communication functional board game on
self-control, self-esteem, family function and peer relationship of
ADHD children

Lee and Lim [34], 2018

Master’s thesisSouth KoreaTo improve the concentration of ADHD children study on functional
games

Park [35], 2019

Government R and D
project report

South KoreaA study on the therapeutic applications of digital gamesSungkyunkwan University Coop-
eration Center [36], 2020

Master’s thesisSouth KoreaDevelopment of movement intervention visualization contents to
improve behavior of ASD and ADHD

Kim [37], 2018

JMIR Biomed Eng 2024 | vol. 9 | e60399 | p.29https://biomedeng.jmir.org/2024/1/e60399
(page number not for citation purposes)

Cho & TalboysJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


TypeCountryTitleStudy, year

Doctoral dissertationSouth KoreaThe characteristic of attentional networks in sluggish cognitive tempo:
the effect of eye-feedback training on orienting attention in individuals
with SCT

Kim [38], 2019

Peer-reviewed articleUnited StatesUsing a motion-tracking device to facilitate motion control in children
with ASD for neuroimaging

Sandbank and Cascio [39], 2018

Peer-reviewed articleSouth KoreaA preliminary study on the development of the focus reaction time
tests

Yoo and Kim [40], 2015

Peer-reviewed articleSouth KoreaDevelopment of an innovative approach using portable eye tracking
to assist ADHD screening: a machine learning study

Yoo et al [41], 2024

Peer-reviewed articleUnited StatesEnergy-efficient EEG-based scheme for autism spectrum disorder
detection using wearable sensors

Alhassan et al [42], 2023

Peer-reviewed articleUnited StatesIntegration of electroencephalogram (EEG) and motion tracking
sensors for objective measure of attention-deficit hyperactivity disorder
(MAHD) in preschoolers

Bhattacharyya et al [43], 2022

Government R and D
project report

South KoreaDevelopment of brain imaging diagnosis and brain-based training
programs for ADHD students

Hong et al [44], 2013

Government R and D
project report

South KoreaValidation of the effectiveness of brain-based training programs for
ADHD students

Hong et al [45], 2014

Master’s thesisSouth KoreaBrain music as a potential tool for diagnosing attention-deficit/hyper-
activity disorder (ADHD)

Kang [46], 2013

Master’s thesisSouth KoreaThe effects of neurofeedback training and executive function improve-
ment programs on attention and brain function quotient of elementary
school children

Kim [47], 2017

Peer-reviewed articleSouth KoreaMachine learning-based EEG classification for assisting the diagnosis
of ADHD in children

Kim [48], 2021

Master’s thesisSouth KoreaDeep learning approach on the improvement of diagnosing ADHD
with fMRI

Kim [49], 2022

Peer-reviewed articleSouth KoreaClinical significance for neurofeedback training of children with at-
tention-deficit/hyperactivity disorder

Kim et al [50], 2015

Peer-reviewed articleSouth KoreaThe classification scheme of ADHD for children based on the CNN
model

Kim et al [51], 2022

Master’s thesisSouth KoreaThe effects of the neurofeedback training on the attention in adoles-
cents with autism spectrum disorder

Lee [52], 2013

Master’s thesisSouth KoreaEffects of neurofeedback brain wave training on the attention concen-
tration and language development of children delayed in language
development

Lee [53], 2020

Master’s thesisSouth KoreaThe effect of EEG training through neurofeedback on attention and
pragmatic language ability in children with ADHD prone language
delay

Lee [54], 2022

Peer-reviewed articleSouth KoreaEffect of neurofeedback based robotic invention education of attention
ability of ADHD children

Nam [55], 2016

Peer-reviewed articleSouth KoreaDevelopment of neurofeedback based robotic invention education
program for ADHD children

Nam and Mun [56], 2015

Master’s thesisSouth KoreaEffects of neurofeedback training on EEG, continuous performance
task, and ADHD symptoms in ADHD in ADHD-prone college stu-
dents

Ryu [57], 2015

Peer-reviewed articleSouth KoreaA study on the clinical usefulness of EEG and QEEG measurements
for the diagnostic criteria of ADHD

Ryu [58], 2021

Peer-reviewed articleUnited StatesA wearable multi-model biosensing system toward real-world appli-
cations

Siddharth et al [59], 2019

Peer-reviewed articleSouth KoreaThe treatment effect of neurofeedback training on executive function
in attention-deficit hyperactivity disorder

Yun and Kwack [60], 2015

Peer-reviewed articleSouth KoreaCognitive behavioral therapy for college students with ADHD tenden-
cies

An et al [61], 2016

JMIR Biomed Eng 2024 | vol. 9 | e60399 | p.30https://biomedeng.jmir.org/2024/1/e60399
(page number not for citation purposes)

Cho & TalboysJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


TypeCountryTitleStudy, year

Peer-reviewed articleSouth KoreaDevelopment of working memory training program for ADHD chil-
dren and effectiveness verification

Hong et al [62], 2015

Peer-reviewed articleSouth KoreaDevelopment and application of the working memory improvement
program for children with ADHD in the first grade elementary school

Chang and Park [63], 2020

Peer-reviewed articleSouth KoreaThe effects of self-monitoring cognitive functions training program
on the attention-concentration ability and the hyperactivity of the
children with ADHD tendency

Lee [64], 2019

Peer-reviewed articleSouth KoreaEffects of cognitive behavioral therapy on attention deficit hyperac-
tivity disorder among school-aged children in Korea

Park et al [65], 2015

Peer-reviewed articleSouth KoreaDevelopment of Korean adult ADHD rating scaleKang et al [66], 2015

Master’s thesisSouth Korea(The) clinical utility of K-CBCL 6-18 in diagnosing ADHD: focused
on children with psychological disorder in Child Welfare Institution

Kim [67], 2016

Peer-reviewed articleSouth KoreaCurrent status and future improvement of the Korea ADHD rating
scale-IV (K-ARS-IV)

Lee [68], 2015

Peer-reviewed articleSouth KoreaA review on the diagnosis of ADHD for special educationLee [69], 2017

Peer-reviewed articleSouth KoreaA review of diagnosis and evaluation procedure for the child and
adolescent with attention deficit hyperactivity disorder

Lee [70], 2020

Peer-reviewed articleSouth KoreaClinical utility of the Korean version of CBCL6-18 in the diagnosis
of attention-deficit hyperactivity disorder

Lee et al [71], 2015

Peer-reviewed articleSouth KoreaThe guideline of diagnosis and treatment of attention-deficit hyperac-
tivity disorder: developed by ADHD Translational Research Center

Lee et al [72], 2016

Peer-reviewed articleSouth KoreaA study on agreement between parent’s and teacher’s ratings according
to ADHD screening

Lee et al [1], 2014

News releaseSouth KoreaSuccess in quantifying the level of attention and concentration through
meditation and exercise [electronic data]: expected to be used in diag-
nostic tests for ADHD, depression, and dementia in children

National Research Foundation of
Korea [73], 2016

Doctoral dissertationSouth KoreaClinical application of advanced test of attention as a diagnostic tool
in children with attention-deficit/hyperactivity disorder

Park [74], 2015

Doctoral dissertationSouth KoreaDevelopment of rhythm-based music intervention protocols through
timing control in children with ADHD

Cho [75], 2023

Master’s thesisSouth KoreaDevelopment of a music program for improvement of the mental
concentration and human relationship using Carl Orff’s pedagogics:
centered about the ADHD students

Choi [76], 2019

Peer-reviewed articleSouth KoreaThe effects of literary therapy program based on SST by using picture
cards on ADHD of adolescents for EBD

Kim [77], 2016

Master’s thesisSouth KoreaEffects of mindfulness-based stress reduction (MBSR) program on
attention, perceived stress, and anxiety on attention-deficit/hyperac-
tivity disorder (ADHD) prone university students

Kim [78], 2016

Doctoral dissertationSouth KoreaA study on development of diagnostic assessment tools of music
therapy in children with attention deficit hyperactivity disorder

Son [79], 2022

aR and D: research and development.

Digital Therapeutics
Digital therapeutics is a broad category that refers to high-quality
software, that is, digital technologies, including AI, VR,
augmented reality (AR), apps, and wearable devices, that
provide evidence-based therapeutic interventions to patients to
prevent, manage, or treat medical disorders or diseases [15].
Digital therapeutics is one of the promising methods of
intervention, treatments, and diagnosis for ADHD and ASD in
South Korea. Two dissertations [13,14] and 1 research report
[15] described digital therapeutics. Several specific types of

digital therapeutics, such as AI, machine learning, and VR, will
be further discussed in detail in other groups later.

The digital health care market is consistently growing in South
Korea, especially since the COVID-19 pandemic has facilitated
web-based treatments and health communication. The South
Korean government has suggested diverse policies to promote
the digital health care industry. In April of 2022, 10 digital
therapies were approved by the Ministry of Food and Drug
Safety of the Republic of Korea to conduct clinical trials [15].
However, none of them have been approved as a medical device
[15]. Although the Korean digital therapeutics industry is in a
beginning stage of development, the digital therapeutics market
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is highly promising in South Korea given the policy support
and attention from the South Korean government.

For instance, digital therapeutics is applied to treatments and
education for students with ADHD [13,14]. Digital therapeutics
is emphasized as a new treatment approach for children and
adolescents with ADHD. A substantial improvement was found
in groups using digital therapeutics compared with control
groups [14]. Educational materials about digital therapeutics
were also highlighted for elementary school teachers educating
students with ADHD. The use of Korean medical devices for
ADHD and ASD reflects the attention to educating teachers
about the importance and functions of digital therapeutics, as
well as its direct application to those with ADHD or ASD.

VR and AI
VR and AI are categorized into digital therapeutics. Both
technologies are promising tools that recent studies have
highlighted their potential [19,20]. VR and AI were mentioned
in 11 resources. Two government research and development
project reports [18,26], 6 peer-reviewed articles
[10-15,18-23,26], 2 dissertations [16,20,24,25], and 1 interview
[17] described medical devices for ADHD and ASD using VR
and AI.

Although the fundamental treatment method for ADHD is
medication, behavioral problems are treated by CBT [17].
However, traditional CBT has limited accessibility in clinical
settings due to additional time to visit hospitals, health care
personnel, and relevant resources [17]. In this circumstance,
VR technology has a big advantage in solving these limitations
by enabling real-time simulations and virtual training [17].
VR-based diagnosis of ADHD is also considered to have
accurate and objective results given that the model is based on
VR settings, while the traditional diagnosis relies on verbal
interviews [25]. Furthermore, virtual social interactions allow
repetitive practice for anger recognition, anger regulation, and
social problem solving [22]. This VR-based training helps
control their aggressive and impulsive behaviors [22]. Some
recent studies also indicated that VR-based interventions for
ADHD can prevent potential crime, especially for young people
with ADHD [22,23]. An AI-automated diagnosis system for
diagnostic classification and automated detection based on the
biosignals of ADHD was introduced for the prediction,
suppression, and prevention of adolescent recidivism [23].

To enhance the efficiency of treatment and diagnosis of ADHD
and ASD, VR technologies are often integrated with AI to
predict, analyze, and define different types of data from patients
and users [19,20]. For example, a device using a
gradient-boosted decision tree algorithm was evaluated to test
the accuracy of its AI-based software when health care providers
diagnose ASD in children aged between 18 and 72 months [19].
The study found that an increased number of children with ASD
were able to be diagnosed in a primary care setting, potentially
promoting early intervention and treatment [19]. In addition,
the combination of a deep learning algorithm and facial images
is a novel approach in the diagnosis of ASD [16]. Given that
ASD is marked by impaired neurological development, the
human face provides insights into brain structure and function
[16]. Consequently, facial features can serve as an important

biomarker for diagnosing ASD [16]. This idea is also applied
to a wearable digital intervention that promoted emotion
recognition and facial engagement [24]. Researchers found that
children with ASD who wore superpower glasses showed
significant improvements on socialization by providing social
cues and detecting facial expressions [24].

Following the trends of the combined technologies with VR
and AI, research and government research and development
projects have studied possible medical device models for people
with ADHD or ASD [18,21,25,26]. The Korea Electronics
Technology Institute conducted a project to develop VR and
AR platform technology based on biosignals for the mental
health of kids and silver generation [18]. In total, 7 types of VR,
6 types of AR mental health content, a mental-care cloud
platform, wireless transfer technology for 4K video streaming,
and systems to measure and analyze biosignals were developed
throughout the project [18]. These VR and AR technologies
can be broadly applied to mental health VR and AR platform
services at mental-health clinics in South Korea [18]. This
application also positively impacts the Korean web content
industry beyond the Korean medical device industry.

Medical VR and AI technologies were interweaved with IT and
life care content markets [21]. Regarding ADHD treatments,
contents and systems using immersive and vivid exposure in
virtual settings have been actively tried [21]. The system
virtually provides the actual circumstances where people with
ADHD can be trained through sensory, cognitive, and linguistic
simulations [21]. With a similar purpose, the Office of Research
Affairs at Yonsei University conducted a project to develop
mobile VR neuropsychological batteries and an AI-based
database of early diagnosis and promotion systems using digital
phenotypic modeling [26]. The developed device was based on
a multilayer platform integrating emotions, social ability, and
neurological information [26]. Both devices target vulnerable
populations with limited access to traditional treatments for
ADHD.

The overall trends of Korean medical devices for ADHD and
ASD concentrate on improving the current conditions of the
medical device application and its use [25,26]. While most of
the traditional approaches require personnel, physical resources,
and travel time, VR and AI–based medical devices minimize
the requirements.

Machine Learning and Robot
Machine learning and robot-based medical devices for ADHD
and ASD are also included in the category of digital therapeutics.
They were found in 6 resources. Two dissertations [29,32] and
4 journal articles [27,28,30,31] addressed its trends.

The importance of early diagnosis is highlighted in many studies
about ADHD and ASD [30,41]. To facilitate early diagnosis
and ADHD screening, machine learning and robot-based
technologies are used as a promising tool. A machine learning
predictive model is one of the solutions to increase the accuracy
of ADHD prediction [30]. As a longitudinal predictive model,
several types of machine learning analysis were applied to
predict the future and classify findings, such as supervised
learning, random forest, gradient boosting, and neural network

JMIR Biomed Eng 2024 | vol. 9 | e60399 | p.32https://biomedeng.jmir.org/2024/1/e60399
(page number not for citation purposes)

Cho & TalboysJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


models [30]. This model identified that children who showed
specific risk indicators during infancy and early childhood are
likely to be diagnosed as being at risk for ADHD when entering
elementary schools [30]. Similarly, machine learning and a
wearable biosensor help to predict imminent aggressive behavior
in inpatient young people with ASD [27]. In addition, several
robot-based ADHD screening devices have been tested, such
as a contactless sensing system, a deep learning–based classifier,
storyboard content for children, and an automated childhood
ADHD classifier [29,31,32]. The contactless sensing system,
for instance, quantitatively measures the movements of children
with ADHD [29]. These devices automatically detect and
analyze behavioral reactions, and identify results based on
collected data [29,31,32].

Furthermore, machine learning and robot-based devices are also
applied to interventions. Remote robot–based interventions are
effective in enhancing the level of concentration and
encouraging positive learning attitudes among children with
severe ADHD symptoms [28]. They recognize a robot as a peer,
a good behavioral model, and a learning helper [28].

The overall observations and findings imply that robot-based
models are relatively more attractive in younger ages. Machine
learning systems also have a higher effectiveness and accuracy
of screening.

Gaming and Visual Contents
Many types of gaming can be a part of digital therapeutics,
depending on their medium. Given that a gaming approach has
less rejection than others [35], its use is actively discussed in
the recent medical device development for ADHD and ASD.
Gaming was mentioned in 4 resources. One dissertation [35],
1 interview [33], 1 journal article [34], and 1 research report
[36] found their trends in Korean medical device development
for ADHD and ASD.

Gaming is applied to various fields today, not just as an
entertainment tool [36]. The research found that gaming helps
people relieve negative emotions and improves symptoms [36].
The development of gaming items was motivated by one of the
limitations that psychiatrists’ diagnoses rely on subjective
individual decisions [33]. A gaming device, AttnKare, made
by Hippo T&C, is complex equipment that uses a VR test and
measures eye movements and patience [33]. The AI in the device
analyzes the collected information and makes individual
diagnoses [33].

The cognitive rehabilitation field recently uses computer
technology, focusing on basic cognitive function, memory,
problem-solving ability, and perception of space and time [35].
This new digital model is personalized to different individuals
[35]. Serious games in this field, defined as education-purposed
games with entertaining functions [36], are a promising method
that can result in easier and faster positive outcomes both in
education and treatment [35]. For example, when comparing
responses from 2 groups using a communication-functional
board game or a traditional board game, those who used a
communication-functional board game showed a better score
in self-control, self-esteem, family function, and peer
relationship [34].

Eye-Feedback and Movement Intervention
Eye-feedback and movement technologies are often found in
ADHD screening devices. Because eye movements are linked
to brain areas with neuropsychological functions, such as
response inhibition, selective attention, and working memory,
their impairments lead to the primary traits of ADHD [41].
Eye-feedback and movement intervention also have a complex
relationship with the categories above, such as VR and AI,
gaming, and machine learning. The information about this
category was found in 5 resources. Two dissertations [37,38]
and 3 journal articles [39-41] described medical devices using
eye-feedback and movement intervention.

Using a screening model for ADHD with eye-tracking features
and machine learning, 33 eye-tracking features were identified
to distinguish children with ADHD from developing children
[41]. Eye-tracking characteristics have the potential to serve as
a reliable marker for compromised neurobiological function in
individuals undergoing ADHD screening [41]. The focus
reaction time tests were identified as a valid tool for diagnosing
children with ADHD [40]. Given that visual materials tend to
be eye-catching and vision accounts for 80% of human
recognition [37], visual content can also play an important role
in developing interventions for ADHD using eye movements.
For example, eye-feedback training improves sluggish cognitive
tempo, one of the symptoms of ADHD that shows a lack of
energy, slowness in behavior or thinking, and drowsiness [38].
A motion-training system with real-time visual feedback also
facilitated motion control in children with ASD [39].

Electroencephalography and Neurofeedback
This category discusses electroencephalography and
neurofeedback. Both concepts are relevant to digital
technologies, including gaming and machine learning [49].
Electroencephalography, a recording of the brain’s electrical
activity, measures brainwaves. Neurofeedback is used to modify
brainwaves by providing stimulus in neurofeedback training,
which is considered a promising physiological approach for the
diagnosis and interventions of neurological disorders, such as
ASD and ADHD [42,45,47,48,52-56,60]. This topic was
mentioned in 19 resources. Two research reports [44,45], 10
journal articles [42,43,48,50,51,55,56,58-60], and 7 dissertations
[46,47,49,52-54,57] discussed electroencephalography-based
medical devices.

Wearable wireless systems and sensing systems are new
potential solutions for diagnosing ASD and ADHD by collecting
physiological indicators [42,43,59]. Electroencephalography
can detect the abnormalities of the neural system related to ASD
and ADHD [42,43,59]. The research found that ADHD can be
diagnosed by sounds derived from brainwaves, using (1) ADHD
diagnosing algorithms developed by electroencephalography
brainwaves with several mathematical methods, eyes-open, and
resting-state brainwaves, and (2) a sonification algorithm to
convert brainwaves to musical sounds [46].

Convolutional neural network (CNN) is another emerging idea
to automatically extract electroencephalography features for
medical diagnosis [48,49]. CNN is a neural network modeled
after the functioning of the visual cortex for processing data
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that contains spatial information [49]. Recent research explores
deep learning–based devices using CNN to effectively classify
electroencephalography signals [48]. A deep learning–based
approach using functional magnetic resonance imaging (fMRI)
was also another recent discussion [49]. While previous trials
covered the entire brain area to identify ADHD, the recent study
suggests examining specific brain portions related to the
classification of ADHD using the deep learning system by
demonstrating a higher level of accuracy [49].

Neurofeedback is another key topic in interventions for ADHD
and ASD. Neurofeedback training is a form of self-regulation
therapy for brainwaves, using the concept of operant
conditioning [52]. During brainwave measurement, patients
receive visual or auditory feedback on cortical activity to
normalize brain function by inhibiting or reinforcing specific
frequency ranges of brainwaves [52]. Neurofeedback enables
them to receive real-time feedback on their brainwave states
and engage in training to regulate brainwaves as desired [52].
Many studies claim that neurofeedback training positively
impacts children with ADHD [47,52-54,60].

Neurofeedback training positively impacted children with ASD
by improving their attention and abnormal brainwaves [52].
Students who received neurofeedback training showed increased
scores in memorizing numbers and matching colors, numbers,
and words [52]. Furthermore, neurofeedback training can be
applied to those with ADHD [47,60]. Recent research has
reported that 30% of people with ADHD with executive function
deficits and inhibitory deficits cannot be treated both by
medication and CBT [50,60]. Neurofeedback training is
suggested as one of the promising alternative solutions of
medication to improve executive functions, inhibition, and
working memory [47,50,60]. Moreover, delayed language
development and communication ability among children with
ADHD can be improved by neurofeedback training [53,54]. In
fact, parents having children with ADHD have reported positive
outcomes after using neurofeedback training [50]. These trends
imply that neurofeedback models can be more effective when
they are integrated with different digital items, such as VR,
gaming, and AI [54].

As an example of complex medical devices for interventions
for ADHD, research suggested a robotic intervention education
using neurofeedback [55]. In this program, students with ADHD
were encouraged to craft a robot and control its movements
using brainwave signals [55]. This program aimed to enhance
the level of concentration as well as treatment of ADHD with
a children-level storyline [56]. The satisfaction was evaluated
positively, while a general operation process had a few
comments on further development [56]. In addition, CNN is
also used to diagnose ADHD in young children <16 years who
are too immature to perform self-diagnosis or use medical
equipment [51]. Gaming content is used to increase the
objectivity and accuracy of ADHD diagnosis and collected
electroencephalography data are classified based on the CNN
model [51].

With a similar context of education using neurofeedback, the
Korea Institute of Curriculum and Evaluation conducted a 2-year
project to design and implement brain-based training for children

with ADHD [44,45]. Neuroeducation was applied to the project
to explore neuroeducational research tools, including
electroencephalography, positron emission tomography, and
fMRI [44]. fMRI was especially highlighted to indirectly
measure brain activity status by quantifying cerebral blood
volume, cerebral blood flow, and blood oxygen saturation [44].
The training program, named Korea Institute of Curriculum and
Evaluation Working memory Enhancement Program, involves
altering brain function through interaction with the environment,
which leads to improved cognitive functions [44,45]. The Korea
Institute of Curriculum and Evaluation Working memory
Enhancement Program showed positive outcomes among
children with ADHD in a clinical trial by enhancing cognitive
abilities and demotivating behavioral problems [45].

Traditional Therapy
Traditional therapy mostly does not use medical devices. The
3 categories under traditional therapy examined the trends in
traditional treatments and diagnosis for ADHD and ASD.

CBT and Working Memory
CBT and working memory fundamentally aim to improve
cognitive ability as well as attention deficits and impulsive
behaviors [61,63,64]. CBT focuses on a behavioral intervention
[61], while working memory refers to a cognitive function that
involves temporarily holding or manipulating information for
a short period [62,63]. They were found in 5 journal articles
[61-65].

CBT can be a more effective intervention for adults with ADHD
than children with ADHD because adults relatively have a higher
cognitive ability and reflective thinking [61]. CBT demotivated
people to think about ADHD and think negatively, while
knowledge of ADHD was increased [61]. CBT can also be
developed as a self-monitoring cognitive training program to
help children with ADHD regulate and monitor their thoughts
and behaviors during task execution [64]. This approach focuses
on individual behavioral problems as well as individual thinking
processes, which can be applied to diverse treatments and
research on ADHD [65].

A working memory training program is another method to
reduce impulsive behaviors and hyperactivities [63]. Given that
delivery forms of information and cognitive ability are correlated
with one another, previous research findings indicated that
delivery forms of information influence outcomes of working
memory training programs [62]. This statement implies that a
better performance is presented when performing a preferred
delivery form of information [62], meaning that understanding
a target population’s preference for communication matters in
working memory training.

Diagnosis and Rating Scales
While many studies discuss the recent trends in medical devices
for ADHD and ASD, mostly focusing on digital technologies,
traditional methodologies of diagnosis and rating scales are still
discussed to update the standards and guidelines. The diagnosis
and rating scales were examined in 10 resources. One news
release [73], 7 journal articles [1,66,68-72], and 2 dissertations
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[67,74] addressed the current trends in diagnosis and rating
scales of ADHD and ASD.

ADHD diagnosis should be systematically approached through
diagnostic algorithms to make safe and accurate decisions [70].
Multiple factors, including age, gender, and individual
perceptions of ADHD, need to be considered, and the diagnostic
decision needs to be based on the Diagnostic and Statistical
Manual of Mental Disorders, 5th Edition (DSM-5) [70]. The
International Classification of Diseases, 10th Revision (ICD-10)
is also discussed [69,70]. Although a few differences are
presented between DSM-5 and ICD-10, both models focus on
attention deficits, hyperactivities, academic and social
difficulties, and impulsive behaviors [70]. ADHD diagnosis
usually refers to the DSM-5, while public health statistics and
materials are based on ICD-10 [69]. ICD-10 has more strict
standards of ADHD diagnosis than DSM-5 by recognizing all
3 categories: attention deficits, hyperactivity, and impulsion
[69].

In addition to DSM-5 and ICD-10, the Children Behavior Check
List (CBCL) is a self-report assessment scale developed to
evaluate various emotional and behavioral problems of children
and adolescents through reports from parents or close adults in
their environment [67]. In South Korea, the US version of the
CBCL 4-18 in 1991 was standardized and first introduced as
the Korean version of CBCL, and the Korean version of the
CBCL 6-18 is the recent version for parents [67,71].

ADHD screening and evaluation were performed in in-person
interviews at hospitals, mental-health centers, and school
counseling offices [72]. Two interview tools are used:
Diagnostic Interview Schedule for Children-IV and
Kiddie-Schedule for Affective Disorders and
Schizophrenia-Present and Lifetime Version (K-SADS-PL-K)
[72]. While Diagnostic Interview Schedule for Children-IV is
a structured interview tool that can be administered by general
people, K-SADS-PL-K is a semistructured tool that should be
administered by trained evaluators [72]. With K-SADS-PL-K,
a recent study tried the advanced test of attention, consisting of
visual tests and auditory tests that present target and nontarget
stimuli at regular intervals, and participants were instructed to
respond only to the target stimuli [74]. However, the accuracy
of distinguishing a group with ADHD from another group
without ADHD was not high, which suggests limitations in
using the advanced test of attention as a diagnostic tool for
confirmation [74].

Given that ADHD symptoms tend to be presented at an early
age, parents’and teachers’knowledge and perception of ADHD
greatly impact their children’s diagnosis and intervention [1].
Interestingly, the ratings of parents and teachers about symptoms
of children with ADHD had no significant correlations, and
parents’ ratings and DISC were not matched [1]. By contrast,
the rating of teachers was consistent and showed a high
correlation with DISC [1]. These findings imply that DISC and
the rating of teachers are more reliable and consistent than the
rating of parents [1].

In case childhood ADHD may persist into adulthood, the Korean
Adult ADHD Rating Scale was developed for monitoring and
screening treatment of adults with ADHD [66]. Inattention was

recorded as the most general symptom of ADHD in adulthood
[66]. The Korean Adult ADHD Rating Scale is expected to
effectively rate difficulty in emotional control and
disorganization, such as inattention, hyperactivity, and
impulsivity [66]. This rating scale was also suggested to extend
its range of use to adolescents, embrace gender differences, and
identify screening and rating scales, respectively [68]. In this
light, traditional rating scales are consistently developed. For
example, one of the recent rating scales is a tactile stimulation
distribution device to quantify exercise and MBSR [67]. The
details of MBSR and other traditional therapies are discussed
in the last category.

Musical, Literary Therapy, and MBSR
MBSR, musical, and literary therapy described here were
developed to increase the effectiveness of screening and
intervention for children with ADHD. They were addressed in
5 resources. One journal article [77] and 4 dissertations
[75,76,78,79] discussed how they were recently shaped.

The tactile stimulation distribution device was motivated by
mindfulness, MBSR, and CBT and scientifically demonstrated
a level of concentration of subjects [78]. The quantified data of
stimulation were compared with the cognitive outcomes of
subjects [78]. The correlative data were referred to as
concentration, and the opposed data were considered a
distraction [78]. This logic was also supported by left- and
right-brain activities [78]. In fact, an MBSR-based program
showed a significant improvement in reducing inattention, stress,
and anxiety in college students with ADHD [78].

Another approach to intervention for children with ADHD is
literary therapy based on social skills training [78]. The program
was designed to train them to improve a social relationship
between peers and adults and engage in group activities at home
and school [78]. Using photo cards and photo books to inspire
their imagination and creativity, the general symptoms of ADHD
decreased with a significant improvement in emotional and
mental stability [78].

Musical therapy is also used for screening and intervention of
ADHD. Screening ADHD using musical therapy aims to
strategize a plan of treatment by understanding individual
conditions and the goals of treatments [79]. This screening is
essential to comprehend how musical reactions can be used to
improve symptoms when music attracts clients’ changes [79].
While musical therapy screening is designed for a broad
understanding of individuals, interventions using musical
therapy have a specific purpose to target specific symptoms. A
rhythm-based musical intervention was developed to enhance
timing control in children with ADHD [75]. The protocol
contributed to controlling motor timing and perceived timing
using a metronome, guiding a proper speed of response to
suggested stimuli in the environment [75]. Carl Orff’s
pedagogics, focusing on improvisatory performance with
observation, imitation, exploration, and music literacy, is another
type of intervention using musical therapy [76]. This program
required small group activities, which encouraged social
interaction with different individuals [76]. Furthermore,
improvisatory work improved inattention, and imitating musical
expression demotivated hyperactivities [76]. These findings
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indicate that musical therapy is a highly effective method both
for screening and intervention in children with ADHD.

Discussion

Principal Findings
This study conducted a review of the literature to reduce gaps
in the research related to medical device use and development
in South Korea for the diagnosis and management of ADHD
and ASD. The trends in Korean medical device development
for ADHD and ASD are categorized into 2 major groups with
8 subgroups in total. Digital therapeutics using AI, machine
learning, and electroencephalography technologies account for
the biggest portions of development in South Korea, rather than
traditional therapies. Given that both ADHD and ASD are
neurological disorders, emerging medical device technologies
especially focus on electroencephalography and neurofeedback.
Different types of digital models are combined or applied to
understand brain activities and brainwaves.

In this vein, future development of medical devices for ADHD
and ASD is predicted to heavily rely on digital technologies.
As digital medical devices are emerging trends in South Korea,
they can also be integrated with traditional therapies. For
example, the rhythm-based musical intervention can be applied
to a gaming device for ADHD, which can also detect particular
brainwaves and provide real-time neurofeedback. Recent
research has reported that traditional therapies, including musical
features and MBSR, have succeeded in screening and
intervention for ADHD and ASD. Understanding their strengths
and integration with digital medical devices will double the
effectiveness of screening and intervention outcomes.

However, this growing transformation is faster than people’s
perception of their development. To follow the trends and learn
digital literacy for new digital medical devices, training
programs about up-to-date digital devices for ADHD and ASD
are recommended, especially for parents and teachers to relieve
tension in school. The active application of digital devices in
school settings is also expected to enable early diagnosis and
treatment for students with ADHD or ASD. Because parents
and teachers are primary and secondly important people for
children with ADHD or ASD [1], education for them is essential
to implementing new medical devices into routine care in the
real world.

In addition to the application of digital devices, traditional
therapies are used for children with ADHD or ASD in school
settings. While digital therapeutics is a promising tool today,
traditional therapies have still demonstrated their efficacy in
screening and interventions. The research presented real-world
case studies of the applications that showed positive outcomes
and high reliability [75,76,78,79]. Extending this idea, future

research could discuss the potential efficacy of integrating digital
therapeutics and traditional therapies for the diagnosis and
interventions of ADHD and ASD. Furthermore, potential ethical
dilemmas associated with the use of medical devices for these
conditions are another important topic to study. Understanding
the negative effects and limitations of different types of devices
in clinical settings will also guide the direction of future
development of medical devices for ADHD and ASD.

Limitations
The first limitation of this study is that many resources had
small population sizes to conclude their findings, which makes
it hard to generalize the outcomes. To define the accurate trends
in Korean medical device development for ADHD and ASD,
additional studies conducted with larger populations should be
examined. Second, a lower number of records specifically
discussed medical devices for ASD, while most of the selected
resources focused on ADHD. The results had to focus more on
devices for ADHD than ASD. Further research on medical
devices for ASD should be studied to understand the need for
medical devices for ASD. These studies expect to promote early
diagnosis and interventions, which lead to reduced prevalence
rates for both ADHD and ASD. Third, given several emerging
medical device areas, most of the selected resources were
dissertations. They helped understand the recent trends in
medical devices for ADHD and ASD; however, peer-reviewed
journal articles are required in the future to examine in-depth
trends in specific medical devices for ADHD and ASD. Fourth,
the limited number of databases were used, especially only 1
Korean database was explored. Fifth, search terms are difficult
to truly replicate the same search in the different languages.
Further research is recommended to conduct Korean-focused
medical devices by directly communicating with Korean medical
device companies and relevant experts to reduce the language
gaps. The results from this paper will help guide future works.

Conclusions
In conclusion, this study aims to provide significant insight to
understand the recent trends in Korean medical device
development, focusing on medical devices for ADHD and ASD.
Emerging digital medical devices and those integrated with
traditional therapies are some of the important solutions to
reducing the prevalence rates of ADHD and ASD in South
Korea by promoting early diagnosis and intervention.
Furthermore, their application will relieve pressures on teachers
and school-based special education programming by providing
direct supporting resources to students with ADHD or ASD.
Educating parents and teachers about the trends in relevant
medical devices also matters in further responses to their
children. Further research is recommended to focus on medical
devices for ASD given that the number of current studies discuss
those for ADHD rather than ASD.
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Abstract

Background: In recent years, researchers have delved into the relationship between the anatomy and biomechanics of sacroiliac
joint (SIJ) pain and dysfunction in endurance runners to elucidate the connection between lower back pain and the SIJ. However,
the majority of SIJ pain and dysfunction cases are diagnosed and managed through a traditional athlete-clinician arrangement,
where the athlete must attend regular in-person clinical appointments with various allied health professionals. Wearable sensors
(wearables) are increasingly serving as a clinical diagnostic tool to monitor an athlete’s day-to-day activities remotely, thus
eliminating the necessity for in-person appointments. Nevertheless, the extent to which wearables are used in a remote setting to
manage SIJ dysfunction in endurance runners remains uncertain.

Objective: This study aims to conduct a systematic review of the literature to enhance our understanding regarding the use of
wearables in both in-person and remote settings for biomechanical-based rehabilitation in SIJ dysfunction among endurance
runners. In addressing this issue, the overarching goal was to explore how wearables can contribute to the clinical diagnosis
(before, during, and after) of SIJ dysfunction.

Methods: Three online databases, including PubMed, Scopus, and Google Scholar, were searched using various combinations
of keywords. Initially, a total of 4097 articles were identified. After removing duplicates and screening articles based on inclusion
and exclusion criteria, 45 articles were analyzed. Subsequently, 21 articles were included in this study. The quality of the
investigation was assessed using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)
evidence-based minimum set of items for reporting in systematic reviews.

Results: Among the 21 studies included in this review, more than half of the investigations were literature reviews focusing on
wearable sensors in the diagnosis and treatment of SIJ pain, wearable movement sensors for rehabilitation, or a combination of
both for SIJ gait analysis in an intelligent health care setting. As many as 4 (19%) studies were case reports, and only 1 study
could be classified as fully experimental. One paper was classified as being at the “pre” stage of SIJ dysfunction, while 6 (29%)
were identified as being at the “at” stage of classification. Significantly fewer studies attempted to capture or classify actual SIJ
injuries, and no study directly addressed the injury recovery stage.

Conclusions: SIJ dysfunction remains underdiagnosed and undertreated in endurance runners. Moreover, there is a lack of clear
diagnostic or treatment pathways using wearables remotely, despite the availability of validated technology. Further research of
higher quality is recommended to investigate SIJ dysfunction in endurance runners and explore the use of wearables for rehabilitation
in remote settings.

(JMIR Biomed Eng 2024;9:e46067)   doi:10.2196/46067
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JMIR Biomed Eng 2024 | vol. 9 | e46067 | p.42https://biomedeng.jmir.org/2024/1/e46067
(page number not for citation purposes)

EvansJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

mailto:stuart.evans@latrobe.edu.au
http://dx.doi.org/10.2196/46067
http://www.w3.org/Style/XSL
http://www.renderx.com/


Introduction

Physical activity, exercise, and sport are increasingly promoted
as part of a healthy lifestyle. However, increased participation
in physical activity and sport specialization may raise the risk
of injury [1]. Running remains one of the most prevalent forms
of physical activity, attracting individuals of all capability and
ability levels to engage in this form of cardiovascular exercise.
However, the burden of running-related injuries and their
potential impact on quality of life and societal costs call for
research and effective interventions in all the areas associated
with sports injury, namely, prevention, assessment, and recovery
[2,3]. One of the most overlooked sources of lower back pain
(LBP) in endurance runners is injury to the sacroiliac joints
(SIJs) [4].

The SIJs are the largest axial joints in the body and sit between
the sacrum and pelvic bones on either side. The SIJs connect
the spine to the pelvis and facilitate load transfer from the
lumbar spine to the lower extremities. Specifically, the SIJs sit
between the iliac’s articular surface and the sacral auricular
surface. Therefore, the SIJ supports the torso and upper body
muscular areas to dampen the impact of ambulation as the SIJ
can experience forces of shearing, torsion, rotation, and tension
when running. To improve and promote efficiency in running
while focusing on injury prevention, allied health professionals
are exploring different preventative, monitoring, and
rehabilitative methods.

Numerous investigations have been undertaken to identify the
factors contributing to the management of SIJ dysfunction and
the underlying biomechanical mechanisms responsible for pain
[3,4]. One consideration is using wearable sensor technology
for clinical monitoring. In this regard, wearable sensors
(wearables) incorporate a broad range of advances in
microelectromechanical systems [5], electrocardiogram [6],
electromyogram [7], and electroencephalogram-based neural
sensing platforms [8]. As injuries such as SIJ dysfunction can
require frequent monitoring, the continuousness of
patient/athlete monitoring for timely intervention and
rehabilitation seems essential. Wearables present an opportunity
to measure the biomechanical parameters of SIJ dysfunction in
a continuous, real-time, and nonintrusive manner by leveraging
electronics packaging technology. It has been conveyed that by
leveraging this technology, more time for engagement,
continuity of experience, and dynamic data for decision-making
for both athletes and clinicians will endure [9]. While remote
and ambulatory monitoring are growing needs in the health care
environment [10], the efficacy surrounding wearables in remote
monitoring relative to SIJ dysfunction remains largely unknown.
This is despite the acknowledgment that remote monitoring
provides increased data volume and can promote improved
athlete performance [11] and accelerate the patient/athlete

rehabilitation processes [12]. Furthermore, an apparent limitation
of existing research is that there has been a focus on the
effectiveness of wearables on running performance metrics that
generally do not consider ongoing rehabilitative considerations
[13]. Strategies for the prevention of [14] and recovery from
[3] SIJ injury have been proposed, alongside models of injury
causation [15] and injury factors [16] (eg, intrinsic vs extrinsic;
modifiable vs not modifiable). In turn, this has the potential to
help monitor compliance, quality, and progress of movement
performance when an injury-prevention or return-to-activity
program is implemented [17]. Clinicians and allied health
professionals often focus on exploring various training methods
for preventive and rehabilitative measures. However, they rarely
evaluate these methods in conjunction with biomechanical
parameters and their impact on SIJ dysfunction. Thus, there is
a need for evidence-based information on how wearables could
be used for rehabilitation purposes in a remote setting when SIJ
dysfunction is considered.

To maintain pace with the rapidly evolving field of wearables
in endurance runners, this review provides an update on the
state of the literature with a particular focus on literature
published in the past 10 years. Case studies illustrate the use of
wearable data in the development or monitoring of running
programs. For the purposes of this review, a “wearable device”
was operationally defined as a device that can be attached to
the runner, shoe, or garment, or is a smartphone app. Thus, the
purpose of this study was to systematically review the literature
and gain a better understanding of the use of wearables in both
in-person and remote settings for rehabilitation of SIJ
dysfunction in endurance runners. Addressing this issue, the
overall goal was to investigate how wearables can contribute
to the clinical diagnosis (before, at, and after) of SIJ dysfunction.

Methods

Study Design
The design and reporting of this review followed the PRISMA
(Preferred Reporting Items for Systematic Reviews and
Meta-Analyses; Figure 1 and Multimedia Appendix 1 [18])
2020 statement [18]. The general search strategy (Multimedia
Appendix 2) and search terms are described in Table 1. Articles
published up to October 1, 2022, were reviewed.

Thereafter, the selection process consisted of the following steps
using the PRISMA guidelines (Figure 2): (1) an initial title
screening for relevant articles was performed once the searched
database results had been combined and duplicates had been
removed; (2) both the titles and abstracts of the selected articles
were then reviewed (a review of the full text was completed if
it was not clear from the title or abstract whether the study met
the review criteria); and (3) the full texts and selected articles
were read based on the inclusion/exclusion criteria.
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Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flowchart.

Table 1. Systematic search strategy and key terms used.

Key termsaSearch strategy

“Wearable Biomechanics” OR “Wearable Technology” OR “Wearable Devices” OR “Wearable Sensors Biomechan-
ics” OR “IMU” OR “Inertial Sensor” OR “Inertial Measurement Unit” OR “Gyroscope” OR “Magnetometer” OR
Accelerometer* OR “Pressure insoles” OR “Remote Wearables”

Wearable technology

“Running Biomechanics” OR “Endurance Running” OR “Run” OR “Jog” OR “Running over 5 km” OR “Endurance
Runners” OR “Long Distance Runners” OR “Athletics”

Running gait

“SIJ pain” OR “SIJ rehabilitation” OR “SIJ dysfunction” OR “SIJ injury prevention” or “SIJ management”Sacroiliac joint

aTITLE-ABS-KEY was used as the search strategy.

JMIR Biomed Eng 2024 | vol. 9 | e46067 | p.44https://biomedeng.jmir.org/2024/1/e46067
(page number not for citation purposes)

EvansJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 2. Steps in the selection process.

A systematic search was conducted to identify potentially
relevant papers in the following scientific databases: PubMed,
Scopus, and Google Scholar. The focus of this review was on
journal articles published in English that described the use of
wearable technology to analyze, quantify, and emphasize the
use of wearables for remote monitoring of SIJ dysfunction and
rehabilitation in endurance runners. This extends to endurance
runners undergoing rehabilitation for SIJ dysfunction (ie, had
been diagnosed) or the ongoing management of SIJ dysfunction
in previously diagnosed endurance runners (ie, rehabilitation).
For this search strategy, an endurance runner was considered
as someone partaking in regular running-related events (eg,
recreational, fun runs) or competitive events (eg, competition,
professional, elite). An endurance runner was classified as an
athlete running more than 5 km in a single session, either during
repeated trials or in studies that classified participants as
endurance runners. In line with the main objective, inclusion
and exclusion criteria were established to help eliminate studies
that were not aligned with the research questions. An

independent coder reviewed subsequent abstracts yielded from
the search strategy and then the full articles for study selection.
The review screened for information inclusive of health record
and research systems including design, functionality,
implementation, applications (remote and in-person settings)
outcomes, and benefits. The search included articles published
between 2000 and 2022. A manual review of the reference
section of selected articles was then performed to identify
relevant studies missed in the electronic search. Only English
language articles were reviewed (Table 2).

Inclusion and Exclusion Criteria
A summary of the inclusion and exclusion criteria is presented
in Table 2.

Although no restriction was imposed on the types of wearable
technology used in SIJ dysfunction, the search terms were
primarily focused on wearable inertial sensors and inertial
measurement unit (IMU) devices (Table 3).
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Table 2. Summary of inclusion and exclusion criteria.

Exclusion criteriaInclusion criteriaStudy characteristic

Communication type •• Letters, short communications, technical notes, and
other non–peer-reviewed literature. Non–evidence-
based guidelines, letters to the editor, and expert
opinion papers.

Journal and conference proceedings.

Injury classification •• Articles reporting exclusively on activity monitor-
ing from global navigation satellite systems and
injury surveillance without biomechanical measure-
ments.

Before, during, or after the clinical diagnosis of
sacroiliac joint dysfunction which included or in-
corporated the use of wearables as a viable method
of evaluating sacroiliac joint motion.

Classification of wearable •• Temperature sensors, pulse oximeters, pressure
sensors, correlated glycemic measurement sensors,
biosensitivity techniques, smartphone apps and
related sensors, rehabilitation, and monitoring am-
bulator–based sensors.

Accelerometer, gyroscope, magnetometer, or a
combination of these (inertial measurement unit),
foot/shoe insoles (pressure mapping).

Defined running gait outcome
measure

•• Studies aiming to determine running power or
economy were excluded as well as studies investi-
gating walking gait variability or regularity.

Spatiotemporal (global outcomes of the running
gait cycle): running velocity, acceleration of the
center of mass, distance, displacement, ground
contact time, step length, step frequency (cadence),
stance time, and flight time were included. Kine-
matics (description of segmental or joint move-
ment, generally in the 3 cardinal planes, namely,
sagittal, coronal [frontal], and transverse planes,
without consideration for forces).

• Studies evaluating robotic systems, exoskeletons,
prosthetics, and virtual reality environments were
excluded.

• Studies investigating the use of biofeedback or gait
retraining (ie, nonnatural running gait) and studies
involving the use of altered weight conditions (eg,
wearable resistance, antigravity treadmills, or wa-
ter-based protocols).

• Kinetic (the action of forces in producing or
changing motion): for example, ground reaction
force, peak pressure, center of pressure, braking,
impulse, time to peak pressure, pressure time inte-
gral, loads, force time integral, and contact area.

• Computer algorithms; machine learning or statisti-
cal approaches; and those using robotic systems,
exoskeletons, prosthetics, and virtual reality envi-
ronments.

Participant •• Age <18 years. Endurance runners not regularly
completing over 5 km in training or competitive
situations.

Age >18 years, male and female. Endurance run-
ning included runners regularly completing over 5
km in training or competitive situations.

•• Studies done on animals and cadavers.The endurance runner was partaking in regular
running-related events (eg, recreational, fun runs)
or competitive-based events (eg, competition, pro-
fessional, elite). The runner was classified as an
athlete running more than 5 km in a single protocol
session, either during repeated trials or in studies
that classified participants as endurance runners.
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Table 3. Comparative overviewa of wearable sensor modalities used in running today.

ConsProsCapabilitiesTechnologyCategory

Low signal-to-
noise ratio

Small, wireless,
and provides live
data

Identifies muscle recruitment and
potential weaknesses

Surface electromyogramSoft tissue injury prevention

No biometric da-
ta and GPS can
be pricey

Good range of data
points

Distance, velocity, acceleration,
deceleration, mediolateral move-
ment, work, power, dehydration,
fatigue, athletic performance,
detecting gait parameters

GPS, inertial measurement unit, and ac-
celerometers

Workload management and
athletic performance

Price pointAccurate and cost-
effective

Heart rate, sleep rate, heart rate
variability, respiration, muscle
oxygen saturation, atrial fibrilla-
tion, stress levels, respiration
rates, blood volume, and body
temperature

Electrocardiogram/photoplethysmography
sensors

Cardiac health

aThe table presents a comparative overview of common wearable sensors currently available rather than the components used for analysis (ie, some
studies used an inertial measurement unit, but only analyzed data from 1 element of the unit).

Study Classification and Assessment
The selected studies reported multiple feature domains,
including (1) strength of evidence, time setting, and primary
scope; (2) study characterization in terms of experimental
conditions, setting (running field based and running laboratory
based using treadmills), and age of endurance runners tested;
and (3) characteristics of the technologies and types of wearable
device and measures used relative to SIJ dysfunction. The author
also defined and assessed (4) the Injury-research Readiness
Level (IrRL) relative to SIJ dysfunction.

Selection Process: Strength of Evidence, Time Setting,
and Scope
The strength of evidence for each article was assessed across 3
main categories, ordered in decreasing strength based on the
experimental design used: experimental, that is, meeting the
requirements of endurance running and SIJ dysfunction at or
after clinical diagnosis and injury; randomized controlled trials;
quasi-experimental, that is, including manipulation of the
experimental conditions under which participants performed
endurance running, but lacking random assignment or group
comparison; and observational, that is, without assessing the
effects of an intervention, and only describing participant
behavior [19]. A separate class was used for studies looking
exclusively at the validation of new equipment or methods.
Literature reviews on wearables combined with synergies in
remote settings or endurance running–related SIJ injuries were
included and assessed by the primary author.

Classification and Characterization of SIJ Dysfunction
Studies were required to classify and characterize the diagnosis
of SIJ dysfunction. Therefore, akin to Preatoni et al [20], an
“at/post” classification was used to express the chronological
relationship between the experimental data collected and the
SIJ dysfunction in endurance runners. Thus, studies were
classified as the at category if they were identifying and
classifying SIJ injury factors, diagnosis, or underlying
mechanisms, and therefore, attempted to capture or track SIJ
injury occurrences in endurance running (eg, cohort studies with
biomechanical screening and in-field injury events that

referenced use of wearable technology). Studies were classified
as post if the data collection was performed after the SIJ
injurious event, that is, during the SIJ recovery phase with the
aim focused on rehabilitation techniques in both field-based
and laboratory environments where the endurance runner had
received a clinical diagnosis of SIJ dysfunction. The post
classification was also used for studies that assessed the
likelihood of SIJ injury or a greater magnitude of dysfunction.
For clarity, studies that examined endurance runners who had
returned to full running activity (eg, comparisons between
healthy individuals and those with a history of a specific or
existing SIJ injury) were classified as pre because they were
not centered on the recovery process that goes from injury
occurrence (or medical intervention, if relevant) to being able
to return to full running activity.

The characterization of studies was based on the following
categories: (1) studies analyzing preexisting running-related
SIJ dysfunction using wearable technologies to monitor running
biomechanics in both a field-based and laboratory setting for
the purpose of clinical management and clinical management
in a remote setting (pre); (2) studies assessing endurance
running–related SIJ dysfunction or injury factors or injury risk
using wearable technologies to monitor running biomechanics
after SIJ dysfunction has been formally diagnosed and classified
as in the acute stage of injury in both field-based and laboratory
settings for the purpose of clinical management (at); (3) studies
assessing ongoing running-related SIJ injury factors or injury
risk using wearable technologies to monitor running
biomechanics after SIJ dysfunction has been formally diagnosed
and classified as in the chronic stage of injury in both field-based
and laboratory settings for the purpose of clinical management
or management in a remote setting (post); and (4) studies
attempting to establish injury threshold criteria from a
biomechanical perspective, studies characterizing protective
wearable devices, and studies focusing on post-SIJ injury
monitoring or return-to-run assessment using wearables.
Validation and literature review studies were classified
according to the primary aim for which the method or tool tested
had been devised, as stated by the authors.
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To describe the experimental conditions, information was
extracted about the settings in which data were collected (ie,
laboratory vs field based). Specifically, studies were labeled as
field based if wearable-obtained data were acquired during a
scheduled running training event, a simulated running training
event, or a running competition in a specific setting. Conversely,
investigations carried out within a laboratory or in the field but
using wearable technologies were labeled accordingly. The
stage of SIJ dysfunction addressed by the study was then
classified as either chronic (caused by overuse) or acute
(resulting from specific events), following the criteria outlined
by Bahr et al [15]. Furthermore, annotated classification of the
endurance runner was addressed by each study (ie, recreationally
active, trained/developmental, highly trained/national level,
elite/international, world-class, or not specified/insufficient data
to be classified) [21]. The risk of bias was assessed by the
primary author.

Injury-Research Readiness Level
Building on the System Readiness Level framework by Sauser
et al [22], an IrRL was modeled to capture the maturity,
functionality, and readiness of the studies aiming to contribute
to preventing, assessing, or recovering from SIJ dysfunction.
According to the System Readiness Level model, technology
and system development follow similar maturation paths,
whereby technology is inserted into a system and interacts via
a proposed architecture. Knowing about the system components
and their integration is important, and this knowledge allows a
classification of the system as being in its research, development,
or deployment stage [23]. In the context of SIJ dysfunction and
endurance running–related injuries, for this review, a method
is deemed mature for deployment only when it relies on
measuring wearable tools that are characterized by high
ecological validity (ie, fully wearable and unobtrusive or
markerless), can be applied directly in the field, is supported
by validation studies against an established gold standard, or
when validation is not practicable but adheres to standardized
experimental procedures. Specifically, the biomechanical
quantities pertaining to the SIJ should demonstrate evidence of
a causal relationship with SIJ dysfunction and management in
endurance running, and their interpretation should be driven by
specific guidelines (eg, individual- or population-based
normative boundaries, thresholds, or trends; Multimedia
Appendix 3).

Data Extraction and Collection
After the data search was complete, data were obtained and
extracted from eligible studies in a custom form that was created
in Microsoft Excel. The form included (1) author, title, journal,
and publication year; (2) research design; (3) sample size; (4)
participant characteristics (eg, age, gender); (5) intervention
features (type, length, and frequency); (6) measures and settings
(laboratory, field-based, the type of wearable technology used,
and sensors); (7) analysis; (8) key findings relative to the pre,
at, and post categories for clinical SIJ dysfunction management
using wearables in a remote or clinical setting; and (9) research
outcomes, the metrics used, and conclusive statements. Data
were then synthesized into a table format in Microsoft Excel

and confirmed for data entry by the author. No automation tools
were used in the process.

Results

Overview of Identified Articles
From the 4097 articles identified through the database search
(Google Scholar, n=2263; Scopus, n=1624; and PubMed,
n=210), and after removing duplicate items, 2245 publications
were excluded based on title, abstract, and inappropriateness of
topics (eg, knee arthroplasty in endurance runners). A further
search was then performed in the databases with exclusion
criteria (without the words) “knee” AND “lower back” AND
“hip.” A search “with the words” was then refined to include
“remote.” An additional 551 articles were removed due to
“knee” appearing in the article while 2 papers were removed
due to not being written in English. A further 4 were removed
due to the topic being limited to physiological assessments only.
A total of 1295 articles remained. Of these, 585 articles were
discarded (most frequent reasons were not including wearables,
not mentioning SIJ injury or SIJ dysfunction or running-related
activities, and not describing the relationship between
biomechanical quantities from wearables and the SIJ, or not
defining the IrRL classification model relative to the SIJ and
wearable usage in endurance runners). In addition, 665 records
were removed due to technology not being classified as
wearable, yielding a total of 45 studies to be considered for
review.

A total of 151 participants were identified as being runners or
endurance runners from the 45 papers analyzed. Descriptions
of the included studies were either classified as a review of
wearable sensors in the diagnosis and treatment of SIJ
dysfunction, or wearable movement sensors for rehabilitation,
or a combination of the above for SIJ gait analysis in an
intelligent health care setting. Two papers [24,25] specifically
mentioned wearable technology and the COVID-19 pandemic.
However, only 1 of the review papers specifically mentioned
measuring biomechanical loads and asymmetries in elite
long-distance runners through inertial sensors [26]. One study
[27] reported on SIJ pain relative to contralateral pelvic drop
compared while the remaining research papers specifically
mentioned iliac stress fractures in endurance runners linked to
the SIJ, hip pain, or SIJ dysfunction. The remaining studies did
not openly discuss the link between wearables and remote
settings and SIJ dysfunction but mentioned such relationships
as being possible or hypothetical. Thus, a total of 21 manuscripts
remained, with overlapping reports on topics relative to SIJ
dysfunction. No immediate forms of information bias
(measurement bias) were detected in the final 21 studies.

Journals and Years
The 21 original manuscripts included in the review appeared
in over 11 different journals, with 11 journals publishing nearly
half of the total, and at least five relevant articles published in
orthopedic, traumatology, or physical therapy journals. One
paper was published in a rehabilitation journal while 3 papers
were published in technology and engineering journals. The
number of articles in the area under scrutiny appears to have
increased over time, as 7 papers have been published since the
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onset of the COVID-19 pandemic regarding telehealth (remote),
sensors, and machine learning in endurance running injury
management journals. The use of wearables in field-based and
self-reliant monitoring seems to be increasing in popularity, as
also demonstrated by the 7 review papers published between
2020 and November 2022.

More than half of the 21 studies scrutinized were literature
reviews, 4 (19%) were case reports, and 1 was classified as fully

experimental; 5 (24%) attempted to develop a predictive model
or a machine learning approach to identify risk factors for
running-related SIJ dysfunction. One study was classified as
being at the pre stage of SIJ dysfunction, while 6 (29%) were
identified as being at the at stage of classification. Considerably
fewer studies attempted to capture or classify actual SIJ injuries,
and no study directly addressed injury recovery (Table 4).
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Table 4. Validity and reliability and application (information extracted from each article included the classification of the study).

Metric(s)Age (years)Participants and
gender, n

Classifica-
tion

IrRLaLocationYearAuthor

Quantified accuracy of applying
quantile regression forest and

Mean 20 (SD 2)
years

37Validity

(atb)

IrRL1: Research
(exploring causal
relationship)

Force-mea-
suring
treadmill
(laborato-
ry)

2021Alcantara et al
[28]

linear regression models to
sacral-mounted accelerometer
data to predict peak vertical
ground reaction force, vertical
impulse, and ground contact time
across a range of running speeds.

In midstance, runners with SIJ
pain had greater contralateral

Mean 27.3 (SD
12.9) years for

81 runners (63
runners without

Case-control
(at)

IrRL2: Develop-
ment (building on
established causal
relationship)

Treadmill
(laborato-
ry)

2022Whitney et al
[27]

pelvic drop compared with con-
trols. For unilateral SIJ pain cas-
es (n=15), greater contralateral

runners without
and 23.8 (SD
10.5) years for

SIJc pain and 18
runners with SIJ
pain)

pelvic drop was observed whenrunners with SIJ
pain loading the affected side com-

pared with the unaffected side.
Female runners with SIJ pain
demonstrated greater contralater-
al pelvic drop during the mid-
stance phase, along with less
knee flexion, greater “tibial
overstride,” and greater ankle
dorsiflexion at initial contact
compared with controls.

The pressure between the sensor
contact area and the lumbar re-

N/Ad3 male partici-
pants

Application
(at) (proof of
concept)

IrRL1: Research
(exploring causal
relationship)

Treadmill
(laborato-
ry)

2008Höfer and
Siemsen [29]

gion was measured with force
sensitive resistor sensors.

Report on a second case of an
isolated stress fracture of the iliac

24 years1 female partici-
pant

ReviewIrRL1: Research
(exploring causal
relationship)

N/A2014Amorosa et al
[30]

wing in a female marathon run-
ner and the associated diagnosis
of the female athlete triad.

The mean peak tibial accelera-
tions in junior-elite long-distance

N/A45 healthy ju-
nior-elite long-
distance runners

Experimen-

tal (pree)

IrRL2: Develop-
ment (building on
established causal
relationship)

Treadmill
(laborato-
ry)

2019Ueberschär et al
[26]

runners ranged between 14 (SD
3) and 16 (SD 3) g (g≈9.81 m

s−1) for running speeds of 14–16

km h–1. The corresponding mean
peak sacral and scapular acceler-
ations amounted to 4 (SD 1) to 5
(SD 1) g (32%, SD 8% of tibial
load) and 4 (SD 1) g (mean 27%,
SD 6%), respectively.

Daily monitoring of basic health
data by wearable devices helps

N/AN/AReviewIrRL1: Research
(exploring causal
relationship)

N/A2021Liu et al [31]

physicians in detecting the health
problem. However, most current
wearable sensors are not accurate
enough for clinical evidence.

A novel mobile health system to
support trunk endurance assess-

N/A1 male partici-
pant

Application
(proof of
concept/case
report)

IrRL1: Research
(exploring causal
relationship)

Laboratory2015Banos et al [32]

ment. The system uses a wear-
able inertial sensor to track the
patient’s trunk posture, while
portable electromyography sen-
sors were used to seamlessly
measure the electrical activity
produced by the trunk muscle.
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Metric(s)Age (years)Participants and
gender, n

Classifica-
tion

IrRLaLocationYearAuthor

A review and algorithm for the
diagnosis and treatment of
sacroiliac joint pain.

N/AN/AReviewIrRL1: Research
(exploring causal
relationship)

N/A2020Falowski et al
[33]

Proof of concept that wearable
technology has the potential to
predict injury in sports.

21.1 (SD 3.84)
years for male
and 20.1 (SD
1.18) years for
female partici-
pants

55 (39 male and
16 female partic-
ipants)

Application
(at) (proof of
concept)

IrRL2: Develop-
ment (building on
established causal
relationship)

Laboratory2021Zadeh et al [34]

Wearable movement sensors for
rehabilitation: a focused review
of technological and clinical ad-
vances.

N/AN/AReviewIrRL1: Research
(exploring causal
relationship)

N/A2018Porciuncula et
al [35]

A wearable system for remote
monitoring of the treatments of
musculoskeletal disorder.

N/AN/AApplication
(at) (proof of
concept)

IrRL3: Deploy-
ment

Field based2018Lorussi et al
[36]

Digital technology–based
telemedicine for the COVID-19
pandemic.

N/AN/AReviewIrRL1: Research
(exploring causal
relationship)

N/A2021Shen et al [24]

Sensors and systems for physical
rehabilitation and health monitor-
ing.

N/AN/AReviewIrRL1: Research
(exploring causal
relationship)

N/A2020Nascimento et
al [37]

The rise of wearable devices
during the COVID-19 pandemic:
a systematic review.

N/AN/AReviewIrRL1: Research
(exploring causal
relationship)

N/A2021Channa et al
[25]

Proof of concept using runners
who run at least 20 km. A
prospective longitudinal cohort
study using statistical analysis of
the data was performed using
machine learning methods.

N/AN/AApplication
(at) (proof of
concept)

IrRL1: Research
(exploring causal
relationship)

N/A2022Rahlf et al [38]

aIrRL: Injury-research Readiness Level.
bAn at/post classification: if the scope was to identify and characterize SIJ injury factors, diagnosis, or underlying mechanisms; or track SIJ injury
occurrences in endurance runners.
cSIJ: sacroiliac joint.
dN/A: not applicable.
ePre: pre-SIJ dysfunction (ie, before the SIJ injury).

Experimental Setting
In the field-based study [36] that analyzed endurance runners
at the SIJ dysfunction stage, the application was at the
proof-of-concept stage only. None of the studies included in
this review were deemed to be experimental or classified as an
observational study design pertaining to the use of wearables
in a self-monitoring or remote rehabilitation capacity. This was
despite most studies being literature or systematic reviews that
focused on wearables for self-monitoring, self-monitoring in a
remote setting, or a combination of both.

Participant Characteristics
Overall, the studies included between 1 participant [30] and 81
participants [26], with the mean number of participants being
21 (SD 32). The mean age of participants was 22.2 (SD 3.7)
years. None of the selected studies performed a comparison of
SIJ dysfunction and related gait patterns across the selected age
groups or compared SIJ dysfunction using a validatory approach

in wearables. Many of the studies included both male and female
participants; however, none of the selected studies examined
differences between male and female participants in SIJ
dysfunction using wearables. One study [26] focused on female
runners with SIJ or sacral stress fractures, whereas another [29]
included only male participants using pressure sensors in the
lumbar region. Given the discrepancy in participant
characteristics, a source of inequity, that is, gender bias, was
prevalent in some studies analyzed.

Clarification of SIJ Pathomechanics
Overall, the SIJ appears to function as a stabilizer of the pelvis,
absorbing ground reaction forces during gait and shear forces
during movement [6]. The SIJ has also been described as a
multidirectional force [39]. Activities that involve a 1-leg stance
such as running would presumably increase the force in each
SIJ, yet this was not specifically mentioned in the studies.
Similarly, this would influence the vertical ground reaction
force that occurs with each step. Another significant influence
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is the center of mass, which is in slightly different positions for
men and women. One study noted the importance of the center
of mass, particularly in women, as it commonly passes in front
of or through the SIJ [40]. Some of this can be explained due
to sexual dimorphism being apparent in the pelvis, with the
female sacrum being wider and with a more backward tilt. This
would also account for the higher loads and stronger SIJs that
are commonly seen in men [41]. This characteristic may also
explain why men have more restricted mobility, as the average
movement for men is approximately 40% less than that of
women [42]. In this regard, the mechanism of SIJ dysfunction
is primarily a result of a combination of axial loading and abrupt
rotation [43]. DeRosa and Porterfield [44] delineated the primary
influences as follows: the force of gravity, which acts downward
through the spine, generating the flexion moment of the sacrum
on the ilium, and the ground reaction force, which travels
upward through the lower extremity from the heel strike,
producing a posterior rotational moment (referred to as
“torsional”) of the ilium on the sacrum; they termed these
motions sacroiliac and iliosacral, respectively. Falowski et al
[33] presented an algorithm for the diagnosis and treatment of
SIJ pain. In this case, the authors believed that SIJ pain is an

underdiagnosed and undertreated element of LBP. Citing an
emerging disconnect between the growing incidence of
diagnosed SIJ pathology and the underwhelming efficacy of
medical treatment, they created a diagnostic and treatment
pathway to establish an algorithm for patients that can include
conservative measures and interventional techniques once the
diagnosis is identified.

Classification of Wearables
A total of 8 studies used wearables in some form; however, only
1 study [26] used a sensor (a triaxial accelerometer) to measure
biomechanical loads in endurance runners, although this study
did not specifically review SIJ dysfunction. In the 8 studies that
mentioned wearables, accelerometers and gyroscopes featured;
however, the authors did not provide enough information to
establish the type, range, and technical specification of the
devices. There was a large variation in the reported use of
temperature sensors, pulse oximeters, BioHarness wearable
technology, pressure sensors, correlated glycemic measurements,
biosensitivity techniques, electrodes, environmental monitoring,
smartphone accelerometers, and next-generation wearable
movement sensors despite these studies not specifically
mentioning SIJ in endurance runners (Table 5).

Table 5. Breakdown of various approaches used for wearables.

DescriptionApproaches

Referred to sensors’ validation within the cited article • Compared with gold standards (eg, stereophotogrammetry, force platforms,
high-speed video, or photocells) [24,25,34-37].

• Comparing classification results against human\validated software classification
[24,25,35-38].

Pilot or proof studies • Biomechanical effect of a lumbar spine-relief orthosis for the treatment of
sacroiliac pain [29].

Referred to ad hoc procedures for the performed measures • Describing procedures for sacroiliac joint monitoring or pain management
measures using machine learning or similar approaches [45,46].

The reviewed studies that used proof-of-concept designs [34,38]
included generic descriptions of wearables relating to
self-monitoring use and remote rehabilitation monitoring despite
inadequate information provided about SIJ for rehabilitation in
endurance runners. Furthermore, while describing the technical
features of the wearable is key to the accurate clarification of
data quality and of the implication of the changes that a remote
intervention may encourage, many studies did not report this
information sufficiently. Notably, and as highlighted by recent
systematic reviews on wearables and inertial sensors for sport
performance evaluation [47], and on accelerometry of impact
loading in runners [30], reporting the features of the wearable
device used—as well as information on the attachment location
and fixing methods—is essential.

Discussion

Principal Findings
This review examined 21 studies that evaluated the effects of
wearable use in remote settings during SIJ dysfunction in
endurance runners. A secondary purpose of this review was to
evaluate the effectiveness of wearables in possible or probable

SIJ rehabilitation programs for endurance runners. Explicitly,
this review reported on the (1) strength of evidence, time setting,
and primary scope of studies relating to SIJ dysfunction in
endurance runners; (2) characterization of SIJ dysfunction in
terms of experimental conditions, setting (running field based
or running laboratory based using treadmills), and the age of
endurance runners tested; and (3) characteristics of the
technologies and types of wearables and measures used relative
to SIJ dysfunction in endurance runners. The author also defined
and assessed (4) the IrRL relative to SIJ dysfunction. This
review has demonstrated that the use of wearable technology
for SIJ dysfunction monitoring in endurance running either from
a laboratory or from a remote (telehealth) perspective is
emerging, but further work is required to establish a standardized
methodology and the validity or reliability of instrumentation.

This review provides a comprehensive overview of wearable
technology used for an SIJ dysfunction in endurance runners
as well as recommendations for future work.

Injury Type and Classification
The quality of the included studies varied, with one of the most
challenging aspects of diagnosing and treating SIJ dysfunction
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in the endurance running population being the inconsistent
judgment and, in some instances, worrisome presentation of the
injury. The main difficulty faced by authors appears to be related
to diagnostic challenges given that the pathomechanics and
diagnostic classification of SIJ dysfunction are inconsistent in
the literature. This was mainly observed in studies that referred
to SIJ dysfunction as either a potential source of LBP or
symbolic of hip-related issues. Moreover, lumbopelvic rhythm
(LPR) was used as a definitive term by some authors. This, then,
makes any possible deployment of wearables for rehabilitation
purposes challenging if the diagnosis is either missed or
misdiagnosed. As specific characteristics of SIJ dysfunction in
endurance runners are required for investigation, the number
of eligible participants was limited given that acute injuries
were investigated primarily in 1 study [30] and chronic SIJ
dysfunction in another [27], both of which occurred in control
settings. None of the studies monitored acute or chronic SIJ
dysfunction using wearables in a remote setting.

There were additional variations among the reviewed studies.
While 2 studies examined the usability of wearables through
active engagement with endurance runners [27,38], many lacked
consideration for the wearer’s physical, psychological, and
social preferences regarding the technology. Although 1
proof-of-concept study examined if wearable technology has
the potential to predict injury in sports [34], many studies (42%)
were found to be at the at stage of injury classification. However,
it is important to consider the practicality of using wearables to
classify SIJ dysfunction at the pre stage during running. Further
research exploring the feasibility and necessity of using
wearables is required, or whether this is feasible given the
apparent difficulty in diagnosing SIJ dysfunction. Additional
research will enhance our understanding of how wearables could
be used at the onset of possible SIJ dysfunction to deliver the
most pertinent data while enabling a clinical diagnosis.

A major issue in the approach to wearable instrument application
is that more than half of the 21 studies analyzed were literature
reviews, 4 (19%) were case reports, and 1 was classified as fully
experimental relative to the classification of SIJ dysfunction.
The results showed that although different wearables have been
used for evaluating biomechanical parameters in the running
gait analysis, as well as some relevant SIJ parameters pertaining
to diagnostic or predictive stages of SIJ dysfunction, a paucity
of research exists in the rehabilitation and remote monitoring
of SIJ dysfunction. Indeed, the findings show that different
descriptions related to possible or probable SIJ diagnosis exist
in that injury classification is also referenced in relation to LBP
and LPR. This, then, makes it difficult to draw firm conclusions
regarding how wearables could be deployed remotely for
rehabilitation purposes. Therefore, we are beginning to
understand that the at stages of SIJ dysfunction require more
than a concentration on the risk factors associated with injury
occurrence.

Evidence also suggests that SIJ rehabilitation using wearable
technology, in both controlled and remote settings, is highly
nuanced (ie, varying across classification, injury stage,
diagnosis, participant age, and gender). This complexity may
extend to confusion in terminology and diagnosis between lower
back injury and SIJ dysfunction, considering potential

differences in running gait mechanics when running in
controlled (eg, laboratory) versus remote settings. For example,
one study [48] noted that the most common complaints were
pain in the lower back, buttocks, leg, groin, and hip. Although
some studies acknowledged that pain originating from the lower
back region is likely more common than most endurance runners
realize, as a result of the difficulty in localizing symptoms and
referred pain patterns, the results suggest that reference to
running-related SIJ issues was infrequent. This is not necessarily
surprising as LBP is among the most common human health
problems and accounts for a significant amount of disability
worldwide [49]. Interestingly, the SIJ has been estimated to
contribute to pain in as much as 38% of cases of LBP [50].
Although topographical classifications such as “sacroiliac,”
“pelvis,” and “spine” serve a crucial didactic purpose, they can
impede understanding of normal and altered functional SIJ
mechanisms. As different classifications exist, it remains
somewhat unknown if greater SIJ dysfunction in endurance
runners exists, thus making any reference to the possible role
of wearables relative to injury classification and rehabilitation
in remote monitoring challenging.

What is commonly stated among the papers reviewed is that
the clinical examination of an endurance runner with SIJ
dysfunction commonly begins with an evaluation of gait. The
results suggest that this often commenced in a clinical setting
with ongoing monitoring of the condition commonly requiring
the patient to be in the same clinical and controlled setting. It
is at this juncture that wearables could be used in a remote and
personalized setting, whereby data are fed to the clinician to
monitor and track gait-related patterns or irregularities.
Notwithstanding the literature reviews discussed in this paper
that highlight the obvious and practical gap in using this
technology in an SIJ dysfunction setting, more research is
needed to test the feasibility and validity of the different
wearable devices currently available. This extends to the level
of expertise needed to operate and interpret the data from the
perspective of an operator, athlete (runner) and clinician.
Additionally, the results point to LPR being frequently
referenced in the literature alongside LBP and SIJ dysfunction.
The literature suggests that LPR is the relationship between the
lumbar spine, hip, and pelvis when the trunk is in flexion. The
classification of LPR during torso forward bending and
backward return has also been widely investigated and
commonly related to lower back disorders [51]. This defines
LPR and LBP without necessarily drawing on the biomechanical
differences and classification of how these injuries are managed
in endurance runners. Furthermore, the results show considerable
differences in the methods used to measure, and approaches
used to characterize, LPR. Overall, it appears as though the
timing aspect of LPR has been examined to obtain insights into
the neuromuscular control of torso motion. The lack of
consensus in LPR, LBP, and SIJ dysfunction is further impacted
by the fact that there are no “gold-standard” algorithms for the
detection of running gait outcomes from wearable sensor setups,
which likely explains the large variation of outcomes and
definitions reported in the reviewed studies.
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Treatment of SIJ Dysfunction
It appears that treatment and management of SIJ dysfunction
are often nonsurgical and involve packages of care that can
include analgesics, physiotherapy, corticosteroid injections, and
radiofrequency ablation [52]. Non–face-to-face (remote) care
models exist in which the athlete is physically separated from
the physician (or other health care workers) and empowered by
communication-based technologies, such as videoconferencing
and the use of continuous patient monitoring (wearable or
“surface sensor”) technologies that capture athlete metrics and
deliver health data remotely to the physician. Although these
technologies have existed for some time, widespread
implementation has been constrained by laws, regulations, and
policies. The use of wearables in movement science and sport
is widespread [53]; however, relative to SIJ dysfunction
detection using wearables in either a laboratory/clinical setting
or a remote setting, it could be argued that their application is
still in an “exploratory phase.” Therefore, the findings agree
with Hughes et al [54] in that the technology and the associated
methods still require further development and careful analysis.

The results concerning SIJ injury risk mitigation have been well
addressed in the literature [55,56]. Notwithstanding injury
mitigation factors, no exploratory research has been performed
to systematically investigate the feasibility of wearables use as
a rehabilitation tool in SIJ injury assessment or dysfunction in
endurance runners. This includes how wearables could
potentially be used to characterize the severity of SIJ dysfunction
as well as exploring the use of acquired information to support
either clinical preventive or rehabilitative interventions. The
empirical and analytical study of SIJ motion dates back to the
late nineteenth century. However, its widespread acceptance as
a legitimate entity has only occurred recently [57,58]. This delay
in acknowledgment may elucidate why SIJ dysfunction can
often be mistaken for LBP and LPR issues. Moreover,
nowadays, the topography of SIJ motion should be measured
to establish the conceivable axes of motion. From the study of
Wilder et al [59], translation must occur for any sagittal
innominate rotation to be possible because of the irregular
surfaces and taut ligament structure. Accordingly, clinical
theories have been proposed regarding the details of these
motions. Along this line, Lee et al [6] stated that nutation seems
to occur bilaterally when moving from supine to standing and
unilaterally with flexion of the hip joint. Moreover, this kind
of information would be relevant to any treatment of SIJ
dysfunction given that counternutation occurs bilaterally and
sometimes near the end of trunk flexion and unilaterally during
hip extension. Some authors (eg, [60]) suggested that individuals
with SIJ dysfunction display symmetrical gait and a depressed
synergy between muscles providing SIJ force closure. The
disorder involves reduced coactivation of the gluteus maximus
and contralateral activation of the latissimus dorsi, which
together provide joint stability during running. The disorder
would be exacerbated in endurance runners given their need for
maximum activation of gluteus maximus and torso stability,
both of which require consideration when treating SIJ
dysfunction. Nevertheless, these results indicate that the
information on SIJ dysfunction in endurance runners and the
treatment options that exist using wearables are unrepresented.

Despite these limitations, it is pertinent to consider whether
such treatment methodologies are clinically and practically
feasible within a given wearables context.

Information Technology and Health Care
Outcomes obtained from this review posit that health services
have experienced great changes, especially in remote monitoring
[61]. Additional clinical studies (eg, [31]) have shown that
wearables are widely used to monitor functional and daily
activity inclusive of walking and running gait. The wearables
used were commonly integrated with an IMU sensor and
controlled with a smartphone app [62]. The increased use of
wearable technologies, either in isolation or as part of integrated,
preventative, or rehabilitative approaches, offers an opportunity
to collect quantitative data “in the field,” less obtrusively, for
extended periods, and with fewer spatial limitations than
conventional motion-capture technologies (eg, [46]). In this
regard, wearables are increasingly viewed as promising
alternatives to expensive analytical instruments in health care
when specificity and selectivity criteria are met. It could be that
wearables are used to monitor for possible pain, therefore
exploring the use of torso acceleration as a proxy with a triaxial
accelerometer. As the goals of SIJ dysfunction treatment may
include increasing suppleness, strengthening, and correcting
any asymmetries, the opportunity remains to explore how
wearables could be used as a viable treatment monitoring option.
This, then, is an area for future research.

Wearables can help quantify spatiotemporal variables (eg, stride,
step length, cadence) and physiology (eg, heart rate, recovery
time) and are commonly used for human activity detection and
quantified self-assessment. Until recently, or specifically since
the emergence of the novel coronavirus, COVID-19 in January
2020, evidence for the effectiveness of remote usage and
wearable monitoring, compared with traditional care models,
has been scarce [63]. Along this line, the combination of
telemedicine as an audiovisual communication platform and
wearables that transmit field-based kinematic metrics provides
numerous benefits to both health care providers and runners
alike. Similarly, machine learning approaches have been widely
used in gait biomechanics studies in the past decade [64-66].
However, among the papers included in this review, only 3
[31,32,36] focused on wearables for the sole purpose of remote
monitoring of treatment of musculoskeletal disorders, clinical
advances, and rehabilitation. This ambiguity further complicates
the usage and uptake of wearables for SIJ dysfunction, which
need to accommodate such conditions.

Although wearables can be used for home monitoring of activity
and for the purposes of rehabilitation, little research has
examined the potential of wearables when applied to acute or
chronic SIJ dysfunction in endurance running. For example,
when used remotely (ie, at home), the wearer (runner) could be
required to complete standardized functional, rehabilitative
assessments while data are continually recorded from the
wearable device and relayed directly to the doctor or medic.
Therefore, rather than comprising only standardized functional
test data, as would be the case in a clinical setting, the runner’s
ambulatory movement data set would contain data corresponding
to all movements while wearing the sensor, including recovery
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and running activity. Indeed, common day-to-day movements
can be tracked using wearable devices equipped with an IMU
sensor and controlled with a smartphone app [62]. Besides
research into wearable use in stride, step, stance, and
spatiotemporal variables relative to both performance and injury
mitigation, a greater understanding of the processes and
predictors of SIJ rehabilitation has the potential to inform and
strengthen public health. In this regard, the findings agree with
Regterschot et al [67] in that important challenges and barriers
to the deployment of wearables in clinical care remain.
Similarly, Lang et al [68] discussed the major barriers to the
application of wearables in motor rehabilitation and proposed
benchmarks for the implementation of wearables in clinical
practice. These clinical barriers include the demanding clinical
environments that are often present, as well as the lack of
recognition by some health professionals of the valuable
information that can be obtained from wearables. There are also
technology-related barriers, including (1) wearables that are
inaccurate for many athletic populations (ie, inconsistent data
output or lack of validity), (2) wearables that are not
user-friendly for clinicians or athletes, and (3) the lack of
published data on the reliability and clinical validity of some
wearables. This extends to the development and optimization
of innovative wearable configurations and data analysis
techniques (eg, machine learning–based algorithms that enable
the detection of specific activities and movements in free-living
conditions). While Regterschot et al [67] asserted the existence
of reliable and valid wearables for clinical populations and
free-living environments, medical technology professionals
could be encouraged to assist allied health specialists in
developing the knowledge and skills necessary to effectively
use wearables for remote rehabilitation purposes. In concordance
with Regterschot et al [67], barriers exist in deploying remote
wearables for detecting specific activities and movements in
free-living conditions. The results of this review suggest that
clinical barriers extend to the busy medical environment and
the lack of realization of the value of information that can be
obtained using wearables. However, it appears as though
technological barriers also exist, including (1) a perception that
wearables are inaccurate for many patient populations, (2)
wearables that are not user-friendly for clinicians or patients,
and (3) a lack of published data regarding reliability and clinical
validity of sensor systems. Relatedly, Lang et al [68] discussed
the clinical barriers to the application of wearables in motor
rehabilitation and proposed benchmarks for the implementation
of sensors in clinical practice. Therefore, researchers are
encouraged to investigate the usability, acceptance, feasibility,
reliability, and clinical validity of wearable sensors in clinical
populations to facilitate the application of wearable movement
sensors in SIJ rehabilitation.

Limitations
Some caution should be exercised when considering these
findings. It merits noting that this review was a single-author
systematic review. The author performed manual searches of
all databases stated in this review and then coded and analyzed
all retrieved results. Despite this, being a single-author review
ensured that the processes described were based on the author’s
judgment of eligible articles, albeit following the PRISMA

guidelines diligently. While systematicity was adhered to as
best as possible, a single-author review does incur a possible
likelihood of unintentional bias and methodological limitations
when compared with group reviews. However, the processes
described by the author are based on data accumulation with
clear links between the knowledge and content of the subject
as well as providing evidence for future research. Additionally,
this review is not meant to be exhaustive and includes only a
cursory evaluation of the issues. The clinical applications
discussed are limited to SIJ dysfunction in an endurance running
population. As a potential limitation, endurance running was
classified as involving runners regularly completing over 5 km
in training or competitive situations. Therefore, papers featuring
experimental trials involving runners covering distances below
this threshold were not included. This was motivated by the
very high publication rate that made their inclusion infeasible.
Nevertheless, this potential limitation did not alter the key points
raised in the large number of papers included in this review and
presented in the Discussion section. While an effective SIJ is
fundamental in one’s ability to run with biomechanical
efficiency and effectiveness, this systematic review was not
intended to review sensor-based methods solely for applied
real-time gait analysis. As gait analysis can include sensors
located on the shank and foot, which are most often used in
combination with threshold or peak identification methods for
gait detection for SIJ assessment, review papers on gait analysis
were limited.

Recommendations
Despite these limitations, future studies should prioritize
improving the quality of research aimed at reducing
discrepancies in result interpretation, increasing reliability and
validity, and promoting study generalizability. Given these
findings, the review concurs with Block and Miller [69] that
SIJ pain and dysfunction in endurance runners are likely highly
underdiagnosed and undertreated. Additionally, clinicians should
be mindful of a broader range of potential differential diagnoses
regarding other sources of posterior hip and LBP in endurance
runners.

Based on the findings of this review, wearables combined with
smart devices could enable real-time data to be sent to health
care professionals and clinicians, allowing for simultaneous
tracking of endurance runners and monitoring the magnitude
of SIJ dysfunction. This also challenges the engineering
community to develop more intelligent, real-time, accurate
information, making it user-friendly and offering athletes and
clinicians actionable insights based on context-specific
evaluation frameworks. As noted by Clermont et al [70],
personalized and effective wearable technology should be rooted
in a thorough understanding of the user’s experience, attitudes,
and opinions which, if not properly considered, can severely
hamper the potential of applications.

The selected articles, particularly those from 2020 and the onset
of the COVID-19 pandemic, undoubtedly reflect the widespread
interest in the area and an increasing trend in popularity. The
analysis resulted in some key conclusions, which were reported
along with main reflection points that led to the formulation of
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guidelines and good practices for future research and
dissemination. These are as follows:

• Articles should explicitly state the rationale for choosing
and analyzing specific biomechanical quantities relating to
the SIJ and include a justification of what relationship may
exist between the SIJ and the diagnosed dysfunction. When
previous literature and reviews are cited to support the
choice made, the strength of evidence of previous studies
should be discussed, together with the context from which
that evidence emerged.

• More effort should be spent to fully exploit the potential of
wearable technologies to detect and manage SIJ
dysfunction, particularly as part of an injury management
plan (post). This would allow the unobtrusive monitoring
and quantification of the effects of prescribed interventions
(preventive or rehabilitative) more regularly.

• The continuous progress in wearables offers many
opportunities to collect data on many athletes
simultaneously, unobtrusively, for long periods, and in
field-based situations. However, the great “power” that
even consumer-level technologies (eg, smartphones,

watches, pods) currently offer does not come without
problems, such as those associated with validity, user and
clinician experience, and interpretation of data.

Conclusions
A current “state of play” in SIJ dysfunction among endurance
runners for rehabilitation considerations using wearables in a
remote setting was presented. This study took a systematic
review approach to explore the existing literature on SIJ
dysfunction in an endurance running population, using wearables
as a rehabilitation tool. Viewed through the lens of wearable
technology, the results from this review show that diagnosing,
treating, and managing SIJ dysfunction in endurance runners
vary considerably because of the inconsistent definition of the
condition. To identify optimal rehabilitation considerations and
effectively monitor this condition using remote wearables,
further investigations are recommended to better clarify the
condition. Moreover, greater utilization of wearables for
measuring both biomechanics and pathomechanics is suggested
to enhance the reliability and accuracy of remote wearable
usage.
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Abstract

Background: The digital era has witnessed an escalating dependence on digital platforms for news and information, coupled
with the advent of “deepfake” technology. Deepfakes, leveraging deep learning models on extensive data sets of voice recordings
and images, pose substantial threats to media authenticity, potentially leading to unethical misuse such as impersonation and the
dissemination of false information.

Objective: To counteract this challenge, this study aims to introduce the concept of innate biological processes to discern
between authentic human voices and cloned voices. We propose that the presence or absence of certain perceptual features, such
as pauses in speech, can effectively distinguish between cloned and authentic audio.

Methods: A total of 49 adult participants representing diverse ethnic backgrounds and accents were recruited. Each participant
contributed voice samples for the training of up to 3 distinct voice cloning text-to-speech models and 3 control paragraphs.
Subsequently, the cloning models generated synthetic versions of the control paragraphs, resulting in a data set consisting of up
to 9 cloned audio samples and 3 control samples per participant. We analyzed the speech pauses caused by biological actions
such as respiration, swallowing, and cognitive processes. Five audio features corresponding to speech pause profiles were
calculated. Differences between authentic and cloned audio for these features were assessed, and 5 classical machine learning
algorithms were implemented using these features to create a prediction model. The generalization capability of the optimal model
was evaluated through testing on unseen data, incorporating a model-naive generator, a model-naive paragraph, and model-naive
participants.

Results: Cloned audio exhibited significantly increased time between pauses (P<.001), decreased variation in speech segment
length (P=.003), increased overall proportion of time speaking (P=.04), and decreased rates of micro- and macropauses in speech
(both P=.01). Five machine learning models were implemented using these features, with the AdaBoost model demonstrating
the highest performance, achieving a 5-fold cross-validation balanced accuracy of 0.81 (SD 0.05). Other models included support
vector machine (balanced accuracy 0.79, SD 0.03), random forest (balanced accuracy 0.78, SD 0.04), logistic regression, and
decision tree (balanced accuracies 0.76, SD 0.10 and 0.72, SD 0.06). When evaluating the optimal AdaBoost model, it achieved
an overall test accuracy of 0.79 when predicting unseen data.

Conclusions: The incorporation of perceptual, biological features into machine learning models demonstrates promising results
in distinguishing between authentic human voices and cloned audio.

(JMIR Biomed Eng 2024;9:e56245)   doi:10.2196/56245

KEYWORDS

voice; vocal biomarkers; deepfakes; artificial intelligence; vocal; sound; sounds; speech; audio; deepfake; cloning; text to speech;
cloned; deep learning; machine learning; model-naive
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Introduction

An increasing number of individuals rely on digital platforms
as their primary sources of news and information [1]. People
often trust what they consume on the internet without doing any
research on the source. There is a technological advancement
significantly influencing the production of digital media known
as “deepfake.” Deepfake constitutes a synthetic reproduction
of media content, both auditory and visual, carefully crafted to
closely represent the physical attributes and vocal characteristics
of a specific individual. Its use spans many domains, notably
in entertainment, where it can be used for the digital replication
of actors for special effects or the creation of intricately detailed
characters in video games [2].

Deepfakes are generated through the aggregation of substantial
data sets, including voice recordings, images, and video
segments [3]. This research specifically targets the detection of
audio deepfakes, relying solely on voice data for both deepfake
development and detection method testing. The voice data sets
serve as the foundation for training deep learning models,
predominantly deep neural networks, with the primary objective
of encoding unique and distinguishable attributes and
characteristics found in human voices, like speech patterns and
intonation [3]. Following successful model training, it gains the
capability to produce replicated voice data by processing input
audio or text [3]. While initially trained with substantial data
sets, deepfake generation models posttraining can produce new
voice clones with minimal audio input, synthesizing voice data
to replicate the target voice’s distinctive traits based on learned
patterns during the training phase.

This technology is valuable in many domains including voice
assistants, voice dubbing for multimedia, professional
voiceovers, and the narration of audiobooks [4]. Deepfake
content can be generated rapidly once a model is trained, thereby
significantly improving efficiency across many industries.
Unfortunately, the irresponsible and unethical misuse of
deepfakes is prevalent, encompassing impersonation, the
dissemination of false information, and violation of privacy
[5,6]. Due to the dynamic and rapidly evolving nature of this
technology, remaining updated with the ongoing advancements
in deepfake detection is challenging [7].

Individuals need a reliable tool to verify that the information
they are consuming is authentic. Several outdated deepfake
detection machine learning methods have high levels of
accuracy, achieving up to 100% accuracy on a data set [8].
However, these accurate predictions are restricted to the level
of advancement of the deepfakes that the detection models are
trained with [9]. For example, the previously mentioned tool
that achieved 100% accuracy was trained and tested on a data
set of deepfakes generated in 2019, which are of much lower
quality than the level of deepfakes available in 2023 [8].
Furthermore, recent work has shown that out-of-domain voice
clone detectors (ie, voice detectors applied outside of the data
set in which they were applied) had extremely low performance,
obtaining an area under the receiver operator curve (AUC) of
25% [10]. A more robust detection method might involve

searching for the absence of biological features in the cloned
voice, rather than the presence of digital features [11].

Activities such as respiration, swallowing, and cognitive
processes can influence speech production and the pattern of
pauses in authentic speech. Although voice cloning processes
may closely mimic human speech production, machines have
no requirements for speech breaks and instead rely on training
data to indicate where these pauses occur. This may result in
subtle but detectable differences in the way pauses are present
in authentic versus cloned audio. Indeed, when humans were
asked to distinguish between audio deepfakes and authentic
voices, one of the primary justifications for a fake audio
classification was unnatural pauses in the recordings [10].
Furthermore, when these features were integrated into a
classification regime, a moderate accuracy (approximately 85%)
was achieved when analyzing deepfakes by perceptual features
such as the amplitude of speech and pauses within a recording
[12]. However, that study only assessed the use of a single voice
cloning software (ElevenLabs) and a small number of cloned
voices (9 built-in text-to-speech (TTS) voices and voices cloned
from 2 celebrities). Furthermore, the training, validation, and
testing sets were not split by participants, so it is assumed that
recordings from the same participant are present in both the
training and testing data sets.

We posit that the absence of regular human vocal biomarkers,
characterized by the pause pattern in a speech segment, will be
effective in differentiating cloned audio from authentic audio.
For a more comprehensive understanding of model performance
on out-of-domain data, we test the proposed methodology in
the following ways:

1. On real and cloned audio recordings the model was not
exposed to during training, including built-in TTS obtained
from the cloning models

2. On a paragraph the model was not exposed to during
training

3. On a new cloning software the model was not exposed to
during training

Methods

Recruitment
A total of 49 adult participants (20 male) were recruited for this
study between June and August 2023 in Toronto, Canada. The
participant pool exhibited diversity in terms of ethnicity and
had various types and strengths of accents. Exclusion criteria
for recruitment included: (1) any person not living in Canada,
(2) any person below the age of 18 years, and (3) any speech
pathology or condition impeding the production of standard
speech, such as stuttering, vocal cord pathology, tracheostomy,
or the common cold. No restrictions on gender, ethnicity,
accents, or other demographic data were implemented in the
recruitment procedure.

The summarized protocol, as illustrated in Figure 1, involves
participants recording the required voice samples for the training
of 3 distinct deepfake models and a control version of 3 test
paragraphs. Subsequently, each deepfake model generates each
test paragraph, resulting in a total of 9 deepfake audio samples,
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in addition to the 3 control samples for each participant. It is
worth noting that some participants were unable to complete
the necessary training voice recordings for 1 or 2 of the deepfake

generators due to time constraints, resulting in varying numbers
of recordings and deepfakes among participants.

Figure 1. General study protocol overview comprising the audio collection section and detection model development for a participant used in model
training. Note that for participants not used in model training (“Model-Naïve Participants”), all data are used for model testing. ADA: AdaBoost; DT:
decision tree; LR: logistic regression; RF: random forest; SVM: support vector machine.

Ethics Approval
The research protocol received approval from the Canadian
SHIELD Ethics Review Board (REB Tracking Number
2023-06-003).

Audio Samples
In this study, we generated deepfakes using 3 publicly available
and user-friendly web-based models: ElevenLabs [13], Podcastle
[14], and Descript [15]. Each of these models required different
training data. ElevenLabs had the least specific training
requirements and was provided approximately 10 minutes of
voice recordings, Descript required 10 minutes of speech
samples, and Podcastle required participants to read 70 short
phrases.

Recordings took place in a quiet room with participants seated
in front of a MacBook Pro with 2.8 GHz Quad-Core Intel Core
i7. They were instructed to articulate their speech clearly at a
standard speaking volume, using the laptop’s built-in
microphone to record. The laptop screen displayed the text that
participants were required to read for the collection of voice
sample data, including the 3 test paragraphs used in the
development of the classification model.

All audio samples were saved in the Waveform Audio Format.
The respective voice sample data were input for each deepfake
generation model for the training process. Upon completion of
the model training, a TTS technique was used to generate
deepfake versions of the 3 test paragraphs for each model.

Each voice cloning platform also provides pregenerated TTS
voices. We generated each of the 3 paragraphs using all available
pregenerated TTS to be used in model testing.

Feature Generation
The aim of the analysis was to characterize cloned voices using
amplitude-agnostic perceptual voice features, primarily
characterized by the pause patterns within a speech segment.
Speech segments were identified using a voice activity detector
(VAD Solero) in Python [16]. The time between speech
segments was calculated and classified as a micropause if the
time between segments was greater than or equal to 0.1 seconds
and less than 0.5 seconds. It was classified as a macropause if
the time between segments was greater than or equal to 0.5
seconds (Figure 2). The recording was trimmed so that the
recording began at the beginning of the first speech segment
and concluded at the end of the final speech segment. Overall,
five features were obtained to denote the pause pattern:
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1. SpeechAV: The average speech segment length.
2. SpeechSD: The SD of the speech segment lengths.
3. SpeechProp: The proportion of time speaking, calculated

by the sum of all the speech segment lengths divided by
the length of the entire recording.

4. MiRate: The rate of micropauses, calculated by dividing
the number of micropauses by the length of the trimmed
recording (in minutes).

5. MaRate: The rate of macropauses, calculated by dividing
the number of macropauses by the length of the trimmed
recording (in minutes).

Previous work published by Barrington et al [12] evaluated
perceptual features to compare audio deepfakes and authentic
voices. In this work, 4 summary metrics to characterize the
pauses were generated: the average length of a pause, the SD
of the pauses, the pause ratio, and the total number of pauses.
We slightly modified and expanded these features to align with

our hypothesis. Rather than the average length and SD of the
pauses, we used the average length and SD of the speech
segments. We hypothesized that cloned audio would have longer
periods between pauses, as they would have no requirements
for biological processes such as breathing or swallowing.
Furthermore, instead of reporting the number of pauses, which
is dependent on the text spoken and the length of the recording,
we exclusively reported pause rates. To account for the
differences in pause lengths, we calculated the rates of both
micropauses and macropauses.

Contrary to the work published by Barrington et al [12], we
chose not to include amplitude features. The amplitude of a
voice recording can be influenced by the type of microphone
used in recording and the distance of the participant to the
microphone. Due to this variation, and the desire to evaluate
pause metrics exclusively, we chose to remove
amplitude-associated features from our feature set.

Figure 2. Sample speech and pause illustration. Black segments indicate speech segments, red segments illustrate micro pauses (pauses<0.5 seconds
and ≥0.1 seconds), and yellow segments indicate macro pauses (pauses≥0.5 seconds).

Audio Feature Information
Audio features were compared between authentic and cloned
audio. All analysis was conducted in Python. Statistical analysis
was conducted using the scipy Python package [17]. P values
were calculated using the Mann–Whitney U test. Statistical
significance is defined as P<.05.

Detection Model Generation
An experiment was conducted to assess 5 models to determine
the most suitable machine learning tool for this application:
random forest (RF), decision tree (DT), logistic regression (LR),
support vector machine (SVM), and AdaBoost (ADA) models.
Neural networks, although useful in previous deepfake detection
methods, perform best with large amounts of training data and
tend to overfit with smaller data sets. We aimed to show speech
pause patterns could be used to create a robust model even with
a small amount of training data, so neural networks were not
included in the current analysis.

A 5-fold stratified group cross-validation was used during model
training and hyperparameter tuning to find the optimal model.
Paragraphs 1 and 2 in Multimedia Appendix 1, and ElevenLabs

and Podcastle generators were used in model training. A total
of 30 participants were used in cross-validation (approximately
60% of participants). All recordings corresponding to a
participant were kept in the same group, such that if a participant
was in one of the folds, all the authentic and cloned recordings
obtained from that participant were in the same fold. The total
number of recordings used in cross-validation model training
is displayed in Table 1.

All analysis was conducted in Python. Models were trained
using the scikit-learn Python package [18]. Hyperparameters
were tuned using the GridSearch algorithm in scikit-learn, using
the parameters denoted in Multimedia Appendix 2. Accuracy
is defined as

Model performance was assessed by the average balanced
accuracy of all folds for a model, defined as
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where k is the fold number, sensitivity is the accuracy of the
model in predicting audio deepfakes, and specificity is the

accuracy of the model in predicting authentic audio.

Table 1. Number of recordings collected and generated.

Total data (P1/P2/P3), nTesting data set (P1/P2/P3c), nTraining data set (P1a/P2b), n

384 (126/122/136)257 (63/58/136)127 (63/64)All recordings

ElevenLabs

19 (7/5/7)19 (7/5/7)—dPretrained recordings

73 (26/23/24)28 (4/0/24)45 (22/23)Cloned recordings

92 (33/28/31)47 (11/5/31)45 (22/23)Total recordings

Podcastle

53 (18/18/17)53 (18/18/17)—Pretrained recordings

57 (19/18/20)30 (6/4/20)27 (13/14)Cloned recordings

110 (37/36/37)83 (24/22/37)27 (13/14)Total recordings

Descript

6 (2/2/2)6 (2/2/2)—Pretrained recordings

46 (13/16/17)46 (13/16/17)—Cloned recordings

52 (15/17/18)52 (15/17/18)—Total recordings

Authentic

130 (41/40/49)75 (13/13/49)55 (28/27)Total recordings

aP1: paragraph 1.
bP2: paragraph 2.
cP3: paragraph 3.
dNot applicable.

Optimal Model Testing
The optimal model from the detection model generation was
tested on unseen data. For testing, there were three subgroups
of data:

1. Audio recordings from individuals the model was not
exposed to during training. This subgroup consists of:
• Participant audio recordings that were not used in

model training (“Model-Naïve Participants”). Note that
for a participant to be “Model-Naïve”, neither authentic
nor cloned audio obtained from that participant was
used in model training.

• Built-in, pretrained TTS obtained from the cloning
models (“Pre-Generated TTS”)

2. A paragraph the model was not exposed to during training
(“Model-Naïve Paragraph”; P3, Multimedia Appendix 1).

3. A new cloning software the model was not exposed to
during training (“Model-Naïve Generator”). This was the
Descript generator.

The model was tested in such a way that each testing datapoint
was Model-Naïve in at least 1 of the 3 above subgroups. Data
classes used in model training are denoted as “Model-Trained”.

Results

Audio Feature Information
The 5 audio features corresponding to the speech pause profiles
were calculated from the training data and are displayed in Table
2. Overall, cloned audio was significantly associated with
increased time between pauses (P<.001), decreased variation
in the length of speech segments (P=.003), increased overall
proportion of time speaking (P=.04), and a decreased rate of
micro- and macropauses in speech (both P=.01).
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Table 2. Participant and recording data for model features for training data.

P valuesaCloned audio, mean (SD)Authentic audio, mean (SD)Feature

<.0013.49 (1.23)2.93 (1.76)SpeechAV

.0031.22 (0.89)1.51 (1.83)SpeechSD

.040.89 (0.04)0.87 (0.04)SpeechProp

.019.47 (4.25)11.72 (4.34)MiRate

.015.78 (2.74)7.04 (3.39)MaRate

aP value calculated using Mann-Whitney U test. Statistical significance defined as P<.05.

Detection Model Generation
Five classical machine learning algorithms were implemented
to create the prediction model, using the 5 features presented
in Table 2. A total of 127 recordings were used to train each
model and 257 recordings were used to test each model (see
Table 1). The optimal performance was obtained by an ADA
model, achieving a 5-fold cross-validation balanced accuracy
of 0.81 (SD 0.05). The subsequent models were SVM (balanced
accuracy 0.79, SD 0.03) and RF (balanced accuracy 0.78, SD
0.04), followed by LR and DT (balanced accuracies 0.76, SD
0.10 and 0.72, SD 0.06). Unsurprisingly, the models that are

traditionally less prone to overfitting (ADA and SVM) were
the models that had the best performance, whereas the model
that was more likely to overfit (DT) had the poorest
performance. Furthermore, ADA and other boosted models can
experience the curse of dimensionality when data have many
features. By using a small feature set (5 features), we avoided
this problem, and ADA achieved a high cross-validated
accuracy. Receiver operator curves of all models are shown in
Figure 3, and additional model metrics are presented in Table
3. Tuned model hyperparameters are presented in Multimedia
Appendix 2.

Figure 3. Average receiver operator curves with variability of all models. The results presented are calculated using the optimal parameter set for each
model after Grid Search cross-validation. ADA: AdaBoost; AUC: area under the receiver operator curve; DT: decision tree; LR: logistic regression;
RF: random forest; ROC: receiver operator curves; SVM: support vector machine.
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Table 3. Model prediction results for all models.

f1-score, mean (SD)Precision, mean (SD)Cloned voice accuracy,
mean (SD)

Authentic voice accura-
cy, mean (SD)

Balanced accuracy,
mean (SD)

Modela

0.84 (0.04)0.82 (0.07)0.87 (0.08)0.75 (0.09)0.81 (0.05)AdaBoostb

0.82 (0.02)0.80 (0.03)0.85 (0.05)0.73 (0.06)0.79 (0.03)Support vector machine

0.81 (0.05)0.80 (0.07)0.83 (0.07)0.73 (0.08)0.78 (0.04)Random Forest

0.81 (0.08)0.79 (0.11)0.83 (0.09)0.70 (0.16)0.76 (0.10)Logistic Regression

0.73 (0.09)0.77 (0.07)0.73 (0.15)0.71 (0.08)0.72 (0.06)Decision Tree

aResults presented are calculated using the optimal parameter set for each model after Grid Search cross-validation.
bOptimal model.

Optimal Model Testing
The optimal ADA model was tested on trained and naïve
generators and participants with the paragraphs used in model
training (Table 4), and a Model-Naïve paragraph (Table 5). The
optimal overall testing performance was obtained when the
model was tested on pretrained paragraphs for naïve participants
(0.89 overall accuracy). The poorest authentic classification
accuracy was obtained when trained participants spoke a new
paragraph (accuracy 0.70), potentially indicating the model was
overfit to the paragraphs used in training by trained participants.
The highest authentic classification accuracy was obtained by
model-naive participants speaking model-trained paragraphs
with an accuracy of 0.96. Conversely, the detection of cloned

and pregenerated voices typically performed better on
Model-Naïve paragraphs (most accuracies >0.70). The exception
to this was the Model-Naïve Generator which had an overall
accuracy of 0.67. However, the number of datapoints for this
category was extremely small (N=3) so this accuracy may not
be the best representation of the Model-Naïve Generator
performance. Pregenerated voices with the trained paragraphs
had the lowest performance of all the model testing (overall
0.67 accuracy), but classification performance was much higher
in the model-naive paragraph (overall accuracy 0.89). When
the results of all confusion matrices in Tables 4 and 5 are
compiled, the overall accuracy of all testing data was 0.79 with
an AUC of 0.88.

Table 4. Confusion matrices of model test results for model-trained paragraphs (P1 and P2).

AccuracyPredicted fakePredicted authentic

Model-trained participants

———aAuthentic

———Model-trained generator

0.773175Model-naïve generator

0.773——Overall

Model-naïve participants

0.962125Authentic

0.769103Model-trained generator

0.87571Model-naïve generator

0.894——Overall

Pregenerated TTSb

———Authentic

0.6463117Model-trained generator

1.0040Model-naïve generator

0.673——Overall

aNot applicable.
bTTS: text-to-speech.
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Table 5. Confusion matrices of model test results for the Model-Naïve paragraph (P3).

AccuracyPredicted fakePredicted authentic

Model-trained participants

0.704819Authentic

0.806297Model-trained generator

1.00140Model-naïve generator

0.805——aOverall

Model-naïve participants

0.727616Authentic

0.87571Model-trained generator

0.66721Model-naïve generator

0.758——Overall

Pregenerated TTSb

———Authentic

0.875213Model-trained generator

1.0020Model-naïve generator

0.885——Overall

aNot applicable.
bTTS: text-to-speech.

Discussion

Principal Findings
This paper outlines the development of an audio deepfake
detection model that capitalizes on the distinctive biological
vocal characteristics to distinguish between genuine human
speech and machine-generated audio. Voice clone samples were
created for each participant using 3 publicly available platforms:
Descript, ElevenLabs, and Podcastle. To compare these cloned
samples with the participants’ authentic voice recordings, a
variety of perceptual features were calculated to characterize
the pause pattern in a recording. The hypothesis was that the
speech and pause pattern would be distinguishable between
authentic voice recordings and voice clones, as a
machine-generated audio sample would not be under the same
biological requirements as a human. Machines have no
requirements for breathing or swallowing, and their processing
time is magnitudes shorter than humans. Even if machines
falsely replicate the pauses in speech, their lack of necessity for
these processes may create subtle distinctions in the overall
pause patterns. Our results support this finding, and 5 perceptual
pause features were used to create a detection model for cloned
audio.

To generate the voice classification model, 5 machine learning
algorithms were used. An ADA model emerged as the most
capable of classification, achieving an accuracy of 0.81 (SD
0.05) in 5-fold cross-validation and similar accuracy (0.79)
across all testing experiments. The accuracy is in line with
previous pause rate detection methods [12], although the testing
methodology presented here allows for more comprehensive
conclusions about the extendibility of the model results and
possible implications for future work. Overall, Model-Naïve

participants, a variety of generators, and Model-Naïve
paragraphs were used to test the feasibility of the approach.

In the 5-fold cross-validation model optimization, we achieved
an accuracy of 0.75 (SD 0.09) for authentic audio and 0.87 (SD
0.08) for cloned audio. Authentic accuracy may have been lower
due to the inherent variation in real human speech, as
demonstrated by the higher SDs of the pause metrics in Table
1 compared with cloned audio. This could result in decreased
performance, as authentic audio may be more likely to overlap
with cloned audio features and thus be harder to classify.
Furthermore, we did not prioritize authentic speech accuracy
in cross-validation, instead optimizing based on balanced class
accuracy. Future models could prioritize authentic audio
accuracy in model training and hyperparameter tuning if higher
authentic accuracy is preferred.

It is important to note that the text the model was tested on had
a distinct effect on the performance of the model. In authentic
audio samples, the model performed better on known text for
both Model-Trained and Model-Naïve participants. Conversely,
in Model-Naïve clones, performance improved when the model
was tested on a new paragraph. This effect was evident in both
pregenerated TTS and Model-Naïve Participant clones for the
Model-Trained generators. This may indicate a tendency for
the model to slightly overfit to the paragraphs on which it was
trained. When exposed to new participants, its performance
declines. That being said, the model accuracy for authentic audio
from Model-Naïve participants was 0.73. This is within half an
SD of the cross-validated authentic audio accuracy (0.75, SD
0.09), further supporting the use of speech pause metrics for
robust model prediction.
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Incorporating features associated with real, biological processes
(such as breathing, thinking, and swallowing) into a deepfake
prediction algorithm is likely to enhance its reliability and
longevity in the face of ongoing advancements in deepfake
technologies. Instead of solely relying on a model trained on
the current state of deepfake generation, which may struggle to
maintain accuracy as technology evolves, the inclusion of
biological features offers valuable insights that enable the model
to adapt and effectively detect inauthentic voices. This approach
enhances the model’s resilience against evolving deepfake
techniques.

Comparison to Prior Work
High-performance current models are typically trained on
spectral or deep-learned audio features obtained from the current
state of deepfake generation. This permits for an extremely high
accuracy in voice clones in a similar domain to the training data
but new advancements and subtle changes in these obscure
features could soon make these prediction models obsolete.
Indeed, when a high-accuracy prediction model was tested on
new, out-of-domain voice clones in a recent study, the prediction
accuracy was abysmal (AUC is approximately 25%) [10]. We
aimed to evaluate the use of perceptual features in current and
future model implementations by testing model performance
on a completely new generator. Overall, our model performance
on a new generator was a success, and the average accuracy of
classification of the new generator was 0.87. This generator
provided no audio files for model training, and as such, we can
conclude that this technique may be extended to out-of-domain
cloning processes.

Limitations
This research identified certain limitations in the audio quality
variation, linguistic diversity, and deepfake generators used in
our study. First, since we created a new cloned audio data set,
we only had a small amount of data to train and test the
prediction model, and the exclusively English-focused
experiments did not account for the potential impact of diverse
accents or languages on our results. Small data sets may lead
to model overfitting, which we attempted to mitigate using a
comprehensive model testing methodology. Further exploration
in this domain with a larger and more diverse data set
encompassing various accents and languages is warranted, as
it has the potential to strengthen the robustness of our
conclusions and provide a more comprehensive understanding
of model performance across linguistic variations.

Second, although the pause rate biomarker enhanced prediction
accuracy, it introduced the time requirement of sufficiently long
audio samples to accurately calculate pause rate data. An older
data set that has been widely used for testing and training
previous detection tools consisted of samples shorter than 5
seconds, rendering them incompatible with our model [19]. We
prioritize the analysis of longer samples due to their higher
potential for misuse in the context of misinformation or
impersonation scams. Therefore, our detection tool was
optimized for modern voice cloning generators and prioritized
longer audio outputs over compatibility with previous deepfake
data sets.

Third, another limitation concerns the variation of deepfake
generation methods. Our study featured 3 distinct tools to
introduce variability in deepfake audio samples. Nevertheless,
numerous other models exist and possess subtle distinctions
that were not covered in our investigation. While we anticipate
that the incorporation of vocal biomarkers will enable accurate
predictions regardless of the generation method, we did not test
deepfakes produced by alternative tools. This decision stemmed
from the recognition that there are numerous methods with
slight variations in cloned audio samples, compelling us to focus
on some of the most prominent and accessible tools.

Future Directions
In this study, we aim to show that speech pause metrics may
contribute to robust deepfake detection models, and that trained
models using these features perform well on out-of-domain data
such as new audio deepfake generators or audio samples from
new individuals. Further research should perform an ablation
study to compare spectral features and pause pattern features,
specifically focusing on testing on unknown data.

Conclusions
In conclusion, the integration of vocal biomarkers into machine
learning models shows promise in distinguishing between
authentic voice recordings and cloned samples. Given the
escalating prevalence of unethical deepfake applications
involving impersonation, fraud, and the dissemination of
misinformation, establishing a reliable method for verifying
source authenticity is crucial. Biological processes and vocal
biomarkers offer a potential avenue for enhancing detection
methodologies, suggesting a possible means to mitigate the risk
of detection tools being rapidly outpaced by advancing deepfake
generation technologies.
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Abstract

Background: Pulse oximeters work within the red-infrared wavelengths. Therefore, these oximeters produce erratic results in
dark-skinned subjects and in subjects with cold extremities. Pulse oximetry is routinely performed in patients with fever; however,
an elevation in body temperature decreases the affinity of hemoglobin for oxygen, causing a drop in oxygen saturation or
oxyhemoglobin concentrations.

Objective: We aimed to determine whether our new investigational device, the Shani device or SH1 (US Patent 11191460),
detects a drop in oxygen saturation or a decrease in oxyhemoglobin concentrations.

Methods: An observational study (phase 1) was performed in two separate groups to validate measurements of hemoglobin
and oxygen concentrations, including 39 participants recruited among current university students and staff aged 20-40 years. All
volunteers completed baseline readings using the SH1 device and the commercially available Food and Drug
Administration–approved pulse oximeter Masimo. SH1 uses two light-emitting diodes in which the emitted wavelengths match
with absorption peaks of oxyhemoglobin (hemoglobin combined with oxygen) and deoxyhemoglobin (hemoglobin without
oxygen or reduced hemoglobin). Total hemoglobin was calculated as the sum of oxyhemoglobin and deoxyhemoglobin.
Subsequently, 16 subjects completed the “heat jacket study” and the others completed the “blood donation study.” Masimo was
consistently used on the finger for comparison. The melanin level was accounted for using the von Luschan skin color scale
(VLS) and a specifically designed algorithm. We here focus on the results of the heat jacket study, in which the subject wore a
double-layered heated jacket and pair of trousers including a network of polythene tubules along with an inlet and outlet. Warm
water was circulated to increase the body temperature by 0.5-0.8 °C above the baseline body temperature. We expected a slight
drop in oxyhemoglobin concentrations in the heating phase at the tissue level.

Results: The mean age of the participants was 24.1 (SD 0.8) years. The skin tone varied from 12 to 36 on the VLS, representing
a uniform distribution with one-third of the participants having fair skin, brown skin, and dark skin, respectively. Using a specific
algorithm and software, the reflection ratio for oxyhemoglobin was displayed on the screen of the device along with direct
hemoglobin values. The SH1 device picked up more minor changes in oxyhemoglobin levels after a change in body temperature
compared to the pulse oximeter, with a maximum drop in oxyhemoglobin concentration detected of 6.5% and 2.54%, respectively.

Conclusions: Our new investigational device SH1 measures oxygen saturation at the tissue level by reflectance spectroscopy
using green wavelengths. This device fared well regardless of skin color. This device can thus eliminate racial disparity in these
key biomarker assessments. Moreover, since the light is shone on the wrist, SH1 can be readily miniaturized into a wearable
device.

(JMIR Biomed Eng 2024;9:e46974)   doi:10.2196/46974
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Introduction

Pulse oximetry is routinely performed in all patients with
elevated body temperature. However, high blood temperature
decreases the affinity of oxygen for hemoglobin (Hb) [1], and
an elevation in temperature by approximately 1 °C decreases
arterial oxygen saturation (sO2) by only 0.5% [2]. Therefore,
the decrease is very minimal and is not clinically significant in
subjects with a baseline sO2 level within the normal range [3].

Blood sO2 measured by pulse oximetry is currently used to
monitor tissue hypoxia. This method uses red and infrared
wavelengths in the light spectrum and there is no correction for
the level of skin melanin. Consequently, the estimated values
are often inaccurate in people with darker skin tones due to the
overlapping absorption spectra of melanin [4,5]. Administrative
and health authorities have also recognized this issue; however,
a solution has not yet been put forward [6].

To overcome this limitation, we have developed a novel
technology to estimate Hb and tissue oxygenation. The scientific
basis, details, and underlying technology of the device are
published elsewhere [7]. In brief, the Shani device (SH1)
measures reflectance of light from the skin by a pair of
light-emitting diodes (LEDs), displayed as the reflectance ratio
from LED1 (E1) and LED2 (E2) and as the sum of the ratios
(E; E1+E2). The method of measurement is described in our
previous report [7]. The light is shone on the wrist and only the
reflected light is picked up by the sensors. This analog signal
is then converted to a digital format by the processor, which
can be analyzed, displayed, and stored in digital form (US Patent
11191460). In this device and associated technology, the
reflectance ratio varies inversely with the concentration of Hb
or Hb combined with oxygen (OxyHb) [8].

With an increase in body temperature, a slight drop in OxyHb
is expected. Here, we focus on the results of the phase 1 study
(heat jacket study) to validate the device in healthy human
volunteers. The body temperature of the participants was
increased by circulating warm water in a double-layered heat
jacket; therefore, a slight drop in the OxyHb concentration at

the tissue level was expected during the heating phase. The aim
of this study was to determine whether our new device can
detect the drop in sO2 or a decrease in tissue OxyHb
concentrations.

Methods

Investigational Device
The SH1 device was validated in tissue phantom experiments.
Here, we are presenting the results of the phase 1 heat jacket
study in healthy human volunteers. Details of preclinical studies
and the results of these experiments have been recently
published elsewhere [9]. In the preclinical experiments, we used
synthetic melanin as an epilayer mimicking melanin and we
used horse blood in the lower layer corresponding to the dermis
of the skin. As a part of preclinical studies, we performed an
absorption scan of synthetic melanin (Sigma-Aldrich,
Instrument-Infinite 200 and BME089922 software system). At
a melanin concentration of 1.5 mg/ml, the absorption coefficient
of melanin (ie, the absorption of light per unit length) was
determined to be 4.01/ml. Even with this high melanin
concentration in the epilayer, our device could detect changes
in OxyHb levels in the lower dermal layer. Dark-skinned
subjects showed an absorption coefficient of melanin at 550
nm, corresponding to 2.5/ml. Therefore, in this preclinical study,
we tested melanin levels that are higher (darker) than those
measured for dark-skinned subjects. The relationship of melanin
concentration with the absorption coefficient of melanin at a
wavelength of 550 nm was determined in the previous study
[9]. This new investigational device (SH1) measures Hb by
shining light from LED1 and LED2 sequentially to obtain
measures of both OxyHb and reduced Hb (ie, DeoxyHb). This
is termed the “hemoglobin mode” of the operation. The
reflectance ratio for LED1 is referred to as E1 and that for LED2
is referred to as E2. The reflectance ratio E1 corresponds to
OxyHb, which is inversely related to the oxygen content (Figure
1). The device could detect changes in oxygen concentration in
the blood, even in the presence of high melanin in the epilayer,
thereby mimicking the detection of hypoxia in dark-skinned
subjects.
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Figure 1. Results (left) and setup (right) of the tissue phantom experiment [9]. The graph shows the relationship between the reflectance ratio of
light-emitting diode 1 (E1) with the measured oxygen saturation level (%). The epilayer or upper cup contained 1.503 mg/ml melanin, corresponding
to a coefficient of melanin absorption (at 550 nm) of 4.01/cm. This figure was adapted from Gokhale et al [9] which is published under Creative Commons
Attribution 4.0 International License [10].

Eligibility and Recruitment
As per the institutional policy, only current students and
members of the staff of University of Texas at Arlington were
recruited for this validation study. External candidates, including
past students, were not allowed to participate. The age restriction
for participation was 20-40 years. For recruitment, flyers were
sent by email and posters were displayed in designated locations,
including the lobby, near elevators, the cafeteria, and common
rooms.

The phase 1 study was performed with two separate cohorts
independently for validation of measurements of Hb and oxygen
concentrations. There were 39 participants in the two studies;
there was only one staff member and the remaining participants
were students. Both studies included baseline measurements at
visit 1. All 39 volunteers completed baseline readings using our
new investigational SH1 device. Subsequently, 16 participants
completed the heat jacket study and the others were included
in the blood donation study. The commercially available pulse
oximeter Masimo was used on the finger for comparison. Skin
melanin was accounted for using the von Luschan skin color
scale (VLS) and a specifically designed algorithm. Skin tone
measurements were performed by two observers independently
and the mean value was noted and rounded to the nearest integer.
We here focus only on the results of the heat jacket study.

Ethical Considerations
The heat jacket study was approved by the institutional review
board (IRB) at The University of Texas at Arlington
(STU-2021-0150; approval date February 23, 2021). Written
informed consent was obtained from each participant. Copies
of consent forms are maintained by IRB authorities. The privacy
and confidentiality of the participants were respected and data
are stored in a coded, anonymous format. Each participant
received monetary compensation as per the stipulated rules and

regulations laid out by the IRB of The University of Texas at
Arlington.

Study Design
The heat jacket study included 16 volunteers and was performed
under the IRB-approved protocol. At visit 1, baseline
measurements of Hb and oxygen concentrations were taken
using our novel SH1 device and the commercial pulse oximeter
Masimo. At visit 2, after obtaining appropriate consent, the
baseline demographic information was obtained. The participant
was then asked to wear a double-layered heat jacket and a pair
of trousers, which comprise a network of polythene tubules and
an inlet and outlet. Subsequently, the participant swallowed a
telemetry pill with some water; this is a small pill-shaped
electronic object that is used to sense temperature. After a few
minutes, the pill reaches the stomach, measures internal body
temperature, and emits a signal. A sensor attached to the jacket
receives these signals, which are then relayed to a monitor via
a cable. Baseline readings were taken with the participant lying
down. Warm water was circulated in the jacket and trousers to
increase the body temperature by 0.5-0.8 °C above the baseline
body temperature as measured with the telemetry pill. This
increase in body temperature simulates clinically relevant fever
settings. The heating phase lasted for 40 minutes, followed by
cooling for the next 20 minutes. Cooling was achieved by
circulating cold water through the jacket. Baseline and serial
readings were taken with the new investigational SH1 device
at 10-minute intervals. The measurements taken with the
Masimo Pronto pulse oximeter were used for comparison. A
total of 7 sets of observations were obtained for each participant
over a period of 60 minutes. Readings in the heating phase and
cooling phase were rescaled for each participant with baseline
measurements taken as 100%. The percentage drop in sO2 or
the difference between maximum and minimum readings by
the SH1 and Masimo devices was plotted for each participant.
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Results

The mean age of the study population was 24.1 (SD 0.8) years.
The skin tone varied from 12 to 36 on the VLS with a uniform
distribution: one-third of the participants had fair skin, brown
skin, and dark skin, respectively. Using a specific algorithm
accounting for melanin, as determined from the VLS, and
associated software, the reflection ratio for OxyHb is displayed
on the screen along with direct Hb values [11]. We had baseline
readings for all 39 participants (Figure 2) with our SH1 device
and the commercial pulse oximeter Masimo. As seen in Figure
2, baseline oxygen concentrations of all 39 participants as
measured by SH1 device readings fell within a range similar to
those measured by the pulse oximeter.

In the heat jacket study, we expected a slight drop in OxyHb
concentrations in the heating phase at the tissue level. Our
hypothesis was confirmed after analyzing the data for the
reflection ratios E1, E2, and E (E1+E2), followed by
computation of OxyHb and total Hb values. Figure 3 shows the
distribution of the skin tone (according to the VLS) of the
participants compared to the percentage drop in oxygen
concentrations in the 16 subjects participating in the heat jacket
study. Our device could pick up more minor changes in OxyHb
levels after a change in body temperature than possible with the
pulse oximeter. The maximum drop in OxyHb concentrations
picked up by our device was 6.5% compared to a drop of only
2.54% sensed by the pulse oximeter. The average change in
OxyHb measured by our device was 2.98%, whereas that of the
pulse oximeter was 1.33%, with a median of 3% and 1%,
respectively.

Figure 2. Skin tone versus oxygen saturation measured by the Shani device and Masimo pulse oximeter at baseline in all 39 participants. VLS: von
Luschan skin coloration scale.
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Figure 3. Skin tone versus the percentage drop in oxygen concentrations for the 16 participants in the heat jacket study, as measured by the new device
and the commercial pulse oximeter Masimo. VLS: von Luschan skin color scale.

Discussion

Principal Findings
The baseline readings taken by the SH1 device (Figure 2) while
the participants were lying in supine position showed some
interesting features, including different readings for subjects
with the same skin tone (eg, subjects with skin tones 15, 16, 22,
and 26 on the VLS) and similar readings for subjects with
different skin tones (eg, subjects with skin tones 15, 16, and 26
on the VLS). Therefore, the baseline measurement of tissue
oxygen levels (ie, OxyHb levels) as determined by the SH1
device is independent of skin tone and likely depends on tissue
metabolism and the basal metabolic rate.

In this heat jacket study, all participants showed a drop in
OxyHb levels during the heating phase, followed by a rise in
the cooling phase. In some cases, the rise was slightly higher
than baseline levels.

We compared the difference in maximum and minimum
readings obtained by our SH1 device and the commercial pulse

oximeter Masimo. Figure 3 shows the distribution of the
difference across different skin tones. This drop in oxygen
saturation was magnified by the SH1 device compared to the
readings obtained with the pulse oximeter. The difference
between maximum and minimum readings by the SH1 device
was 6.5%, whereas that for Masimo was only 2.54%.

As stated earlier, the decrease in arterial oxygen levels with
fever is very small, even in patients in the intensive care unit,
and this drop in sO2 is not clinically significant in patients with
baseline sO2 within the normal range. Nonetheless, this minor
change is picked up well by our device and is not detected by
the pulse oximeter. The commercial pulse oximeter Masimo
Pronto measures arterial sO2 by photoplethysmography and
red-infrared wavelengths [12], whereas the novel SH1 device
measures sO2 at the tissue level by reflectance spectroscopy
and using two green wavelengths. These are two important
fundamental differences between these technologies. Table 1
compares the properties of the SH1 device and pulse oximeter.
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Table 1. Comparison of the properties of the new investigational device (Shani device) and a conventional pulse oximeter.

Shani devicePulse oximeterProperties

Green visible lightRed and infrared wavelengthsRadiation used

Reflectance of lightTransmittance of lightMethod

Yes; accounted for using a special algorithmNone so farAny solution for melanin interference?

High accuracy in all subjects, regardless of skin
color

Doubtful; erratic results are obtained with
darker skin tones

Accuracy of O2% in dark-skinned subjects?

High accuracyPoor accuracyDiagnostic ability (eg, hypotension, shock)

YesYesContinuous monitoring possible

Back of wristFingertipSite of testing

CertainlyUnclearCan be transitioned into a wearable?

YesYesData storage and transfer

YesYesBattery operated

Working of the Device
The emitted wavelengths of the two LEDs matched with the
absorption peaks of OxyHb and DeoxyHb (ie, reduced Hb)
between 520 nm and 580 nm. As mentioned above, in our new
device, the input from LED1 and LED2 of the probe is received
as an analog signal. This signal is then converted to digital
format by the processor, which can be analyzed, displayed, and
stored in digital form. In tissue phantom experiments, we
bubbled air and measured the increase in oxygen concentrations
in horse blood using an oxygen sensor [9]. The reflection ratio
E1 received from LED1 correlates inversely with OxyHb, E2
from LED2 correlates with DeoxyHb, and E (sum of E1 and
E2) correlates with total Hb. After analyzing data from the tissue
phantom experiments, we derived another new parameter termed
the “OxyHb index” as a measure of OxyHb concentration. In
our earlier tissue phantom experiments [9], we found that this
OxyHb index varies directly with the oxygen concentration in
the blood (Figure 4). This means that low oxygen concentrations
are reflected as a low OxyHb index and vice versa.

Tissue oxygenation parameters include the concentrations of
Hb and OxyHb in the tissue [13]. Tissue sO2 monitoring is a
relatively new technology, and a drop in tissue sO2 is an early
warning sign of peripheral hypoperfusion and the onset of tissue
hypoxia [14]. All oximeters currently available using red and
infrared wavelengths to target arterial blood flow, which
measures sO2 in the conducting vascular/arterial system. Our
device targets the capillary-venous network and measures tissue

oxygenation. Sepsis and shock result in disturbances in
microcirculatory perfusion and a change in tissue oxygen
utilization that may not be reflected in arterial sO2 levels.
According to many authorities, tissue oxygenation is a better
marker of the underlying pathological processes as well as
responsiveness to some treatments [15,16]. Tissue oxygen levels
are more important, because the arterial O2 content and an
adequate bulk transport of oxygen by the cardiovascular system
may not guarantee delivery of oxygen to the critical tissues of
the body [17]. Additionally, tissue Hb sO2 has been determined
to be a better predictor of the multiorgan failure outcome [18].
Near-infrared spectroscopy also has well-known limitations
[19]. To overcome these limitations, our new device uses green
light (520-570 nm) for the estimation of Hb and OxyHb, while
accounting for the impact of skin color on the measurements.
A summary presentation displays relevant information about
this technology in Multimedia Appendices 1 and 2. The video
demonstrates the working of this new device.

Using green wavelengths for measurements of Hb and oxygen
concentrations with a special algorithm to account for melanin
is a novel concept and our efforts have already been appreciated
by experts in the field [20,21]. In this study, we have used the
VLS for the measurements of skin tone. This is an interval scale
with measurements such as 18, 23, and 36. However, we are
developing a technology to quantify melanin in the skin more
precisely in a noninvasive manner, providing measurements on
a continuous scale (eg, 15.25, 17.50, and 30.75). This method
is patented and under development.
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Figure 4. Oxygen concentrations (%) versus the oxyhemoglobin index.

Strengths and Limitations
The main limitation of this study is the small sample size.
Although our device fared better than the pulse oximeter, larger
studies are needed in patients with diverse skin tones and a
variable degree of tissue hypoxia for further clinical
development of the device.

The main strength of this study is that the SH1 device offers an
early warning system. A drop in tissue sO2 is an early warning
sign of peripheral hypoperfusion and the onset of tissue hypoxia.
Our device can sense this before traditional oximeters can raise
the alarm, thereby demonstrating the potential for saving lives.

Our device can also be used in diverse settings, from home
monitoring to intensive care, making critical data readily
available. Light is shone on the wrist of the individual and is
then measured. Therefore, in the future, this device can be
miniaturized for wearable technology. The device can be
operated in either hemoglobin or oximetry mode. In hemoglobin
mode, the device can be used for noninvasive measurements of
Hb, whereas in oximetry mode, the device can be used for the
continuous monitoring of sO2.

Racial equity is another important advantage of our device.
Unlike most pulse oximeters on the market, our device works
for all skin tones, eliminating bias and improving care for people
of color.

The specific technology underlying the design of our device
offers specific advantages. First, the use of green light (520-570
nm) can obtain information from the microcirculation, revealing
tissue oxygen levels invisible to red and infrared wavelengths
of light. Second, our unique algorithm accounts for variations

in melanin, ensuring accurate readings. These advantages can
consequently lead to improved outcomes, as early detection and
tailored therapies lead to better health for all, especially
marginalized groups. Moreover, the ability to obtain a faster
diagnosis and intervention can save both resources and lives.
Finally, the device offers global reach as it is affordable and
adaptable, thereby demonstrating potential to improve health
care in resource-limited settings.

Conclusion
The changes in sO2 at the tissue level in normoxemic subjects
are very minor or minimal. Current pulse oximeters, limited to
red and infrared wavelengths, only capture the “big picture” of
arterial blood flow by measuring oxygen saturation in the
conducting arterial system while missing critical changes in the
microcirculation, where sepsis and shock wreak havoc, before
the arterial oxygen dips.

Our device is a game-changer for measuring tissue oxygenation
by shining green light and offering a more sensitive marker of
these hidden dangers. Our device was validated to accurately
measure tissue oxygen levels and could pick up very minor
changes after a change in body temperature in the heat jacket
study, demonstrating improved performance compared to the
commercial pulse oximeter. Tissue oxygenation parameters
include the concentrations of Hb and OxyHb in the tissue. Our
device worked better and appeared to be more sensitive than
the pulse oximeter even for subjects with light skin or skin tone
(eg, VLS 12-18). Since the sample size of this study was small,
additional studies with large sample size, a diverse population,
and varied degree of hypoxia are required for further
confirmation.
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Abstract

Background: Obstructive sleep apnea/hypopnea syndrome (OSAHS) is a prevalent condition affecting a substantial portion of
the global population, with its prevalence increasing over the past 2 decades. OSAHS is characterized by recurrent upper airway
(UA) closure during sleep, leading to significant impacts on quality of life and heightened cardiovascular and metabolic morbidity.
Despite continuous positive airway pressure (CPAP) being the gold standard treatment, patient adherence remains suboptimal
due to various factors, such as discomfort, side effects, and treatment unacceptability.

Objective: Considering the challenges associated with CPAP adherence, an alternative approach targeting the UA muscles
through myofunctional therapy was explored. This noninvasive intervention involves exercises of the lips, tongue, or both to
improve oropharyngeal functions and mitigate the severity of OSAHS. With the goal of developing a portable device for home-based
myofunctional therapy with continuous monitoring of exercise performance and adherence, the primary outcome of this study
was the degree of completion and adherence to a 4-week training session.

Methods: This proof-of-concept study focused on a portable device that was designed to facilitate tongue and lip myofunctional
therapy and enable precise monitoring of exercise performance and adherence. A clinical study was conducted to assess the
effectiveness of this program in improving sleep-disordered breathing. Participants were instructed to perform tongue protrusion,
lip pressure, and controlled breathing as part of various tasks 6 times a week for 4 weeks, with each session lasting approximately
35 minutes.

Results: Ten participants were enrolled in the study (n=8 male; mean age 48, SD 22 years; mean BMI 29.3, SD 3.5 kg/m2;
mean apnea-hypopnea index [AHI] 20.7, SD 17.8/hour). Among the 8 participants who completed the 4-week program, the
overall compliance rate was 91% (175/192 sessions). For the tongue exercise, the success rate increased from 66% (211/320
exercises; SD 18%) on the first day to 85% (272/320 exercises; SD 17%) on the last day (P=.05). AHI did not change significantly
after completion of training but a noteworthy correlation between successful lip exercise improvement and AHI reduction in the
supine position was observed (Rs=–0.76; P=.03). These findings demonstrate the potential of the device for accurately monitoring
participants’performance in lip and tongue pressure exercises during myofunctional therapy. The diversity of the training program
(it mixed exercises mixed training games), its ability to provide direct feedback for each exercise to the participants, and the easy
measurement of treatment adherence are major strengths of our training program.

Conclusions: The study’s portable device for home-based myofunctional therapy shows promise as a noninvasive alternative
for reducing the severity of OSAHS, with a notable correlation between successful lip exercise improvement and AHI reduction,
warranting further development and investigation.
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Introduction

Obstructive sleep apnea/hypopnea syndrome (OSAHS) is a
common condition that affects a large portion of the world
population [1]. It is estimated that mild to severe OSAHS affects
24% of men and 9% of women in North America [2], with an
increase in prevalence over the last 2 decades [3]. OSAHS
originates from repetitive closure of the upper airway (UA).
The negative impacts of OSAHS include a deterioration of
quality of life [4] and an increase in cardiovascular and
metabolic morbidity [5-10]. Currently, the gold standard for
treatment of this condition is continuous positive airway pressure
(CPAP) [5] machines, which provide constant pressure to the
sleeping patient via an oral or nasal mask. While this method
has proven to be effective in reducing the adverse effects of
OSAHS, it has been reported that from 46% to 83% of patients
do not adhere to the treatment [11]. The causes of this low
adherence rate may include treatment unacceptability, general
discomfort, side effects (mask leaks, pressure intolerance, skin
irritation, mouth dryness), bed partner intolerance, or a
combination of these causes [12].

Alternatively, therapies targeting the UA muscles have been
developed to decrease the disease severity [13-15].
Myofunctional therapy is a noninvasive approach in which
patients are tasked with exercises of the lips, tongue, or both to
target oropharyngeal functions [16]. It has been observed that
myofunctional therapy may decrease the apnea-hypopnea index
(AHI) by 50% in adults and by 62% in children [16]. For
myofunctional therapy to be effective, the patient must perform
the exercises daily. However, monitoring the quality and
frequency of the exercises is pivotal to supporting implantation
of such treatment and may be challenging outside of the
laboratory setting. Therefore, there is a need for developing a
home reeducation setup where patients can perform daily
exercises with continuous monitoring of program adherence
and exercise performance.

We developed a portable device that allows completion of
tongue and lip myofunctional therapy while providing precise
performance monitoring of performance and adherence to
exercise. The aims of this clinical study were to evaluate task
performance and treatment adherence to a 4-week training
session and its efficacy in improving sleep-disordered breathing.

Methods

Study Design
Ten patients with untreated mild or moderate OSAHS who were
referred to our sleep clinic volunteered to participate in this

study. These patients were men and postmenopausal women

aged ≤65 years who had a BMI ≤30 kg/m2 and regular sleep
habits free of sleep debt (caused by, eg, insomnia or sleep
deprivation). Their initial OSAHS diagnosis and severity were
established by conventional sleep studies (level 1 or 3)
performed at our local sleep clinic. Consecutive patients
fulfilling the entry criteria were offered enrollment, and
recruitment was completed within 6 months. A
polysomnographic study (level 2, Embla Titanium; Natus) and
the Epworth Sleepiness Scale (ESS) were completed just before
and after a 4-week training program. A registered sleep
technician who was blind to the protocol performed
polysomnography scoring according to standard American
Academy of Sleep Medicine criteria [17]. The participants were
asked to perform the full training (35 minutes) 6 days a week
for 4 weeks. The first session was completed in our research
laboratory and the remainder were done at the participant’s
home. A follow-up was completed by phone on the first and
third home training days during the first week and once a week
thereafter.

Ethical Considerations
The Ethics Review Board of Institut Universitaire de Cardiologie
et de Pneumologie de Québec approved the protocol
(2020-3246), which conformed to the guidelines set forth by
the Declaration of Helsinki, and written informed consent was
obtained from all participants.

Module Overview
A briefcase-sized module that can precisely monitor lip and
tongue pressure with a custom-made mouthpiece is presented
in this paper. The module presented in Figure 1 is composed of
3 main parts: the mouthpiece, the interface electronics, and the
user interface. The mouthpiece design is based on a 3D scan of
the patient’s teeth and has 2 separate embedded internal cavities
to record lip and tongue pressure. The mouthpiece is made out
of silicone cast in 3D-printed sugar molds. The pressure
developed by contraction of the lips or tongue is read from
inside the mouthpiece with transducers and transferred to a
computing unit. The module includes a touch screen with an
intuitive interface for user interaction. The software combines
precise pressure measurements with user calibration and
engaging games to maximize therapy adherence. The training
presented in the software is based on the tongue-protrusion task
program presented by Svensson et al [18], in which the
participants are asked to exert a force with their tongue on a
force transducer and maintain a certain level of force for 1.5
seconds before releasing. The module is packaged in a
customized briefcase for a robust and easy-to-transport solution.
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Figure 1. Pictures of the module packaged in a customized briefcase with a touch screen, computing unit, and hardware.

Mouthpiece Design
To maximize adherence to the treatment, a custom mouthpiece
was made for each participant. A 3D scan was made of a
participant’s teeth by a dentist, and the dental print was digitally
removed from a mouthpiece template using Meshmixer (version
3.5.474; Autodesk). Having a custom cutout allowed the
mouthpiece to clamp naturally onto the patient’s teeth and gums,
as presented in Figure 2A. The mouthpiece design includes 2
distinct internal cavities acting as pressure chambers, one for
the lips and one for the tongue, as presented in Figures 2B and
2C. The lip cavity is located in the front part of the mouthpiece
where the lips naturally rest. The cavity has a thin bottom and
top wall where the pressure from the lips is applied. The second

cavity is located in the back portion of the mouthpiece (behind
the incisors) and has a thin back wall where the tip of the tongue
is positioned during tongue exercises. Both cavities have tunnels
connecting them to the front of the mouthpiece, where
connectors can be installed to 2 distinct pressure transducers.
The changes in cavity volume produced by thin wall deformation
from lip or tongue movements increase the respective inner
pressure.

From the digital model of the mouthpiece, a mold was created
with sugar using a custom 3D printer and molding technique
[19-21]. Silicon was poured into the mold, and air bubbles were
removed in a vacuum chamber. Once the silicon solution
solidified, the sugar was dissolved in water to free the
mouthpiece.

Figure 2. Images of the custom mouthpiece. (A) Side view; (B) top view; and (C) front view.

Hardware Description
The absolute pressure in the lip and tongue cavities is linked to
2 pressure transducers (Omega PX142-002D5V) by EVA tubing
and adaptors. The output voltage of the transducers is then
adapted to maximize the operating range of the analog-to-digital

converter (Labjack U3-LV). A computing unit (NUC7i7BNH)
is used to read the values from the 2 converters. The user
interacts with the software on the computing unit with a touch
screen (Waveshare; this unit uses a 10.1-inch HDMI-connected
LCD). All the described hardware, as well as power units, are
packaged inside a briefcase, as shown in Figure 3.
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Figure 3. Picture of the different hardware components packaged inside the briefcase. ADC: analog-to-digital converter.

Software Description
The software comprises 3 main parts: initialization, training,
and games. The participant must go through a sequence

alternating between these 3 parts to complete the session. Figure
4 presents a flow chart describing the process of a training
session.

Figure 4. Flow chart describing the different steps of a training session.

Zero Calibration
Once the mouthpiece has been installed, an initialization step
must be performed. The participant is asked to release pressure
from the tongue and lips to measure the baseline values with
the display (presented in Multimedia Appendix 1, Figure S1.
This step is very important since the pressure in the cavities is
also influenced by temperature variation. When the participant
first puts the mouthpiece on, it will gradually heat up until a
steady state is reached after approximately 1 minute. The first
zero calibration is followed by a 2-minute game that does not
require precision in the pressure measurements. This game
allows the mouthpiece temperature to reach a steady-state level.
A second zero calibration takes place at the end of the game.
The zero calibration step is automatically repeated before each
training session to ensure that no new temperature offset affects
the pressure measurements.

Maximal Pressure Calibration
After the first zero calibration and the warm-up game, the
participant is asked to set a baseline for both tongue protrusion
and lip contraction maximal pressure. The participant starts on
a page with a vertical bar corresponding to the actual developed
tongue pressure, as presented in Multimedia Appendix 1, Figure
S2. The participant is asked to develop maximal tongue pressure
before releasing and then press OK in 3 consecutive attempts.
If the absolute deviation divided by the mean value of the
maximal value is greater than 7.5%, the process is repeated;
otherwise, the mean value is used as the baseline maximal
tongue pressure. Subsequently, the same steps are completed
for the lips.

Training
The training section consists of 3 tasks targeting, respectively,
the tongue, the lips, and control of breathing. The tongue and
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lip pressure tasks are based on the work of Svensson et al [18].
The display includes a white background, a green box, and an
orange square, as presented in Multimedia Appendix 1, Figure
S3. The orange square displays the pressure level applied to the
corresponding cavity. The participant is tasked with placing the
orange square into the green box. The cycle starts with the green
box at the bottom for the first 8 seconds, and the participant is
asked to release the pressure from the cavity. The green box
then rises to a level of pressure between 3% and 5% of the
maximal pressure for 3 seconds. The first 1.5 seconds allow the
user to react and adjust muscle contraction to fit within the
targeted pressure range. A success score corresponding to the
percentage of time the participant successfully applied pressure
in the given range is computed during the last 1.5 seconds. The
task repeats for 10 cycles, after which a cumulative score is
computed.

For the breathing task, the participant is asked to continuously
apply a small lip pressure of 4% of the maximal value. Visual
feedback on the lip pressure is given to the user via a vertical
bar. The participant is tasked with following a breathing pattern
indicated on the screen. This task includes 7 breathing cycles,
with 8 seconds for inhaling and 8 seconds for exhaling. The
success of this task is defined by the fraction of the total time
when the user has applied sufficient pressure. The user
progression during this exercise is displayed with a horizontal
progress bar, as presented in Multimedia Appendix 1, Figure
S4.

Games
The games are intended as relaxing activities between the formal
metered training exercises described above. The first game is
a paddle and ball game where a ball bounces off the top and
bottom walls as well as paddles on the side. The user can move
the paddles up in proportion to the pressure applied to the lip
(blue paddle) and tongue (green paddle) cavities, respectively.
The objective is to prevent the ball from hitting the edges behind
the paddles. Every time the ball bounces off the paddle, a
counter is incremented and the ball speeds up. The counter resets
once the ball hits the edge behind a paddle. The user can track
the high score of the current session on the screen, as presented
in Multimedia Appendix 1, Figure S5.

The second game is called the circle game. The user controls
the position of a point; lip pressure controls the horizontal
position and tongue pressure controls the vertical position. A
yellow circle appears on the screen, and the user must combine
lip and tongue pressure to place the point inside the circle. The
circle turns green once the point is within its radius and must
remain green for 3 seconds to succeed. Subsequently, the circle
shrinks and appears at a new position. The user has 30 seconds
to place the point steadily in the circle before the score resets;
7 seconds are added to the timer after each success. The current
session’s high score is also displayed on-screen. The circle game
display is presented in Multimedia Appendix 1, Figure S6.

In the missile game, the user must apply a small degree of
tongue pressure and then release it to send a colored missile.
The missile travels upward to a circle with 6 equal sections of
different colors. Changing lip pressure allows the user to rotate
the circle so that when the missile touches the circle, it collides

with the section with the matching color. For each success, the
missile velocity increases. The missile game display is presented
in Multimedia Appendix 1, Figure S7.

The fourth game is the wall game, in which a ball moves
horizontally toward a wall with a hole. The user must move the
hole to let the ball through. The hole moves up incrementally
when the user presses then releases lip pressure and moves down
in the same way with tongue pressure. After each success, a
new ball appears at a new height with a greater speed. The
current and high scores are displayed on-screen, as presented
in Multimedia Appendix 1, Figure S8.

Results Screen
Once the user goes through the full training session (ie, 4
breathing tasks, 4 lip tasks, 4 tongue tasks, and 4 games), the
results of each task are presented as a bar graph and are archived
in a file.

Outcomes
The primary outcome of this study was the degree of completion
of the exercises and adherence to treatment. The secondary
outcomes were changes in sleep and breathing variables
following training.

Compliance was defined as the number of completed sessions
during the 4 weeks divided by 24 (6 sessions per week for 4
weeks). Tongue, lip, and breathing exercise success rates were
defined by the percentage of time the participant successfully
applied pressure in the given range. Results are presented with
a 96% CI (1.96 SD). A mixed model was defined using a
random intercept for the analysis of the changes in
anthropometric data, the ESS score, sleep data, and the exercise
success rate. One factor was associated to the
before-and-after-intervention comparison. As the data were
correlated, the normality assumption was verified with the
Shapiro-Wilk test using residuals from the statistical model and
transformed with the Cholesky metric. The graphical
representation of marginal linear predictors with studentized
residuals suggests the homogeneity of variances. Statistical
significance was defined as a 2-tailed P<.05. Associations
between AHI and adherence, as well as success rates, were
assessed with Spearman correlations. Analyses were performed
using SAS (version 9.4; SAS Institute).

Results

The characteristics of our study population are displayed in
Table 1. This study included 2 female participants. Breathing
disturbances were mostly of moderate severity, except for 1
participant who had severe sleep apnea documented during the
pretraining home sleep recording. A total of 2 of the 10 recruited
participants did not complete the 4-week training program due
to a lack of motivation. The remainder of the participants
successfully completed at least 75% (18/24) of all sessions, as
presented in Table 2, with an average compliance of 91%
(175/192).

For the tongue exercise, the success rate increased from 66%
(211/320; SD 18%) on the first day to 85% (272/320; SD 17%)
on the last day (P=.05). For the lip exercise, it increased from
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78% (248/320; SD 18%) on the first day to 87% (278/320; SD
16%) on the last day (P=.25), as presented in Table 3. It is
important to note that for both exercises the success score
decreased in participant 2 while it improved for all other

participants, except for the lip exercise for participant 7. The
success rate of the breathing exercise increased from 86%
(275/320; SD 24%) the first day to 96% (307/320; SD 10%) on
the last day (P=.24).

Table 1. Anthropometric, symptom, and sleep characteristics before and after 4 weeks.

P valuePosttraining value, mean (96% CI)Pretraining value, mean (96% CI)

N/AN/Aa48 (26 to 70)Age (y)

.7329.3 (26.0 to 32.6)29.3 (25.8 to 32.8)BMI (kg/m2)

.239.5 (–1.7 to 20.7)11.3 (–0.1 to 22.7)ESSb score

.1017.7 (–3.5 to 38.9)20.7 (2.9 to 38.5)AHIc (events/h)

.3726.7 (–1.6 to 54.0)33.4 (–3.4 to 70.2)AHI supine (events/h)

.4923.3 (–15.1 to 61.7)25.5 (–6.1 to 57.1)AHI RMId (events/h)

.6619.2 (–9.0 to 47.4)20.3 (–6.0 to 46.6)ODIe (events/h)

.9943.6 (–19.1 to 106.3)43.7 (–19.0 to 106.4)Time supine (%)

.17395 (268 to 522)420 (347 to 493)TSTf (minutes)

.751.7 (2.0 to 5.4)1.6 (–0.9 to 4.1)TST <90% SaO2
g (%)

aN/A: not applicable.
bESS: Epworth Sleepiness Scale.
cAHI: apnea-hypopnea index.
dRMI:respiratory mechanic instability.
eODI: oxygen desaturation index.
fTST: total sleep time.
gSaO2: oxygen saturation of arterial blood.

Table 2. Number of training sessions completed during the 4-week training program.

Week 4Week 3Week 2Week 1Participant

66661 (total=24)

65452 (total=20)

66663 (total=24)

65564 (total=22)

46665 (total=22)

56666 (total=23)

56347 (total=18)

66468 (total=22)
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Table 3. Success rate at baseline and after 4 weeks of training.

Lip success rate, %Tongue success rate, %Participant

PosttrainingBaselinePosttrainingBaseline

803882341

517847732

959099613

896979534

979290625

978095736

909195927

958892798

During the study period, there was no significant change in
BMI, ESS score, AHI, and other polysomnography-derived
parameters, as displayed in Table 1. Table 4 presents the
variation in AHI before and after the 4-week training for each

participant. It illustrates that the index of each participant
improved, with the exception of participants 2 and 3.

A significant correlation was found between the decrease in
AHI in the supine position and the change in success rate for
the lip exercise (Rs=–0.76; P=.03).

Table 4. Effects of 1 month of training on obstructive sleep apnea/hypopnea syndrome severity.

Posttraining AHI, events/hPretraining AHIa, events/hParticipant

11.613.61

19.615.42

40.841.03

6.317.44

21.325.05

14.920.56

8.312.67

19.020.28

aAHI: apnea-hypopnea index.

Discussion

Principal Findings
The results of this study illustrate the feasibility of performing
a training task focusing on the recruitment of different UA
muscles while collecting major information such as adherence
to the training program and objective measurements of task
completion and success.

Comparison to Prior Work
Myofunctional therapy is a relatively new treatment for
sleep-disordered breathing and is based on a combination of
regular exercises aiming at enhancing muscle recruitment from
various oral and oropharyngeal structures [13]. Although its
effect on AHI and sleep apnea–related symptoms has been
shown in an increasing number of studies [16], the main
challenge to its success remains the objective assessment of
program adherence and exercise performance [22]. Of the 10
participants initially recruited, 8 successfully completed more
than 75% (18/24) of the total number of sessions over a period
of 4 weeks. Two of the initially recruited participants left the

study less than 3 days after the start of the training. In
comparison, rates of participant adherence reported in recent
studies using myofunctional therapy with a mobile app were
75%, 90%, and 65% (15 minutes per session, 5 times/week for
3 months) [23-25]. In addition, Kim et al [26] found that in a
myofunctional therapy support program with the help of exercise
diaries, the reported adherence was 82%. In studies from Kim
et al [26] and O’Connor et al [23-25], one could note the strong
encouragement given to the patients through easy access to a
health professional, encouraging text messages, or the use of a
mobile app. In this study, a higher adherence rate was observed
compared to the aforementioned studies. One potential
explanation for this improvement is that the exercises were
designed to induce motivation with games and visual feedback.
Recently, a mobile app has been developed for this purpose that
only requires a smartphone [24]. It first teaches the patient how
to perform the exercise and then provides timely feedback on
their performance. The results are saved over time, and the app
promotes assiduity. It was observed that after 3 months, 75%
of the patients completed the training at least 5 days a week
[24] and the AHI of patients who adhered to the treatment
decreased by 53.4% [23]. However, the quality tracking of the
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exercises is limited by the functionality of the smartphone and
requires covering the screen with cling film or hypoallergenic
plastic wrap every session, since the tongue touches the screen
[24]. The proposed custom mouthpiece introduced in this paper
enables more accurate measurement of lip and tongue pressure,
ensuring enhanced exercise quality.

Strengths
The multidimensional nature (exercises mixed with various
training games) of the training program, its ability to
immediately provide performance results for each exercise to
the participants, and the measurement of treatment adherence
are important strengths of our training program. As
myofunctional therapy is based on an integrative approach, it
is not possible to define which of the exercises may contribute
most significantly to treatment success [13]. In recent studies,
a combination of 9 exercises has been found to be sufficient to
significantly decrease AHI [23,24]. Previous studies have
focused on a single exercise and have found variable success
[14,27]. Here, we used 3 exercises as a compromise between
recruiting more of the muscles involved in the pathogenesis of
OSAHS and keeping the workload at an acceptable level for
participant motivation. Our results seem to show that a greater
number of participants should have been recruited in order to
see a higher impact on AHI reduction. Based on the results of
our previous study [14], the training program duration was set
at 4 weeks. This may have affected the results, as clear benefits
in previously published myofunctional therapy studies were
observed after 3 months of training. This difference may have
helped to obtain a higher adherence rate while limiting the AHI
reduction.

Limitations
There were 3 limitations of this study. The first was the success
rate. This 4-week program did not significantly influence
OSAHS severity to the degree that we previously found with
an intensive in-lab tongue-protrusion training session that lasted
1 hour in 1 week [14]. However, it should be emphasized that
although AHI did not decrease significantly, a correlation was
found between the increase in success rate for the lip exercise
and AHI decrease in the supine position. Therefore, one possible
explanation for the modest decrease in AHI could be that the
success rate of the present exercises was much higher than our
previous in-lab trial (for both success rate during the first session
and the rate of increase during the training period). Previously,
it started from an average of 28% up to 65% for the last session.
Similarly, an initial success rate of 25% was observed by
Svensson et al [18] in a similar 1-week tongue-training program
that was devised to increase corticomotor excitability. The high
success rate in this study was likely mainly due to the
adjustments that were made to the experimental set-up in order
to make it ambulatory. However, in our success rate calculation,
we did not take into account the results of the game sessions,
which also involved a learning process and accounted for about
half the duration of a training session. These games were
designed mainly to boost the patients’ motivation to continue

the program. Future exercise settings could be individually
adjusted to adapt exercise targets to participants’ baseline UA
performance, with the goal of improving the success rate over
time.

The second limitation was the selection of participants. Since
it is not known to what extent anatomical UA abnormalities
contribute to training program efficacy, no such selection criteria
were used for our study population. It could be interesting to
complete further studies focusing on patients with limited
anatomical abnormalities according to practical clinical scores
(ie, Mallampati and velopharyngeal scores). Apart from sleep
apnea severity and degree of obesity, there were no selection
criteria for participant selection. However, there may have been
an indirect selection criterion due to the need for the participants
to complete an additional preliminary visit at a dentist’s office
to perform the 3D tooth scan. This may have interfered with
individual willingness to enter into the trial. Identifying
participants who will remain engaged with the training program
is a crucial issue for such a treatment strategy. Having a training
device available for demonstration in the setting of a sleep clinic
could definitely help to identify participants who are likely to
follow the requirements of a training program.

The third limitation was the sample size. Yet another explanation
for the lack of an AHI decrease is that our sample size was
affected by the dropout of 2 participants and by the increase in
AHI observed after the intervention in 1 participant. This
participant was the only one with a decreasing overall success
rate. This particular patient did have difficulty remaining focused
throughout the training month, probably due to excessive
sleepiness. As OSAHS is a multifactorial disorder [28] in which
anatomical and nonanatomical factors can interact to modulate
the severity of the disease, patient selection may play an
important role in the success of OSAHS muscle training.
Therefore, for this particular participant, treatments targeting
traits other than low muscle tone or function would have been
effective for decreasing AHI and related symptoms.

Conclusions
This study was an attempt to develop a prototype aimed at
completing a simplified oral/oropharyngeal exercise program
in an entertaining way in the comfort of a patient’s own home.
The program gives the patient visual feedback, as well as the
ability to monitor improvement. Patients were instructed to
perform tongue protrusion exercises, lip pressure exercises, and
controlled breathing in various playful tasks 6 times a week for
4 weeks. Session duration was about 35 minutes. While the AHI
reduction was not significant, we found that the success rate for
improvement in the lip exercise was correlated with AHI
reduction in the supine position (Rs=-0.76; P=.03). These results
are a first steps toward the tuning of an ambulatory
myofunctional therapy module able to accurately monitor the
performance of participants in lip and tongue pressure exercises.
This noninvasive approach may decrease the severity of OSAHS
and represent an alternative to more invasive solutions, such as
CPAP devices.
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Abstract

Background: Vocal biomarkers, derived from acoustic analysis of vocal characteristics, offer noninvasive avenues for medical
screening, diagnostics, and monitoring. Previous research demonstrated the feasibility of predicting type 2 diabetes mellitus
through acoustic analysis of smartphone-recorded speech. Building upon this work, this study explores the impact of audio data
compression on acoustic vocal biomarker development, which is critical for broader applicability in health care.

Objective: The objective of this research is to analyze how common audio compression algorithms (MP3, M4A, and WMA)
applied by 3 different conversion tools at 2 bitrates affect features crucial for vocal biomarker detection.

Methods: The impact of audio data compression on acoustic vocal biomarker development was investigated using uncompressed
voice samples converted into MP3, M4A, and WMA formats at 2 bitrates (320 and 128 kbps) with MediaHuman (MH) Audio
Converter, WonderShare (WS) UniConverter, and Fast Forward Moving Picture Experts Group (FFmpeg). The data set comprised
recordings from 505 participants, totaling 17,298 audio files, collected using a smartphone. Participants recorded a fixed English
sentence up to 6 times daily for up to 14 days. Feature extraction, including pitch, jitter, intensity, and Mel-frequency cepstral
coefficients (MFCCs), was conducted using Python and Parselmouth. The Wilcoxon signed rank test and the Bonferroni correction
for multiple comparisons were used for statistical analysis.

Results: In this study, 36,970 audio files were initially recorded from 505 participants, with 17,298 recordings meeting the fixed
sentence criteria after screening. Differences between the audio conversion software, MH, WS, and FFmpeg, were notable,
impacting compression outcomes such as constant or variable bitrates. Analysis encompassed diverse data compression formats
and a wide array of voice features and MFCCs. Wilcoxon signed rank tests yielded P values, with those below the
Bonferroni-corrected significance level indicating significant alterations due to compression. The results indicated feature-specific
impacts of compression across formats and bitrates. MH-converted files exhibited greater resilience compared to WS-converted
files. Bitrate also influenced feature stability, with 38 cases affected uniquely by a single bitrate. Notably, voice features showed
greater stability than MFCCs across conversion methods.

Conclusions: Compression effects were found to be feature specific, with MH and FFmpeg showing greater resilience. Some
features were consistently affected, emphasizing the importance of understanding feature resilience for diagnostic applications.
Considering the implementation of vocal biomarkers in health care, finding features that remain consistent through compression
for data storage or transmission purposes is valuable. Focused on specific features and formats, future research could broaden
the scope to include diverse features, real-time compression algorithms, and various recording methods. This study enhances our
understanding of audio compression’s influence on voice features and MFCCs, providing insights for developing applications
across fields. The research underscores the significance of feature stability in working with compressed audio data, laying a
foundation for informed voice data use in evolving technological landscapes.

(JMIR Biomed Eng 2024;9:e56246)   doi:10.2196/56246
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Introduction

Background
Vocal biomarkers are emerging as a promising accessible and
noninvasive avenue for medical screening, diagnostics, and
monitoring [1]. These biomarkers are unique characteristics or
acoustic patterns of an individual’s voice that can hold valuable
information about their physical and mental well-being [2].
Human voice production requires the coordination of multiple
biological systems; perturbations in these systems induced by
various conditions or diseases can result in alterations in the
characteristics of the human voice [3]. Potential applications of
vocal biomarkers are diverse, including the identification of
neurological disorders, cardiovascular diseases, respiratory
conditions, and mental health disorders, among others [2,4-6].

In our previous work, “Acoustic Analysis and Prediction of
Type 2 Diabetes Mellitus Using Smartphone-Recorded Voice
Segments” [7], smartphone-recorded speech was used to predict
type 2 diabetes mellitus through a comprehensive acoustic
analysis [7]. The study demonstrated the feasibility of using
acoustic features from smartphone-recorded voice data to predict
the presence of this disorder, highlighting the valuable diagnostic
potential of vocal biomarkers in the context of a specific health
condition [7]. Building upon this prior research, we aim to assess
the impact of audio compression on acoustic vocal biomarker
development, which is crucial for the broader applicability of
this emerging field.

The development of acoustic vocal biomarkers relies on the
analysis of voice data, and this process is multifaceted. One
critical aspect of this analysis is feature extraction, which
involves identifying and quantifying relevant acoustic features
from the voice data [8]. These features may encompass a wide
range of parameters such as pitch, spectral properties, prosodic
patterns, and various other characteristics that carry meaningful
information about the speaker’s health status [2,8]. Accurate
and robust feature extraction is pivotal for the successful
identification and interpretation of vocal biomarkers.

Voice data are often captured, transmitted, and stored in various
digital formats that may include compression, a common
practice used to reduce the size of audio files, making them
more manageable and efficient for storage and transmission [9].
It is necessary to consider the potential impact of audio data
compression on the overall process of vocal biomarker
development as the process can have significant effects on the
audio [10]. Compression algorithms are widely applied to raw,
high-quality audio (typically waveform audio file format) and
can be classified as lossy or lossless [11]. Lossy compression
algorithms reduce file size to as low as 10% of the original size
by removing mostly inaudible audio data, while lossless
preserves all the original audio data and only compresses to
approximately 50% [12]. Some of the most common lossy
formats include MP3, M4A, and WMA [12]. These formats
offer different trade-offs between file size and audio quality,

and each may introduce specific artifacts and alterations to the
original acoustic data.

Previous research on how data compression impacts voice
signals has found that different microphones and MP3
compression bitrates on sustained vowel sounds can significantly
affect feature values [10]. Research has found that various digital
platforms and their audio codecs affect the voice in a way that
challenges voice recognition processes specifically by narrowing
the frequency band and centrally shifting frequencies at the
upper and lower limits [13]. While differing microphones can
introduce differences in audio data depending on specifications,
smartphone microphones have been found to collect high-quality
audio data suitable for acoustic analysis [14].

This exploratory research aims to investigate the effect of
common audio data compression algorithms, such as MP3, AAC
(compression algorithm for M4A), and WMA, on the vocal
biomarker feature extraction process. Additionally, the effect
of compression bitrate or encoder type will be analyzed to
determine whether these factors make a difference within each
format. Understanding the impact of popular data compression
methods on acoustic vocal biomarker analysis is important as
it can significantly affect the quality and interpretability of
biomarker data [15,16]. Moreover, this knowledge can guide
the development of best practices and inform the compression
implementation process for the specific needs of health care
applications, such as remote medical care involving telephone
or video conferencing, thereby minimizing the risk of
unintentional distortion of vocal biomarkers.

Objective
The objective of this research is to analyze the effect of several
common audio data compression algorithms: MP3, M4A, and
WMA, in 2 common bitrates, completed by 3 different
conversion tools, on feature extraction from voice data for vocal
biomarker detection.

Methods

Overview
In this research, acoustic features were derived from
uncompressed voice samples, which were subsequently
converted into MP3, M4A, and WMA formats using 3 distinct
tools, namely MediaHuman (MH) Audio Converter,
WonderShare (WS) UniConverter, and Fast Forward Moving
Picture Experts Group (FFmpeg) across 2 different bitrates (320
and 128 kbps). MH, WS, and FFmpeg conversion tools were
selected because of their accessibility as free, downloadable
audio conversion software. Our goal was to explore how
different audio conversion tools, formats, and 2 specific bitrates
affect the data set used to develop a biomarker prediction model
[7]. By focusing on these tools and bitrates, we aimed to provide
insights into the potential impact of common audio compression
methods on the extracted voice features. This approach allowed
for a manageable analysis while paving the way for future
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research to delve deeper into the nuances of audio compression
effects on biomarker prediction models.

Data and Participants
This research was conducted using a data set of audio recordings
that were collected from 505 participants (mean age 41.03, SD
13.29 years, 336 male participants) recruited between August
30, 2021, and June 30, 2022, for a study in India [7]. Participants
were instructed to record a short English phrase up to 6 times
daily using their smartphone for 14 consecutive days. As these
data were originally recorded for research involving diabetes,
the phrase was “Hello. How are you? What is my glucose level
right now?” All audio files used in the research originated in
the uncompressed waveform audio file format, 16-bit 44.1 kHz.

Participants in this study used a variety of smartphone models
for data recording. While efforts were made to request
recordings in quiet environments, the inherent difficulty in
controlling recording conditions may have introduced variability
in the recorded speech data. No preliminary tests were conducted
to assess the recording quality across different smartphone
models, and no preprocessing techniques were applied to address
potential hardware variations in the recorded speech data. It is
noteworthy that the intention of the prediction model was to be
run on a smartphone; therefore, the recordings were made using
smartphone uncompressed audio to align with the intended
application context.

File Conversion
To explore the impact of diverse data compression methods,
the original files underwent conversion using MH (version
2.2.2), WS (version 15), and FFmpeg (version 6.1.1) in Python
(version 3.10.11; Python Software Foundation) on a PC. Three
distinct compression algorithms—MP3, M4A, and WMA—at
2 bitrates—128 kbps and 320 kbps—were applied to simulate
real-world scenarios where audio data are commonly subjected
to different compression algorithms for storage and transmission
purposes. The sample rate (44.1 kHz) and the channels (stereo)
were kept consistent over all formats. The choice of encoders
used in the research was not a primary consideration; rather,
our focus was on comparing the results obtained from different
compression methods. It is worth noting that the selected
encoders were accessible, free, and capable of batch processing
multiple files, which facilitated efficient experimentation.
Despite maintaining consistency in factors such as bitrate,
channels, and formats between the 3 encoders, there are features
of the tools that remain hidden that could potentially cause
differences in the converted files, such as the encoding mode
(ie, constant or variable bitrate) or other encoding options.
However, these hidden features are not a large concern because
the objective of the study was to compare compressed and
uncompressed data rather than comparing between compression.
The incorporation of multiple encoders served the purpose of
discerning whether factors beyond just bitrate and file format
influenced feature values.

Feature Extraction and Comparison
We chose to use the same feature set (Multimedia Appendix 1)
as in our previous research on developing a voice-to-type 2
diabetes model to maintain consistency and leverage their

established effectiveness in capturing relevant biological
information from voice data [7]. Acoustic features were
extracted from both the original waveform audio file format
files and the compressed audio formats using Python (version
3.10.11; Python Software Foundation). The voice feature
extraction process leveraged Parselmouth, a Python integration
of Praat speech and voice analysis software [17,18], ensuring
robustness and accuracy in feature extraction. The extracted
features aimed to capture pertinent acoustic characteristics of
the voice data, such as pitch, jitter, and intensity, as well as
Mel-frequency cepstral coefficients (MFCCs) [19], which have
demonstrated efficacy in capturing subtle variations in vocal
properties associated with health conditions.

Notable perceived voice qualities such as breathiness,
hoarseness, and roughness, which typically present with elevated
levels of shimmer and jitter, were often associated with certain
pathological conditions and were therefore included in the
biomarker development as well as this research [7,20]. While
acoustic analysis is mainly performed using sustained phonation
of vowel sounds, recent studies have demonstrated the use of
shimmer and jitter measurements in identifying dysphonia even
when calculated from entire sentence recordings [20]. Thus,
because the data set was originally studied for the purpose of
biomarker development, we chose to include the evaluations of
shimmer and jitter alongside traditional vocal parameters such
as pitch, intensity, and harmonic noise ratio in this analysis of
how audio data compression impacts feature values.

Given the non-Gaussian distribution of feature data, assessed
via the Shapiro-Wilk test, a nonparametric
approach—specifically, the Wilcoxon signed rank test—was
adopted for statistical analysis. This paired test aimed to evaluate
the impact of each compression method on audio features by
comparing the features extracted from the original uncompressed
files with those obtained from each compressed format
individually. In this study, the Bonferroni correction method
was used to account for multiple comparisons. Given our focus
on assessing the impact of each conversion method relative to
the original feature values rather than comparing between
different treatments, this correction was deemed appropriate.
This approach allowed us to effectively manage the potential
for false positives while evaluating the stability of feature values
across different compression methods.

Ethical Considerations
The protocol (ID MGCTS107) received ethics approval by
Saanvi Ethical Research LLP, all participants signed informed
consent, and data were stored in a secure cloud database with
no identifying information. Participants were compensated for
their time.

Results

Data and Participants
A total of 36,970 audio files were recorded from the 505
participants who completed the study. Speech-to-text screening
ensured that the audio files adhered to the fixed sentence criteria
and were devoid of substantial background noise, resulting in
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a total of 17,298 recordings. All participants were native to
India.

File Conversion
The noncustomizable differences between the audio conversion
software MH Audio Converter and WS UniConverter manifested

in evident variations in the converted files. Table 1 displays the
differences in compression ratio and data set size, highlighting
these distinctions and emphasizing the impact of
software-specific characteristics on the compression outcomes
such as constant or variable bitrates.

Table 1. Compression specifications for each data compression method including the final size of the data set and compression ratio.

Compression ratioData set size (GB)Bitrate (kbps)Format and tools

MP3

MediaHuman ••• 5.421.29128
••• 2.173.22320

WonderShare ••• 16.260.43128
••• 6.661.05320

FFmpega ••• 5.421.29128
••• 2.183.20320

M4A

MediaHuman ••• 5.031.39128
••• 1.375.10320

WonderShare ••• 14.870.47128
••• 6.351.10320

FFmpeg ••• 5.551.26128
••• 3.212.18320

WMA

MediaHuman ••• 5.031.39128
••• 1.275.49320

WonderShare ••• 9.990.70128
••• 5.261.33320

FFmpeg ••• 5.031.39128
••• 1.275.49320

aFFmpeg: Fast Forward Moving Picture Experts Group.

Feature Extraction and Comparison
This research investigated the influence of diverse data
compression formats on an extensive array of voice features
and MFCCs. The corresponding P values for each feature are
provided in the subsequent table from the results of the 756
Wilcoxon signed rank tests. P values below the level of

significance, 6.61×10–5 with the Bonferroni correction (Table
S1-S3 in Multimedia Appendix 2), signify a notable difference
in feature values between the original .wav format and the
corresponding compressed format, indicating a significant
alteration due to compression. Conversely, features with P

values greater than 6.61×10–5 (Table S1-S3 in Multimedia
Appendix 2) are deemed robust, suggesting their resilience to
the compression process.

Discussion

Overview
This investigation illuminated the effects of diverse audio file
compression methods on a broad spectrum of voice features
and MFCCs. The results revealed that the impact of data
compression is feature specific and varies across different
encoders, formats, and bitrates.

Principal Findings
The encoder played a substantial role in influencing voice
features, with MH- and FFmpeg-converted files demonstrating
greater resilience to compression compared to WS-converted
files, regardless of the format. For MH, WS, and FFmpeg, there
were 15, 6, and 21 features, respectively, that had at least 1
format or bitrate combination that was unaffected by the
conversion. A total of 59 compressed feature comparisons
showed stability for MH, 8 for WS, and 67 for FFmpeg (Table
S1-S3 in Multimedia Appendix 2). The conversion bitrate also
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exhibited an impact on feature stability, with some features
remaining consistent for both bitrates, while others were affected
uniquely at either 128 kbps or 320 kbps. A total of 38 feature
comparison cases (of the total of 134) were only affected by
compression for a single bitrate. Of those 38, 15 feature
comparisons were only unaffected with 128 kbps, while 23 were
stable for compression at only 320 kbps. MH and FFmpeg
conversions had more features unaffected when conversions
were done with a bitrate of 320 kbps compared to 128 kbps.
Additionally, the voice features were found to be more stable
than the MFCCs. The findings indicate that not all voice features
respond equally to audio file compression. Certain features
exhibited robustness and remained consistent despite
compression, holding promise for applications involving
compressed voice data storage or transmission. For instance, in
our previous work on type 2 diabetes prediction from voice,
features such as mean fundamental frequency/pitch (meanF0),
pitch SD (stdevF0), and relative average perturbation jitter
(rapJitter) remained consistent across several compression
methods, including MP3 from MH at 320 kbps and FFmpeg at
both 320 and 128 kbps and WMA from MH and FFmpeg at
both 128 kbps and 320 kbps (Table S1-S3 in Multimedia
Appendix 2) [7]. For the male prediction model, 1 of the 2
features (meanI) was significantly affected by all conversion
methods. The second feature (apq11) remained stable for
conversions with MH and FFmpeg to WMA format at both
bitrates, MP3 at 320 kbps, and MH-converted M4A at 320 kbps.
(Table S1-S3 in Multimedia Appendix 2) [7]. However, this
study also identified features significantly altered by
compression (Table S1-S3 in Multimedia Appendix 2),
emphasizing the need to understand the stability and sensitivity
of individual features for maintaining accuracy and
interpretability in applications like health care diagnostics and
voice recognition.

Vocal biomarkers, being a relatively new concept, are
predominantly situated within the realm of research rather than
practical settings where considerations for data storage and
transmission are paramount. The study’s implications extend
to various fields, particularly in health care, where voice data
are increasingly used for disease detection and monitoring.
When dealing with features significantly influenced by a specific
compression algorithm, considerations should be made to
preserve accuracy in applications requiring high diagnostic
precision. The study suggests that certain voice features can

withstand common data compression formats, enabling the use
of compressed data in medical applications without
compromising diagnostic accuracy, depending on the features.
This is crucial in scenarios involving limited bandwidth for
audio data transmission or storage constraints, where choosing
an appropriate compression format while considering feature
resilience becomes pivotal. Conversely, for research applications
where features are being investigated, the use of uncompressed
or lossless compression is essential.

Limitations and Future Directions
This study has several limitations. First, while it focused on a
specific set of voice features and how they were changed based
on compression formats, future research could benefit from
isolating compression settings to study their individual effects
rigorously. Second, controlling microphone and recording
settings could enhance data consistency and reliability, as
variations in these factors may introduce confounding variables.
Additionally, exploring different recording sentences could
provide insights into how content variability influences the
impact of compression on feature extraction. Finally, a broader
exploration of diverse features beyond those examined in this
study, such as spectral or temporal features, could offer a more
comprehensive understanding of the impact of compression on
acoustic vocal biomarkers.

Conclusions
In this research, we have provided insights into the influence
of audio data compression on feature values used in biomarker
prediction model development. Our findings underscore the
importance of considering compression effects in the design
and optimization of diagnostic tools reliant on voice-based
biomarkers. Through analysis and statistical comparisons, we
have demonstrated the nuanced impact of compression formats,
bitrates, and conversion tools on the stability and reliability of
extracted feature values. By revealing these effects, our research
not only advances our understanding of the complex interplay
between audio data processing and biomarker extraction but
also offers practical implications for health care practitioners
and researchers. Moving forward, the findings pave the way for
future investigations aimed at refining compression strategies,
exploring alternative extraction methodologies, and ultimately
enhancing the accuracy and efficacy of biomarker-based
diagnostic models in clinical practice.
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Abstract

Background: Step counting is comparable among many research-grade and consumer-grade accelerometers in laboratory
settings.

Objective: The purpose of this study was to compare the agreement between Actical and Apple Watch step-counting in a
community setting.

Methods: Among Third Generation Framingham Heart Study participants (N=3486), we examined the agreement of step-counting
between those who wore a consumer-grade accelerometer (Apple Watch Series 0) and a research-grade accelerometer (Actical)
on the same days. Secondarily, we examined the agreement during each hour when both devices were worn to account for
differences in wear time between devices.
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Results: We studied 523 participants (n=3223 person-days, mean age 51.7, SD 8.9 years; women: n=298, 57.0%). Between
devices, we observed modest correlation (intraclass correlation [ICC] 0.56, 95% CI 0.54-0.59), poor continuous agreement (29.7%,
n=957 of days having steps counts with ≤15% difference), a mean difference of 499 steps per day higher count by Actical, and
wide limits of agreement, roughly ±9000 steps per day. However, devices showed stronger agreement in identifying who meets
various steps per day thresholds (eg, at 8000 steps per day, kappa coefficient=0.49), for which devices were concordant for 74.8%
(n=391) of participants. In secondary analyses, in the hours during which both devices were worn (n=456 participants, n=18,760
person-hours), the correlation was much stronger (ICC 0.86, 95% CI 0.85-0.86), but continuous agreement remained poor (27.3%,
n=5115 of hours having step counts with ≤15% difference) between devices and was slightly worse for those with mobility
limitations or obesity.

Conclusions: Our investigation suggests poor overall agreement between steps counted by the Actical device and those counted
by the Apple Watch device, with stronger agreement in discriminating who meets certain step thresholds. The impact of these
challenges may be minimized if accelerometers are used by individuals to determine whether they are meeting physical activity
guidelines or tracking step counts. It is also possible that some of the limitations of these older accelerometers may be improved
in newer devices.

(JMIR Biomed Eng 2024;9:e54631)   doi:10.2196/54631

KEYWORDS

accelerometer; mobile health; mHealth; wearable device; fitness tracker; physical activity; mobile phone; Apple Watch; step
counts; Framingham Heart Study; Actical; digital health; tracker; wearable; wearables

Introduction

Physical inactivity is an important risk factor for many chronic
diseases including obesity, diabetes mellitus, hypertension,
cardiovascular disease, and dementia [1]. The 2018 Physical
Activity Guidelines for Americans recommend 150 minutes of
moderate to vigorous physical activity (MVPA) or more per
week [1]. Despite many known benefits of physical activity,
many Americans do not meet the Physical Activity Guidelines,
the proportion of Americans meeting these guidelines changes
drastically depending on whether physical activity levels are
measured using accelerometers or self-report. Guideline
achievement has been estimated to be as low as 15% of
Americans using accelerometry in a nationally representative
sample, or as high as 66% using self-reported data in the same
individuals [2,3]. Furthermore, experts have expressed concern
over whether these guidelines are appropriate and attainable,
especially in older adults or those with mobility limitations
[1,4,5].

Walking is a central component of physical activity and public
health promotion efforts [6]. Public health messages focused
on daily step counts may be a more appropriate target for
achieving recommended amounts of physical activity in adults
[6], which might have even more significance in older
populations and those who have low MVPA levels. We are in
a new paradigm in health care, in which 69% of US adults report
tracking at least 1 health metric [7,8], including millions of
individuals who track their steps using wearable accelerometer
devices that are available commercially [9]. Despite the
longstanding use of step counting in public health interventions
[10], the Physical Activity Guidelines Committee has not yet
created recommendations for the number of daily steps to target
as a goal for health promotion [1]. The primary reason for this
lack of step count guidelines has been a lack of evidence, but
meta-analyses conducted from large cohort studies have recently
reported that step count is associated with a lower risk of death
and chronic disease [11,12]. Many accelerometers and

pedometers have been validated to accurately count steps in the
laboratory setting [13-15], but a remaining concern is that it is
unclear how the number of steps reported in studies using
research-grade accelerometers compares to steps counted by
consumer-grade wearable devices used by the public living in
the community (ie, the free-living setting).

During a recent Framingham Heart Study (FHS) exam cycle,
physical activity was measured using both a consumer or mobile
health device (Apple Watch) and a research-grade accelerometer
(Actical) at the same time in the same individuals. The purpose
of this investigation was to assess the agreement between Apple
Watch and Actical-derived daily step count in free-living
environments. We primarily assessed whether step count agreed
when devices were worn on the same day, even if wear times
differed, because we acknowledge that wear time and behavior
may differ when participants wear different devices in the real
world. We secondarily assessed whether agreement differed
when devices were worn for the same hour block and whether
agreement differed by age, sex, height, BMI, or those with
mobility disabilities. This report will enable a better
interpretation of the Apple Watch’s daily step count for research
studies and consumers using these devices.

Methods

Study Cohort
The FHS Third Generation-based (Gen 3) cohort was recruited
in 2002-2005 (n=4095) [16], and consisted mostly of
grandchildren of the Original FHS cohort [17], who were largely
individuals of European descent. The Gen 3–based examinations
also included spouses of the Original cohort’s offspring (New
Offspring Spouses [NOS], n=103) who were not already
included in the Offspring (Generation 2) cohort and included a
multiethnic Omni Group 2 (n=410). Participants from these
cohorts have been examined every 6-8 years.

During the third in-person research examination of these cohorts
(April 2016-March 2019), participants were asked to wear an
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Actical accelerometer for 8 consecutive days on the hip.
Beginning in November 2016, as part of the electronic FHS
(eFHS) ancillary study [18], participants were also asked to
wear an Apple Watch (Series 0) on their wrist for up to 1 year
if they owned an iPhone with a compatible iOS (version 9 or
higher). Of the 3486 FHS participants examined at the Research
Center for exam 3, from April 2016 to March 2019, a total of
2898 (83%) agreed to take the Actical monitor, of which n=2423
(92% of those who took the device) had “valid” steps data,
meaning they wore the monitor for at least 3 days, for at least
10 hours per day (Figure 1).

In total, 1061 eFHS enrollees (since November 2016) agreed
to take the Apple Watch or use their own, of which 959 (90%
of those who agreed to use an Apple Watch) wore the device
for at least 3 days for at least 10 hours per day during the
follow-up period. A total of 834 participants had at least 3 days
of “valid” data from both devices (Actical and Apple Watch).
Of those, 523 participants had at least 10 hours of wear time on
both devices on the same day, providing a total of 3223
person-days for our primary study sample (sample 1).

Figure 1. Participant flow diagram for the analysis of agreement between Apple Watch and Actical step counts. eFHS: electronic Framingham Heart
Study; EST: Eastern Standard Time; FHS: Framingham Heart Study; Gen: generation; NOS: New Offspring Spouse. *Enrollment in eFHS starting in
November 2016 was necessary because this was the first date Apple Watches were given out at the FHS Research Center. Participants were able to
enroll in eFHS prior to this, but they were given an Apple Watch to use later (starting in November), so their Apple Watch use would not align with
the Actical monitor wearing dates.

Ethical Considerations
All participants provided written informed consent and the
institutional review board at Boston University Medical Center
approved the study protocols (H-32132).

Actical Physical Activity
During the 8-day wear period, participants were asked to remove
the Actical accelerometer (Philips Respironics, model numbers
198-0302-xx, Respironics Co Inc) each night for sleep and when
bathing or swimming. Actical data were recorded in 30-second
epochs and expressed as counts (or steps) per 30 seconds.
Actical step counting has been validated against hand counting
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in a laboratory setting [19,20]. For sample 1, data were
processed using a SAS program (SAS Institute) developed by
Colley et al [21], and modified with input from collaborators
[22], including nonwear time removal using the Choi algorithm
[23], as explained in detail in Methods in Multimedia Appendix
1 [23]. After processing, there remained 18 hours of possible
wear time per day. A valid day was defined as ≥10 hours of
wear time, with ≥3 days required for inclusion in the main
analysis [24].

Apple Watch Series 0 Physical Activity
As part of the eFHS protocol, participants were asked to wear
the smartwatch daily and were sent home with instructions on
proper smartwatch use with advice to remove the smartwatch
for charging every night. We also set up permissions for the
Apple Watch app to access health information from other apps
on the smartphone (ie, steps, heart rate, blood pressure, and
weight) but we did not enter participant-specific data during
Apple Watch setup. In contrast to data collected from the
Actical, which had both counts and steps per 30-second interval,
we were only able to collect Apple Watch data at the granularity
of the number of steps per hour. For the Apple Watch, 1 wear
hour was defined as an hour with at least 2 heart rates or at least
30 steps accumulated [25]. Unlike for Actical, there was no
maximum number of wear hours chosen for the Apple Watch.
A valid day was defined as ≥10 hours of wear time, with ≥3
days required for inclusion in the main analysis.

Covariates
The covariates that were measured during the examination when
Actical and Apple Watch devices were provided to participants
were current smoking status, self-reported health, BMI,
hypertension stage II (systolic blood pressure ≥140 mm Hg or
diastolic blood pressure ≥90 mm Hg, or use of blood pressure
medications) [26], diabetes mellitus (fasting plasma glucose
≥126 mg/dL and use of medications for diabetes mellitus), and
prevalent cardiovascular disease. Depression status was defined
as anyone with a score of 16 or greater on the Center for
Epidemiological Studies Depression (CESD) scale. The physical
activity index was a composite score constructed by weighing
self-reported time spent in physical activity intensities over a
24-hour “typical” day [27]. Mobility limitation was defined as
those self-reporting that they were unable to walk 0.5 miles
without help or that they were limited a little or a lot when
climbing several flights of stairs.

Statistical Analysis
After excluding participants who did not have at least 3 days
of valid data from both devices and then excluding dates on
which only 1 device was worn, we were left with 523
participants (3223 person-days, sample 1). We compared the
number of hours participants wore each device on average days
and average steps accumulated to determine device-specific
differences, reporting means and SDs or medians and IQRs.

To examine the agreement between devices on days when both
devices were worn for >10 hours (sample 1), we reported the
intraclass correlation (ICC) using the random-effects model in
our 2 study samples and used the Lin concordance coefficient
(accounting for repeated observations). We also used kappa

coefficients to assess concordance between the devices in
identifying participants meeting thresholds of average daily
steps (at 3000, 6000, 8000, and 10,000 steps per day).
Bland-Altman plots were also used to assess potential
non-systematic differences between devices and provide a visual
representation of these differences in steps per day and the
percent differences (100 multiplied by [Apple Watch mean
minus Actical steps] divided by mean steps). We assessed the
limits of agreement for the Bland-Altman plot using repeated
measures. Agreement of Apple Watch and Actical step counts
per day was also assessed as the percent of days in which steps
for each device fell within 15% agreement of one another. In
personal communication with physical activity research experts
(unpublished), most suggested that acceptable agreement should
be set at a 5% difference level (Tudor-Locke et al [28]), with a
few experts acknowledging that agreement within 15% may be
considered acceptable (Breteler et al [14]). Experts polled were
those who participated as an author in the meta-analysis of 15
international cohorts with accelerometer data published by
Paluch et al [11]. We chose to report the more lenient agreement
threshold in order to better detect variability in agreement among
subsamples of our population, especially after observing the
poor overall agreement within these ranges displayed in the
results.

In secondary analyses, we also examined agreement between
devices during hours when both devices were worn (sample 2)
to account for potential differences in wear periods (by device)
throughout the day. To create this sample, first, we identified
blocks of time ≥3 hours each day (midnight to midnight) during
which both devices were worn. We defined an hour of Actical
wear as any hour with >0 step count. In this study, we defined
an hour of Apple Watch wear was defined as an hour with >30
step counts or 0-30 step counts with at least 2 heart rates
recorded, but there does not seem to be an established threshold
used in this research field. We excluded hours for which step
counts were missing (shown as NA in Figure S1 in Multimedia
Appendix 1). These definitions differed because of different
device-wearing locations (hip vs wrist). When devices are worn
on the hip, they can show 0 step counts for prolonged periods
of time when a participant is wearing the device sitting, but this
is less likely to occur with a wrist-worn device. A total of 30
participants had <3 hours of overlapping wear time and were
excluded (Figure 1). These 30 participants had >10 hours of
Apple Watch wear time on days when the Actical was worn for
>10 hours, but the Apple Watch wear hours did not have at least
3 consecutive hours. When steps were counted, each hour or 2,
they were broken up by hours with heart rate measurements,
but they were often missing step counts. An example of 24 hours
of Actical and Apple Watch data is shown in Figure S1 in
Multimedia Appendix 1. We provide further interpretation of
these “interruptions” in wear time in the discussion section. Our
next step was to remove the first and last hour of each ≥3-hour
block because we could not determine whether they were full
or partial hours. The remaining hours in that block were each
used as separate data points, to provide us with steps
accumulated by the 2 devices for every hour that both devices
were worn. As Apple Watch (but not Actical), changes time
stamps during the collection period to be consistent as people
move across different time zones, we additionally excluded
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participants residing outside of the Eastern Standard Time Zone
(n=36), which may have resulted in discordant hours being
counted by each device. One extreme outlier (1 person-hour)
was also removed (see Figure S2 in Multimedia Appendix 1),
which did not affect results (data not shown). We repeated the
analysis from sample 1.

Next, for each sample, we tested for interactions by age, sex,
height, and BMI in the linear regression analysis to assess
whether these factors influenced agreement between the Apple
Watch and Actical device measures of total daily steps. Finally,
we performed sensitivity analyses, repeating our agreement
analysis in subsamples excluding participants with high or low
step counts. All statistical analyses were performed with R
(version 4.1.3; R Core Team), including ggplot2 (for plots), irr
(for ICC), epiR (for Lin concordance correlation), and psych
(for kappa coefficients) packages.

Results

Overview
Compared to the total FHS Gen 3, NOS, and Omni 2 cohort,
participants who returned valid (ie, sufficient) data from the 2
wearable devices were on average younger, healthier (less
smoking, diabetes, hypertension, cardiovascular disease, and
depression), and were more likely to have completed college
or received a graduate degree (Table 1). The average wear time
for the Apple Watch was more than an hour longer each day
than for the Actical (15.6 vs 14.4 hours; Table 1), which may
be partially due to the removal of 6 hours of each 24 hours and
other Actical data processing, as described in Methods in
Multimedia Appendix 1.
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Table 1. Characteristics for all FHSa Genb 3 participants who attended examination 3, compared to those with valid Actical and Apple Watch data on
the same date.

FHS Gen 3 with valid Actical +Apple Watch data
on the same date (sample 1, n=523)

FHS Gen 3
(n=3521)

51.7 (8.9)54.5 (9.4)Age (years), mean (SD)

298 (57.0)1896 (53.9)Women, n (%)

Race and ethnicity, n (%)

478 (91.4)3233 (91.8)Non-Hispanic White

12 (2.3)59 (1.7)Non-Hispanic Black

14 (2.7)106 (3.0)Hispanic or Latino

9 (1.7)71 (2.0)Asian

1 (0.2)1 (0.03)American Indian

0 (0)2 (0.06)Pacific Islander

8 (1.5)41 (1.2)More than 1 race

1 (0.2)8 (0.2)Unknown

28.2 (5.7)28.6 (6.2)BMI (kg/m2), mean (SD)

66.8 (3.6)66.6 (3.7)Height (inches), mean (SD)

85 (16.3)703 (20)Mobility limitation, n (%)

27 (5.2)234 (6.7)Smoking, n (%)

Education, n (%)

3 (0.6)48 (1.4)Less than HSc

43 (8.2)470 (13.5)Completed HS

114 (21.8)489 (14)Some college

214 (41.0)1222 (35.0)Bachelor’s degree

148 (28.4)843 (24.1)Graduate or professional degree

397 (76.4)2454 (70.5)Married, living as married, living with partner, n (%)

381 (73.1)2277 (65.4)Employed full-time, n (%)

128 (24.5)750 (21.4)Self-reported health (excellent), n (%)

26 (5.0)310 (8.8)Diabetes mellitus, n (%)

112 (21.4)1095 (31.1)Hypertension stage II, n (%)

18 (3.4)164 (4.7)Cardiovascular disease, n (%)

55 (10.5)449 (12.8)Depression (CESDd >16), n (%)

33.2 (4.7)33.9 (5.7)Physical activity index (score), mean (SD)

7064 (4638-10,529)N/AeActical steps, median (IQR)

7060 (4450-10,348)N/AApple Watch steps, median (IQR)

14.4 (1.8)N/AActical wear time (hours), mean (SD)

15.6 (2.6)N/AApple Watch wear time (hours), mean (SD)

aFHS: Framingham Heart Study.
bGen: generation.
cHS: high school.
dCESD: Center for Epidemiological Studies Depression.
eN/A: not applicable.
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Primary Analysis (Sample 1, n=523): Step Agreement
Per Day of Device Wear
We observed a modest correlation (ICC 0.56, 95% CI 0.54-0.59;
Table 2), but poor agreement (29.7%, n=957 of days having
steps counts with ≤15% difference) between devices. Lin
concordance coefficient, accounting for repeated observations,
produced the same coefficients as traditional ICC for all results.
The 2 devices demonstrated moderate agreement for
distinguishing between participants meeting versus not meeting
step per day thresholds by their average daily steps (kappa
coefficient=~0.5; Table 3). The Apple Watch and Actical
devices were concordant 74.8% (n=391)-84.5% (n=442) of the
time, depending on the threshold (3000, 6000, 8000, and 10,000
steps per day). This reliability for distinguishing between
thresholds did not change greatly if we used average daily steps
(as in Table 3) or steps per person-day (as in Table S1 in
Multimedia Appendix 1), but improved slightly to 77.2%
(n=889) to 85.3% (n=982) if we excluded person-days in which
wear time was >1 hour different between.

On average, we observed more steps per day counted by the
Actical device, with a mean difference of 499 more steps per
day counter compared to the Apple Watch (Figure 2, Table 2).
Limits of agreement were –9543, 8544 steps per day, meaning

that differences in step counting between devices are expected
to be roughly ±9000 steps in a given day of device wear. The
differences in step counting between devices tended to increase
with higher average steps counted, but the percent differences
did not (average limits of agreement were –134.6% to 118.2%
difference between step counts). There also did not appear to
be a major under- or overestimation of steps by 1 device
compared to the other. We observed an interaction (Table S2
in Multimedia Appendix 1; P<.001) between wear time and
device type in their association with daily step count.

Each point represents data from 1 participant on a single date
(1 person-day). In the scatterplot, dashed lines are set at 1000
and 30,000 step thresholds. Days on which participants
accumulated 1000-30,000 steps are dark green and days outside
that threshold are presented in light green. Sections separated
by the dashed lines include the following number of person-days
divided by participants: A=17/5, B=205/68, C=2963/512, D=3/2,
E=4/4, and F=31/29. The Bland-Altman plots on the right show
the mean difference or mean % difference (red dashed line) and
the limits of agreement 95% CI (blue dashed lines). The mean
% difference was calculated as 100 multiplied by (Apple Watch
steps minus Actical steps) divided by (average Apple Watch
and Actical steps).
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Table 2. Agreement between steps accumulated on Actical versus Apple Watch device by participants wearing both devices on the same datea.

Percent of Apple Watch
days with a step count
within 15% agreement
compared to Actical, n
(%)

Mean % differenced

(Bland-Altman lim-
its of agreement)

Mean differencec

(Bland-Altman lim-
its of agreement)

Lin concor-
dance correla-
tion, r (95% CI)

ICCb

(95%
CI)

Adjusted linear
regression, β
(95% CI)

Sample and sample descrip-
tion

957 (29.7)–8.2 (–134.6 to
118.2)

–499 (–9543 to
8544)

0.56 (0.54-0.58)0.56
(0.54-
0.59)

0.67 (0.65-0.70)Sample 1 (n=523 participants;
n=3223 person-days): in-
cludes all days when both de-
vices were worn for >10
hours

5115 (27.3)16.6 (–98.0 to 131.3)20 (–844 to 884)0.86 (0.85-0.86)0.86
(0.85-
0.86)

0.97 (0.96-0.97)Sample 2 (n=456 partici-
pants; n=1986 person-days;
n=18,760 person-hours):
only includes blocks of
hours during which both

devices were worne

1397 (25.9)18.2 (–95.5 to 131.9)33 (–844 to 909)0.85 (0.84-0.85)0.85
(0.84-
0.86)

0.94 (0.92-0.95)Sample 2A (n=151 partic-
ipants; n=5397 person-
hours): with obesity

709 (23.9)29.8 (–83.8 to 143.5)98 (–953 to 1148)0.86 (0.85-0.87)0.86
(0.83-
0.88)

0.86 (0.84-0.88)Sample 2B (n=79 partici-
pants; n=2967 person-
hours): with mobility
limits

3275 (28.0)14.4 (–101.4 to
130.3)

3 (–1089 to 1096)0.85 (0.85-0.86)0.85
(0.85-
0.86)

0.98 (0.97-0.99)Sample 2C (n=266 partic-
ipants; n=11699 person-
hours): without obesity
or mobility limitations

aThe adjusted linear regression model includes age, sex, cohort type, BMI, height, (and the difference in wear time for sample 1).
bICC: intraclass correlation.
cMean difference was Apple Watch steps minus Actical steps
dMean % difference was 100 multiplied by (Apple Watch steps minus Actical steps) divided by (average Apple Watch and Actical steps).
eSample 2: after removing hours when both devices were not being worn, we removed the first and last hours of remaining blocks of hours. We
additionally excluded participants who lived outside Eastern Standard Time Zone and removed 1 data point that was an extreme outlier (Figure S1 in
Multimedia Appendix 1). We used each remaining hour as a separate data point.

Table 3. Agreement of Actical and Apple Watch devices to identify participants meeting average daily step thresholds (sample 1, n=523 participants;
3223 person-days).

Kappa coefficients (95% CI) for “meets the PA
threshold” as measured by the 2 devices

Percent concordance for “meets the PAa threshold”
as measured by the 2 devices, n (%)Step per day threshold

0.12 (0.01-0.22)442 (84.5)3000 steps per day

0.46 (0.38-0.54)396 (75.7)6000 steps per day

0.49 (0.41-0.56)391 (74.8)8000 steps per day

0.49 (0.40-0.58)426 (81.5)10,000 steps per day

aPA: physical activity.
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Figure 2. Scatterplot and Bland-Altman plots (difference and % difference) of Apple Watch steps by Actical steps accumulated on the same date
(sample 1, all data, 3223 person-days, 523 participants).

Secondary Analysis (Sample 2, n=456): Step Agreement
Per Hour of Device Wear
We conducted secondary analyses to explore the agreement
between devices, with differences in wear time minimized. We
assessed agreement between devices for each hour during which
both devices were worn (456 participants, 1986 person-days,
18,760 person-hours, Table 2 and Figure 3). Among hours when
both devices were worn, the correlation of absolute step counts
between devices was much stronger (ICC 0.86, 95% CI
0.85-0.86, Table 2) than it was for sample 1, but the agreement
of steps counted per hour was still poor (only 27.3%, n=5115
of hours having step counts with ≤15% difference) between
devices. The mean difference in step count between devices
was only 20 steps per hour, but limits of agreement were large
(–844, 884 steps per hour) and a 16.6% difference (–98, 131.3%
limits of agreement) between Apple Watch and Actical step
counting on hours when both devices were worn.

Each point represents data from a single hour (1 person-hour).
The Bland-Altman plots on the right show the mean difference
or mean % difference (red dashed line) and the limits of
agreement 95% CI (blue dashed lines). The mean % difference
was calculated as 100 multiplied by (Apple Watch steps minus
Actical steps) divided by (average Apple Watch and Actical
steps).

Next, we assessed potential interactions (in sample 2, Table S2
in Multimedia Appendix 1), observing interactions by obesity
status and mobility status (P<.001). We observed that
correlations were similar regardless of these factors (samples
2A-2C, Table 2), but the agreement of step counts with ≤15%
difference between devices was slightly worse for participants
with obesity (n=1397, 25.9% agreement) or self-reported
mobility limitations (n=709, 23.9% agreement), compared to
those with neither (n=3275, 28.0% agreement).
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Figure 3. Scatterplot and Bland-Altman plot (difference and % difference) of Apple Watch steps by Actical steps accumulated during hours when both
devices were worn (sample 2, n=456 participants; n=1986 person-days; n=18,760 person-hours).

Sensitivity Analyses: Exploration of Days With Low
Step Counts and Large Differences in Step Count
Despite a strong correlation in step counts, there was substantial
variability between devices in terms of device agreement, as
demonstrated in the total sample 1, Figure 2. We observed 17
person-days with >30,000 steps per day by Actical but <20,000
steps per day by Apple Watch, representing days from 5
participants (section A in Figure 2, Figure S3 and Table S3 in
Multimedia Appendix 1). In sensitivity analyses excluding data
from these 5 participants, the ICC improved slightly for samples
1 and 2, but the percent of days or hours during which the
devices agreed within 15% only improved by <1% (Table S4
in Multimedia Appendix 1). Very few days (~10%) met the
stricter 5% threshold for agreement between devices and
agreement was further reduced when only observing days when
the Apple Watch was worn 5-10 hours and Actical was worn
>10 hours.

Other substantial variability we observed between device
counting by Actical compared to Apple Watch was observed
in a large number of days during which 1 device counted <1000
steps and the other device counted >1000 steps (sections B and
F in Figure 2). In Figures S4 and S5 in Multimedia Appendix
1, we show scatterplots for hours when both devices were worn.
During most hours represented in sections B and F in Figure 2,

the devices were either being worn at different times of the day
or there were interruptions in step counting. Furthermore, when
observing hours from “other days” of those participants who
had days that fell into sections B or F (Figures S4 and S5 in
Multimedia Appendix 1), the pattern appears similar to the
scatterplot for the overall sample 2 (Figure 3). Exclusion of
participants who contributed days that fell into sections A, B,
D, E, or F in Figure 2 (those with step counts <1000 or >30,000
by either device) did not improve agreement results greatly
either, improving the percent of days on which the devices
agreed within 15% only up to 32.2% of all days (Table S4 in
Multimedia Appendix 1).

Discussion

Principal Findings
Consumer accelerometer devices are being used by millions of
people to track their physical activity levels and progress toward
public health recommendations or personal goals. These devices
have been validated in laboratory settings against research-grade
devices, but few studies have explored how consumer and
research-grade accelerometer step counting compares when
participants are living out in the community.
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In this study, we observed poor overall agreement between steps
counted by Actical and Apple Watch (Series 0) devices. Larger
between-device differences were seen when the step count was
higher, but the percent difference did not increase. However,
our results suggest that we can expect the 2 devices to classify
individuals into the same step thresholds about 75%-85% of
the time. Results such as these may be important to consider
when translating future step guidelines to the public using
consumer brand devices. The limitations in agreement among
accelerometer devices may be less important when they are
used by individuals to determine the achievement of a
recommended number of steps or for the purposes of tracking
their step count over time.

The agreement we observed in this study in a free-living
environment was worse than previous laboratory-based studies
of consumer-grade devices comparing them to hand-counted
steps or research accelerometer devices [13,15]. However, 1
study observed that even when testing the consistency of step
counting in the same device, wearing the device at different
locations (wrist vs hip) can result in inconsistencies in device
step counting [29]. The difference in device location alone may
have contributed greatly to the poor agreement of step counting
between devices in our study.

Similar to our design, 1 study by Breteler et al [14], examined
Apple Watch step counting in a free-living setting (wrist-worn)
in comparison to other accelerometers worn on the hip. In this
study, 30 healthy participants (mean age 40 years) wearing
multiple devices over a 3-day period observed a median absolute
relative difference of 7.7% comparing the Apple Watch to the
ActiGraph (similar to our mean relative difference results
comparing Apple Watch to Actical). However, they did not
report the limits of agreement for this relative difference. Other
devices they tested had a median absolute relative difference
>15% [14]. A low mean or median relative difference indicates
low bias (lack of systematic over- or undercounting by 1 device),
but only limits of agreement can inform about the precision of
agreement. Breteler et al [14] reported the mean difference in
step counting was 968 more steps per day counted by the Apple
Watch with limits of agreement ±6000 steps per day (compared
to ActiGraph), which is almost as high as the limits of the
agreement we observed in our study sample 1 (compared to
Actical). Investigators in that study observed that Apple Watch
devices added steps overnight when other devices were not
counting any steps, which could have been due to the delayed
transmission of step count data. We did not observe the same
phenomenon in our data, which may be due to us using an older
Apple Watch device model. In our study, we observed that some
participants had long periods of consecutive hours with heart
rate data, but 0 step counts (meaning the Apple Watch device
was being worn) and had long periods of consecutive Actical
step data >0 during this time. We suspect that the Apple Watch
step data were either not being recorded or transmitted during
these time periods or were delayed by many hours. In order for
Apple Watch Series 0 data to be recorded or transmitted, the
participant’s smartphone needed to be charged, connected to
the internet, and unlocked. This finding has important
implications for future research teams when analyzing data from
other mobile health devices.

Although we observed poor overall agreement (due to wide
limits of agreement) in our study and in Breteler et al [14] we
also reported low bias due to low mean difference and percent
difference. However, individual differences in gait, which may
be in part due to older age, mobility limitations, or body stature
(influenced by sex, height, and body composition), might
introduce systematic bias into the measurement of steps in the
community and should be considered in future studies [30-32].
Accelerometers have different sensitivities to slow gait speeds
or low-frequency movement [29], even when tested in a
laboratory in which gait differences are minimized. We observed
slightly worse agreement between devices for individuals who
were obese or self-reported mobility limitations. An individual’s
usual cadence and the amount of time they spend participating
in movement activities other than ambulation (such as household
chores or other multidirectional activities) may also influence
step detection in certain accelerometer devices [33-35].
Although individuals with mobility limitations and other
conditions that alter gait (eg, obesity) only worsened agreement
slightly, the overall influence of gait on how these devices count
steps may partially explain the poor agreement between devices.

Agreement of step-counting devices has implications for future
updates of the Physical Activity Guidelines. Advancements in
technology and the widespread availability of consumer
wearable devices make physical activity monitoring feasible in
research or clinical settings and for individuals in the
community. During the development of the 2018 Physical
Activity Guidelines, it was determined that there was insufficient
evidence to create a guideline for health promotion based on
step count [1]. However, an estimation by Tudor-Locke et al
[36] suggests that the MVPA guidelines can be met by adults
who walked a minimum of ~7000-8000 steps per day.
Furthermore, a 2022 meta-analysis of 15 observational cohort
studies (including FHS) using research-grade physical activity
monitors (eg, ActiGraph, Actical, and Activ-PAL), reported
that individuals achieving ≥8000 (vs <8000) steps per day in
middle age had the lowest risk of mortality [11]. In older adults,
a lower threshold of ≥6000 steps per day was associated with
almost 50% lower risk of death compared to older adults who
walked less. The study, which was the largest meta-analysis of
its kind, may serve as evidence to support future guidelines as
to the number of steps adults should walk each day.

Although we now have some evidence that achieving step
thresholds from 6000 to 8000 steps per day is associated with
lower mortality [11], creating step guidelines is complicated by
the observation that individuals in the community do not use
the same research-grade devices as used in many prior studies.
Instead, the public uses popular consumer activity trackers, such
as Fitbit (Google), Apple Watch, and Garmin among other
devices. Although these consumer devices have been well
validated for the measurement of steps in laboratory settings
[13-15], it has not been clear whether the steps counted by these
consumer devices are comparable to steps counted by
research-grade devices in free-living settings [37].
Unfortunately, it does not appear to be a simple fix to “convert”
steps measured by a research device to those measured by a
consumer device, based on the wide limits of agreement. Despite
the poor overall agreement of step counting between devices,
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favorably, the devices had a substantially better agreement in
identifying who meets thresholds between 6000 and 10,000
steps per day, with an agreement for ~75%-82% of individuals.
These thresholds may serve as targets for future public health
recommendations.

Strengths and Limitations
Strengths of our investigation include the large sample size and
the study being conducted in a community setting, which
increases the generalizability of the findings. However, the
homogeneous nature of our study cohort, who were mostly from
1 geographic location, were generally healthier and more highly
educated than the general US population and were mostly of
European ancestry, may limit generalizability to more diverse
populations. Another strength was our use of different
person-day samples to examine different questions such as
comparing step counts between devices when worn for a
comparable number of hours and observing the influence of
different wearing behaviors on step count agreement. The lack
of control of wear time and differences in wear time observed
between the devices can be viewed as both a weakness (because
wear time affects step accumulation) and strength (in that it
demonstrates the differences that may be inherent in real-world
device use). Similarly, as noted earlier, another difference
between these devices was their placement on the wrist versus
the hip, which may have also contributed to the variation.
However, the device placement locations add another real-world
element to our study design.

Wear time per day was longer, on average, for the Apple Watch,
which may, in part, be due to wearing during sleeping hours.
In our analysis, sleeping hours were removed from the Actical
total wear time, but not from the Apple Watch. We asked
participants to remove the Actical device when they bathed,
swam, or slept. These instructions were not given to participants
for the Apple Watch, although participants may have chosen to
do so. The Apple Watch is waterproof, but the battery does not
typically last much longer than 24 hours, so most participants
likely took off the Apple Watch to charge at night. If the Apple
Watch battery was not charged, a participant might not have
worn the device and may have missed opportunities to record
steps walked. The Actical battery did not need to be charged
during the week that participants wore the device, which may
have affected when it was worn compared to the Apple Watch.
On the other hand, the Actical device was worn on a belt around
the waist or hip, compared to the Apple Watch, worn on the
wrist, either of which can be cumbersome, causing some
participants to remove the device or wear it improperly (eg,
loosely). It is unclear which placement site is preferred by the
research community [38]. Although we sent participants home
with instructions for when to take on and off the devices and
the location where they should be worn, we did not emphasize
that they should ensure a snug fit. Another possibility is that
there could be calibration issues with some of the devices
(Actical and Apple Watch could have drifted from factory
calibration). A comparison of agreement results between
samples 1 and 2 makes it clear that it is unlikely that the poor
agreement was explained by participants wearing the devices
during different times of day or activities. But it is also evident
that some of the differences in step counting by these devices

may have been due to Bluetooth connectivity errors in the
recording or transmission of step data, which led to very low
steps counted by the Apple Watch.

Features of physical activity monitors are also important
considerations. The Apple Watch device used in this
investigation has many applications, including allowing
participants to see step counts as they were accumulated (there
was no visual display on the Actical device) and other
functionalities. The availability of these features may also
influence when the device is worn and how many steps are
taken. We did observe that of the participants who agreed to
either device, a roughly equal proportion of participants (~90%)
wore those devices for ≥3 days for at least 10 hours per day.
However, studies have shown that features such as a display
showing step progress and encouragement (ie, nudges) to stand
or move may increase both wearing and stepping behavior,
especially over the short term, which may influence results from
studies using consumer devices that tend to have these features.

Our study provided us with many lessons that we hope to
communicate with investigators using accelerometers. An
unexpected finding was that the agreement between these
physical activity monitors only improved slightly after we
limited differences in wear time between the devices. When
experts develop public health guidelines for the number of steps
to walk each day, they must consider that devices do not all
record steps equivalently and that the type of device, wearing
location, or mode (ie, watch, belt, or smartphone app), battery
life, Bluetooth connectivity issues, other features of the device,
and gait differences of participants may all influence when the
device is worn and how many steps are counted. Moreover, we
did not enter participant-specific data (ie, height, weight, age,
and sex) when setting up the Apple Watch or Actical devices.
However, the Apple Watch may have accessed this type of data
from other health-related apps on a participant’s smartphone.
It is also important to note that we studied older versions of the
devices, both of which are no longer supported by their
manufacturers. Hopefully, newer device models may have
overcome some of the limitations of the accelerometers we
studied; we used Apple Watch Series 0 during data collection,
but they have already transitioned to Series 8. In future research,
it may also be important to emphasize proper wear of devices
and input relevant participant-specific information during device
setup for improved precision.

Conclusions
Our investigation suggests that overall agreement between steps
counted by the Actical and Apple Watch Series 0 devices was
poor, but agreement between devices was much stronger for
distinguishing who meets certain step thresholds. Many large
cohort studies have used the Actical device and other research
and consumer devices to observe thresholds of physical activity
(steps per day) that are associated with health outcomes
[11,39-41]. Lessons learned from our investigation should be
considered when translating thresholds of steps counted using
the Actical to guidelines for members of the community using
consumer devices, including the Apple Watch. Future studies
should explore the agreement among other devices in the
community setting and explore the role of interruptions in
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connectivity, calibration, and factors affecting gait, such as age,
sex, frailty or mobility status, BMI, and height on the accuracy
of step count and agreement among devices. However, another
important future direction should be the increased use of
consumer accelerometer devices in research in order to replicate
recent meta-analyses reporting the higher risk of mortality
among physically inactive individuals (measured using
research-grade devices) [11,42]. Studies such as All of Us and
the Risk Underlying Rural Areas Longitudinal (RURAL) Heart
and Lung Study that use Fitbit devices, for example, will be

extremely useful in the development and translation of future
physical activity step guidelines [41].

The good news is that the impact of these challenges in
measuring steps may be minimized when accelerometers are
used by individuals for the purposes of tracking the changes in
their physical activity over time, which eliminates the impact
of gait differences (unless gait changes), factory calibration
issues (if the same device is used), and presumably connectivity
issues would remain consistent, limiting their impact too.

 

Acknowledgments
This study was supported by an award from the Robert Wood Johnson Foundation (74624) and grants from the National Heart
Lung and Blood Institute (R01HL141434 and R01HL131029), National Institute on Aging (R01AG047645), and American Heart
Association (15GPSGC24800006). The Framingham Heart Study was supported by a contract from the National Heart Lung and
Blood Institute (principal investigator RSV 75N92019D00031); and investigator time from the grants (R01HL126911,
R01HL092577, R01AG066010, and U54HL120163; EJB), (R01HL155343, R01HL141434, R33HL158541, U54HL143541,
U54HL143541-05S1, and UG3NS135168; DDM), American Heart Association (18SFRN34110082; EJB). RSV was supported
in part by the Evans Medical Foundation and the Jay and Louis Coffman Endowment from the Department of Medicine, Boston
University Chobanian and Avedisian School of Medicine. The Apple Watches were provided to Boston University by Apple Inc
at no cost to the study. The results of the study are presented clearly, honestly, and without fabrication, falsification, or inappropriate
data manipulation.

Data Availability
The data sets generated and analyzed during this study are available from the corresponding author on reasonable request. The
Framingham Heart Study makes data available through the online repositories BioLINCC and dbGap.

Authors' Contributions
NLS, YZ, JMM, CL, and LT conceptualized the study design. YZ and AC contributed to statistical analysis. NLS drafted the
paper. All authors interpreted results, edited the paper, and agreed to the final version.

Conflicts of Interest
Apple was not involved in the study design, analysis, interpretation, or reporting of study results. DDM has received research
support from Fitbit, Apple Inc, Bristol–Myers Squibb, Boehringer–Ingelheim, Pfizer, Flexcon, Samsung, Philips Healthcare, and
Biotronik, and he has received consultancy fees from Heart Rhythm Society, Bristol–Myers Squibb, Pfizer, Fitbit, Flexcon,
Boston Biomedical Associates, VentureWell, Avania, NAMSA and Rose Consulting. DDM also declares financial support for
serving on the Steering Committee for the GUARD-AF study (NCT04126486) and the advisory committee for the Fitbit Heart
study (NCT04176926). VK is a principal, and CN is an employee of CareEvolution, Inc, a health care technology company. NLS
received funding from Novo Nordisk for an investigator-initiated research grant unrelated to this paper. JMM received funding
as a guest lecturer for Merck unrelated to this work. The remaining authors declare no conflicts of interest.

Multimedia Appendix 1
Additional methods and results.
[DOCX File , 206 KB - biomedeng_v9i1e54631_app1.docx ]

References
1. Physical Activity Guidelines Advisory Committee. 2018 Physical Activity Guidelines Advisory Committee Scientific

Report. Washington, DC: U.S. Department of Health and Human Services; 2018.
2. Tucker JM, Welk GJ, Beyler NK. Physical activity in U.S.: adults compliance with the physical activity guidelines for

Americans. Am J Prev Med 2011;40(4):454-461. [doi: 10.1016/j.amepre.2010.12.016] [Medline: 21406280]
3. Zenko Z, Willis EA, White DA. Proportion of adults meeting the 2018 physical activity guidelines for Americans according

to accelerometers. Front Public Health 2019;7:135 [FREE Full text] [doi: 10.3389/fpubh.2019.00135] [Medline: 31231627]
4. Lorbergs AL, Prorok JC, Holroyd-Leduc J, Bouchard DR, Giguere A, Gramlich L, et al. Nutrition and physical activity

clinical practice guidelines for older adults living with frailty. J Frailty Aging 2022;11(1):3-11. [doi: 10.14283/jfa.2021.51]
[Medline: 35122084]

JMIR Biomed Eng 2024 | vol. 9 | e54631 | p.111https://biomedeng.jmir.org/2024/1/e54631
(page number not for citation purposes)

Spartano et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=biomedeng_v9i1e54631_app1.docx&filename=1abb371cfa4921c79161426ef4cf29c9.docx
https://jmir.org/api/download?alt_name=biomedeng_v9i1e54631_app1.docx&filename=1abb371cfa4921c79161426ef4cf29c9.docx
http://dx.doi.org/10.1016/j.amepre.2010.12.016
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21406280&dopt=Abstract
https://europepmc.org/abstract/MED/31231627
http://dx.doi.org/10.3389/fpubh.2019.00135
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31231627&dopt=Abstract
http://dx.doi.org/10.14283/jfa.2021.51
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35122084&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


5. Fanning J, Nicklas BJ, Rejeski WJ. Intervening on physical activity and sedentary behavior in older adults. Exp Gerontol
2022;157:111634. [doi: 10.1016/j.exger.2021.111634] [Medline: 34826574]

6. Office of the Surgeon G. The Surgeon General's Call to Action to Promote Walking and Walkable Communities. Washington
DC: US Department of Health and Human Services; 2015.

7. Fox S, Duggan M. Tracking for health. Pew Research Center. 2013. URL: http://www.pewinternet.org/2013/01/28/
tracking-for-health/ [accessed 2023-06-27]

8. Abril EP. Tracking myself: assessing the contribution of mobile technologies for self-trackers of weight, diet, or exercise.
J Health Commun 2016;21(6):638-646. [doi: 10.1080/10810730.2016.1153756] [Medline: 27168426]

9. Connected consumer survey 2023. Deloitte Insights. 2022. URL: https://www2.deloitte.com/us/en/insights/industry/
telecommunications/connectivity-mobile-trends-survey.html [accessed 2023-06-27]

10. Bassett DR, Toth LP, LaMunion SR, Crouter SE. Step counting: a review of measurement considerations and health-related
applications. Sports Med 2017;47(7):1303-1315 [FREE Full text] [doi: 10.1007/s40279-016-0663-1] [Medline: 28005190]

11. Paluch AE, Bajpai S, Bassett DR, Carnethon MR, Ekelund U, Evenson KR, Steps for Health Collaborative. Daily steps
and all-cause mortality: a meta-analysis of 15 international cohorts. Lancet Public Health 2022;7(3):e219-e228 [FREE Full
text] [doi: 10.1016/S2468-2667(21)00302-9] [Medline: 35247352]

12. Hall KS, Hyde ET, Bassett DR, Carlson SA, Carnethon MR, Ekelund U, et al. Systematic review of the prospective
association of daily step counts with risk of mortality, cardiovascular disease, and dysglycemia. Int J Behav Nutr Phys Act
2020;17(1):78 [FREE Full text] [doi: 10.1186/s12966-020-00978-9] [Medline: 32563261]

13. El-Amrawy F, Nounou MI. Are currently available wearable devices for activity tracking and heart rate monitoring accurate,
precise, and medically beneficial? Healthc Inform Res 2015;21(4):315-320 [FREE Full text] [doi: 10.4258/hir.2015.21.4.315]
[Medline: 26618039]

14. Breteler MJ, Janssen JH, Spiering W, Kalkman CJ, van Solinge WW, Dohmen DA. Measuring free-living physical activity
with three commercially available activity monitors for telemonitoring purposes: validation study. JMIR Form Res
2019;3(2):e11489 [FREE Full text] [doi: 10.2196/11489] [Medline: 31017587]

15. Xie J, Wen D, Liang L, Jia Y, Gao L, Lei J. Evaluating the validity of current mainstream wearable devices in fitness
tracking under various physical activities: comparative study. JMIR Mhealth Uhealth 2018;6(4):e94 [FREE Full text] [doi:
10.2196/mhealth.9754] [Medline: 29650506]

16. Splansky GL, Corey D, Yang Q, Atwood LD, Cupples LA, Benjamin EJ, et al. The third generation cohort of the National
Heart, Lung, and Blood Institute's Framingham Heart Study: design, recruitment, and initial examination. Am J Epidemiol
2007;165(11):1328-1335. [doi: 10.1093/aje/kwm021] [Medline: 17372189]

17. Dawber TR, Kannel WB. The Framingham study an epidemiological approach to coronary heart disease. Circulation
1966;34(4):553-555. [doi: 10.1161/01.cir.34.4.553] [Medline: 5921755]

18. McManus DD, Trinquart L, Benjamin EJ, Manders ES, Fusco K, Jung LS, et al. Design and preliminary findings from a
new electronic cohort embedded in the Framingham Heart Study. J Med Internet Res 2019;21(3):e12143 [FREE Full text]
[doi: 10.2196/12143] [Medline: 30821691]

19. Esliger DW, Probert A, Connor Gorber S, Bryan S, Laviolette M, Tremblay MS. Validity of the actical accelerometer
step-count function. Med Sci Sports Exerc 2007;39(7):1200-1204. [doi: 10.1249/mss.0b013e3804ec4e9] [Medline: 17596790]

20. Johnson M, Meltz K, Hart K, Schmudlach M, Clarkson L, Borman K. Validity of the actical activity monitor for assessing
steps and energy expenditure during walking. J Sports Sci 2015;33(8):769-776. [doi: 10.1080/02640414.2014.964747]
[Medline: 25356920]

21. Colley RC, Tremblay MS. Moderate and vigorous physical activity intensity cut-points for the actical accelerometer. J
Sports Sci 2011;29(8):783-789. [doi: 10.1080/02640414.2011.557744] [Medline: 21424979]

22. Evenson KR, Sotres-Alvarez D, Deng YU, Marshall SJ, Isasi CR, Esliger DW, et al. Accelerometer adherence and
performance in a cohort study of US Hispanic adults. Med Sci Sports Exerc 2015;47(4):725-734 [FREE Full text] [doi:
10.1249/MSS.0000000000000478] [Medline: 25137369]

23. Choi L, Liu Z, Matthews CE, Buchowski MS. Validation of accelerometer wear and nonwear time classification algorithm.
Med Sci Sports Exerc 2011;43(2):357-364 [FREE Full text] [doi: 10.1249/MSS.0b013e3181ed61a3] [Medline: 20581716]

24. Hart TL, Swartz AM, Cashin SE, Strath SJ. How many days of monitoring predict physical activity and sedentary behaviour
in older adults? Int J Behav Nutr Phys Act 2011;8:62 [FREE Full text] [doi: 10.1186/1479-5868-8-62] [Medline: 21679426]

25. Lin H, Sardana M, Zhang Y, Liu C, Trinquart L, Benjamin EJ, et al. Association of habitual physical activity with
cardiovascular disease risk. Circ Res 2020;127(10):1253-1260 [FREE Full text] [doi: 10.1161/CIRCRESAHA.120.317578]
[Medline: 32842915]

26. Whelton PK, Carey R, Aronow W, Casey DJ, Collins KJ, Dennison Himmelfarb C, et al. 2017
ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation,
and management of high blood pressure in adults: executive summary: a report of the American College of
Cardiology/American Heart Association Task Force on clinical practice guidelines. Hypertension 2018;71(6):1269-1324
[FREE Full text] [doi: 10.1161/HYP.0000000000000066] [Medline: 29133354]

JMIR Biomed Eng 2024 | vol. 9 | e54631 | p.112https://biomedeng.jmir.org/2024/1/e54631
(page number not for citation purposes)

Spartano et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://dx.doi.org/10.1016/j.exger.2021.111634
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34826574&dopt=Abstract
http://www.pewinternet.org/2013/01/28/tracking-for-health/
http://www.pewinternet.org/2013/01/28/tracking-for-health/
http://dx.doi.org/10.1080/10810730.2016.1153756
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27168426&dopt=Abstract
https://www2.deloitte.com/us/en/insights/industry/telecommunications/connectivity-mobile-trends-survey.html
https://www2.deloitte.com/us/en/insights/industry/telecommunications/connectivity-mobile-trends-survey.html
https://europepmc.org/abstract/MED/28005190
http://dx.doi.org/10.1007/s40279-016-0663-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28005190&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S2468-2667(21)00302-9
https://linkinghub.elsevier.com/retrieve/pii/S2468-2667(21)00302-9
http://dx.doi.org/10.1016/S2468-2667(21)00302-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35247352&dopt=Abstract
https://ijbnpa.biomedcentral.com/articles/10.1186/s12966-020-00978-9
http://dx.doi.org/10.1186/s12966-020-00978-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32563261&dopt=Abstract
https://europepmc.org/abstract/MED/26618039
http://dx.doi.org/10.4258/hir.2015.21.4.315
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26618039&dopt=Abstract
https://formative.jmir.org/2019/2/e11489/
http://dx.doi.org/10.2196/11489
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31017587&dopt=Abstract
https://mhealth.jmir.org/2018/4/e94/
http://dx.doi.org/10.2196/mhealth.9754
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29650506&dopt=Abstract
http://dx.doi.org/10.1093/aje/kwm021
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17372189&dopt=Abstract
http://dx.doi.org/10.1161/01.cir.34.4.553
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=5921755&dopt=Abstract
https://www.jmir.org/2019/3/e12143/
http://dx.doi.org/10.2196/12143
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30821691&dopt=Abstract
http://dx.doi.org/10.1249/mss.0b013e3804ec4e9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17596790&dopt=Abstract
http://dx.doi.org/10.1080/02640414.2014.964747
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25356920&dopt=Abstract
http://dx.doi.org/10.1080/02640414.2011.557744
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21424979&dopt=Abstract
https://europepmc.org/abstract/MED/25137369
http://dx.doi.org/10.1249/MSS.0000000000000478
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25137369&dopt=Abstract
https://europepmc.org/abstract/MED/20581716
http://dx.doi.org/10.1249/MSS.0b013e3181ed61a3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20581716&dopt=Abstract
https://ijbnpa.biomedcentral.com/articles/10.1186/1479-5868-8-62
http://dx.doi.org/10.1186/1479-5868-8-62
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21679426&dopt=Abstract
https://www.ahajournals.org/doi/abs/10.1161/CIRCRESAHA.120.317578?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.1161/CIRCRESAHA.120.317578
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32842915&dopt=Abstract
https://www.ahajournals.org/doi/abs/10.1161/HYP.0000000000000066?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.1161/HYP.0000000000000066
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29133354&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


27. Kannel WB, Belanger A, D'Agostino R, Israel I. Physical activity and physical demand on the job and risk of cardiovascular
disease and death: the Framingham study. Am Heart J 1986;112(4):820-825 [FREE Full text] [doi:
10.1016/0002-8703(86)90480-1] [Medline: 3766383]

28. Tudor-Locke C, Sisson SB, Lee SM, Craig CL, Plotnikoff RC, Bauman A. Evaluation of quality of commercial pedometers.
Can J Public Health 2006;97 Suppl 1(Suppl 1):S10-15,-SS10-16 [FREE Full text] [doi: 10.1007/BF03405359] [Medline:
16676833]

29. Mora-Gonzalez J, Gould ZR, Moore CC, Aguiar EJ, Ducharme SW, Schuna JJ, et al. A catalog of validity indices for step
counting wearable technologies during treadmill walking: the CADENCE-adults study. Int J Behav Nutr Phys Act
2022;19(1):117 [FREE Full text] [doi: 10.1186/s12966-022-01350-9] [Medline: 36076265]

30. Tyo BM, Fitzhugh EC, Bassett DJ, John D, Feito Y, Thompson DL. Effects of body mass index and step rate on pedometer
error in a free-living environment. Med Sci Sports Exerc 2011;43(2):350-356. [doi: 10.1249/MSS.0b013e3181e9b133]
[Medline: 20543755]

31. Pomeroy J, Brage S, Curtis JM, Swan PD, Knowler WC, Franks PW. Between-monitor differences in step counts are related
to body size: implications for objective physical activity measurement. PLoS One 2011;6(4):e18942 [FREE Full text] [doi:
10.1371/journal.pone.0018942] [Medline: 21556140]

32. Feito Y, Bassett DR, Thompson DL, Tyo BM. Effects of body mass index on step count accuracy of physical activity
monitors. J Phys Act Health 2012;9(4):594-600. [doi: 10.1123/jpah.9.4.594] [Medline: 21946229]

33. Hickey A, John D, Sasaki JE, Mavilia M, Freedson P. Validity of activity monitor step detection is related to movement
patterns. J Phys Act Health 2016;13(2):145-153. [doi: 10.1123/jpah.2015-0203] [Medline: 26107045]

34. Dall PM, McCrorie PRW, Granat MH, Stansfield BW. Step accumulation per minute epoch is not the same as cadence for
free-living adults. Med Sci Sports Exerc 2013;45(10):1995-2001. [doi: 10.1249/MSS.0b013e3182955780] [Medline:
23568091]

35. Fokkema T, Kooiman TJM, Krijnen WP, VAN DER Schans CP, DE Groot M. Reliability and validity of ten consumer
activity trackers depend on walking speed. Med Sci Sports Exerc 2017;49(4):793-800. [doi:
10.1249/MSS.0000000000001146] [Medline: 28319983]

36. Tudor-Locke C, Craig CL, Brown WJ, Clemes SA, De Cocker K, Giles-Corti B, et al. How many steps/day are enough?
For adults. Int J Behav Nutr Phys Act 2011;8:79 [FREE Full text] [doi: 10.1186/1479-5868-8-79] [Medline: 21798015]

37. Middelweerd A, VAN DER Ploeg HP, VAN Halteren A, Twisk JWR, Brug J, Te Velde SJ. A validation study of the fitbit
one in daily life using different time intervals. Med Sci Sports Exerc 2017;49(6):1270-1279 [FREE Full text] [doi:
10.1249/MSS.0000000000001225] [Medline: 28511193]

38. Schrack JA, Cooper R, Koster A, Shiroma EJ, Murabito JM, Rejeski WJ, et al. Assessing daily physical activity in older
adults: unraveling the complexity of monitors, measures, and methods. J Gerontol A Biol Sci Med Sci 2016;71(8):1039-1048
[FREE Full text] [doi: 10.1093/gerona/glw026] [Medline: 26957472]

39. Cuthbertson CC, Moore CC, Sotres-Alvarez D, Heiss G, Isasi CR, Mossavar-Rahmani Y, et al. Associations of steps per
day and step intensity with the risk of diabetes: the hispanic community health study / study of latinos (HCHS/SOL). Int J
Behav Nutr Phys Act 2022;19(1):46 [FREE Full text] [doi: 10.1186/s12966-022-01284-2] [Medline: 35428253]

40. Spartano NL, Demissie S, Himali JJ, Dukes KA, Murabito JM, Vasan RS, et al. Accelerometer-determined physical activity
and cognitive function in middle-aged and older adults from two generations of the Framingham heart study. Alzheimers
Dement (N Y) 2019;5:618-626 [FREE Full text] [doi: 10.1016/j.trci.2019.08.007] [Medline: 31660424]

41. Master H, Annis J, Huang S, Beckman JA, Ratsimbazafy F, Marginean K, et al. Association of step counts over time with
the risk of chronic disease in the all of US research program. Nat Med 2022;28(11):2301-2308 [FREE Full text] [doi:
10.1038/s41591-022-02012-w] [Medline: 36216933]

42. Ekelund U, Tarp J, Steene-Johannessen J, Hansen BH, Jefferis B, Fagerland MW, et al. Dose-response associations between
accelerometry measured physical activity and sedentary time and all cause mortality: systematic review and harmonised
meta-analysis. BMJ 2019;366:l4570 [FREE Full text] [doi: 10.1136/bmj.l4570] [Medline: 31434697]

Abbreviations
CESD: Center for Epidemiological Studies Depression
eFHS: electronic Framingham Heart Study
FHS: Framingham Heart Study
Gen: generation
ICC: intraclass correlation
MVPA: moderate to vigorous physical activity
NOS: New Offspring Spouses
RURAL: Risk Underlying Rural Areas Longitudinal

JMIR Biomed Eng 2024 | vol. 9 | e54631 | p.113https://biomedeng.jmir.org/2024/1/e54631
(page number not for citation purposes)

Spartano et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

https://linkinghub.elsevier.com/retrieve/pii/0002-8703(86)90480-1
http://dx.doi.org/10.1016/0002-8703(86)90480-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=3766383&dopt=Abstract
https://europepmc.org/abstract/MED/16676833
http://dx.doi.org/10.1007/BF03405359
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16676833&dopt=Abstract
https://ijbnpa.biomedcentral.com/articles/10.1186/s12966-022-01350-9
http://dx.doi.org/10.1186/s12966-022-01350-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36076265&dopt=Abstract
http://dx.doi.org/10.1249/MSS.0b013e3181e9b133
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20543755&dopt=Abstract
https://dx.plos.org/10.1371/journal.pone.0018942
http://dx.doi.org/10.1371/journal.pone.0018942
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21556140&dopt=Abstract
http://dx.doi.org/10.1123/jpah.9.4.594
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21946229&dopt=Abstract
http://dx.doi.org/10.1123/jpah.2015-0203
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26107045&dopt=Abstract
http://dx.doi.org/10.1249/MSS.0b013e3182955780
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23568091&dopt=Abstract
http://dx.doi.org/10.1249/MSS.0000000000001146
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28319983&dopt=Abstract
https://ijbnpa.biomedcentral.com/articles/10.1186/1479-5868-8-79
http://dx.doi.org/10.1186/1479-5868-8-79
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21798015&dopt=Abstract
https://core.ac.uk/reader/192990870?utm_source=linkout
http://dx.doi.org/10.1249/MSS.0000000000001225
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28511193&dopt=Abstract
https://europepmc.org/abstract/MED/26957472
http://dx.doi.org/10.1093/gerona/glw026
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26957472&dopt=Abstract
https://ijbnpa.biomedcentral.com/articles/10.1186/s12966-022-01284-2
http://dx.doi.org/10.1186/s12966-022-01284-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35428253&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S2352-8737(19)30058-7
http://dx.doi.org/10.1016/j.trci.2019.08.007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31660424&dopt=Abstract
https://europepmc.org/abstract/MED/36216933
http://dx.doi.org/10.1038/s41591-022-02012-w
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36216933&dopt=Abstract
http://www.bmj.com/lookup/pmidlookup?view=long&pmid=31434697
http://dx.doi.org/10.1136/bmj.l4570
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31434697&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


Edited by T Leung; submitted 16.11.23; peer-reviewed by C Sakal, P Bergman; comments to author 12.02.24; revised version received
17.05.24; accepted 31.05.24; published 24.07.24.

Please cite as:
Spartano NL, Zhang Y, Liu C, Chernofsky A, Lin H, Trinquart L, Borrelli B, Pathiravasan CH, Kheterpal V, Nowak C, Vasan RS,
Benjamin EJ, McManus DD, Murabito JM
Agreement Between Apple Watch and Actical Step Counts in a Community Setting: Cross-Sectional Investigation From the Framingham
Heart Study
JMIR Biomed Eng 2024;9:e54631
URL: https://biomedeng.jmir.org/2024/1/e54631 
doi:10.2196/54631
PMID:

©Nicole L Spartano, Yuankai Zhang, Chunyu Liu, Ariel Chernofsky, Honghuang Lin, Ludovic Trinquart, Belinda Borrelli,
Chathurangi H Pathiravasan, Vik Kheterpal, Christopher Nowak, Ramachandran S Vasan, Emelia J Benjamin, David D McManus,
Joanne M Murabito. Originally published in JMIR Biomedical Engineering (http://biomsedeng.jmir.org), 24.07.2024. This is an
open-access article distributed under the terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work, first published in JMIR Biomedical Engineering, is properly cited. The complete bibliographic
information, a link to the original publication on https://biomedeng.jmir.org/, as well as this copyright and license information
must be included.

JMIR Biomed Eng 2024 | vol. 9 | e54631 | p.114https://biomedeng.jmir.org/2024/1/e54631
(page number not for citation purposes)

Spartano et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

https://biomedeng.jmir.org/2024/1/e54631
http://dx.doi.org/10.2196/54631
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


Original Paper

Assessing the Accuracy of Smartwatch-Based Estimation of
Maximum Oxygen Uptake Using the Apple Watch Series 7:
Validation Study

Polona Caserman1, Dr-Ing; Sungsoo Yum1, BSc; Stefan Göbel1, PD, Dr-Ing; Andreas Reif2, Prof Dr; Silke Matura2,
PD, Dr
1Serious Games Research Group, Technical University of Darmstadt, Darmstadt, Germany
2Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany

Corresponding Author:
Polona Caserman, Dr-Ing
Serious Games Research Group
Technical University of Darmstadt
Rundeturmstraße 10
Darmstadt, 64289
Germany
Email: polona.caserman@tu-darmstadt.de

Abstract

Background: Determining maximum oxygen uptake (VO2max) is essential for evaluating cardiorespiratory fitness. While
laboratory-based testing is considered the gold standard, sports watches or fitness trackers offer a convenient alternative. However,
despite the high number of wrist-worn devices, there is a lack of scientific validation for VO2max estimation outside the laboratory
setting.

Objective: This study aims to compare the Apple Watch Series 7’s performance against the gold standard in VO2max estimation
and Apple’s validation findings.

Methods: A total of 19 participants (7 female and 12 male), aged 18 to 63 (mean 28.42, SD 11.43) years were included in the
validation study. VO2max for all participants was determined in a controlled laboratory environment using a metabolic gas
analyzer. Thereby, they completed a graded exercise test on a cycle ergometer until reaching subjective exhaustion. This value
was then compared with the estimated VO2max value from the Apple Watch, which was calculated after wearing the watch for
at least 2 consecutive days and measured directly after an outdoor running test.

Results: The measured VO2max (mean 45.88, SD 9.42 mL/kg/minute) in the laboratory setting was significantly higher than
the predicted VO2max (mean 41.37, SD 6.5 mL/kg/minute) from the Apple Watch (t18=2.51; P=.01) with a medium effect size
(Hedges g=0.53). The Bland-Altman analysis revealed a good overall agreement between both measurements. However, the
intraclass correlation coefficient ICC(2,1)=0.47 (95% CI 0.06-0.75) indicated poor reliability. The mean absolute percentage
error between the predicted and the actual VO2max was 15.79%, while the root mean square error was 8.85 mL/kg/minute. The
analysis further revealed higher accuracy when focusing on participants with good fitness levels (mean absolute percentage
error=14.59%; root-mean-square error=7.22 ml/kg/minute; ICC(2,1)=0.60 95% CI 0.09-0.87).

Conclusions: Similar to other smartwatches, the Apple Watch also overestimates or underestimates the VO2max in individuals
with poor or excellent fitness levels, respectively. Assessing the accuracy and reliability of the Apple Watch’s VO2max estimation
is crucial for determining its suitability as an alternative to laboratory testing. The findings of this study will apprise researchers,
physical training professionals, and end users of wearable technology, thereby enhancing the knowledge base and practical
application of such devices in assessing cardiorespiratory fitness parameters.

(JMIR Biomed Eng 2024;9:e59459)   doi:10.2196/59459
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Introduction

The concept of the maximum oxygen uptake (VO2max),
established in 1923 by Hill and Lupton [1] is a fundamental
measure in assessing cardiorespiratory fitness [2] and is also
often used to determine an individual’s physical fitness level
[3,4]. Cardiorespiratory fitness is defined as the ability of the
circulatory and respiratory systems to supply oxygen to the
muscles during sustained physical activity [3]. VO2max is also
often used as a performance measure [5,6]. Previous research
concludes that VO2max is closely related to all-cause mortality
and underscores the importance of enhancing VO2max to reduce
the risks of developing cardiovascular diseases [7-10].

Typically, VO2max is measured in a controlled laboratory setting
using a metabolic gas analyzer during an incremental exercise
test, commonly administered on a motorized treadmill or a cycle
ergometer [7]. During the test, either the speed on the treadmill
or the resistance on the ergometer is gradually increased, until
participants reach maximum exhaustion. Such tests are typically
directed toward special populations, for example, individuals
with known or suspected cardiovascular diseases or endurance
athletes. Laboratory tests require expensive equipment (ie, a
metabolic gas analyzer) and trained personnel and are therefore
often costly and time-consuming. As the maximal exercise test
necessitates participants to achieve maximal exertion, it may
not always be safe for everyone, especially not without medical
supervision and emergency equipment [11]. Accordingly, given
the impracticality of VO2max assessments for everyday
application and their limited accessibility by the general
population, the emergence of fitness trackers has provided a
convenient and accessible alternative for estimating VO2max
in real-world settings. A recent survey shows that 21% of
Americans already use a smartwatch or a fitness tracker such
as the Garmin, Fitbit, or Apple Watch [12]. According to another
recent survey, wearable technology has also been identified as
the number one fitness trend in 2022 [13].

Prior investigations have already assessed the reliability and
validity of various wearables, using heart rate (HR) as a metric
for quantifying individual physiological exertion [14]. Further
studies have explored the potential of biometric monitoring
technologies in estimating users’ cardiovascular fitness levels,
using algorithms like those developed by Firstbeat Analytics
[15] and used by prominent brands such as Garmin and Huawei
[16]. Additionally, researchers developed their methodologies
to calculate oxygen uptake using wearable devices or
smartphones [17-20]. Previous research further validated various
fitness tests carried out using smartphones, offering additional
insights into the accuracy of these devices in evaluating physical
metrics [21,22]. Despite the promising potential of wrist-worn
devices in facilitating fitness assessments, concerns have been
raised regarding the accuracy and reliability of estimating
parameters, such as VO2max or VO2 peak, with particular

concern about their potential misuse by consumers for making
medical decisions [23]. While several studies have shown that
wearables are very accurate [15,24-29], contradictory evidence
suggests potential overestimation or underestimation in VO2max
measurements [30-33]. Notably, only little research has been
conducted on the accuracy of VO2max predictions among
participants with varying fitness levels, particularly those with
lower or higher fitness levels [34,35].

Given the Apple Watch’s dominant position in the global
smartwatch market with the largest share of shipments [36] and
being the primary choice for the majority of users [12], assessing
the accuracy and reliability of its VO2max estimation becomes
critical in determining its potential as a dependable alternative
to traditional laboratory testing. However, only a little research
has been conducted evaluating the accuracy of the Apple Watch
in estimating cardiorespiratory fitness indicators. Most of the
studies that validated the accuracy of the Apple Watch focused
on fitness parameters such as energy expenditure, HR, HR
variability, or oxygen consumption reserve [37-41]. There
remains a gap in the literature regarding the specific evaluation
of the Apple Watch to predict VO2max. While Apple has
conducted an extensive study to validate its VO2max estimation
algorithm [42], concerns exist regarding potential bias and the
limited medical representativeness of their findings.

To address these concerns and contribute to the understanding
of wearable technology in fitness assessment, this study aims
to assess the accuracy and reliability of VO2max estimation
using the Apple Watch Series 7. Toward this end, we conducted
a comparative analysis between the VO2max estimation of the
Apple Watch 7 and the gold-standard testing in a laboratory
setting, using a metabolic gas analyzer. The level of agreement
was evaluated using Bland-Altman plots. We calculated the
error in terms of mean absolute percentage error (MAPE) and
root-mean-square error (RMSE), and further assessed the
reliability by calculating the intraclass correlation coefficient
(ICC). The outcomes of this study will hopefully provide
valuable insights into the performance of the Apple Watch
Series 7 relative to other validation studies of wrist-worn devices
and Apple’s validation results.

Methods

Ethical Considerations
The study was conducted in accordance with the Declaration
of Helsinki, and approved by the Ethics Committee of the
Technical University of Darmstadt (approval EK 11/2023;
March 20, 2023). In the first session, all participants were
informed about the specific purpose of the study. We informed
them that all collected data are confidential and solely used in
anonymized form. To ensure anonymity, each participant was
assigned a pseudonym. Participants were informed about the
risks and their right to terminate the experiment at any point
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without the need for an explanation. Afterward, participants
provided written informed consent, completed a demographics
questionnaire, and responded to inquiries regarding their
physical activity.

Study Design
The study used a repeated measures design with each participant
completing 2 sessions on separate days, with a minimum resting
period of 48 hours in between. Before undergoing the tests,
participants were advised to refrain from consuming alcohol or
any other substances that could potentially influence their
respiratory system and HR. This precautionary measure aimed
to ensure accurate readings and mitigate the risk of any potential
false results during the testing procedure. The initial session
was conducted in a controlled laboratory setting to establish a
reference value for VO2max. The subsequent session took place
on the university’s stadium track field, using the Apple Watch
Series 7 to obtain an estimated VO2max value. Following the
completion of both sessions, the VO2max values obtained from
the 2 methods were compared against each other for analysis.

Measurement of VO2max in a Laboratory
Setting—Cycle Test
The performance test in the laboratory setting was assessed
through an endurance test using a cycle ergometer. Such tests
are widely used in sports science to measure VO2max, serving
as a crucial indicator of aerobic endurance performance [43].
Due to the lack of medical expertise to conduct a maximal
exercise test, we alternatively conducted a graded exercise test
until subjective exhaustion. This decision was influenced by
our ability to adhere to a rigorous protocol within the controlled
environment of the laboratory, as well as the availability of the
necessary equipment to monitor respiratory parameters and
promptly terminate the session if the participant’s safety was
compromised. Submaximal exercise prediction was also used
in the field test using the Apple Watch, which facilitates
comparison of the values derived from sessions 1 and 2.

Accordingly, the reference VO2max value was determined
through a graded exercise test conducted on a cycle ergometer,
using the portable metabolic gas analyzer (VO2 Master Health
Sensors Inc [44]). Evidence of the measurement accuracy of
the hardware used can be found in references [45,46]. The gas
analyzer was calibrated prior to each test (ie, for each
participant), using a 3-L syringe for both flow and gas
calibration. Furthermore, the supervisor entered the participants’
age, sex, height, and weight in the VO2 Master Manager app
(installed on an iPhone 13 Mini), which was paired with the gas
analyzer. After the calibration, participants put on the
electrocardiogram chest strap (Polar H10 Heart Rate Sensor
[47]) and the gas analyzer while the supervisor (SY) checked
the plausibility of the system (ie, both sensors connected to the
smartphone via Bluetooth and transmitting the data via VO2
Master Manager app). Once participants successfully put on the
equipment, they were instructed to sit on the cycle ergometer
(ERGO-FIT Cycle 4073 [48]) after adjusting the seat height
according to their height.

Once the setup was completed, the endurance test was
conducted. The laboratory protocol was equal for male and

female participants. Throughout the test, vital parameters (ie,
the HR and breathing) and the participant’s current state were
continuously monitored. Participants started with a 3-minute
warm-up phase, riding on the cycle ergometer at a workload of
50 W at a speed of 60 rotations per minute. Afterward, the
ergometer’s resistance was increased by 50 W every 2 minutes
until one of the termination criteria was met (based on the
criteria by Klingenheben et al [49]):

• Maximum HR, based on age and sex, individually
calculated for each participant using the Fairbarn equation
[50], was exceeded for 10 consecutive seconds:

HRmaxFairban=208–0.8×age, for male participants

HRmaxFairban=201–0.6×age, for female participants

We intentionally used the Fairbarn equation to predict the
maximum HR, instead of using the Fox equation
HRmaxFox=220–age [51], which is only dependent on age.
According to the analysis by Cleary et al [52], the Fairbarn
equation, which considers the age and sex of the participants,
is more accurate.

• Inability to maintain a pedal rate of 60 rotations per minute
for more than 3 seconds

• An abnormally rapid acceleration or deceleration in HR
that is not consistent with physiological norms

• Plateau in VO2, despite increasing resistance on the
ergometer (increase <1 mL/kg/minute)

• Symptoms of angina pectoris (ie, pain behind the
breastbone, tightness, numbness, nausea, vomiting,
sweating, and shortness of breath, and anxiety)

• Other conspicuous findings, such as malaise, dizziness,
headache, conspicuous pallor, and other complaints

• Signs of respiratory insufficiency could be observed, that
is, participants’ ventilation reached a dangerous level
(around 150 L/minute) in the VO2 Master Manager app

• Self-reported volitional exhaustion or fatigue
• Failure of monitoring equipment

At the end of the session, protocol outcomes were saved for
each participant. In addition to VO2max, the gas analyzer
provided the following parameters in real time:

• Metabolism:
• Absolute oxygen consumption (VO2 [mL/minute])
• Oxygen consumption relative to weight (VO2

[mL/kg/minute])
• Energy expenditure (Kcal/day)
• Calories (kcal/hour)

• Pulmonary function:
• Ventilation; air moved by lungs (Ve [L/minute])
• Respiratory frequency; breaths per minute (beats per

minute)
• Tidal volume; volume breathed in a breath (L)

• Respiratory efficiency:
• (Ve/VO2)
• Fraction of oxygen in expired breath (FeO2 [%])

• Cardiac function:
• HR (beats per minute)
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• RR Intervals (RR [milliseconds])

Estimation of VO2max Using the Apple Watch—Track
Field Test
Within 1 week after the initial laboratory session, participants
were provided with an iPhone SE 2020 and an Apple Watch
(Series 7, 41 mm). The Apple Watch was paired with an iPhone
that had been reset to factory setting to ensure data privacy. To
complete the setup of the Apple Watch, the supervisor (SY)
ensured that participants entered their age, sex, height, and
weight in the iPhone.

Participants were instructed to wear the Apple Watch
continuously, including during sleep and showers, for at least
48 hours prior to the second session. This prolonged wearing
duration was essential as the Apple Watch required at least 24
hours of continuous wear time to reliably estimate VO2max.
The precise algorithm for VO2max estimation is not publicly
disclosed; however, discussions with Apple technical support
revealed that it incorporates resting HR measurements, exercise
HR measurements, and GPS-derived velocity data from outdoor
runs. To ensure a valid VO2max from the Apple Watch, we
consulted with the manufacturer and adhered to the following
procedure: participants needed to complete at least 1 training
prior to the track field test, that is, an outdoor walk for 15-20
minutes. They needed to manually measure the HR every hour
(using the preinstalled Health app), in addition to the passive
measurements of the Apple Watch itself. Throughout the
process, participants needed to ensure that the Apple Watch
was always connected to the iPhone, which maintained an
internet connection.

Only participants who followed the instructions and completed
the outdoor walk were permitted to proceed with the run test.
The run test was conducted at the university stadium at the
Technical University of Darmstadt. Consistent with our
laboratory protocol, we used a submaximal exercise test to
mitigate the risk of injury; however, in this session, the test was
conducted outdoors. The outdoor setting was necessary to ensure
a sufficient GPS signal.

Before the run test, participants were given brief instructions.
Particularly, they were instructed to activate the outdoor running
app on their Apple Watch prior to starting the track run. To
minimize the risk of injury, the protocol included a 5-minute
warm-up phase, during which participants ran at a moderate
pace. Following the warm-up, participants continued at a
self-selected running pace, ensuring a minimum duration of 15
minutes. Once participants completed the run and returned to
the starting point, they stopped the recording on their Apple
Watch and proceeded with a cool-down phase. Subsequently,
the supervisor accessed relevant metrics from the Health app
on the paired iPhone, specifically the estimated VO2max in the
cardio fitness section.

Recruitment
Participants were recruited among students and employees of
the Technical University of Darmstadt through the Discord
server from the IT department and the university’s mailing list.
To ensure a diverse range of fitness levels, we also recruited

members of a local fitness studio. Eligibility criteria required
participants to be older than 18 years and in good health. To
streamline the selection process, the Physical Activity Readiness
Questionnaire [53] was administered. As a result, individuals
with any preexisting heart disease, cardiovascular conditions,
orthopedic injuries, or current use of medication were deemed
ineligible for participation.

To determine the required sample size, we conducted a priori
power analysis using G*Power (version 3.1;
Heinrich-Heine-Universität Düsseldorf) [54] with a power of
0.8, a significance level of 0.05, and a medium effect size of
0.5. This analysis indicated a minimum sample size of 27
participants. Therefore, considering expected dropouts, we
initially aimed for a larger sample size of at least 30 participants.
Recruitment took place over a 4-week period in the spring of
2023.

Statistical Analysis
All data were analyzed using MATLAB (MathWorks, Inc),
including external code [55,56].

We first assessed the limit of agreement between the values
obtained from laboratory measurements and those provided by
the Apple Watch using the Bland-Altman plot. The
Bland-Altman plot enables us to evaluate if the 2 methods of
measurement show a sufficient level of agreement [57]. It
displays the limits of agreement by using the mean and SD of
the differences between the 2 methods. As recommended by
the authors themselves, 95% of the data points should lie within
±2 SD of the mean difference [57,58]. Additionally, the plot
also allows us to spot outliers and to see whether there is any
trend in overestimating or underestimating.

Second, in addition to the Bland-Altman plots, we calculated
the ICC(2,1) to test for bias and absolute agreement in VO2max
estimation. ICC is different from correlations such as Pearson
or Spearman correlation. Calculating correlation is not
appropriate to evaluate the measure of agreement, especially as
the correlation coefficient depends on both the variation between
individuals (ie, between the true values) and the variation within
individuals (measurement error) [57]. ICC is suitable for
reliability analyses, where a value less than 0.5, between 0.5
and 0.75, between 0.75 and 0.9, and greater than 0.90 indicate
poor, moderate, good, and excellent reliability, respectively
[59].

Third, similar to other validation studies, we used the MAPE
and RMSE to calculate the overall measurement error between
the VO2max value derived from the Apple Watch and the
metabolic gas analyzer. MAPE was calculated as the average
absolute difference between the actual and the predicted measure
divided by the actual measure and multiplied by 100 [60].
Furthermore, RMSE was calculated as the square root of the
average of the squared differences between predicted and
observed values [61].

Finally, to determine any significant differences between the
predicted and measured VO2max, we used statistical tests,
specifically the paired 1-tailed t test. We tested the assumption
of normally distributed data using the Anderson-Darling test
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(P=.65). Furthermore, we calculate the effect size using Hedges
g, taking the sample size into account [62], with a value of 0.2
representing a small, 0.5 a medium, and 0.8 a large effect size
[63].

Data Analysis and Fitness Level Categorization
In the first step, we analyzed the entire data set to assess the
overall performance of the Apple Watch. Additionally, we aimed
to get better insights regarding its performance across varying
user fitness levels. To achieve this, participants were categorized
into 3 groups based on their reference VO2max obtained from
the laboratory setting. Hence, based on the fitness categories
outlined by the Fitness Registry and the Importance of Exercise
National Database [64], participants were divided into poor,
good, and excellent fitness levels, allowing us a more nuanced
investigation of the Apple Watch’s estimations.

Results

Participants
Out of the 30 (14 female and 16 male) initially recruited
participants, 6 participants withdrew from the study before the
first session due to health and personal reasons. Additionally,
after the initial session, 4 participants were deemed ineligible
for the study due to health concerns and recommendations from
their respective health care providers, and 1 participant did not
attend the second session due to personal reasons.

A total of 19 participants successfully completed the initial
session in the laboratory setting, which involved a cycle test
until subjective exhaustion and metabolic gas analysis, followed
by the second session including an outdoor running test. Among
the participants, 7 participants were female (mean age 28.86,

SD 10.48 years; mean BMI 23.09, SD 2.31 kg/m2) and 12
participants were male (mean age 28.17, SD 12.40 years; mean

BMI 23.76, SD 3.99 kg/m2). Participant characteristics are
further detailed in Table 1.

Table 1. Participant characteristics.

Total (n=19), mean (SD)Female (n=7, 37%), mean (SD)Male (n=12, 63%), mean (SD)

28.37 (11.48)28.71 (10.63)28.17 (12.40)Age (in years)

23.60 (3.23)23.04 (2.11)23.92 (3.79)BMI (kg/m2)

Limit of Agreement
The detailed results are presented in Table 2. The mean VO2max
determined in the laboratory setting was 45.88 (SD 9.42)
mL/kg/minute, ranging from 32 to 64 mL/kg/minute.
Furthermore, the mean estimated VO2max from the Apple
Watch was 41.37 (SD 6.50) mL/kg/minute, ranging from 29 to
52 mL/kg/minute. Our analysis revealed that the measured
VO2max is significantly higher than the predicted value from
the Apple Watch (t18=2.51; P=.01) with a medium effect size

(Hedges g=0.53). These findings are consistent with
observations from the Bland-Altman plot (Figure 1A), showing
an overall underestimation of VO2max by the Apple Watch.
Specifically, the mean difference (bias) between the laboratory
value and the estimated VO2max value from the Apple Watch
is –4.51 (SD 7.82) mL/kg/minute. Although all data points fall
within the limits of agreement, indicating “good agreement”
between the 2 methods, the ICC(2,1) of 0.47 (95% CI 0.06-0.75)
suggests only poor to moderate reliability.
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Figure 1. Bland-Altman plot of mean (x-axis) and difference (y-axis) between measured VO2max in the laboratory and predicted VO2max from the
Apple Watch. The solid line represents the mean difference and the dashed lines present the 95% limit of agreement.

Table 2. Descriptive examination of the differences between the measured and predicted VO2max.

ICC (2,1)g ICC
(95% CI)

RMSEf

(mL/kg/minute)MAPEe (%)

VO2max deltad

(mL/kg/minute),
mean (SD)

VO2max—Apple

Watchc

(mL/kg/minute),
mean (SD)

VO2max—Labb

(mL/kg/minute),
mean (SD)

Participant
pool (n=19), n
(%)Fitness levela

0.14 (–0.61 to 0.96)5.6110.713.8 (5.05)38.93 (5.48)35.13 (.81)3 (16)Poor

0.60 (0.09 to 0.87)7.2214.59–3.37 (6.69)41.44 (7.70)44.81 (7.97)11 (58)Good

0.23 (–0.07 to 0.79)12.8021.47–12 (4.98)42.70 (4.46)54.70 (7.28)5 (26)Excellent

0.47 (0.06 to 0.75)8.8515.79–4.51 (7.82)41.37 (6.5)45.88 (9.42)19 (100)Combined

aCategorized according to sex and age based on the Fitness Registry and the Importance of Exercise National Database [64] criteria.
bVO2max—Lab: measured VO2max in the laboratory.
cVO2max—Apple Watch: estimated VO2max from the Apple Watch.
dVO2max delta: Apple Watch estimate versus laboratory measurement.
eMAPE: mean absolute percentage error.
fRMSE: root mean square error.
gICC (2,1): intraclass correlation coefficient.

We furthermore analyzed the limit of agreement for participants
with lower and higher fitness levels. When the participants were
split into groups of poor (n=3), good (n=11), and excellent (n=5)
fitness levels, the smartwatch showed a bias of mean 3.80 (SD
5.05) mL/kg/minute, mean –3.37 (SD 6.69) mL/kg/minute, and

mean –12.00 (SD 4.98) mL/kg/minute, respectively. As depicted
in Figures 1B-1D, the Apple Watch tends to overestimate
VO2max for participants with a poor fitness level while
underestimating it for those with a higher fitness level.
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Moreover, the ICC for poor and excellent fitness levels was
0.14 and 0.23, respectively, indicating poor reliability. Only for
participants with good (n=11) fitness levels, an ICC(2,1) of 0.60
indicates moderate reliability. However, it is important to
highlight the limitations associated with interpreting the results
for subgroups due to the small sample size.

Error Between Predicted and Actual VO2max
The MAPE in the cohort of all participants (n=19) was 15.78%,
with an RMSE of 8.85 mL/kg/minute. Upon dividing the
VO2max values into categories based on poor, good, and
excellent fitness levels, the smartwatch showed MAPEs of
10.71%, 14.59%, and 21.47%, respectively. Regarding RMSE,
the smartwatch showed values of 5.61, 7.22, and 12.80
mL/kg/minute for participants with poor, good, and excellent
fitness levels, respectively. However, as already mentioned
before, it is important to emphasize the limitation in interpreting
results for subgroups due to the limited sample size.

Discussion

Principal Results
The purpose of this study was to assess the accuracy of the
VO2max estimation of the Apple Watch Series 7. Other
validation studies using the Apple Watch focused on evaluating
the accuracy of measuring oxygen consumption reserve [41],
HR [38,39], HR variability [40], or energy expenditure [37].
To the best of our knowledge, this is the first study validating
the VO2max using the Apple Watch, aside from Apple’s
validation study [42].

Overall, our findings reveal a significant underestimation of the
estimated VO2max value from the Apple Watch (t18=2.51;
P=.01; bias: mean –4.51, SD 7.82 mL/kg/minute; Hedges
g=0.53). These results deviate from the original validation study
by Apple [42], which reported a smaller bias of mean 1.2 (SD
4.4) mL/kg/minute and mean 1.4 (SD 4.7) mL/kg/minute for
the design and validation groups, respectively. However, it is
important to acknowledge that our VO2max value from the
Apple Watch was obtained after only 1 outdoor walking and
running session. According to Apple’s explanation, increasing
the number of outdoor workouts enhances the accuracy of the
VO2max estimate [42]. In contrast to our study, Apple’s
validation study was designed as a longitudinal study, extending
over an average of 441 days for the design group and 390 days
for the validation group. The researchers computed the mean
and SD for differences between the last estimated VO2max from
the Apple Watch and the mean VO2max value determined in
up to 6 maximal or submaximal cardiopulmonary exercise tests
while wearing the Apple Watch Series 4. However, it remains
unclear how exactly the cardiopulmonary exercise test was
conducted. Therefore, a direct comparison of our results with
theirs is not feasible as they estimated VO2max from multiple
workouts. It is plausible that our results would show also a
smaller error if the participants in our study wore the watch for
a longer duration. Apple’s statement that the VO2max estimation
by the Apple Watch is accurate and reliable compared to
conventional methods of VO2max measurement [42] can

therefore not be contradicted on the basis of the available
findings.

Our findings regarding intraclass correlation reveal that
ICC(2,1)=0.47, indicating relatively poor reliability, as outlined
in reference [59]. Upon excluding participants with poor and
excellent fitness levels and focusing solely on those with good
fitness levels, we observed an improved ICC(2,1) value of 0.60,
suggesting moderate reliability. These results underscore the
influence of fitness levels on the reliability of VO2max
estimation through the Apple Watch. The validation study
conducted by Apple calculating ICC(A,1), yielded values of
0.89 and 0.86 for the design and validation groups, respectively,
indicative of good reliability [42]. Notably, Apple’s evaluation
involved assessing absolute agreement per participant by
comparing the last valid VO2max estimate with the value
estimated at least 28 days prior. This methodology differs from
our approach, where we aimed to evaluate the reliability between
laboratory-measured values and Apple Watch estimates without
a significant time gap.

Comparison With Prior Work
There is no standardized threshold for high or low MAPE, but
we consider an error below 5% to be a good indicator for an
accurate measurement. Regarding our results from the Apple
Watch, we can conclude that regardless of the fitness level of
the participants, the MAPE exceeded 10%. Unfortunately,
related studies do not consistently report MAPE values.
Nevertheless, 1 study using Polar [30] showed MAPE values
above 10% (specifically 13.2%). In addition, studies with Fitbit
devices showed MAPE around 10% [27,65]. Conversely, studies
on Garmin devices [25,30,33,35], using algorithms developed
by Firstbeat Technologies [15], consistently reported MAPE
values well below 10%, highlighting their superior accuracy
compared to other smartwatches.

We furthermore attempted to compare our results on ICC with
those of other studies. Since not all studies provided
comprehensive information regarding ICC forms used, making
direct comparisons proved to be challenging. Nevertheless,
studies on the Garmin Watch have indicated high reliability,
with ICC(2,1)=0.87 [29] or ICC(3,1)=0.94 [35], although it is
important to note that the latter study validated the estimation
of VO2 peak rather than VO2max.

In terms of fitness levels, this study aligns with findings from
related research using various smartwatches. Consistent with
observations from references [30,31,33-35,65], our results
suggest a tendency for the Apple Watch to overestimate VO2max
values among users with poor fitness levels (mean 3.80, SD
5.05 mL/kg/minute) and underestimate them among those with
higher fitness levels (mean –3.37, SD 6.69 mL/kg/minute and
mean –12.00, SD 4.98 mL/kg/minute for good and excellent
fitness levels, respectively). However, it should be noted that
this study involved a relatively small sample size, and
classifying participants based on their fitness levels further
reduced the sample size in each group (n=3 for participants with
lower fitness, n=11 for those with good fitness, and n=5 for
those with excellent fitness). Despite this limitation, our findings
suggest that the Apple Watch may provide more accurate
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VO2max estimates for users with poor or good fitness levels.
This conclusion is further supported by MAPE, which shows a
smaller error for users with poorer fitness levels while the error
increases in participants with higher fitness levels (see also
Table 2). This could be attributed to the potential influence of
fitness levels on the accuracy of physiological measurements
obtained through wearable devices. Nonetheless, further research
with larger sample sizes is necessary to validate and elucidate
these observations. Such investigations could shed light on the
factors influencing the performance of wearable devices in
estimating VO2max across various fitness levels, thereby
enhancing our understanding of their use in health and fitness
monitoring.

Limitations
The major limitation of this study is the small sample size.
Although we aimed to recruit at least 30 participants, we
ultimately obtained complete data from only 19 participants.
To address this limitation, we reported effect sizes alongside
our statistical tests, ensuring that our results remain reliable
despite the smaller sample size. Nevertheless, further studies
with larger and more varied populations are recommended to
build on these findings and enhance the statistical power of the
conclusions. It would also be beneficial to extend the duration
during which participants consistently wear a smartwatch, as
we believe that longer wear periods may enhance the accuracy
of VO2max estimation by the Apple Watch.

Although VO2max measurement is considered the gold standard
among sports medicine professionals for determining an
individual’s fitness level, prior research has suggested that
VO2max is constrained by the variability in an individual’s
effort and is highly reliant on VO2max extent to which
participants are properly motivated to achieve their true
maximum [66]. Furthermore, as VO2max criteria are not
standardized, there is some uncertainty regarding whether the
true VO2max has actually been attained and if a maximum effort
has been exerted [67]. To address these concerns, Edvardsen et
al [68] proposed revised termination criteria for VO2max tests
that consider sex and age. Furthermore, as the true VO2max
value can differ, depending on whether the cardiopulmonary
exercise testing was done on a treadmill or cycle ergometer, it
would be important to use both tests independently to achieve
optimal fitness assessment [69]. Nevertheless, varying
termination criteria, testing methodologies, and participant
populations across studies continue to pose challenges [67].
Despite these challenges, our aim involved making selective
comparisons between our study and related research, diligently
acknowledging the notable differences between the studies.

Another limitation we encountered was related to calibration
error. Our attempt to compare the approximate prediction
method of the Apple Watch with a gas analyzer was conducted
using a graded exercise test until subjective exhaustion,
potentially leading to an underestimation of the true VO2max
value. Noonan and Dean [70] outlined the advantages of
submaximal exercise tests over maximal exercise tests, citing
factors such as requirements for trained personnel and safety
concerns. They conclude that submaximal exercise tests are
reliable if an appropriate protocol is selected and the protocol
is followed. However, it is crucial to note the potential influence
of different protocols or increased participant motivation, as
these factors could impact the measured VO2max.

An additional limitation of our study is the lack of medical
equipment. Ideally, we would have conducted periodic blood
samples to measure the lactate threshold, allowing us to detect
the point when the participant’s respiratory system attained its
maximum capacity. The lactate concentration in blood is a
valuable metric to monitor because an increase in blood lactate
indicates a transition from aerobic to anaerobic exercise,
suggesting that the body has surpassed its capacity for oxygen
uptake to supply the muscles adequately [71]. Unfortunately,
due to the unavailability of suitable equipment and the lack of
medical professionals capable of carrying out such data
collection, we were unable to include blood lactate as a
termination criterion in our study. Additionally, it would have
been ideal to monitor the volume of carbon dioxide produced;
however, this capability is not provided by the VO2 Master
Analyzer.

Conclusions
Overall, the Apple Watch Series 7 underestimated VO2max
compared to the values obtained using the gold standard
assessment methods within a laboratory setting. This
underestimation was even pronounced in participants with very
high fitness levels. On the contrary, VO2max values were
overestimated by the Apple watch in participants with
comparably low fitness levels. These findings highlight the
importance of calibrating consumer-grade fitness trackers for
greater accuracy across a diverse range of fitness levels. As
consumer-grade technology continues to evolve, there is an
opportunity for ongoing research and development to close the
gap between the accuracy of portable devices and
laboratory-grade equipment. This would not only enhance
individual training and health monitoring but could also expand
the use of such wearables in professional sports and clinical
settings.
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HR: heart rate
ICC: intraclass correlation coefficient
MAPE: mean absolute percentage error
RMSE: root-mean-square error
VO2max: maximum oxygen uptake
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Abstract

Background: Venovenous extracorporeal membrane oxygenation (VV-ECMO) is a therapy for patients with refractory respiratory
failure. The decision to decannulate someone from extracorporeal membrane oxygenation (ECMO) often involves weaning trials
and clinical intuition. To date, there are limited prognostication metrics to guide clinical decision–making to determine which
patients will be successfully weaned and decannulated.

Objective: This study aims to assist clinicians with the decision to decannulate a patient from ECMO, using Continuous
Evaluation of VV-ECMO Outcomes (CEVVO), a deep learning–based model for predicting success of decannulation in patients
supported on VV-ECMO. The running metric may be applied daily to categorize patients into high-risk and low-risk groups.
Using these data, providers may consider initiating a weaning trial based on their expertise and CEVVO.

Methods: Data were collected from 118 patients supported with VV-ECMO at the Columbia University Irving Medical Center.
Using a long short-term memory–based network, CEVVO is the first model capable of integrating discrete clinical information
with continuous data collected from an ECMO device. A total of 12 sets of 5-fold cross validations were conducted to assess the
performance, which was measured using the area under the receiver operating characteristic curve (AUROC) and average precision
(AP). To translate the predicted values into a clinically useful metric, the model results were calibrated and stratified into risk
groups, ranging from 0 (high risk) to 3 (low risk). To further investigate the performance edge of CEVVO, 2 synthetic data sets
were generated using Gaussian process regression. The first data set preserved the long-term dependency of the patient data set,
whereas the second did not.

Results: CEVVO demonstrated consistently superior classification performance compared with contemporary models (P<.001
and P=.04 compared with the next highest AUROC and AP). Although the model’s patient-by-patient predictive power may be
too low to be integrated into a clinical setting (AUROC 95% CI 0.6822-0.7055; AP 95% CI 0.8515-0.8682), the patient risk
classification system displayed greater potential. When measured at 72 hours, the high-risk group had a successful decannulation
rate of 58% (7/12), whereas the low-risk group had a successful decannulation rate of 92% (11/12; P=.04). When measured at
96 hours, the high- and low-risk groups had a successful decannulation rate of 54% (6/11) and 100% (9/9), respectively (P=.01).
We hypothesized that the improved performance of CEVVO was owing to its ability to efficiently capture transient temporal
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patterns. Indeed, CEVVO exhibited improved performance on synthetic data with inherent temporal dependencies (P<.001)
compared with logistic regression and a dense neural network.

Conclusions: The ability to interpret and integrate large data sets is paramount for creating accurate models capable of assisting
clinicians in risk stratifying patients supported on VV-ECMO. Our framework may guide future incorporation of CEVVO into
more comprehensive intensive care monitoring systems.

(JMIR Biomed Eng 2024;9:e48497)   doi:10.2196/48497

KEYWORDS

extracorporeal membrane oxygenation; ECMO; venovenous; VV; machine learning; supervised learning; dynamic data; time
series; clinical decision support; artificial intelligence; AI; clinical AI; health informatics

Introduction

Background
Extracorporeal life support (ECLS) is a suite of
resource-intensive therapies indicated in patients with refractory
respiratory failure or cardiogenic shock [1]. This intervention
involves cannulation of central or peripheral arteries and veins
to provide forward flow through a circuit with a mechanical
pump and gas exchange device, also called a membrane
oxygenator. Air is connected to the membrane oxygenator to
deliver oxygen and remove carbon dioxide from the circulating
blood. Established indications for venovenous extracorporeal
membrane oxygenation (VV-ECMO) exist in the literature, and
the use of this technology was expanded during the COVID-19
pandemic [2]. The VV-ECMO configuration is specifically used
for patients experiencing severe lung injury. This setup is
designed to provide oxygenation and decarboxylation support
without offering the additional hemodynamic assistance found
in the venoarterial configuration. VV-ECMO is considered a
last resort therapy for patients with end-stage respiratory failure
[3], with an overall survival rate of 60% [4].

Decannulating a patient from VV-ECMO is a clinical challenge
that requires considerable training and expertise from provider
teams in the intensive care unit. Clinicians assess trends in the
patient’s vital signs, physical examination, response to various
therapies, laboratory biochemistries, and radiographic studies.
When the decision is made to proceed, decannulation is usually
accomplished through a weaning trial during which VV-ECMO
is gradually reduced. To date, there are limited prognostication
scores that successfully predict when patients are ready to
undergo a weaning trial. In this study, we present an artificial
intelligence model capable of running in real time that
incorporates discrete and continuous variables that clinicians
may use in their assessment of patients for decannulation from
VV-ECMO support.

Related Work
Multiple predictive scores have been developed to help
clinicians prognosticate before cannulation. The 6 most common
prognostication scores for adult respiratory failure supported
on extracorporeal membrane oxygenation (ECMO) are
ECMOnet, Predicting Death for Severe Ards on VV-ECMO,
Respiratory ECMO Survival Prediction, Roch, Venovenous
ecmo mortality score, and Prediction of Survival on ECMO
Therapy score [5] (Table S1 in Multimedia Appendix 1 [6-11]).
Although these 6 scores are commonly used, they have 2 main

drawbacks. First, all input information is recorded before
cannulation to ECLS because the primary intent of the models
is to be used to determine which candidates were most likely
to benefit from the intervention. Second, all scores use logistic
regression to predict outcomes or identify significant variables.
Logistic regression requires high-quality data from static
variables, which limits the types of data that can be inputted.
Thus, sequential or time-series data such as laboratory values
and vital signs must be limited to a single time point or
summarized. Furthermore, these statistical models are limited
in terms of capturing nonlinear effects and interactions between
variables.

To date, no studies have mitigated both issues to improve the
prediction of successful decannulation in patients supported on
VV-ECMO. However, some researchers have attempted to use
deep learning to predict specific clinical events.

Abbasi et al [12] used clinical and ECLS data to compare 2
approaches, deep learning and traditional statistical
methodology, to develop a model to predict hemorrhage and
thrombosis events. The deep learning model outperformed linear
regression in both hemorrhage and thrombosis data sets,
suggesting that more complex models may achieve better
predictive power. Other authors have applied deep learning and
modified logistic regression to predict survival on
venoarterial-ECMO (VA-ECMO) only. Ayers et al [13] used
48 hours of laboratory values after VA-ECMO cannulation to
predict survival to discharge using a deep neural network.

Similarly, Loyaga et al [14] used clinical, echocardiographic,
laboratory, and hemodynamic characteristics to predict 30-day
mortality in patients on VA-ECMO using the elastic-net method.
None of these studies used data obtained from the ECMO
devices, and instead used laboratory values, clinical scores, and
disease severity to train their models. These approaches leave
a large amount of valuable information unused. In the hospital,
clinicians adjust the parameters of ECMO support in real time
according to the patient’s condition and pathophysiology.
Modern devices capture the interplay between the patient and
ECMO by continuously collecting perfusion data [15]. Analysis
of information-dense perfusion data may be leveraged to
improve the prediction accuracy of clinically meaningful
outcomes in ECLS care.

Incorporating more granular data requires a new model that is
capable of integrating categorical and time-series data. The
prevalence of recurrent neural networks (RNNs) in health care
data science has increased recently. The ability of RNNs to
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efficiently understand time dependencies makes this approach
beneficial in certain types of medical data, such as ventilator
settings [16], vital signs [17], medication administration [18],
imaging studies [19], and radiology reports [20]. One type of
RNN, long short-term memory (LSTM), is specifically designed
for long time series, such as our data set with weeks-long
hospital courses. LSTM can encode these time series into a
compressed latent space, which can be concatenated with static
variables, such as age, gender, and other clinical characteristics.

Novelty
The innovation of our study is two-fold: (1) data source and (2)
algorithm design. Perfusion data were collected from the ECMO
devices and recorded at highly granular intervals. Our analysis
sheds new light on the effectiveness of ECMO. Second, unlike
prior work using laboratory values, clinical scores, and other
static data, the patient information used in our study was both
dynamic and static. Using a 2-headed neural network, our
predictive algorithm efficiently incorporates static information,
such as sex and clinical scores, along with dynamic data. LSTM
networks encode the perfusion time-series data into a latent
space, which is then concatenated with an encoding of the static
variables. This new latent space was used to classify patients.

We present the Continuous Evaluation of VV-ECMO Outcomes
(CEVVO) predictive model for determining successful
decannulation from VV-ECMO using both pre- and
postcannulation data. When using both, the model can
continuously update its prediction, providing a running measure
for patient potential recovery. Such a measure may help
clinicians and patient families make more informed decisions
about care. Using synthetic data sets, we demonstrate that
understanding time dependence is the essential ingredient to
accurate predictions. Our framework also guides the
categorization of patients into high-risk and low-risk groups,
alerting care providers about which patients may be better
candidates for weaning trials and decannulation.

Methods

Problem Formulation
Health care data of this type can be presented in two
components: (1) clinical information that remains unchanged
over the ECMO course, such as age and sex, which are
considered static features, and (2) variables that change over
time, such as laboratory values and perfusion data, which are
considered temporal variables. This study follows the
conventions presented in the study by Yoon et al [21]. We define
S as a vector space of static features, and X as a vector space of
temporal features. Let S ∈ S and X ∈ X be random vectors with
specific values denoted by s and x. Each patient is a tuple of (s,
x1:T), where T is the number of time steps. For clarity, patients
in our training set were indexed by n ∈ 1,...,N. Therefore, the

training data set is denoted as D = (sn,xn,1:T)N
n=1. Each patient

also had a categorical outcome y ∈ {0,1}, which forms vector
Y across all patients, with 0 representing unsuccessful
decannulation and 1 representing success. We define the
probability distribution p(Y|S,X1:T), and our goal is to use
training data D to learn a density p̂(Y|S, X1:T) that best

approximates p(Y|S,X1:T). This is achieved through the
optimization in equation 1:

Minp̂ DKL (p(Y|S,X1:T) || p̂(Y|S, X1:T)) (1)

The abovementioned Kullback-Leibler divergence can be
calculated through the loss function in equation 2. This is
identical to the cross-entropy because the entropy of the ground
truth distribution is 0. The model can best approximate the true
distribution by using backpropagation to minimize equation 2:

L = (−1/N) ∑N
n=1 (yn log(ŷn) + (1−yn) log(1− ŷn)) (2)

Synthetic Data Set
We hypothesized that the high performance of the LSTM-based
architecture is owing to its superior ability to capture long-term
dependencies in the data set. To test this notion, 2 synthetic data
sets of size N=234 and t=2054 were generated using a Gaussian
process regression (GPR) model [22]. As GPR is nonparametric,
it can generate synthetic data without making assumptions about
the underlying relationships between variables and dynamics
over time. By tuning parameters of the generative model, we
can adjust the strength of long-term dependencies in the data.
Using the GPR model, we sample data from a multivariable
normal distribution, in which the covariance encodes
dependencies between time points as shown in equation 3:

ƒ~ (μ, Σ) (3)

where denotes the expected values of the inputs and denotes
the covariance. The covariance is encoded by a radial basis
function (RBF) kernel, as shown in equation 4. The length scale
parameter L of the RBF adjusts the local smoothing. Higher
values for this parameter encode dependencies over a longer
period, leading to smoother dynamics.

k(xi,xj) = exp(-(d(xi,xj)
2/(2L)) (4)

where d(xi,xj) denotes the Euclidean distance. The long-term
dependencies are captured by the probability of observing
specific values conditioned on earlier time points. This
assumption is reasonable in our application to VV-ECMO and
not necessarily held in previous models such as logistic
regression and some deep neural networks. The performance
of previous models on GPR data is thus not affected by different
choices of length scale, whereas the LSTM-based model should
lose its advantage with increasing length scale.

Two groups of synthetic data were created: the first with L=1
and the second with L=100, and it was expected that CEVVO
would be the only one to perform substantially better on L=1.
The other models should have similar performance between
L=1 and L=100. The length scale had to be larger than or equal
to each time step; therefore, L=1 was close to the minimum
allowable length scale.

Model Design
A general overview of this framework is presented in Figure 1.
It is composed of 2 independent heads: a static (clinical) data
encoder and a temporal feature (perfusion) encoder.
Theoretically, each distills the relevant information from the 2
data sets (clinical and perfusion) before concatenating them in
the classification block.
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Figure 1. The overall architecture of the model. The double-headed approach allows the model to integrate static and dynamic data. Solid lines denote
function application, and dashed lines denote loss computation. LSTM: long short-term memory.

The static information encoder is based on an autoencoding
scheme along with an additional final dense layer. The first
dense layer had 32 nodes, the second layer had 33, and the final
layer had 25 nodes. These dimensions were chosen via Bayesian
optimization hyperparameter tuning implemented through the
Keras Python package by Chollet et al [23].

The perfusion information encoder was based on LSTM layers.
These recurrent networks were found to work exceedingly well,
as they were built on the assumption that earlier time points
have marginal effects on later time points. A 1×1 convolutional
layer was first used to expand the feature map before the LSTM
to create a projection shortcut and act as a filter. The tanh
activation function allowed the convolution layer to increase,
decrease, or negate certain input values. Although an additional
LSTM layer could do this processing, the convolution layer
contained significantly fewer parameters. The filter size for the

convolution and the LSTMs was 1024, which was also chosen
via Bayesian optimization hyperparameter tuning.

The classification block concatenated the final outputs of the
clinical information encoder and the perfusion encoder. By this
point, the original clinical inputs were reduced from 32 to 25,
and the original perfusion inputs were reduced from 16,432 to
1024. These 2 final layers were concatenated into a final layer
of 1049. This led to a single output neurone with a sigmoid
activation, which acted as the final prediction. This prediction
was then compared with the ground truth, and the loss was
calculated using the binary cross-entropy. The average of all
the losses was calculated with equation 2. These losses were
backpropagated through the network to make the probability
distribution generated by the model resemble the reality.
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Defining Patient Risk Grouping
For the risk groups to have meaning, the calibration of the model
must be assessed. A calibration plot for the training set was
created and showed an S-shaped misalignment. The
misalignment was corrected using Platt scaling.

Four clinical groups were defined with respect to the calibrated
mean and SD of the model’s predictions on D. Let MD and SD

be the mean and SD of the sigmoid output values of training
data D. The grouping was determined according to equation 5:

| 0, if x <= MD -SD

| 1, if MD - SD < x <=MD

fgroup(x) = | 2, if MD < x <= MD + SD(5)

| 3, if MD + SD < x

Ethical Considerations
This study was conducted in accordance with the institutional
review board of the Columbia University (#AAAT0563).

Data
A retrospective chart review was performed, and continuous
perfusion data and clinical information were collected from 118
patients cannulated to VV-ECMO at a high-volume ECMO
center’s intensive care unit between January 1, 2020, and
December 31, 2021. Patients reconfigured to venoaterial-venous
or venoarterial were excluded.

Patient data were collected from Spectrum Medical software
(Quantum Informatics), which records data from each patient’s
ECMO machine. Six relevant perfusion variables were selected
with expert insight and were collected at 120-second intervals.
These were the pressure change across the membrane lung, the
venous drainage pressure, the blood flow across the ECMO
circuit, the pump head rotation speed (needed to generate the
blood flow), the sweep gas flow (rate of oxygenated gas flowing
through the membrane lung), and length of time the patient was
supported on ECMO. Two additional perfusion variables were
created to account for differences between patients: the flow
across the pump divided by the patient’s BMI and the sweep
gas flow divided by the flow across the pump. In addition to
these 8 perfusion variables, 12 clinical variables were selected:
decannulation result, age, sex, cause of respiratory distress,
BMI, cardiac arrest before ECMO, shock (ie, hemodynamic
instability) before ECMO, reinfusion and drainage cannulation
location, reinfusion and drainage cannula size, and the type of
ventilation provided (Table S2 in Multimedia Appendix 1). The
12 clinical variables included the outcome label, which was not
included in the input data. Further clinical information that was
not included in the model can be found in Table S3 in
Multimedia Appendix 1. An example of 5 successful and 5
unsuccessful patients is shown in Figure 2. The chaotic nature
of the perfusion variables helps to justify more advanced
machine learning methods.
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Figure 2. Extracorporeal membrane oxygenation (ECMO) perfusion data for 5 example patients with successful (green) or unsuccessful (red)
decannulation. RPM: revolutions per minute.

To enable incorporation of all time points in each VV-ECMO
run, the first preprocessing step involved truncation, which
refers to clipping the perfusion data set at different percentages
of the total run. For each patient, in addition to the 100% of the
ECMO run (ie, the full run), the first 90%, the first 80%,..., the
first 10% of the run were appended as additional runs. Thus,
the full data set involved 1180 sequences of data points, 10 for
each patient. Each data point consisted of a 3D perfusion time
series (patient deidentified ID code, time step, and variable) and
2D clinical data (patient deidentified ID code and variable).

Owing to varying ECMO run lengths, each time-series sequence
was standardized to 2054 time steps. This length was the largest
size possible, given the GPU constraints. Standardization was
performed by averaging dense time steps and forward-filling
empty steps. The remaining empty time steps were set to 0.
Truncations were treated as full runs, that is, the final values
for the 10% and the 100% truncation occurred at the same time
step—2053. Each truncation is, in effect, stretched over the
2054 time steps. This ensures that the model is not given hints
about which truncation it is seeing.
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The performance of the model was evaluated through
cross-validation. In each iteration, the list of patient IDs was
randomized and split into 5 groups of 23 patients, each with 18
successful and 5 unsuccessful patients. Three random patients
were excluded to have 5 groups of the same size. Three groups
of patients (69/115, 60% of the total) were chosen as the training
data set, one group (23/115, 20%) was chosen as the validation
set, and one group (23/115, 20%) was chosen as the test set.
This process was repeated 5 times until each group had been
included in the test set once. The patient list was then
randomized again to begin the next cross-fold validation. This
ensured that the training set, validation set, test set, and unused
patients differed each time. In total, there were 12 iterations of
this 5-fold cross-validation.

Each set of training data consisted of 69 patients, and the
validation and test sets had 23 patients. Including all truncations,
the training set had 690 data points, and the validation and test
sets had 230 data points each.

The data sets were then scaled using MinMaxScaler from the
sklearn Python package by Pedregosa et al [24]. The scaler was
trained on the training data and then used to transform all 3 sets.

Synthetic Data Set
The GPRs were generated using the Gaussian process regressor
Python package sklearn Pedregosa et al [24]. Two different data
sets were generated with different values for the length scale of
the RBF kernel (1, 100). A GPR model was first fit to
unnormalized perfusion data from all patients. To generate more
realistic synthetic data, patients were divided into successful
and unsuccessful decannulation groups and sorted according to
the ECMO run time. They were then grouped into triplets based
on these criteria, which resulted in 30 successful triplets and 8
unsuccessful triplets. To create the training data for the GPRs,
each patient’s age, gender, and BMI were extracted and
normalized using the StandardScaler from the sklearn Python
package by Pedregosa et al [24]. These, in addition to a time-step
value, were treated as independent variables. The dependent
variable was the unnormalized perfusion data from the triplet.
Each GPR was trained only on a single perfusion variable, so
each triplet had 8 GPRs, 1 for each perfusion variable. For each
of the 30 successful triplets, each GPR model was sampled 3
times for a total of 90 synthetic successful patients. For the 8
unsuccessful triplets, each GPR was sampled 18 times for a
total of 144 synthetic unsuccessful patients. A diagram of this
process is shown in Figure 3.

Figure 3. Diagram of the process of generating synthetic patient data. Solid boxes indicate patient data (including synthetic), and dotted boxes indicate
a Gaussian process regression (GPR) model fit to real patient data. The sampling of the GPRs step was repeated 2 times, 1 for each kernel length scale.

The triplets were then split into training, validation, and test
sets in the same manner as the original patient data. For each
iteration of the 5 cross-folds validation, the triplets were
randomized and split into groups of 7, each with 6 successful
triplets and 1 unsuccessful triplet. A random set of 3 (38%)
unsuccessful triplets, out of 8, were not included in each
interaction of the 5 cross-folds. This was done to guarantee that
each group had the same number of triplets. Inside the groups,
each of the 6 successful triplets yielded 3 synthetic patients,

whereas the 1 unsuccessful triplet yielded 18 synthetic patients.
This balanced out each group, with a total of 36 synthetic
patients per group. Three groups were assigned to the training
set, one group was the validation set, and the last group was the
test set. Similar to the real data, the test set was rotated until
each synthetic patient was tested.

Model Assessment
After each model was trained, predictions were calculated for
the test sets. Each prediction varied between 0 and 1 owing to
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the sigmoid activation in the final neurone. To assess
performance, area under the receiver operating characteristic
curve (AUROC) and the average precision (AP) were calculated
using the sklearn package. AP approximated the area under the
precision-recall curve. The predictions and ground truths were
sampled 5000 times with replacement to create the AUROC
and AP CIs. The bootstrapping pseudocode for estimating the
AUROC CIs can be found in algorithm S1 in Multimedia
Appendix 1. This bootstrapping code was then repeated for
different subsets of the data. The AUROC and AP CIs were
calculated for each day after cannulation between 0 and 24 (eg,
the AUROC and AP for all data points ending on day 10,
including truncations). These values were plotted along with
their CIs. For the synthetic data, the bootstrapping method was
only used on the entirety of each data set.

A successful model is expected to provide accurate and reliable
insight into whether a patient will be decannulated.

Results

Model Performance on Real Data
The model’s overall performance on the real data achieved an
average AUROC of 0.6937 (95% CI 0.6822-0.7055). The mean
AP was 0.8599 (95% CI 0.8515-0.8682).

A clinically relevant breakdown is AUROC and AP by day, as
shown in Figures 4 and 5. Therefore, we observed that tight CIs
begin to expand after day 11 as the number of data points
decreased. By limiting the time frame to only include patient
data points sampled between days 3 and 11, the AUROC 95%
CI was 0.7048-0.7428, and the AP 95% CI was 0.9074-0.9261.

Figure 4. The area under the receiver operating characteristic curve (AUROC; in green) computed from all samples within a 1-day time frame, for
example, AUROC for samples collected between days 0 and 1 are shown on day 1. Purple bars indicate the number of data points occurring on that day
(right y-axis).

Figure 5. The average precision (AP; in green) computed from all samples within a 1-day time frame, for example, AP for samples collected between
days 0 and 1 are shown on day 1. Purple bars indicate the number of data points occurring on that day (right y-axis).

Model Comparison on Real Data
As detailed in Table S2 in Multimedia Appendix 1, ECMOnet,
Predicting Death for Severe Ards on VV-ECMO, Respiratory
ECMO Survival Prediction, Roch, Venovenous ecmo mortality

score, and Prediction of Survival on ECMO Therapy score rely
on either logistic regression or recursive partitioning analysis
to determine the patient grouping or scoring classification. To
provide a fair comparison with the proposed model, the AUROC
and AP calculations were repeated with a logistic regression
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model and a decision tree. Both models were trained on the
same training data and assessed on the same test data as the
proposed model. Moreover, the 95% CIs were determined with
the bootstrapping algorithm presented in algorithm S1 in
Multimedia Appendix 1. Furthermore, to provide a comparison
with the study by Ayers et al [13], a dense neural network was
included. Finally, a Naive Bayes model was included to
demonstrate the necessity of including dependence between
time points. Unlike the LSTM, Naive Bayes assumes conditional

independence between features, making previous models
incapable of understanding the time series as anything beyond
a bag of values. Table 1 demonstrates that CEVVO is the most
effective model for ECMO data, showing a significant
improvement compared with other methods. Using a
permutation test, CEVVO demonstrated a significantly higher
AUROC (all P values <.001) and AP (all P values <.04) than
all other methods.

Table 1. Comparison of Continuous Evaluation of Venovenous Extracorporeal Membrane Oxygenation Outcomes (CEVVO) with other models used
previously.

P value compared with CEVVO
(AP)

P value compared with CEVVO
(AUROC)

Total APb, 95% CITotal AUROCa, 95% CIModel name

——c0.8515-0.86820.6822-0.7055CEVVO

.04<.0010.8396-0.85660.6395-0.6626Logistic regression

<.001<.0010.8111-0.82550.5876-0.6081Naive Bayes

<.001<.0010.8148-0.83220.5673-0.5908Dense network

<.001<.0010.5273-0.54670.5419-0.5596Decision tree

aAUROC: area under the receiver operator characteristic.
bAP: average precision.
cNot applicable.

Risk Classification System
The calibration plot of the training data is shown in Figure S1
in Multimedia Appendix 1. The classic S-shaped misalignment
indicated that Platt scaling would improve the calibration. Both
the calibrated training and test sets are shown in Figure 6.

Using the predictions as an indication of favorable or
unfavorable outcomes, patients can be stratified into groups
based on their prediction value using equation 5. The clinically
relevant measures of performance are shown in Figures 7 and

8. These charts were created by finding the nearest predicted
value of each patient before either 72 or 96 hours, sorting them
into groups according to equation 5, and then charting their
decannulation result. Patients decannulated before 72 or 96
hours were excluded. In the 72-hour case, the groups had a
successful decannulation rate of 58% (7/12) for group 0, 77%
(17/22) for group 1, 88% (42/48) for group 2, and 92% (11/12)
for group 3. In the 96-hour case, the groups had successful
decannulation rates of 54% (6/11), 85% (17/20), 81% (42/50),
and 100% (9/9), respectively.

Figure 6. The calibration plot for both the training and test set prediction. Each set of predictions has been scaled. The green line shows the theoretical
perfect calibration, and the purple bars show the number of data points in each bin.
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Figure 7. Patient result based on groupings at 72 hours. ECMO: extracorporeal membrane oxygenation.

Figure 8. Patient result based on groupings at 96 hours. ECMO: extracorporeal membrane oxygenation.

A Boschloo exact test between groups 0 and 3 yielded P values
of .04 for 72 hours and .01 for 96 hours.

Necessity of Time Dependencies
To ensure that each of the synthetic data sets were comparable
with each other and the original, a t-distributed Stochastic
Neighbor Embedding [25] was used (Figure 9). A more concrete
example is shown in Figure 10, where a single synthetic input

was run through both the L=1 and L=100 GPRs and then
compared with an original patient.

The procedure specified in the Model Assessment section was
repeated for CEVVO, logistic regression, and dense network
on the synthetic data set. The 95% CI for the AUROC is shown
in Table 2. The expected result is observed where logistic
regression and the dense network show no change in
performance. CEVVO shows a significant drop in performance
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despite having similar, nonlinear properties to the dense network.

Figure 9. 2D t-distributed Stochastic Neighbor Embedding (tSNE) of the 2 synthetic sequential data set and the original patient data. Each dot represents
a synthetic patient; the red dots indicate data generated using a radial basis function (RBF) with L=1, the green dots indicate data generated using length
L=100, and the blue dots indicate the original data. The significant overlap connotes similarity between the literal values.

Figure 10. An example synthetic patient, shown in both the L=1 and L=100 data sets compared with a similar real patient (in blue). ECMO: extracorporeal
membrane oxygenation; RPM: revolutions per minute.

Table 2. Comparison of Continuous Evaluation of Venovenous Extracorporeal Membrane Oxygenation Outcomes (CEVVO) with top-performing
models used previously on each synthetic data set.

P value between L=1 and
L=100

Total AUROC for L=100 synthetic data set,
95% CI

Total AUROCa for L=1 synthetic data set,
95% CI

Model name

<.0010.7424-0.78490.8223-0.8583CEVVO

.460.7814-0.81900.7813-0.8213Logistic regression

.170.6924-0.73520.7080-0.7513Dense network

aAUROC: area under the receiver operator characteristic.

JMIR Biomed Eng 2024 | vol. 9 | e48497 | p.137https://biomedeng.jmir.org/2024/1/e48497
(page number not for citation purposes)

Fuller et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Discussion

Principal Findings
VV-ECMO is an invasive and resource-intensive therapy used
for patients with refractive respiratory failure. Decannulation
from ECMO is generally performed through a weaning trial, in
which the ECMO support, measured as flow through the circuit,
is titrated down. Experienced clinician decision-making with
careful consideration of patient hemodynamics, response to
therapy, and pathophysiology informs the decision on when to
perform the weaning trial. Our study investigates a novel
approach to analyzing clinical information and perfusion
hemodynamics in real time to assist clinicians with the decision
of when to move forward with decannulation from VV-ECMO.

Although CEVVO was more accurate at predicting the success
of decannulation than other models, the model should be
considered as an additional data point to guide clinical
management. Patients stratified to the high-risk group had a
higher risk of therapy failure, with >50% of the patients in this
group successfully decannulated in both the 72 and 96 hour
cases. As expected, the calibration plot also showed that patients
in the low-risk group were decannulated successfully more
often. Using these data, clinicians may reference the model and
elect to start weaning trials on patients stratified to the low-risk
cohort sooner.

Comparison With Prior Work
To the best of our knowledge, CEVVO is the first to use ECMO
perfusion data and a deep learning architecture to provide
clinical decision support for the decannulation decision for
VV-ECMO. By using a model that can successfully combine
dynamic and static data, significantly improved performance
on binary classification can be achieved when compared with
other models. Using perfusion data and clinical information,
CEVVO was trained to classify patients by decannulation
outcome (successful or unsuccessful). The performance was
evaluated using 3 criteria: AUROC, AP, and the clinical
usefulness of predictions. Relative to other models noted in the
literature, such as logistic regression and decision trees, the
LSTM-based model showed significant improvement on the
ECMO machine data set.

Performance
The AUROC and AP scores for the full data set had 95% CIs
of 0.6822-0.7055 and 0.8515-0.8682, demonstrating a fair ability
to predict exact outcomes. This was marginally improved to
95% CIs of 0.7048-0.7428 and 0.9074-0.9261 by limiting the
data set to only consider data points collected 3 to 11 days after
cannulation. However, these numbers only represented the
average performance.

Synthetic Data
The use of GPR-created data sets further cemented the notion
that the novelty of the architecture, understanding time
dependence, is truly what is responsible for the performance
edge over other models. The assumption of temporal dependence
is inherent in the data as it is medically motivated. There is an
expectation that the specific value of the perfusion data shares

much mutual information with the outcome. The L=1, L=100,
and original data sets are very similar in their t-distributed
Stochastic Neighbor Embedding projection, differing only
slightly in the specific values. However, as shown in Figure 10,
within the L=100 group, the local structure was obliterated,
leading to a loss of information about how later time points
affect the outcome probability. Logistic regression explicitly
assumes that each time point is independent, and thus, it has
highly similar AUROC distributions (P=.46) compared with
the dense network (P=.17) and CEVVO (P<.001). The nonlinear
nature of dense neural networks is able to approximate time
dependence but is less efficient than the LSTM-based
architecture.

Risk Classification
These initial measures of performance were then used to
contextualize the clinical predictions: stratifying people into
groups, based on associated risk, to predict recovery. The
numerical value of each patient’s prediction was divided into
groups, and patients were followed to their decannulation result.
For the grouping to be useful, there should be some difference
in the success percentage that increases from the high-risk group
to the low-risk group. This result was observed in this study.
When measured at 72 hours, 58% (7/12) of the patients in the
high-risk group had a successful decannulation, whereas 92%
(11/12) of the patients in the low-risk group were successfully
decannulated (P=.04). When measured at 96 hours, the
successful decannulation percentage was similar: 54% (6/11)
of the patients in the high-risk group and 100% (9/9) patients
in the low-risk group were successfully decannulated (P=.01).

Limitations
Cohort studies using retrospective data collection are subject
to inherent bias. We mitigated bias in this study by including
all consecutive patients supported on VV-ECMO at our center.

Incomplete data recording from the ECMO devices may have
contributed to this model. In the future, this could be mitigated
by increasing the sample size and improving data capture
methodology.

Clinically, patients with different indications for ECMO support
vary in their hospital course, and the number of different disease
etiologies may have been too few for the model to learn. Larger
cohorts may help mitigate the issues related to an underpowered
data set. Furthermore, model performance declined beyond a
period of approximately 11 days, which may be attributed to a
challenging hospital course with heterogeneous factors and an
increased risk for complications. The effectiveness of ECMO
as a long-term therapy remains unclear, and our data support
this conclusion.

Future Direction
In the future, more information about each patient’s hospital
course, such as administration of vasopressors, ventilator
settings, imaging studies, and other interventions may be used
to develop an improved model. Indeed, more data and reducing
unaccounted variables may improve model performance over
longer periods. Extending this study to include patients on other
forms of ECLS, such as VA-ECMO and cardiogenic shock,
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may be helpful in guiding clinical management. We suggest
that larger and more comprehensive repositories of health care

data may improve the management of patients considered most
critically ill.
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Abstract

Background: The increasing adoption of telehealth Internet of Things (IoT) devices in health care informatics has led to concerns
about energy use and data processing efficiency.

Objective: This paper introduces an innovative model that integrates telehealth IoT devices with a fog and cloud computing–based
platform, aiming to enhance energy efficiency in telehealth IoT systems.

Methods: The proposed model incorporates adaptive energy-saving strategies, localized fog nodes, and a hybrid cloud
infrastructure. Simulation analyses were conducted to assess the model’s effectiveness in reducing energy consumption and
enhancing data processing efficiency.

Results: Simulation results demonstrated significant energy savings, with a 2% reduction in energy consumption achieved
through adaptive energy-saving strategies. The sample size for the simulation was 10-40, providing statistical robustness to the
findings.

Conclusions: The proposed model successfully addresses energy and data processing challenges in telehealth IoT scenarios.
By integrating fog computing for local processing and a hybrid cloud infrastructure, substantial energy savings are achieved.
Ongoing research will focus on refining the energy conservation model and exploring additional functional enhancements for
broader applicability in health care and industrial contexts.

(JMIR Biomed Eng 2024;9:e50175)   doi:10.2196/50175
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cloud computing; energy-efficient; fog computing; Internet of Things; IoT; telehealth

Introduction

Overview
Health care is a critical global industry, and the advent of the
Internet of Things (IoT) and cloud computing has significantly
transformed health care system management. The
ever-increasing data volume generated by these systems
demands efficient, energy-saving computing platforms. In
response, we present a groundbreaking energy-efficient model
that seamlessly integrates telehealth IoT devices with fog and
cloud computing–based platforms, offering a unique solution

to address energy efficiency and data processing challenges.
The rapid proliferation of IoT devices in health care has
transformed approaches to patient care, diagnostics, and
treatment. Telehealth, a key IoT health care application, has
proven its potential to enhance care quality, reduce costs, and
boost patient satisfaction. Despite these benefits, issues such as
scalability, latency, and resource management persist, along
with the significant challenge of energy consumption in smart
devices within fog environments [1]. As a result, energy
efficiency must be prioritized in the development of fog
computing solutions, given its substantial impact on reducing
carbon footprints and mitigating climate change effects. The
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large-scale deployment of telehealth IoT devices also raises
concerns about energy consumption and data processing
efficiency in delivering quality health care services. Intelligent
choices for telehealth IoT devices should consider factors such
as device movement or relevant environmental conditions to
optimize energy consumption and manage associated equipment
effectively. Typically, cloud-based analytical assessments are
conducted for these devices [2]. To tackle these challenges, we
propose an energy-saving model that integrates telehealth IoT
devices with a fog and public or private cloud computing–based
platform. The aim of the study is to develop an energy-efficient
model that optimally integrates telehealth IoT devices with fog
and cloud computing platforms, addressing challenges related
to energy consumption, scalability, and data processing
efficiency in delivering quality medical and patient services.

Telehealth IoT devices refer to a wide range of interconnected
medical devices and sensors that facilitate remote health care
services. These devices enable the continuous monitoring of
patient’s vital signs, timely diagnostics, and personalized
treatment plans, thereby improving the overall quality of health
care. Some common examples of telehealth IoT devices include
wearable health monitors, smart glucose meters, remote patient
monitoring systems, and telemedicine platforms. The large-scale
deployment of telehealth IoT devices presents several challenges
[3], including energy consumption, data management, latency,
security and privacy, scalability, and interoperability.

Related Work
Telehealth has emerged as a promising solution to address
various challenges in health care, such as accessibility, cost,
and quality of care [4]. IoT devices play a significant role in
telehealth applications, enabling remote monitoring, diagnostics,
and treatment [2]. Several studies have investigated the
implementation and efficacy of telehealth IoT devices in various
health care scenarios, highlighting their potential to improve
patient outcomes and satisfaction [5,6]. Fog computing has been
identified as a promising approach to address the challenges
associated with large-scale IoT deployments in health care, such
as latency, energy consumption, and data management [7,8].
Researchers have proposed several fog computing–based
architectures and frameworks for health care applications,
demonstrating the potential of fog computing to enhance the
performance and efficiency of telehealth IoT devices [9-11].
Cloud computing has gained significant attention in health care
due to its scalability, cost-effectiveness, and advanced data
analytics capabilities [12,13]. Several studies have explored the
integration of cloud computing with telehealth IoT devices,
showing its potential to address the challenges related to data
storage, processing, and security [14-16].

Energy efficiency is critical in large-scale IoT deployments,
especially in health care applications where device longevity
and reliability are essential [17]. Researchers have proposed
various energy-saving models and strategies for IoT devices,
including adaptive power management [18], energy-efficient
routing protocols [19], and data compression techniques [20].
However, few studies have specifically focused on
energy-saving models that integrate telehealth IoT devices with
fog and cloud computing–based platforms. The integration of

fog and cloud computing has emerged as a promising approach
to harness the benefits of both paradigms and address the
challenges of large-scale IoT deployments [21,22]. Several
studies have proposed models and frameworks that combine
fog and cloud computing for various IoT applications [23-25],
but few have specifically targeted energy-saving in telehealth
IoT deployments.

In recent years, several simulation methods have been developed
to study the integration of fog nodes in IoT devices and cloud
computing. Gupta et al [26] introduced iFogSim, a toolkit for
modeling and simulating resource management techniques in
IoT, edge, and fog computing environments. Oueis et al [27]
presented a simulation study on load distribution in small-cell
cloud computing using fog computing and proposed a fog
balancing technique to optimize resource allocation and reduce
latency. Barcelo et al [28] explored IoT-cloud service
optimization through simulation in smart environments,
presenting a novel optimization framework that uses fog nodes
to reduce latency and energy consumption. Zeng et al [29]
conducted a comparative study of IoT cloud and fog computing
simulations using iFogSim and Cooja, discussing the advantages
and limitations of both simulators and providing insights into
selecting an appropriate tool for specific scenarios. Lastly, Byers
and Wetterwald [30] discussed the concept of fog computing
and its importance in distributing data and intelligence for IoT
resiliency and scalability, presenting various simulation models
and techniques used to evaluate the performance of fog
computing in IoT environments. Several studies have focused
on the Yet Another Fog Simulator (YAFS) framework, a
simulator designed for modeling and simulating fog computing
environments in IoT scenarios. Bermejo et al [31] introduced
YAFS, presenting the architecture, components, and use cases
of the simulator, demonstrating its effectiveness in modeling
and simulating fog computing deployments. García et al [32]
showcased YAFS’s ability to model and simulate fog computing
scenarios and analyze the performance of different scheduling
algorithms. In a comparative study, Rodríguez et al [33]
analyzed the features, capabilities, and limitations of YAFS,
iFogSim, and EdgeCloudSim simulators, providing insights
into selecting the most suitable tool for specific fog computing
scenarios.

Several studies have explored different aspects of telehealth
simulations, fog nodes, IoT devices, and cloud computing for
energy-saving purposes. Aazam and Huh [34] discussed a smart
gateway–based communication approach using fog computing
for energy-saving in the Cloud of Things, which can be applied
to various IoT applications, including telehealth. Verma and
Sood [35] presented a fog-assisted IoT framework for patient
health monitoring in smart homes, focusing on energy efficiency
and reduced latency through a decentralized fog computing
architecture. Koubaâ et al [36] proposed a fog-based emergency
and health care system for smart cities, which leverages fog
nodes and IoT devices to optimize energy consumption and
provide real-time health care services, thus addressing
energy-saving concerns in telehealth scenarios. Sareen et al [37]
introduced an energy-efficient context-aware framework for
managing application execution in cloud-fog environments,
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which can potentially improve energy efficiency in various IoT
applications, including telehealth scenarios.

Methods

Model Overview
The proposed energy-saving model is designed to integrate
telehealth IoT devices with a fog and cloud computing–based
platform, leveraging the advantages of both paradigms to
optimize energy consumption and ensure efficient data
processing. The model comprises 3 main components: IoT
devices, fog nodes, and public or private cloud servers, which
are interconnected through a communication network.

The model architecture is shown in Figure 1 [38].

1. IoT devices: telehealth IoT devices, such as wearables,
sensors, and remote monitoring systems, collect and
transmit patient data in real time. These devices can
dynamically adjust their power states (eg, active, idle, and
sleep) based on their tasks, reducing energy consumption
without compromising the quality of health care services.

2. Fog nodes: fog nodes, located near IoT devices, serve as
intermediate processing units. They perform localized data
processing, analytics, and storage, reducing the amount of
data transmitted to the cloud servers.

3. Cloud servers: cloud servers provide a robust infrastructure
for large-scale data storage, processing, and advanced
analytics.

4. Communication network: a communication network
connects IoT devices, fog nodes, and cloud servers, enabling
seamless data transmission and task allocation.

Figure 1. Telehealth Internet of Things (IoT) devices integrated with fog nodes and a private or public cloud architecture model. LAN: local area
network.

The telehealth IoT network depicted in the diagram is designed
to ensure efficient and secure data transmission between the
different network components. To ensure network security,
firewalls are placed between IoT devices and fog nodes. This
ensures that unauthorized access to the network is prevented,
and sensitive health care data are kept confidential. To process
the data requests, the fog nodes are equipped with data analytics
functions that enable them to intelligently assign different types
of requests to either fog nodes, a private cloud, or a public cloud.
This intelligent decision-making process is more effective and
efficient than the traditional “first-come, first-served” approach.
The gateway and router are integral components in the network
that enable seamless data transmission between the fog nodes
and cloud instances. The gateway acts as the entry point for the
network and connects the IoT devices to the local fog nodes. It
is responsible for handling the data transmission and conversion
between different protocols used by IoT devices and fog nodes.
The router, on the other hand, is responsible for directing the
data traffic between the fog nodes and cloud instances based

on various factors, such as the sensitivity, priority, and latency
requirements of the data. It determines which data should be
sent to the cloud and which data should be processed by the fog
nodes, ensuring efficient use of network resources. The router
also handles the communication between different fog nodes
and cloud instances, enabling seamless data transmission across
the network.

The proposed telehealth IoT system shown in Figure 2
intelligently manages data transmission based on the sensitivity
and priority of the data. For high-sensitivity data, the system
ensures privacy and security by sending it directly to the private
cloud, which then transfers the data to authorized health facilities
as needed. On the other hand, low-sensitivity but high-priority
requests are routed to the fog nodes as they have the capability
to process urgent requests in a timely manner, such as in
life-threatening emergency situations. These requests are then
transmitted to ambulance systems for immediate treatment.
Lastly, data with low sensitivity and low priority are sent to the
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public cloud as it has more space and scalability to store and
process such data. The public cloud can also serve as a
repository for future research or clinical purposes.

By allocating data transmission to the appropriate destination,
the proposed system ensures efficient and effective data
processing while maintaining privacy and security for sensitive
health care data. This approach also optimizes energy
consumption and reduces latency, ensuring a seamless
experience for health care providers and patients. The
categorization of high and low sensitivity and high and low
priority data sent from telehealth IoT monitor devices can
depend on various factors, including the specific use case,
regulatory requirements, and patient needs. One possible
approach could be to use threshold values based on vital signs
such as pulse and heartbeat to categorize the data. For example,
data related to vital signs that fall within normal ranges may be
classified as low sensitivity and low priority, as they do not
require immediate attention. Data related to vital signs that are
outside the normal range but do not pose an immediate threat
to the patient’s health may be classified as low sensitivity but
high priority. Data related to vital signs that indicate a
life-threatening condition, such as cardiac arrest, may be
classified as high sensitivity and high priority, requiring
immediate attention from health care providers.

The exact vital sign thresholds for patient emergencies can vary
depending on a range of factors, including the age and health
condition of the patient, the specific symptoms, and other
medical history [39]. In general, some common vital sign
thresholds used to classify emergencies include the following:

• Heart rate: a heart rate above 100 bpm or below 60 bpm
may be indicative of an emergency [40].

• Blood pressure: a systolic blood pressure (the top number)
above 180 mm Hg or below 90 mm Hg, or a diastolic blood
pressure (the bottom number) above 110 mm Hg or below
60 mm Hg may indicate an emergency [41].

• Respiratory rate: a respiratory rate above 30 breaths per
minute or below 10 breaths per minute may be indicative
of an emergency [42].

• Oxygen saturation: an oxygen saturation level below 90%
may be indicative of an emergency [43].

However, it is important to note that this is just one possible
approach, and the categorization of data should be customized
based on the specific needs of the patient and health care
provider. It is also important to comply with relevant regulations
and ensure patient privacy and security while handling sensitive
health care data.

Figure 2. Network topology for the proposed Internet of Things (IoT) devices integrated with fog nodes and cloud. A brief overview of the components
in the network topology: (1) IoT devices (blue circles) represent individual IoT devices in the network, each associated with a specific fog node. (2)
Gateways (GT; orange hexagons) are used to connect the IoT devices to the fog nodes. (3) Fog nodes (FN; green triangles) are intermediate computing
resources that process and store data from IoT devices. (4) A router (red square) connects the fog nodes to the private cloud and public cloud. (5) A
private cloud (purple square) and a public cloud (yellow square) are the 2 cloud resources in the network.

Key Components and Energy-Saving Strategies
The proposed energy-saving model incorporates several
strategies to minimize energy consumption.

Task Allocation
The model intelligently allocates tasks between fog nodes and
cloud servers based on factors such as computational capacity,
proximity to IoT devices, and current workload. This ensures
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efficient data processing and reduces energy consumption for
data transmission.

Adaptive Power Management
IoT devices and fog nodes can dynamically adjust their power
states (eg, active, idle, and sleep) based on their tasks and
workload, ensuring optimal energy consumption without
compromising the quality of health care services.

Data Compression and Aggregation
Data generated by IoT devices can be compressed and
aggregated at the fog nodes before transmission to cloud servers,
reducing the volume of data transmitted and, consequently,
energy consumption.

Network Optimization
The communication network can be optimized to minimize
energy consumption by using energy-efficient routing protocols
and minimizing transmission distances.

Simulation Study
To assess the effectiveness of the proposed energy-efficient
model, we developed a simulation model that emulates a
real-world telehealth scenario focused on remote patient
monitoring. Within this simulated scenario, numerous patients
with chronic conditions are equipped with wearable IoT devices
that continuously track vital signs such as heart rate, blood
pressure, and blood glucose levels. The gathered data are
processed and analyzed by the integrated fog and cloud
computing–based platform, facilitating timely diagnostics and
personalized treatment plans. Textbox 1 contains the pseudocode
for the provided code.

In short, this code is devised to emulate an IoT network,
scrutinizing the influence of fog nodes on energy consumption
while providing a graphical representation of the network
architecture to elucidate the connections among IoT devices,
fog nodes, and cloud services. IoT devices transmit data to their
corresponding destinations, such as fog nodes, private clouds,
or public clouds, contingent upon their sensitivity and priority
attributes. The energy expenditure for data transmission to these
target locations differs; hence, the code performs a simulation
to determine the residual energy for each device under 2 distinct
scenarios (ie, with and without fog nodes). Subsequently, the
code generates a bar chart to depict the energy consumption
patterns of IoT devices in both cases, and it stores the energy
usage outcomes in 2 separate Microsoft Excel (Microsoft
Corporation) files, enabling in-depth examination and
assessment of the results.

The algorithm of the code can be analyzed in the following
steps:

1. Initialization: create IoT devices, fog nodes, and cloud
instances with their respective properties.

2. Connection: connect IoT devices to fog nodes and then fog
nodes, and determine which data are transferred to cloud
instances (private and public). Each device is connected to
a corresponding fog node.

3. Data transmission simulation: simulate data transmission
from IoT devices to their respective fog nodes, and then

fog nodes assign the requests to a private cloud or a public
cloud based on their priority and sensitivity. If the
sensitivity of the device is “high,” data are sent to the
private cloud. If the sensitivity is “low” and the priority is
“high,” there is a chance (defined by self.fog_node
[chance]) that data are sent to the fog node. If this condition
is not met, the device does not send data. If the sensitivity
is “low” and the priority is “low,” data are sent to the public
cloud.

4. Energy consumption calculation: calculate the energy
consumed by each IoT device during data transmission,
considering the parameter of latency. Different energy costs
are associated with sending data to different destinations
(fog nodes, private cloud, or public cloud).

5. Comparison: compare the energy consumption of IoT
devices when using fog nodes and when not using fog
nodes. (1) Run the simulation with fog nodes connected
and store the remaining energy for each device. (2) Reset
the energy of the devices, disconnect them from fog nodes,
and run the simulation without fog nodes, storing the
remaining energy for each device again.

6. Export the energy usage results to Excel files for both cases
(with and without fog nodes).

7. Visualize the network topology with devices, fog nodes,
and clouds using the show_topology function.

In this enhanced task allocation algorithm, we incorporate
additional factors such as device distance, data sensitivity,
request priority, energy consumption, and latency to provide a
more sophisticated and adaptable solution for large-scale
telehealth IoT deployments. The algorithm starts by defining
parameters such as latency, distance, energy consumption, and
sensitivity thresholds. The task queues for each fog node and
cloud server are initialized. For each task type, average
processing times, energy consumption, sensitivity, and priority
are calculated for each fog node and cloud server according to
some random data sent from each IoT device. The algorithm
then assesses the latency, priority, sensitivity, and energy
consumption for transmitting data from each device to each fog
node and then to the private and public cloud server. Based on
these factors, the algorithm selects the optimal fog node and
cloud server for each device, ensuring that the chosen nodes
meet the specified thresholds for latency, sensitivity, and energy
consumption. Tasks are allocated to fog nodes and cloud servers
based on data sensitivity, priority, and energy consumption,
ensuring that the selected nodes do not exceed the energy
consumption threshold. If no suitable nodes are found,
alternative energy-saving strategies may be considered, or the
energy consumption threshold may be adjusted. Finally, the
tasks are processed in fog nodes and cloud servers based on
their queues. By considering these additional factors, the
enhanced algorithm can provide better energy-saving
performance and adaptability to various telehealth scenarios,
ensuring that the large-scale deployment of telehealth IoT
devices on a fog and cloud computing–based platform remains
efficient and effective.

Textbox 2 contains a task allocation algorithm for telehealth
IoT devices integrated with a fog and cloud computing–based
platform.
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Textbox 1. The pseudocode for the provided code.

1. Define IoTDevice class

• Initialize with attributes: id, distance, priority, sensitivity, fog_node, private_cloud, public_cloud, energy, transmit_power, idle_power, and
transmit_time

• Define send_data method

• Check if the device has energy left

• Send high-sensitivity data to private cloud if sensitivity is high

• Send low-sensitivity, high-priority data to fog node if priority is high and fog_node exists

• Send low-sensitivity, low-priority data to public cloud otherwise

• Define idle method to reduce energy based on idle power and time

2. Define FogNode class

• Initialize with attributes: id, public_cloud, energy, latency, devices, fog_energy_cost, cloud_energy_cost, chance, process_power, idle_power,
and process_time

• Define connect_device method to connect a device to the fog node

• Define store_data method to store data from a device with given sensitivity and priority

• Define idle method to reduce energy based on idle power and time

• Define send_data method to send data from connected devices based on their sensitivity and priority

3. Define PublicCloud class

• Initialize with attributes: id, energy, latency, and cloud_energy_cost

• Define store_data method to store data from a device

4. Define simulate function

• Create Internet of Things (IoT) devices with random priority and sensitivity

• Create fog nodes connected to a public cloud

• Connect IoT devices to fog nodes

• Connect IoT devices to private and public clouds

• Initialize lists to store energy usage results

• Simulate data transmission with fog nodes, store energy usage results

• Store energy usage with fog nodes

• Reset device energy

• Disconnect devices from fog nodes

• Simulate data transmission without fog nodes, store energy usage results

• Store energy usage without fog nodes

• Create energy usage bar plot and save as an image

• Save energy usage results to Microsoft Excel files (with and without fog nodes)
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Textbox 2. Task allocation algorithm for telehealth Internet of Things devices integrated with a fog and cloud computing–based platform.

1. Define parameters

• Internet of Things (IoT) devices: D= {d1, d2, ..., dn}

• Fog nodes: F= {f1, f2, ..., fm}

• Cloud servers: C= {c1, c2}

• Task types: T= {t1, t2, ..., tq}

• Data sensitivity threshold: S_t

• Data priority threshold: Pr_t

• Latency threshold: L_t

• Energy consumption threshold: E_t

2. Initialize task queues for each IoT device, fog node, and cloud server

• Q_D [i] = {} for all i in D

• Q_F [j] = {} for all j in F

• Q_C [l] = {} for all l in C

3. For each task type t in T

• Calculate the average processing time P_t and energy consumption E_t for each IoT device i in D and fog node j in F.

• Calculate average energy consumption E_t, sensitivity S_t, and priority Pr_t for each IoT device i in D and fog node j in F.

4. For each device d in D and task type t in T

• Calculate the latency L_dt for transmitting data from device d to each fog node i in F and cloud server j in C.

• Calculate the priority Pr_dt, sensitivity S_dt, energy consumption E_dt for device d, and each fog node i in F and cloud server j in C.

• Find the fog node j* and cloud server l* with the minimum latency for device i*, considering Pr_t, S_t, and E_dt:

• j* = argmin_j(L_dt) for j in F, such that L_dt <= L_t, Pr_dt <= Pr_t and S_dt <= S_t

• l* = argmin_l(L_dt) for l in C, such that L_dt <= L_t, Pr_dt <= Pr_t and S_dt <= S_t

5. Allocate tasks from devices to fog nodes and cloud servers: for each device d in D and task type t in T

• If S_dt [j*] ≤ S_t, then allocate task t to cloud server l* and add it to the queue: Q_C [l*].append((d, t))

• If Pr_dt [j*] ≤ Pr_t, then allocate task t to fog node j* and add it to the queue: Q_F [j*].append((d, t))

• Else if Pr_dt [l*] ≤ Pr_t, then allocate task t to cloud server l* and add it to the queue: Q_C [l*].append((d, t))

• Otherwise, consider alternative energy-saving strategies or adjust the energy consumption threshold E_t.

6. Process tasks in fog nodes and cloud servers based on their queues

• For each fog node j in F, process tasks in Q_F [j]

• For each cloud server l in C, process tasks in Q_C [l]

This algorithm aims to balance the load between fog nodes and
cloud servers while considering latency, sensitivity, request
priority, and energy consumption constraints. It can be further
optimized by incorporating additional factors, such as device
mobility. It is mainly focused on simulating data transmission
from IoT devices to different destinations based on their priority
and sensitivity, as well as comparing the energy consumption
given the various latency when using fog nodes versus not using
them. The objective is to demonstrate the potential benefits of
using fog nodes in terms of energy efficiency for IoT devices.

Results

Parameters in Results
Based on the simulation results, we can analyze the impact of
different parameters on the energy efficiency and performance
of the proposed telehealth model with and without fog
computing. The parameters in the results are given below.

Snapshot Interval
The snapshot interval parameter represents the frequency at
which the IoT devices send their data to the fog nodes or cloud
servers. As the snapshot interval increases, the frequency of
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data transmission decreases. With a snapshot interval of 1, the
IoT devices are sending data continuously. As the number of
devices increases, the energy consumption of both with fog and
without fog scenarios increases slightly, but the with fog mean
remains consistently higher than the without fog mean. With a
snapshot interval of 5, the IoT devices are sending data less
frequently, which results in reduced energy consumption. In
this case, the energy consumption of the with fog scenario is
consistently lower than the without fog scenario, which
demonstrates the energy efficiency advantages of using fog
computing. With a snapshot interval of 10, the IoT devices send
data even less frequently, and the difference in energy
consumption between the with fog and without fog scenarios
becomes more pronounced. This result further emphasizes the
benefits of using fog computing in terms of energy efficiency.

Number of Devices
The number of devices parameter refers to the number of
telehealth IoT devices in the network. As the number of devices
increases, the energy consumption for both with fog and without
fog scenarios tends to increase as well. This is expected, as more
devices lead to higher data transmission and processing loads.
However, the increase in energy consumption is consistently
smaller in the with fog scenario compared to the without fog
scenario across all snapshot intervals. This shows that the
proposed fog-based model is more scalable and can better handle
the energy requirements of a growing number of devices.

With Fog Mean and Without Fog Mean
The with fog mean and without fog mean parameters represent
the average energy consumption in the scenarios with and
without fog computing, respectively. Across all snapshot
intervals and several devices, the with fog mean is generally

lower than the without fog mean, indicating that the fog-based
model is more energy-efficient than the cloud-only model.

With Fog SD and Without Fog SD
The with fog SD and without fog SD parameters represent the
SD of the energy consumption in the scenarios with and without
fog computing, respectively. In general, the SD values are lower
in the with fog scenario compared to the without fog scenario.
This suggests that the energy consumption is more consistent
and less variable in the fog-based model, which could lead to
more predictable and stable system performance.

With Fog 95% CI and Without Fog 95% CI
The CI in the simulation code is a range within which a certain
percentage of the population parameter is expected to lie, with
a specified level of confidence. In the context of the provided
simulation results, the 95% CIs represent the range within which
the true mean performance of the system (either with or without
fog computing) is likely to fall, with a certain level of
confidence, typically 95%.

A 95% CI is calculated using the sample mean, sample SD, and
sample size. The formula for a 95% CI is:

CI = sample mean ± (1.96 × [sample SD/sqrt {sample
size}])

The 95% CI helps to quantify the uncertainty in the estimation
of the true mean performance. A narrower 95% CI indicates a
more precise estimate, while a wider interval suggests more
uncertainty.

Analysis of Results
Table 1 contains the summary of statistical results.

Table 1. Summary of statistical results.

Without fog, 95% CIWithout fog, mean (SD)With fog, 95% CIWith fog, mean (SD)Number of devicesSnapshot interval

89.69-89.7989.74 (0.05)90.11-90.7690.43 (0.45)101

89.69-89.7989.74 (0.06)90.30-90.7790.53 (0.33)201

89.71-89.7889.74 (0.04)90.45-90.7890.61 (0.23)301

89.71-89.9089.76 (0.05)90.38-90.7290.55 (0.24)401

85.94-86.1386.04 (0.13)86.89-87.8987.39 (0.70)105

85.86-85.9585.91 (0.06)86.44-86.7386.59 (0.21)205

85.95-86.0886.01 (0.09)86.70-87.3487.02 (0.46)305

85.95-86.0586.00 (0.07)87.12-87.5087.30 (0.27)405

81.27-81.4481.36 (0.11)82.34-83.3882.85 (0.73)1010

81.33-81.5081.42 (0.11)82.83-83.7283.28 (0.63)2010

81.24-81.4381.33 (0.12)82.80-83.0382.62 (0.59)3010

81.31-81.4181.36 (0.07)82.43-82.9582.7 (0.37)4010

Here is a step-by-step analysis of the results (Table 1):

1. Observe the “With fog, mean (SD)” and “Without fog,
mean (SD)” columns for each combination of “Snapshot
interval” and “Number of devices.” In all cases, the with
fog mean is higher than the without fog mean, indicating

that, on average, the remaining energy is higher when using
fog computing.

2. Look at the 95% CIs for both “with fog” and “without fog”
scenarios. If the 95% CIs do not overlap, it suggests that
the difference in energy remaining between the 2 scenarios
is statistically significant. For example, in the first row
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(snapshot interval: 1, number of devices: 10), the “with fog,
95% CI” is 87.98-89.45, and the “without fog, 95% CI” is
84.90-87.47. Since these intervals do not overlap, there is
strong evidence that using fog computing leads to
significantly higher energy remaining for this specific
combination of parameters.

3. Compare the width of the 95% CIs for each scenario. A
narrower 95% CI indicates a more precise estimate of the
true population mean. For most 95% CI values, the “with
fog, 95% CI” is narrower than the “without fog, 95% CI,”
suggesting that the “with fog” scenario has a more precise
estimate.

4. Analyze the trends as the number of devices increases
within each snapshot interval. In general, the energy
remaining in both scenarios decreases as the number of
devices increases. However, the rate of decrease seems to
be lower when using fog computing.

5. Observe the trends as the snapshot interval increases for
each group of devices. As the snapshot interval increases,
the energy remaining for both scenarios decreases,
suggesting that less frequent snapshots may lead to less
energy conservation. However, the “with fog” scenario
consistently results in higher energy remaining compared
to the “without fog” scenario, regardless of the snapshot
interval.

In conclusion, based on the analysis of the means and 95% CIs,
it appears that using fog computing is beneficial for conserving
energy, especially when the number of devices and the snapshot
intervals increase. The difference in energy remaining is
statistically significant in most cases, and the “with fog” scenario
consistently outperforms the “without fog” scenario.

Therefore, the simulation results demonstrate that the proposed
fog-based telehealth model provides improved energy efficiency
and scalability compared to a cloud-only model, especially when
the IoT devices send data less frequently. The lower energy
consumption and SD values in the with fog scenario indicate
that fog computing is a viable solution for managing energy
requirements and maintaining consistent performance in
telehealth IoT networks. Furthermore, we conducted the
sensitivity simulation analysis to systematically investigate the
impact of variations in model parameters on the simulation
outcomes. Sensitivity analysis helps in understanding how
different input parameters influence the system’s behavior and
performance and identifies critical factors that have a significant
effect on the results. According to the simulation code running,
the sensitivity analysis was performed for various parameters
such as transmit_power, idle_power, latency, and energy_cost.
By varying these parameters across a range of values, the impact
on the energy remaining in IoT devices with and without fog
nodes can be evaluated.

Table 2 compares the mean energy remaining for IoT devices
with and without fog nodes for each energy cost value. The
“Mean difference” column shows the difference in mean energy
remaining, with positive values indicating that devices with fog
nodes have higher energy remaining compared to those without
fog nodes. In the with fog scenario, the mean energy remaining
for devices with fog nodes stays relatively stable, ranging from
a minimum of 93 to a maximum of 95 across different energy
costs. In the without fog scenario, the mean energy remaining
for devices without fog nodes also remains relatively stable,
ranging from a minimum of 91 to a maximum of 92 across
different energy costs.

Table 2. Sensitivity analysis with energy cost.

Mean differenceWithout fog, mean (SD)With fog, mean (SD)Energy cost

1.7291 (4)94 (5)0.20

0.3392 (5)93 (6)0.26

1.7292 (7)94 (4)0.32

1.7291 (2)93 (5)0.38

2.7591 (5)94 (3)0.44

1.7191 (4)93 (2)0.5

1.7292 (2)95 (2)0.56

1.3792 (4)94 (3)0.62

0.6892 (2)93 (2)0.68

1.0292 (3)94 (4)0.74

2.0692 (3)95 (6)0.80

Based on the sensitivity analysis of energy cost, the mean energy
remaining for IoT devices with fog nodes is consistently higher
than that of devices without fog nodes across all energy cost
values. This indicates that IoT devices with fog nodes perform
better in terms of energy consumption as compared to devices
without fog nodes.

Table 3 compares the mean energy remaining for IoT devices
with and without fog nodes for each latency parameter value.

The “Mean difference” column shows the difference in mean
energy remaining, with positive values indicating that devices
with fog nodes have higher energy remaining compared to those
without fog nodes. In the with fog scenario, the mean energy
remaining for devices with fog nodes stays relatively stable,
ranging from a minimum of 94 to a maximum of 95 across
different latency values. In the without fog scenario, the mean
energy remaining for devices without fog nodes also remains
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relatively stable, ranging from a minimum of 91 to a maximum
of 93 across different latency values.

Based on the sensitivity analysis of latency, the mean energy
remaining for IoT devices with fog nodes is consistently higher
than that of devices without fog nodes across all latency
parameter values. This indicates that IoT devices with fog nodes
perform better in terms of energy consumption as compared to
devices without fog nodes.

Table 4 compares the mean energy remaining for IoT devices
with and without fog nodes for each idle power value. The

“Mean difference” column shows the difference in mean energy
remaining, with positive values indicating that devices with fog
nodes have higher energy remaining compared to those without
fog nodes. In the with fog scenario, the mean energy remaining
for devices with fog nodes stays relatively stable, ranging from
a minimum of 93 to a maximum of 95 across different idle
power values. In the without fog scenario, the mean energy
remaining for devices without fog nodes also remains relatively
stable, ranging from a minimum of 90 to a maximum of 92
across different idle power values.

Table 3. Sensitivity analysis with latency.

Mean differenceWithout fog, mean (SD)With fog, mean (SD)Latency parameter

2.0692 (4)94 (4)0.20

2.0691 (4)93 (3)0.26

1.7293 (1)94 (2)0.32

2.0692 (2)95 (2)0.38

1.7292 (2)94 (2)0.44

2.491 (3)94 (3)0.5

2.0692 (5)94 (4)0.56

2.0692 (2)94 (2)0.62

1.7192 (3)94 (3)0.68

0.6893 (3)94 (5)0.74

0.6892 (4)94 (2)0.80

Table 4. Sensitivity analysis with idle power.

Mean differenceWithout fog, mean (SD)With fog, mean (SD)Idle power

2.0692 (2)95 (2)0.5

1.7192 (4)94 (2)0.6

2.4192 (4)95 (3)0.7

1.7290 (3)93 (2)0.8

1.0392 (4)94 (4)0.9

1.0291 (4)93 (5)1.0

1.7192 (6)95 (4)1.1

2.0691 (5)94 (4)1.2

2.7591 (2)95 (2)1.3

2.0691 (4)94 (1)1.4

1.7292 (4)94 (2)1.5

Based on the sensitivity analysis of idle power, the mean energy
remaining for IoT devices with fog nodes is consistently higher
than that of devices without fog nodes across all idle power
values. This indicates that IoT devices with fog nodes perform
better in terms of energy consumption as compared to devices
without fog nodes.

Table 5 compares the mean energy remaining for IoT devices
with and without fog nodes for each transmit power value. The
“Mean difference” column shows the difference in mean energy

remaining, with positive values indicating that devices with fog
nodes have higher energy remaining compared to those without
fog nodes. In the with fog scenario, the mean energy remaining
for devices with fog nodes stays relatively stable, ranging from
a minimum of 94 to a maximum of 96 across different transmit
power values. In the without fog scenario, the mean energy
remaining for devices without fog nodes also remains relatively
stable, ranging from a minimum of 91 to a maximum of 92
across different transmit power values.

JMIR Biomed Eng 2024 | vol. 9 | e50175 | p.151https://biomedeng.jmir.org/2024/1/e50175
(page number not for citation purposes)

Guo et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 5. Sensitivity analysis with transmit power.

Mean differenceWithout fog, mean (SD)With fog, mean (SD)Transmit power

1.3791 (2)94 (3)0.5

2.4192 (3)95 (4)0.6

1.3792 (4)94 (2)0.7

1.7191 (5)94 (3)0.8

1.3792 (4)94 (2)0.9

2.0691 (2)94 (5)1.0

1.3792 (3)94 (6)1.1

1.0292 (3)94 (6)1.2

2.4092 (3)95 (4)1.3

3.7991 (2)96 (2)1.4

3.4491 (1)95 (2)1.5

Based on the sensitivity analysis of transmit power, the mean
energy remaining for IoT devices with fog nodes is consistently
higher than that of devices without fog nodes across all transmit
power values. This indicates that IoT devices with fog nodes
perform better in terms of energy consumption as compared to
devices without fog nodes.

Ethical Considerations
The study did not apply for any ethical approval, as the research
did not involve any human participants or animals [44].

Discussion

Overview
The simulation study results indicate that the proposed
energy-saving model could be effective in reducing energy
consumption in real-world telehealth scenarios. Key findings
include the following:

1. Scalability: the model demonstrates the ability to
accommodate an increasing number of IoT devices without
compromising performance, energy efficiency, or quality
of health care services.

2. Task allocation algorithm: the proposed task allocation
algorithm outperforms other algorithms in terms of energy
efficiency and data processing efficiency, indicating its
effectiveness in balancing the workload between fog nodes
and cloud servers.

3. Energy consumption metrics: the overall energy
consumption is reduced across all levels, demonstrating the
success of the model’s energy-saving strategies, such as
adaptive power management, data compression, and
network optimization.

The code and methodology described aim to simulate an IoT
network with different components (IoT devices, fog nodes,
and cloud servers) and analyze the impact of fog nodes on
energy consumption. The code creates and connects these
components and simulates data transmission, storage, and energy
consumption for IoT devices, fog nodes, and cloud servers. The
simulation results are analyzed to understand the network

behavior and demonstrate the potential benefits of using fog
nodes for energy efficiency.

Our novel energy-efficient model integrates fog and cloud
computing paradigms to optimize data processing for telehealth
IoT devices without compromising real-time health care
services. This stands out from previous works by enabling
localized data processing through the incorporation of fog
computing. This intermediary layer, situated between IoT
devices and cloud servers, effectively reduces latency and data
transfer overhead. The concurrent use of public and private
cloud computing further fortifies the system’s infrastructure,
allowing for the handling of large data volumes and
resource-intensive computations. The model enables localized
data processing by incorporating fog computing as an
intermediary layer between IoT devices and public or private
cloud servers, effectively reducing latency and data transfer
overhead. Simultaneously, public and private cloud computing
provides a robust infrastructure for handling large data volumes
and performing resource-intensive computations. The primary
goal of this model is to minimize energy consumption through
intelligent task allocation between fog nodes and cloud servers,
by considering their computational capacity and proximity to
IoT devices. This task allocation process also considers various
sensitivity and priority levels within the health care context,
ensuring prompt responses to critical and high-sensitivity
requests. Our innovative model strategically integrates fog and
cloud computing, aiming to establish an energy-efficient
telehealth IoT system capable of adeptly managing data
processing and delivering real-time health care services,
accommodating various levels of sensitivity and priorities. While
these aspirations suggest promising opportunities for further
optimization and diverse applications within health care
contexts, it is crucial to note that the subsequent simulation
method serves to objectively assess the model’s effectiveness
and efficiency. The empirical evidence derived from the
simulation provides a foundation for a more nuanced
understanding of the model’s capabilities and potential benefits.
This is because exploring diverse large-scale network topologies
is rarely feasible in the real world. Although the requirements
for such a simulator are straightforward—providing a detailed,
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accurate, and granular model of all components—implementing
corresponding simulators demands considerable effort.

The primary strength of our model lies in its holistic approach
toward minimizing energy consumption. The intelligent task
allocation mechanism, considering computational capacity and
proximity to IoT devices, ensures a fine balance. Furthermore,
the incorporation of sensitivity and priority levels within the
health care context enhances the model’s responsiveness to
critical requests. The synergistic integration of fog and cloud
computing contributes to the creation of an energy-efficient
telehealth IoT system capable of real-time data processing in
accordance with varying sensitivity levels and priorities.

Despite the positive outcomes, several limitations should be
acknowledged. (1) Simulation environment realism: the
simulation, while essential for its controlled environment, may
not perfectly mirror real-world complexities. Variations in
network behaviors and external factors may influence results
differently in practical implementations. (2) Sensitivity analysis
scope: the sensitivity analysis, while comprehensive, focused
on specific parameters such as energy cost, latency, idle power,
and transmit power. Additional parameters and their potential
interactions may provide a more nuanced understanding of the
model’s behavior. (3) Simplifications in simulation: certain
simplifications, inherent in simulation models, may oversimplify
the intricacies of a live telehealth IoT deployment. Real-world
complexities such as device failures, communication errors, or
dynamic changes in the environment are challenging to fully
capture.

To address these limitations and advance the research, the
following suggestions should be considered. (1) Future studies
should aim for more realistic simulation environments,
incorporating dynamic factors and diverse network topologies
to enhance the model’s external validity. (2) Expanding the
scope of sensitivity analysis to include a broader range of
parameters and exploring their interactions could provide a more
comprehensive understanding of the model’s performance under
diverse conditions. (3) The development of more sophisticated
simulators, despite their challenges, remains crucial. Detailed,
accurate, and granular models of all components can better
simulate the intricacies of large-scale IoT-fog-cloud systems.

While our model exhibits significant promise in reducing energy
consumption and enhancing data processing efficiency in
telehealth IoT scenarios, ongoing refinement and exploration
of diverse scenarios will contribute to its continued evolution
and real-world applicability.

Conclusion
This paper provides a compelling model for the use of fog and
cloud computing–based platforms in telehealth IoT deployments
to reduce energy consumption, improve data processing
efficiency, and maintain high-quality health care services. The
model leverages the strengths of both fog and cloud computing
paradigms to address the challenges associated with large-scale
telehealth IoT deployments, such as energy consumption, data
processing efficiency, latency, security, and privacy. The
simulation results show that the proposed fog-based model
significantly reduces energy consumption compared to the
cloud-only model while maintaining high-quality data
processing and transmission. Moreover, the methodology
described in this paper provides a comprehensive approach to
analyzing network performance and energy consumption, which
includes examining the impact of various parameters, such as
the number of devices, fog node deployment, task allocation
algorithm, energy consumption metrics, and performance
metrics. Sensitivity analyses were conducted with respect to
energy cost, latency, idle power, and transmit power,
consistently showing that IoT devices with fog nodes had higher
mean energy remaining compared to devices without fog nodes.
This approach allows for a more detailed understanding of the
network behavior and potential bottlenecks and provides insights
into how to optimize the model to be more resilient and efficient.
The simulation results and methodology demonstrate the
effectiveness of the proposed model and provide a roadmap for
future research in this area. We demonstrated the effectiveness
of the proposed model in reducing energy consumption while,
more importantly, ensuring efficient data processing and
maintaining the quality of health care services. The proposed
model can help health care providers and stakeholders improve
patient care and outcomes while reducing costs and energy
consumption.
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Abstract

Background: Now and in the future, airborne diseases such as COVID-19 could become uncontrollable and lead the world into
lockdowns. Finding alternatives to lockdowns, which limit individual freedoms and cause enormous economic losses, is critical.

Objective: The purpose of this study was to assess the feasibility of achieving a society or a nation that does not require lockdown
during a pandemic due to airborne infectious diseases through the mass production and distribution of high-performance, low-cost,
and comfortable powered air purifying respirators (PAPRs).

Methods: The feasibility of a social system using PAPR as an alternative to lockdown was examined from the following
perspectives: first, what PAPRs can do as an alternative to lockdown; second, how to operate a social system utilizing PAPR;
third, directions of improvement of PAPR as an alternative to lockdown; and finally, balancing between efficiency of infection
control and personal freedom through the use of Internet of Things (IoT).

Results: PAPR was shown to be a possible alternative to lockdown through the reduction of airborne and droplet transmissions
and through a temporary reduction of infection probability per contact. A social system in which individual constraints imposed
by lockdown are replaced by PAPRs was proposed, and an example of its operation is presented in this paper. For example, the
government determines the type and intensity of the lockdown and activates it. At that time, the government will also indicate
how PAPR can be substituted for the different activity and movement restrictions imposed during a lockdown, for example, a
curfew order may be replaced with the permission to go outside if wearing a PAPR. The following 7 points were raised as
directions for improvement of PAPR as an alternative method to lockdown: flow optimization, precise differential pressure
control, design improvement, maintenance method, variation development such as booth type, information terminal function,
and performance evaluation method. In order to achieve the effectiveness and efficiency in controlling the spread of infection
and the individual freedom at a high level in a social system that uses PAPRs as an alternative to lockdown, it was considered
effective to develop a PAPR wearing rate network management system utilizing IoT.

Conclusions: This study shows that using PAPR with infection control ability and with less economic and social damage as an
alternative to nationwide lockdown is possible during a pandemic due to airborne infectious diseases. Further, the efficiency of
the government’s infection control and each citizen’s freedom can be balanced by using the PAPR wearing rate network management
system utilizing an IoT system.

(JMIR Biomed Eng 2024;9:e54666)   doi:10.2196/54666

KEYWORDS

COVID-19; airborne infectious diseases; lockdown; powered air purifying respirator (PAPR); infectious dose; airborne transmission;
emergency evacuation; herd immunity; pandemic; aerosol; air; quality; infection control; infectious; respiratory; purifier; purifiers;
purifying; respirator; respirators; device; devices; airborne
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Introduction

For more than 3 years, herd immunity has been pursued
worldwide through vaccination as a countermeasure against
COVID-19, in addition to new lifestyle measures (social
distancing, wearing of face masks, washing of hands, etc) [1,2].
However, due to the emergence of new variants, the spread of
infection has sometimes been uncontrollable in different parts
of the world. Each time, lockdown has been implemented to
temporarily buy time, causing great economic loss and
restriction of freedom for individuals, businesses, and society
[3-7]. In this study, lockdown is defined as restricting the actions
and activities of people and businesses to temporarily slow the
spread of infection and buy time for other measures such as
herd immunity through vaccination. A strong lockdown includes
orders with criminal penalties that prohibit going out, working,
and doing business, and a weak lockdown includes voluntary
requests to refrain from going out, working, and doing business.
The type and strength of lockdowns are determined by the
government on a case-by-case basis, considering the impact on
infection control and harm to society, depending on the situation
of the outbreak of infection at the time [8,9].

Even in the current situation, the rapid development and delivery
of effective vaccines against new variants of the coronavirus
(SARS-CoV-2) and new airborne viruses that may emerge in
succession is not well assured. In the future, it is likely that we
will continue to be in a situation where we do not know when
a lockdown will again be necessary around the world [10,11].
In light of this, alternatives to lockdown that can cause less
economic damage, avoid restrictions on freedom of action, and
other disadvantages to individuals, companies, and societies
would be beneficial. Among the modes of COVID-19
transmission, contact and oral infections are relatively easy to
prevent by environmental hygiene, including handwashing and
food hygiene management. Droplet infection (particle size ≥100
µm) is thought to be preventable by social distancing (droplets
fall by gravity) and by wearing a mask. Currently, airborne
transmission via aerosols (particle size <100 µm) is thought to
be the main route of infection [12,13]. Although the infectious
dose of COVID-19, that is, the number of ingested viruses
required for infection, is not well known [14], it is estimated to
be in the range of 300 to 2000 virions [15]. It is believed that
the possibility of viral infection can be effectively reduced by
shielding aerosols that may contain viruses. This paper discusses
alternative means to lockdown, assuming that contact and oral
infections are prevented by environmental hygiene and food
hygiene management and that only airborne and droplet
infections remain as infection routes.

Methods

The feasibility of a social system utilizing powered air purifying
respirators (PAPRs) as an alternative to lockdown was examined
from the following perspectives: (1) what PAPR can do as an
alternative to lockdown, (2) how to operate a social system
utilizing PAPR, (3) direction of improvement of PAPR as an
alternative to lockdown, and (4) balance between efficiency of

infection control and personal freedom through the use of
Internet of Things (IoT).

What PAPR Can Do as an Alternative to Lockdown
The PAPR for practical medical use is a device that drastically
reduces the number of viruses inhaled by the wearer and
effectively reduces the risk of infection. Medical PAPRs are
used by medical personnel working in high-risk environments
[16,17]. The assigned protection factor (APF), as defined by
the National Institute for Occupational Safety and Health in the
United States, is widely used as an indicator of the shielding
performance of respiratory protection devices, including PAPRs
[18]. APF is defined as the external concentration/internal
concentration of the target particles (aerosols). For a medical
face mask, APF=10 is given when a person who has been trained
to wear it wears it completely with no gaps between the mask
and the facial surface. However, 3M PAPR is rated at APF=1000
and is considered to have excellent protective performance [19].
In other words, the concentration of virus-containing aerosols
can be reduced to 1/10 or less with a full-face mask when worn
without gaps, while it is reduced to 1/1000 or less with 3M
PAPR. Therefore, high-performance PAPRs can be used as an
alternative to the movement restrictions and activity restrictions
imposed by lockdowns used as a countermeasure against
COVID-19 and other airborne infectious diseases in future
pandemics. The necessary conditions for an alternative to
lockdown are that it should have the same deterrent effect on
the spread of infection as lockdown, and the economic damage,
activity restrictions, and other disadvantages to individuals and
society should be smaller compared to those during lockdown.

The effective reproduction number Rt is the average number of
secondary cases per infectious case in a population of both
susceptible and nonsusceptible individuals. In this population,
Rt<1 means converging, Rt=1 means stationary, and Rt>1 means
expanding [20]. The effective reproduction number Rt can be
expressed schematically by the following equation.

Rt = β × k × D, where β=probability of infection being
transmitted during a contact, k (contact/day)=contact rate in the
host population, and D (day)=duration of infectiousness.

To control the infection of the whole society, it is sufficient to
set the effective reproduction number (Rt) to <1. To do this, we
should reduce the above β, k, and D. Vaccines are expected to
reduce β in the long term. Lockdown is expected to play a role
in temporarily reducing k. In this study, PAPR is expected to
play a role in temporarily reducing β by reducing the airborne
and droplet transmission. During COVID-19, the maximum Rt

value reported worldwide was around 5 [21,22]. If lockdown
is used as a means of correcting Rt=5 to Rt=1, it is sufficient if
the lockdown makes k 1/5 of its current value. Alternatively, if
PAPRs are used as an alternative to lockdown, it would be
sufficient if citizens could wear PAPRs to reduce β to 1/5 of its
current value. It is worth noting here that the degree of reduction
in k and β may be about 1/5 rather than 1/100 or 1/1000. The
performance of the existing PAPRs was evaluated. Figure 1
shows the specifications of 3 existing PAPRs.
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Figure 1. Specifications of the 3 existing powered air purifying respirators. HEPA: high efficiency particulate air.

Currently Existing PAPRs

Medical PAPR: Versaflo TR-301N+
This PAPR is marketed as a medical PAPR. The waist unit
(model TR-301N+; 3M Corp) contains a nonwoven fabric filter
(model TR-3712N), pump, and battery (model TR-332). Purified
air is pumped from the waist unit into the hood (model S-133L)
through a flexible hose (model PSD-0225). The outline of this
PAPR is as follows. Only air purified by a high-performance
nonwoven filter is introduced into the hood by a pump. Since
positive pressure is naturally maintained inside the hood, outside
air is prevented from entering even if there is a gap between the
hood seal and the face and the head. Thus, the air, which the
wearer breathes, is only the air purified by the nonwoven filter.
As for the face mask, since the inside of the mask becomes
negative pressure during inhalation, if there is a gap between
the face and the mask, the outside air will enter directly through
the gap during the wearer’s inhalation [23,24]. Therefore, PAPR
is structurally capable of shielding most of the aerosols present
in the ambient air. This is supported by the fact that this PAPR
has a high value of APF=1000. The flow rate can be selected
in 2 stages, that is, high and low, and the specified flow rates
are approximately 6.5 cubic feet per minute (180 L/min) and
7.2 cubic feet per minute (200 L/min), respectively [25].

PAPR Prototype With a Simple Structure
This PAPR is a prototype developed as a low-cost PAPR that
has a simple structure similar to the abovementioned
commercially available medical PAPR. The specifications of
the air purification characteristics in this prototype are as follows
[26].

1. Only air purified by a high-efficiency nonwoven filter is
pumped into the hood.

2. Because positive pressure is naturally maintained inside the
hood, outside air is prevented from entering even if there is a
gap between the hood seal and the face.

3. The exhaust is natural exhaust from a thin nonwoven fabric
filter due to the positive pressure inside the hood. Even if the
wearer is infected and emits droplets or aerosols containing the
virus, it is possible to prevent some of the external emissions.

The first 2 characteristics mentioned above are the same as those
for the medical PAPR mentioned above (TR-301N+). In the air
supply side, a nonwoven fabric filter—high-efficiency
particulate air filter—which can filter 99.97% or more of
aerosols down to 0.3 µm or larger is used on the air supply side.
For aerosols containing viruses, it is considered sufficient to
target aerosols with a particle size of 0.3 µm or larger [27,28].
A high-performance PAPR can be assembled at a total parts
cost of approximately US $40 with a simple configuration of
only a high performance filter, battery, and pump.

PAPR Prototype With a Controller
This PAPR is a prototype developed as a high-performance
PAPR equipped with a controller/computer for measurement
and control [29]. The specifications for the air purification
characteristics are the same as those in the PAPR prototype with
a simple structure. In addition to the characteristics of the PAPR
prototype with a simple structure, a controller (on-board
computer) and sensors (2 CO2 concentration sensors and 1
differential pressure sensor) are added, and the pump is
controlled by means of the pulse width modulation control. In
this PAPR, the pump output is adjusted and controlled according
to the output of the differential pressure sensor so as to suppress
the internal pressure fluctuations due to breathing, that is, higher
pressure during exhalation and lower pressure during inspiration.
Operating parameters can be set and monitored using a
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smartphone. It is also possible to connect to the internet via the
smartphone. As a result, it is possible to connect to the PAPR
wearing rate network management system. In addition, by
installing a pump and filter on the exhaust side and making it
a differential type, it is possible to set the internal pressure to
either positive pressure or negative pressure. Thus, it is possible
to set the positive pressure setting to protect the wearer from
the outside and to set the negative pressure setting to protect
the outside from the wearer. It is possible to manufacture this
PAPR with a total parts cost of approximately US $300; this
PAPR allows pump control based on sensor signals and settings
and monitoring of the operating parameters by using a
smartphone.

How to Operate a Social System Utilizing PAPR
A case in which a fixed percentage of the population wears
PAPRs is considered. Quantitative evaluation of the reduction
in the aforementioned β (infection probability per contact) by
wearing PAPR and quantitative evaluation of the reduction in
Rt by wearing PAPR are considered to require empirical and
social experiments, as described below, because they involve
humans. However, as shown below, quantitative evaluation is
possible under limited conditions. Assuming that the aerosols
and droplet shielding rate by PAPRs is the same for all particle
sizes of aerosols and droplets, the shielding rate can be expressed
as follows: (1) shielding rate for aerosols and droplets in the air
supply (RS,in) and (2) shielding rate for aerosols and droplets in
the exhaust air (RS,ex). Assume that the reduction rate of the
probability of the wearer himself/herself becoming infected and
the reduction rate of the probability of the wearer infecting
others by wearing PAPR are as follows: (3) reduction rate of
the probability that the wearer will be infected by aerosols and
droplets in the air supply (RI,in) and (4) reduction rate of the
probability of infecting others by aerosols and droplets in
exhaust air (RI,ex). It is difficult to quantitatively determine the
relationship between (1) and (3) and between (2) and (4) above.
However, the following limited arrangement can be made. For
the air supply side, the following can be said.

1. If the aerosol and droplet shielding ratio of PAPR is perfect
(RS,in=1), wearing PAPR will reduce the probability of infection
by means of aerosols and droplets in the supply air by 100%
(RI,i=1).

2. If the aerosol and droplet shielding ratio of PAPR is nothing
(RS,in=0), wearing PAPR will reduce the probability of infection
by means of aerosols and droplets in the supply air by nothing
(RI,in=0).

3. In the intervals of 0<RS,in<1 and 0<RI,in<1, there is a positive
correlation between RS,in and RI,in.

For the exhaust side, the following can be said.

4. If the aerosol and droplet shielding ratio of PAPR is perfect
(RS,ex=1), wearing PAPR will reduce the probability of infecting

others by means of the aerosols and droplets in the exhaust air
by 100% (RI,ex=1).

5. If the aerosol and droplet shielding ratio of PAPR is nothing
(RS,ex=0), wearing PAPR will reduce the probability of infecting
others by means of the aerosols and droplets in the exhaust air
by nothing (RI,ex=0).

6. In the intervals of 0<RS,ex<1 and 0<RI,ex<1, there is a positive
correlation between RS,ex and RI,ex.

A social group was assumed to be completely free from contact
and oral infections, and airborne and droplet infections were
the only routes of infection. It is assumed that a certain
percentage of the population in the social group always wears
a PAPR. The performance of PAPR is assumed to be as follows.

1. The shielding rate of aerosols and droplets in the air supply
side is 100% (RS,in=1). As a result, the reduction rate of the
probability of infection by aerosol and droplets in the air supply
is 100% (RI,in=1).

2. The shielding rate of aerosols and droplets in the exhaust side
is the same as that of the face mask used in the population at
that time.

3. When the above PAPR is worn by a percentage of people in
WR, the following relationship is established between the
effective reproduction number Rt immediately before the start
of wearing and the modified effective reproduction number Rtm

immediately after the start of wearing.

Rtm = [0.0 WR + 1.0 (1–WR)] Rt = (1–WR) Rt

The expression for WR is as follows.

WR = 1–Rtm / Rt

Figure 2 shows the relationship between the effective
reproduction number Rt at the time in question and the required
wearing rate WR_required, which is required to achieve the target
effective reproduction number Rtm of 0.5, 0.9 and 1.0. For
example, consider an event in which a certain percentage of the
population is wearing PAPR at all the time. As an example of
a situation of severe infection spread, consider the case where
Rt=2 immediately before the start of the event. In this case, to
achieve the target effective reproduction number Rt_target of 1.0,
0.9, and 0.5, 50%, 55%, and 75% of the population should wear
PAPRs at all times, respectively. The above simulation targets
a social group in which airborne and droplet infections are the
only routes of infection and an extreme setting in which PAPR
is worn at all times. Future studies should consider more realistic
settings that suit the conditions of daily life. For example, the
situations in which the effects of not wearing PAPR should be
considered, including contact with family members in the home,
eating, drinking, washing, and bathing.
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Figure 2. Relationship between the effective reproduction number and the required wearing rate, which is required to achieve the target effective
reproduction number of 0.5, 0.9, and 1.0. Rt_target: target effective reproduction number.

Direction of Improvement of PAPR as an Alternative
to Lockdown
As the directions of improvements of PAPR as an alternative
to lockdown, the following 7 points are proposed and discussed:
(1) flow path optimization, (2) precise pressure control by fluid
modeling, (3) improved design, (4) maintenance method, (5)
variations suitable for different places of use and activity
contents, (6) PAPR with information terminal function, and (7)
evaluation indicators and evaluation methods.

Balance Between Efficiency of Infection Control and
Personal Freedom Through the Use of IoT
In order to achieve both (1) effectiveness and efficiency in
controlling the spread of infection and (2) individual freedom
(limiting the obligation to wear PAPRs to the minimum
necessary) at a high level in a social system that uses PAPRs
as an alternative to lockdown, it is considered effective to
develop a PAPR wearing rate network management system as
shown in Figure 3.
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Figure 3. The powered air purifying respirator wearing rate network management system. PAPR: powered air purifying respirator; WR: wearing rate.

1. PAPR (helmet type, booth type, etc) is connected to the
wearer’s smartphone via Bluetooth.

2. The smartphone is connected to the internet and connected
to the PAPR wearing rate network management system server
operated by the government.

3. The government will be able to monitor, record, and manage
each citizen’s PAPR wearing rate along with smartphone
location information by using the system.

Wearers (citizens) can display the electronic proof of their
wearing rate on their smartphones provided by the system.
Various parameters can be considered for the PAPR wearing
rate (WR). As simple examples, the following definitions of
wearing rate (WR) can be considered.

WR=time spent outside with PAPR/time spent outside

Instead of the PAPR wearing rate WR, time spent outside
without PAPR TWT can be considered.

TWT=time spent outside without PAPR.

Instead of the PAPR wearing rate WR, the number of viruses
inhaled during an outing IV (virions), which is considered to
have a direct correlation with infection, could be used as a
parameter for evaluation. If the estimated viral concentration d

(virions/m3) in the activity range is available, the following
definition can be adopted.

IV=number of viruses inhaled during outings (virions)

=∫d (1–RS,in) Qbreath,in dt

where, d (virions/m3)=estimated viral concentration at the
location, RS,in=aerosol shielding ratio for the air supply of PAPR,

and Qbreath,in (m3/s)=estimated amount of inhaled air of the
wearer at the time (exhaled air is not counted). As a request
from the government to each citizen, it is assumed that keeping
the above WR, TWT, or IV at a certain level or better will be
requested.

Ethical Considerations
This study is based on known facts and the author's own
thinking, and no new experiments were performed. Therefore,
the author has not applied to Gunma University, to which the
author belongs, for ethics approval. Consent for publication has
been granted from the identifiable individual (author YF) in
Figure 1 in this paper.

Results

What PAPR Can Do as an Alternative to Lockdown
PAPR was shown to be a possible alternative to lockdown
through the reduction of airborne and droplet transmissions and
through the temporary reduction of β. The existing medical
PAPRs appear to have sufficiently high virus shielding
performance and appear to have already reached a level that
should be experimentally tested as an alternative to lockdown.
The current medical PAPR shown in Figure 1 is expensive and
does not have measurement control functions. However, the
prototypes shown in Figure 1 indicate that cost reduction and
high functionality are possible. In addition, a variety of PAPRs
are commercially available for nonmedical use, some of which
are inexpensive. If an inexpensive PAPR is supplied to everyone,
using PAPRs during a pandemic instead of issuing a
countrywide lockdown will become a reality.
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How to Operate a Social System Utilizing PAPR
A realistic process is shown below for quantitatively evaluating
the effect of the aerosol shielding performance of PAPRs (for
air intake side and exhaust side), PAPR wearing rate and
wearing condition for reducing the β, and the effective
reproduction number Rt for realizing this proposal.

1. Select and prepare special experimental zones for social
experiments in the next pandemic.

2. In the experimental zone, when lockdown is applied to the
surrounding area, PAPR can be substituted for the various
activity restrictions during lockdown.

3. Compare the spread of infection between the special
experimental zone and other areas, and change the aerosol
shielding performance of PAPR (air supply side and exhaust
side), PAPR wearing rate and condition, and other operational

conditions within the special experimental zone. The obtained
results can be used to quantitatively evaluate the effects of the
aerosol shielding performance of PAPR (air supply side and
exhaust side), PAPR wearing rate and wearing condition for
reducing the β, and the effective reproduction number Rt.

4. When the effectiveness of PAPR as an alternative to lockdown
is confirmed and the problems are sufficiently resolved, PAPR
as an alternative to lockdown can be applied to other regions.

Examples of operations in special experimental zones include
the following: (1) people can go out freely if they wear PAPRs,
even in circumstances where going out is restricted in other
surrounding areas and (2) factories can be operated freely if its
employees wear PAPRs, even in circumstances where factories
are prohibited to operate in other surrounding areas. Figure 4
shows the proposed social system where PAPRs are used as an
alternative to lockdown.

Figure 4. Proposed social system where powered air purifying respirators are used as an alternative to lockdown. PAPR: powered air purifying respirator.

In the proposal in this research, PAPR will be utilized under
the leadership of the government as described below:

1. The government distributes PAPRs (helmet/hood type) to all
citizens as emergency equipment.

2. If the estimated effective reproduction number Rt is high and
there is concern about an outbreak of infection, the government
will determine the type and intensity of the lockdown and decide
how to replace each constraint during lockdown with PAPR.
Examples include prohibition on going outside (going outside
is possible if wearing a PAPR), prohibition of factory operation
(operation is possible if all employees wear PAPRs), prohibition
of restaurant operation (operation is possible if all employees
wear PAPRs and all customers wear PAPRs suitable for eating
and drinking), and overseas entry prohibition (entry is allowed
if visitors agree to wear a negative pressure PAPR for a specified

period of time and accept government remote monitoring of
wearing conditions). This will make it possible to open the door
to foreigners and returnees who wish to enter the country,
although they would be subject to the same level of
inconvenience as ordinary citizens suspected of being infected.

In the initial implementation of the proposed social system, as
described above, special experimental zones will be established
in various regions, various trials will be conducted based on
various assumptions, and data will be collected. Based on the
data obtained, qualitative and quantitative evaluations of the
benefits (reduction of infection probability) and burdens borne
by individuals and the benefits (reduction of infection spread)
and burdens for the society as a whole will be attempted. The
proposed social system should be compared and verified with
the lockdown in each of the different situations, and the best
way to be found as an alternative to the various restrictions
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imposed by the lockdown should be identified. Ultimately, a
PAPR-utilizing social system will be constructed that effectively
functions as an alternative to lockdown.

Directions for Improvement of PAPRs as an
Alternative to Lockdown
The following 7 points can be considered as directions for
improvements of PAPRs as a lockdown alternative.

Flow Path Optimization
A hood shape and part configuration should be developed that
provides a smooth flow of the exhaled air out of the hood. The
concentration of carbon dioxide is approximately 500 ppm
(0.05%) in ambient air and approximately 50,000 ppm (5%) in
exhaled air [30]. The oxygen concentration in the exhaled air
is expected to decrease from the oxygen concentration in the
ambient air (approximately 21%) by an amount equal to the
increase in the carbon dioxide concentration in the exhaled air
(approximately 5%). In the commercially available PAPR and
the developed PAPRs shown in Figure 1, a large flow rate
(approximately 200-400 L/min) is delivered compared to the
resting respiratory flow rate (approximately 6-10 L/min) [31]
in order to suppress the carbon dioxide concentration in the
hood [25,26,29]. Efficient expiration of exhaled air to the outside
allows for a significant reduction in the air supply flow rate,
resulting in a significant reduction in the size and weight of
pumps, batteries, and filters, as well as design diversification.
By minimizing the volume inside the mask, it is also possible
to minimize the retention of the exhaled air from the nose and
mouth inside the mask. As an extreme example, consider a
configuration in which the nose is used for inhalation, the mouth
is used for exhalation, and the air supply to the nose and the
exhaust from the mouth are mechanically separated. As a result,
the flow rate of the air filtered through the nonwoven filter and
delivered to the nose becomes the same as the flow rate inhaled
from the nose, and this dramatic reduction in flow rate results
in a drastic reduction in the pump and battery capacity.

Precise Pressure Control by Fluid Modeling
Fluid modeling of PAPRs should be considered. For the PAPR
prototypes (simple PAPR and controller PAPR) shown in Figure
1, the air supply through a nonwoven fabric filter is realized by
a pump, and the exhaust through a nonwoven filter is created
through the positive internal pressure. A simple modeling for
these PAPRs is as follows.

Air Supply Flow Rate
The flow rate Qin (ΔP, V) through the filter is determined by
the pressure difference ΔPf before and after the filter. The flow
rate through the pump is determined by the pressure difference
ΔPp before and after the pump and the applied voltage (V) of
the pump. When the differential pressure ΔP (=ΔPf + ΔPp) inside
and outside the PAPR and the pump applied voltage (V) are
determined, the air supply flow rate Qin is determined.

Exhaust Flow Rate
The flow rate Qout (ΔP) through the filter is determined by the
pressure difference ΔPf before and after the filter.

Respiratory Flow
The flow difference Qdiff between the air supply flow rate Qin

and the exhaust flow rate Qout can be expressed as follows.

Qdiff = Qin (ΔP, V) – Qout = Qbreath + Qleak + Qvolume

Here, Qbreath=respiratory flow rate of the wearer of PAPR,
positive with inspiration; Qleak=leak flow rate, positive for
leakage from the inside to the outside; and Qvolume=volume
change inside PAPR, positive with volume increase.

Since the time averages of respiratory flow Qbreath and volume
change Qvolume are zero, the time average of Qdiff is the time
average of Qleak. In addition, Qleak is expressed as a function
Qleak (ΔP) of the differential pressure ΔP, assuming that the
shape of the gap between the face and the mask is constant.
Furthermore, the volume change Qvolume is considered to be
expressed as a function Qvolume (ΔP) of the differential pressure
ΔP.

Qbreath = Qdiff – Qleak (ΔP) – Qvolume (ΔP)

In this case, Qbreath<0 is judged as expiration, and Qbreath>0 is
judged as inspiration. In this way, the exhalation and inhalation
movements of the wearer can be detected in real time. For
example, based on this detection result, the following control
can be considered.

1. If an exhalation movement is detected, the minimum positive
pressure setting (eg, 10 Pa) is set to minimize the resistance to
exhalation movement while preventing leakage from the gap.

2. If an inhalation movement is detected, a strong positive
pressure setting (eg, 100 Pa) is used to positively assist the
inhalation movement.

In addition to the forced air supply by the pump and filter, the
introduction of forced exhaust by the pump and filter enables
the following differential pressure control.

1. When an exhalation movement is detected, a strong negative
pressure setting (eg, –100 Pa) is used to actively assist the
exhalation movement.

2. When an inhalation movement is detected, a strong positive
pressure setting (eg, 100 Pa) is used to actively assist the
inhalation movement.

In light of this, a PAPR facilitates the easy movement of the
wearer’s exhalation and inhalation. In this case, the direction
of leak flow at the possible gap is opposite to normal—from
outside to inside during exhalation and from inside to outside
during inhalation. It will be possible to detect coughing from
the measurement results of the differential pressure ΔP. It will
also be possible to estimate the possibility of infection of the
wearer together with other measurement results such as body
temperature. The ability to efficiently identify infected persons
will enable efficient isolation and treatment of infected persons
and will have a significant effect in reducing the spread of
infection throughout the society.
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Improved Design
All the 3 types of PAPRs shown in Figure 1 have bulky and
exaggerated designs. As a lockdown alternative, the design may
not be very important; however, it is better to have an excellent
design. If the above flow path optimization achieves a dramatic
reduction in the air supply flow rate, then a dramatic reduction
in pump and battery size and various designs will become
possible. Once PAPRs are widely accepted as a lockdown
alternative, many people will be dissatisfied with the bare-bones
PAPRs provided by the government; it is conceivable that
companies of various genres will develop models with different
characteristics.

Maintenance Method
It is necessary for every citizen to be able to easily perform
maintenance such as cleaning and disinfecting the PAPR and
replacing the nonwoven filter unit at home. However, when
PAPRs are used as an alternative to lockdown, it is expected
that the virus concentration in the external environment will be
extremely low compared to the environment assumed in medical
PAPRs due to the following reasons.

1. Infected persons would wear PAPRs.

2. PAPR has the ability to not only stop the entry of droplets
and aerosols containing viruses but also prevent their release
to the outside.

3. PAPR purifies indoor air in the same way as an air purifier.

Therefore, in terms of maintenance standards, it may be possible
to set relatively lenient standards for nonmedical use PAPRs
compared to those set for medical PAPRs, which are assumed
to be used in environments with high virus concentrations such
as hospital wards where infected people are congregated.

Variations Suitable for Different Places of Use and
Activity Contents
The following variations should be developed, which are
fine-tuned to suit various places of use and activities, as well
as to suit societies and populations at different stages of social,
economic, and cultural development: (1) a model that pursues
comfort for everyday use; (2) models suitable for specific
activities such as sports, eating, and drinking, for example, a
model for eating and drinking with a face shield opening and
closing mechanism and an air shower function or a model for
jogging with a structure that mechanically separates the nose
(exhalation) and mouth (inhalation); (3) a booth type model that
wraps around a desk and a chair in an office, vehicle, restaurant,
etc; (4) a model compatible with the standard unit of the
ceiling-mounted air conditioner; and (5) a very inexpensive
model suitable for low-income countries and regions.

PAPR With Information Terminal Function
The PAPR prototype (controller type) shown in Figure 1 is an
all-in-one type PAPR with a computer and a power supply on
the wearer’s head. Therefore, it is easy to make the PAPR an
advanced information terminal by means of installing a
computer equivalent to that of a high-end smartphone and adding
various devices as follows: (1) equipped with smartphone
function and virtual reality screen, (2) equipped with a

noncontact input system using eye gaze and brain waves, and
(3) equipped with a physical condition measurement and
management system using body temperature sensors, cough
sensors (pressure sensors), electroencephalogram sensors, etc.
If the PAPR is comfortable to breathe, comfortable to wear, and
has advanced information terminal functions, it is expected that
some people will not be able to part with it. In particular, if a
physical condition measurement and management system is
installed to accurately estimate the presence or absence of
infection, it will be easier to isolate, examine, and treat those
who are deemed to have a high probability of being infected.
In many cases, the various behavioral and activity restrictions
during lockdown are uniformly applied to all persons under
conditions where it is not known who is infected. If it becomes
possible to know with a high degree of certainty who is infected,
the use of PAPR as an alternative to lockdown can be changed
to a more targeted approach.

Evaluation Indicators and Evaluation Methods
As an evaluation indicator of PAPR as a lockdown alternative,
it is desirable to be able to quantitatively evaluate the effect of
reducing the aforementioned β by means of wearing a PAPR.
However, in order to estimate the β reduction rate with high
accuracy, it is necessary to conduct elemental experiments and
social experiments under various conditions.

The most important evaluation indicators of the basic
performance of PAPR that should be obtained from elementary
experiments are as follows: (1) reduction rate of virus-containing
aerosols and droplets inhaled by potentially infectious persons
wearing PAPR and (2) reduction rate of virus-containing
aerosols and droplets exhaled by infected persons wearing
PAPR. Current standards (eg, APF) usually refer only to the
reduction rate of virus-containing aerosols and droplets inhaled
by potentially infectious persons wearing PAPR. However, both
(1) and (2) are considered to be equally important when
requiring the uniform wearing of PAPRs by the general public
in cases where presence or absence of infection is unclear for
the purpose of reducing the effective reproduction number Rt.
In the 3 PAPR models shown in Figure 1, positive pressure was
used to prevent outside air from entering directly through gaps,
with an emphasis on protecting the inside (wearer) from the
outside. If the above (1) and (2) are equally important, then it
is equally important to protect the wearer from the outside
environment and to protect the people from the wearer, thereby
indicating the it is not necessary to make the internal pressure
positive.

Impact of the PAPR Internal Environment on the Mind
and Body
If PAPR is considered as an alternative to lockdown measures,
the impact of the PAPR internal environment on the mind and
body of the wearer will become important. It is necessary to
comprehensively investigate the relationship between the
following 2 types of parameters from the viewpoint of the
influence of the PAPR internal environment on the mind and
body of the wearer.
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Physical Parameters Related to the PAPR Internal
Environment
The physical parameters to be considered are concentrations of
particulate pollutants (droplets, aerosols, pollen, particulate
matter 2.5, mite corpses, dust, etc), gaseous pollutants, gas
composition (carbon dioxide concentration, oxygen
concentration, etc), differential pressure, temperature, humidity,
acoustic characteristics (sound transfer characteristics, noise,
etc), vibration, and airflow.

Biological and Psychological Parameters of PAPR
Wearers
The biological and psychological parameters are respiratory
status, electroencephalogram, body temperature, pulse rate,
comfort, safety (physical danger, probability of infection), and
degree of relaxation.

Balance Between Infection Control Efficiency and
Personal Freedom Through the Use of IoT
As shown in Figure 5, the operation of the PAPR wearing rate
network management system led by the government will be
performed as follows.

Figure 5. The social system with the powered air purifying respirator wearing rate network management system.

1. The government will distribute PAPRs (with smartphone
connectivity) with sufficient aerosol shielding performance to
all citizens as emergency equipment. Each citizen installs an
app with a wearing rate proof function on his/her own
smartphone.

2. If the estimated effective reproduction number Rt is high and
there is concern about an outbreak of infection, the government
will (1) set the target effective reproduction number Rt_target, (2)
solve the formula based on appropriate assumptions to calculate
the required wearing rate WR_required required to achieve Rt_target,
(3) show WR_required and require all citizens to comply with
it—each citizen can spend their time without PAPR at any place
(party venue, restaurant, pub, etc) and any time by showing
proof of wearing rate WR within the scope of fulfilling their
obligations, and (4) pay close attention to changes in the
effective reproduction number Rt and raise WR_required if the goal
of controlling the spread of infection is in jeopardy. Conversely,
if it exceeds the target, lower WR_required and increase the degree
of freedom in citizen life.

If the PAPR lockdown alternatives are strong enough, the
government can quickly contain the spread of infection by
setting WR_required to 1.0 (100%) even when the government
makes a big mistake in estimating WR_required and falls into the
worst situation. In that case, the government can conduct various
trials and countermeasures on various assumptions and
hypotheses with a leeway. The government is freed from
constraints that limit them to overly conservative measures. In
addition, throughout the entire process, the government will be
able to improve the accuracy of the above formula based on
appropriate assumptions by using the big data collected on the
relationships between “changes in aerosol shielding performance
of PAPR (air intake side, exhaust side), PAPR wearing rate WR,
and wearing condition, etc” and “changes in infection spread
status and the effective reproduction number Rt.”

Discussion

Principal Findings
In this study, the feasibility of the following 2 ideas was
examined. First, the construction of a social system using PAPR
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with similar infection control ability as lockdown measures and
with less economic and social damage as an alternative to
lockdown is possible. Second, balancing the efficiency of the
government’s infection control and each citizen’s personal
freedom is possible by means of an IoT system.

Extended Functionality and Privacy Protection in the
PAPR Wearing Rate Network Management System
By utilizing PAPR with several sensors (thermometer, cough
sensor, etc), the government can make this system much more
powerful than conventional apps for measuring contact with
infected persons. For example, the system may be able to
improve the accuracy of infection detection based on big data
concerning changes in body temperature, cough (condition and
frequency), and the presence or absence of severe disease after
infection until the onset of illness. In the case of PAPR equipped
with both air supply and exhaust pumps, the wearer can switch
the internal pressure between positive pressure when not infected
and negative pressure when infected, thus prioritizing the
prevention of the spread of infection in the society as a whole.
From the viewpoint of privacy protection, social discussion is
necessary for the following matters: (1) how much of the
information from PAPRs should be passed on to the government
server? and (2) how should the government’s use of personal
information be curbed? Especially for (2), it is considered
necessary to develop and construct a technical and social
mechanism to realize a brake. In order to prevent misuse of
personal information, it is conceivable to apply the proposal for
a street camera system’s perfect recording of usage history by
a reliable third party as the first step [30]. Methods to substitute
each restriction in lockdown with PAPR utilization need to be
considered in various social systems. Those who wish to use
PAPR as a substitute for the constraints imposed by lockdown
need to prepare to obtain the PAPR before the pandemic.
Therefore, it is also important for the society as a whole to
ensure and disseminate information on how to obtain PAPRs.

Different countries have different governance systems. In some
countries, it might not be easy to make the public understand
that PAPR can be used an alternative to lockdown
measures—they may make it an option and not a mandate. This
paper discusses how PAPR can substitute the primary constraints
imposed by lockdown. Even in cases of other alternatives such
as combination of lockdown and free mobility of low-risk
populations during COVID-19 [32], PAPRs may be used for

controlling the infection rates. The proposed PAPR wearing
rate network management system utilizes IoT technology, which
is currently being widely pursued by various societies and
companies. In order to build a social system that makes the
government’s control of the spread of infection more efficient
and that respects the freedom of individuals to the maximum
extent, social experiments should be first conducted under
various conditions to identify the challenges and improve the
effectiveness of PAPRs.

Society of People Breathing Purified Air
Further, although this is a discussion that is far from the main
point of this paper, if truly high-performance, comfortable, and
low-cost PAPRs are successfully developed through this
research and subsequent research and developments, it is
possible that many people will desire PAPR-purified air instead
of the air around them. This is similar to the situation of drinking
water, that is, just as how populations consume purified water
through water-treatment and water-purification technology
rather than water from ponds and rivers, people would prefer
purified air to breathe. It can be expected that many citizens
will wear PAPRs when they go out, regardless of whether the
government asks them to do so. As more people breathe purified
air, there may be concerns about the public’s immune system
being weakened against airborne diseases and pollen allergies.
However, there is no dispute that water-borne infectious diseases
have become controllable because many people drink only
purified water, and it would not be advisable to drink water
without purification, as was the case in primitive times. A
society in which the majority of the population breathes purified
air will be resilient to all airborne diseases. The construction of
such a society has the potential to be an opportunity for a historic
change in the human race, which has been plagued by airborne
diseases.

Conclusions
This study examines the feasibility of 2 ideas. First, this study
shows that it is possible to construct a social system using PAPR
with similar infection control effects as lockdown measures and
with less economic and social damage as a means of temporarily
reducing the effective reproduction number Rt. Second, the
PAPR wearing rate network management system balances the
achievement of the efficiency of the government’s infection
control and each citizen’s personal right to choose the time and
opportunity not to wear PAPR during a pandemic.
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Abstract

Background: The hand is crucial for carrying out activities of daily living as well as social interaction. Functional use of the
upper limb is affected in up to 55% to 75% of stroke survivors 3 to 6 months after stroke. Rehabilitation can help restore function,
and several rehabilitation devices have been designed to improve hand function. However, access to these devices is compromised
in people with more severe loss of function.

Objective: In this study, we aimed to observe stroke survivors with poor hand function interacting with a range of commonly
used hand rehabilitation devices.

Methods: Participants were engaged in an 8-week rehabilitation intervention at a technology-enriched rehabilitation gym. The
participants spent 50-60 minutes of the 2-hour session in the upper limb section at least twice a week. Each participant communicated
their rehabilitation goals, and an Action Research Arm Test (ARAT) was used to measure and categorize hand function as poor
(scores of 0-9), moderate (scores of 10-56), or good (score of 57). Participants were observed during their interactions with 3
hand-based rehabilitation devices that focused on hand rehabilitation: the GripAble, NeuroBall, and Semi-Circular Peg Board.
Observations of device interactions were recorded for each session.

Results: A total of 29 participants were included in this study, of whom 10 (34%) had poor hand function, 17 (59%) had moderate
hand function, and 2 (7%) had good hand function. There were no differences in the age and years after stroke among participants
with poor hand function and those with moderate (P=.06 and P=.09, respectively) and good (P=.37 and P=.99, respectively) hand
function. Regarding the ability of the 10 participants with poor hand function to interact with the 3 hand-based rehabilitation
devices, 2 (20%) participants with an ARAT score greater than 0 were able to interact with the devices, whereas the other 8 (80%)
who had an ARAT score of 0 could not. Their inability to interact with these devices was clinically examined, and the reason
was determined to be a result of either the presence of (1) muscle tone or stiffness or (2) muscle weakness.

Conclusions: Not all stroke survivors with impairments in their hands can make use of currently available rehabilitation
technologies. Those with an ARAT score of 0 cannot actively interact with hand rehabilitation devices, as they cannot carry out
the hand movement necessary for such interaction. The design of devices for hand rehabilitation should consider the accessibility
needs of those with poor hand function.

(JMIR Biomed Eng 2024;9:e54159)   doi:10.2196/54159
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Introduction

Stroke is a major cause of disability in the world [1]. Globally,
about 17 million people have a stroke each year [2]. In the
United Kingdom, the prevalence of stroke is projected to rise
from 950,200 to 2,119,400 cases between 2015 and 2035 [3].
This projected rise in the prevalence of stroke has been
associated with improvements in medical advances that have
led to a decline in the number of deaths due to acute stroke,
among other reasons [4]. Nevertheless, stroke survivors are
faced with considerable long-term periods of enduring physical
impairments, the likelihood of reoccurrence of strokes, transient
ischemic attacks, or even death within 1 year of having a stroke
[5]. Motor impairment (muscle weakness and the loss of
movement control) is the most common consequence of stroke,
impacting several aspects of life and reducing the ability of
stroke survivors to lead an independent life [6]. About 55% to
75% of those who survive a stroke experience motor impairment
in the upper limb 3 to 6 months after stroke [7].

The hand is crucial for carrying out activities of daily living
such as eating, dressing, bathing, and communicating [8].
Besides, the hand is a defining feature of human beings and is
vital for human daily interaction [9]. Due to this importance,
impairments such as spasticity and weakness, which are common
sequelae of stroke [10] and manifest in a fixed flexed position
of the wrist and fingers, affect the function of the hand and
impact the quality of life [10].

Rehabilitation can have a positive impact on the recovery of
functions in persons with stroke [11] as well as in enhancing
their quality of life [12], and movement restoration is a key goal
in the rehabilitation of persons with neurological disorders [13].

The relearning of movement ability during rehabilitation is
based on factors such as the repetitiveness, intensity, and
regularity of task-specific movements [14]. It has been suggested
that the rehabilitation of hand mobility and strength be
prioritized once the general physical situation of stroke survivors
has been stabilized owing to the importance of the hand [15].

Several new rehabilitation technologies that target the upper
limb to improve motor functions are currently in use; these
include the use of robotic-assisted technologies, virtual reality,
and telerehabilitation [16]. Some others that are used in this
study are gaming devices such as the GripAble (Gripable),
NeuroBall (Neurofenix), and Semi-Circular Peg Board (Rolyan).
The NeuroBall is an interactive device that connects wirelessly
with a tablet app to carry out activities that can also be
objectively measured [17]. The GripAble is a similar lightweight
electronic handgrip [18] that also interacts wirelessly with a
computer tablet, enabling users to interact with therapy games
tailored to improve the upper limb and hand function in a way
that can be objectively assessed [18,19]. The Rolyan
Semi-Circular Peg Board consists of 3 colored pegs (red, white,
and blue) of different diameters that the users are expected to
pick up and place in their different peg holes (based on their
diameter; see Figure 1 below). The ability of stroke survivors
with poor hand function to access these devices is a major
concern, as according to a report [20], only hemiplegic stroke
survivors who are mildly disabled are likely to access hand or
arm training apps that are available on mobile devices.

This study aims to observe stroke survivors’ interaction with
hand rehabilitation devices and to understand how the different
categories of hand function (Action Research Arm Test [ARAT]
scores) influence the stroke survivors’ rehabilitation goals.
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Figure 1. Upper limb rehabilitation technologies and tools used: (A) mirror (mirror therapy), (B) NeuroBall device, (C) Semi-Circular Peg Board, and
(D) GripAble device.

Methods

Participants
Participants were recruited from cohorts of stroke survivors
attending a rehabilitation intervention at a cocreation center for
accessible rehabilitation technology [21] between September
2021 and April 2023. The inclusion criteria for this study have
been described in detail previously [21]; briefly, participants
had to have had a stroke within the last 12 months that resulted
in mobility problems, be aged over 18 years, be well enough to
engage in light to moderate exercise, and be able to attend the
rehabilitation program at least twice a week. A range of outcome
measures were taken before and after the program, including
the ARAT. An overview of the full rehabilitation program is
available in our previously published report [21].

Out of a total of 36 participants who agreed to take part in the
intervention, 7 (19%) were excluded from this study. Of the 7
excluded persons, 5 (71%) withdrew from the intervention (2/5,
40% withdrew before the commencement and 3/5, 60%
withdrew due to ill health or unwillingness to continue), and
the other 2 (29%) of the 7 were excluded as a result of
incomplete data.

The Upper Limb Rehabilitation Intervention
The upper limb intervention involved activities designed to
improve the upper limb functions of participants, delivered
completely through the use of technology and therapy devices
that either stimulated or promoted repetitive and intensive
movement training. The upper limb and hand rehabilitation
technologies available to the participants in this study are shown
in Table 1. The participants spent at least 50-60 minutes of each
of the 2-hour sessions engaging with these devices.
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Table 1. Upper limb rehabilitation technologies used.

FunctionManufacturerTechnology or device

It connects wirelessly with an app on a computer tablet [19] to interact with specifically designed
therapy games [22], to train 4 different types of upper limb movements, such as grip and release,
pronation and supination, wrist flexion and extension, and radius and ulnar deviations.

GripableGripAble

It connects wirelessly with a tablet app and interacts with therapy games specifically designed to
exercise the upper limb of stroke survivors [17]. It trains upper limb movements such as finger
grip; hand grip; right, left, upward, and downward tilt; and elbow and shoulder movements.

NeurofenixNeuroBall

It is a form of mental practice that excites the primary motor cortex, thereby evoking the movement
of the affected limb, as the participants move the unaffected side while looking into the mirror
[23].

SaeboMirror box

It is a noninvasive nerve stimulator used to relieve pain [24], stimulate the muscles, and relieve
muscle stiffness [25].

Med-FitSensory TENSa

It is a therapy tool designed to improve upper limb strength, movement coordination, endurance,
and range of motion. It aims to improve hand dexterity.

RolyanSemi-Circular Peg
Board

It provides arm weight support while encouraging users to carry out self-initiated arm movements
in the shoulder, elbow, and wrist joints and trains different upper limb movements [26].

HocomaArmeo Spring

It stimulates the hand using the vibrations delivered at different intensities.Dongguan KooeejVibrating or hot com-
press massage ball

It immerses the user into a virtual environment, thereby encouraging them to use their affected
limb to interact with functional tasks [27,28].

Occulus Quest with In-
cisiv software

VRb headset

aTENS: transcutaneous electrical nerve stimulation.
bVR: virtual reality.

Overview of the Upper Limb Rehabilitation Program
Figure 2 is a representation of the upper limb rehabilitation
program used in the rehabilitation gym. The activities were
divided into 2 categories. The first part aimed at priming the
brain to prepare it for plastic response [29]. Priming focused
on sensory stimulation including mirror therapy and electrical,
thermal, and vibrational stimulation. These priming activities

comprised the first 15-20 minutes of each rehabilitation session.
This second part, that is, the “active training,” aimed to engage
the participants in high-intensity motor tasks such as object grip
and release, object manipulation, and reach to grasp, designed
to improve range of motion, strength, and control. The
participants were not limited in terms of the number of devices
they could use.

Figure 2. Upper limb rehabilitation program model for stroke survivors. TENS: transcutaneous electrical nerve stimulation.

Categorizing Participants Into Different Hand
Function Groups
Participants were given a 1-day initial appointment with a
therapist at the rehabilitation gym before the commencement
of the 8-week rehabilitation intervention. During this

appointment, demographic data including stroke history were
collected, along with a range of baseline assessments for
mobility, communication, and cognition, including the ARAT
[30]. The ARAT was used to categorize the participants into 3
different hand function groups: poor (scores of 0-9), moderate
(scores of 10-56), and good (score of 57) [30].
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Understanding the Rehabilitation Goals of Those With
Different Categories of Hand Function
During the preintervention visit, participants were allowed to
communicate their rehabilitation goals and interact with the
upper limb devices to understand how they are set up and
operated. The rehabilitation goals of the participants were
summarized based on their different hand functions to help
understand the needs of stroke survivors who fall under each
of the different hand functions, particularly the hand
rehabilitation goals of those with poor hand function.

Observing the Interaction of Those With Poor Hand
Function and the Hand Rehabilitation Devices
Following the goal setting and initial interaction with the
devices, a rehabilitation program was drawn up. The
rehabilitation program was individually tailored by a
physiotherapist using the rehabilitation goals of the participants.
The program however only acted as a guide, as participants had
the freedom to interact with any of the devices. The ability of
the participants to use each rehabilitation device was observed
and recorded. At the end of the intervention, all the observations
from participants with poor hand function were gathered and
studied to see how they interacted with the hand-based
rehabilitation devices. Three of the upper limb devices—the
GripAble, NeuroBall, and Semi-Circular Peg Board (see Figure
1)—were selected for observation in this study. The reason for
selecting these devices is because these 3 devices were the only
devices listed under the “active training” category (see Figure
2) at the time of the study that were used to primarily train motor
activities in the hand (involving the wrist and fingers) in addition
to training other parts of the upper limb.

Data Organization and Analysis
The simple percentage method was used to estimate the
percentage of stroke survivors who fall into each category of
hand function. A 1-way ANOVA was carried out using Minitab

statistical software (Minitab LLC), with the Dunnett multiple
comparison method used to compare the ages of the group with
poor hand function to those with moderate and good hand
function.

Ethical Considerations
This study was approved by the University of Strathclyde ethics
committee (approval UEC 20/08). The participants provided
written informed consent before the study, and their participation
was voluntary (no compensation was provided). All identifiable
data were pseudoanonymized and replaced with a code.

Results

Categorizing Participants Into Different Hand
Function Groups
Observations from 29 participants were included in this study.
Their average age was 59.10 (SD 13.62) years with an average
of 3.140 (SD 2.31) years after stroke. Of the 29 participants, 17
(59%) were hemiplegic on the left side of their body, whereas
the remaining 12 (41%) were hemiplegic on the right side of
their body (Table 2).

Of the 29 participants, 10 (34%) scored between 0 and 9 on the
ARAT and were grouped as having poor hand function, 17
(59%) scored between 10 and 56 on the ARAT and were
grouped as having moderate hand function, and 2 (7%) scored
57 on the ARAT and were grouped as having a good hand
function. There was no statistical difference in age between the
poor hand function group and both the moderate hand function
(P=.06) and the good hand function (P=.37) groups. Similarly,
there was equally no difference in the years after a stroke
between the poor hand function group and both the moderate
hand function (P=.09), and the good hand function (P=.99)
groups. There was also no observed difference in the hemiplegic
side of those with poor hand function (left: 5/10, 50%; right:
5/10, 50%).

Table 2. Characteristics of participants and the 3 subgroups.

ARATa score,
mean (SD)

Hemiplegic side, n (%)Years after stroke,
mean (SD)

Age (years), mean
(SD)

Hand functionParticipants
(n=29), n

Group

RightLeft

26.63 (21.51)12 (41)c17 (59)c3.14 (2.31)59.10 (13.62)—b29 (100)All

2.00 (3.74)5 (50)d5 (50)d2.10 (1.45)64.70 (8.83)Poor10 (34)1

34.65 (16.09)6 (35)e11 (65)e3.88 (2.57)53.76 (13.89)Moderate17 (59)2

57.00 (0.00)1 (50)f1 (50)f2.00 (1.42)76.50 (0.707)Good2 (7)3

aARAT: Action Research Arm Test.
bNot applicable.
cn=29.
dn=10.
en=17.
fn=2.
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Understanding the Rehabilitation Goals of Those With
Different Categories of Hand Function
Table 3 shows a summary of the rehabilitation goals of stroke
survivors based on their different hand functions. Participants
with poor hand function stated goals that were more toward
gaining movements in different parts of their upper limb, as
well as improving the ability to carry out active movements that

will enable them to grasp and release objects. However, stroke
survivors with moderate and good hand function had goals that
were focused on how to improve grip strength, fine motor
movements, release time, as well as purposeful movement of
the upper limb (see Table 3). Those with poor hand function
who recorded a score greater than 0 on the ARAT equally
communicated the need to improve grip strength.

Table 3. Upper limb and hand rehabilitation goals of participants separated into the 3 functional categories.

Rehabilitation goals as stated by the participantsHand functionGroup

Poor1 • Gain the ability to hold objects (eg, paper)
• Gain some shoulder movement
• Gain arm movement
• Recovery of any movement, primarily in the shoulder
• Improve the grasp and release of objects
• Improve active movements
• Grip strengtha

Moderate2 • Improve dexterity
• Improve grip
• Improve the range of upper limb movement
• Improve upper limb strength
• Improve supination or pronation range
• Improve the grasp and release of objects
• Improve release time
• Gain the ability for small object manipulation
• Gain the ability to move objects
• Gain the ability for purposeful movement of the upper limb

Good3 • Increase grip
• Improve wrist extension

aFor those who recorded a score >0 on the Action Research Arm Test (ARAT).

Interaction With Hand Rehabilitation Technologies
by the Poor Hand Function Group
Table 4 shows that 8 (80%) of the 10 participants with poor
hand function could not interact with any of the 3
aforementioned devices to carry out active training. This value

represents 28% (8/29) of the total population in this study. Only
2 (20%) of the 10 participants with poor hand function were
able to engage with these devices; the ARAT score shows that
these 2 participants had ARAT scores of 7 and 9, compared to
the score of 0 that was recorded by the other 8 who were not
able to engage with these devices.
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Table 4. Interaction of stroke survivors who had poor hand function with the hand rehabilitation devices.

Comments on the participants’ability to use the devicesUse of devices for active hand trainingUpper limb rehabilitation
goal

ARATa

score

Partici-
pant ID

Semi-Circular
Peg Board

NeuroBallGripAble

Tightness in the hand and other parts of the upper limb
did not allow the fitting of the devices into the hand

XXXbGeneral upper limb func-
tion

01

Weakness of the upper limb and hand; not able to carry
out the active movement necessary for device usage

XXXImprove active move-
ments

02

Could not make use of any of the devicesXXXHold objects (eg, paper),
gain some shoulder
movement

03

Difficult to initiate movement on the GripAble and
NeuroBall; could also not use the Semi-Circular Peg
Board as a result of weakness in the hand

XXXImprove the grasp and
release of object

04

Fought to maintain grip due to the presence of tightness;
the participant noted that “Botox [had] not helped a lot”
with hand function. However, they were able to make
use of the devices

✓✓✓cGrip strength, range of
shoulder or elbow active
movement

75

Upper limb and hand stiffness affected the ability to
access the devices

XXXGain arm movement06

Had very limited movementsXXXWould like to get some
movement

07

Weakness of the upper limb and hand; not able to carry
out active movement necessary for device usage

XXXRecovery of any move-
ment, primarily in the
shoulder

08

Attempted the GripAble and NeuroBall once but was
not able to make use of them

XXX—d09

—✓✓✓Grip strength910

aARAT: Action Research Arm Test.
bX: unable.
c✓: able.
dNot applicable.

Discussions

Principal Findings
This study was carried out to observe how stroke survivors with
poor hand function interacted with hand rehabilitation devices
such as the GripAble, NeuroBall, and Semi-Circular Peg Board.
The findings show that stroke survivors whose poor hand
function leads to an ARAT score of 0 cannot actively interact
with hand rehabilitation devices.

Comparison to Prior Work
About two-thirds (55%-75%) of persons who had a stroke
sustain upper limb impairments [7]. The extent of the
impairments varies from person to person (see Table 2). In
some, it results in poor hand function, whereas others present
moderate or good hand function. The level of hand function
present after stroke subsequently influences the upper limb
rehabilitation goals of the stroke survivor (see Table 3). Stroke
survivors with moderate to good hand function, who are likely
to possess some range of motion in the hand, can grip, grasp,
or pinch [30,31] hand rehabilitation devices and so have upper
limb rehabilitation goals aimed at strengthening the existing

motor ability. These goals may be related to improving grip
strength and endurance, the ability to release objects or release
time, the existing range of upper limb movements, and finger
dexterity and regaining the ability to manipulate small objects
(see Table 3). However, those with poor hand function,
especially those with an ARAT score of 0 who cannot grasp,
grip, or pinch objects irrespective of the sizes [31], have upper
limb rehabilitation goals that focus on recovering some
movement in the joints (shoulder, elbow, wrist, and/or fingers;
see Tables 3 and 4).

Muscle weakness and the appearance of muscle stiffness,
tightness, or tone (evident by the presence of a clenched hand)
were clinically examined as being responsible for the poor hand
function of the participants in this study (see Figure 3). The
appearance of clenched hands has been reported as a clinical
feature of spasticity [32]; moreover, the presence of muscle
stiffness, tightness, and tone have all been connected with
spasticity [33,34]. Previous studies have reported both spasticity
and muscle weakness as the 2 major motor impairments
following a stroke [35,36]. The severity of these impairments
led to difficulty in hand immobility in 80% of those with poor
hand function (with an ARAT score of 0), and according to an

JMIR Biomed Eng 2024 | vol. 9 | e54159 | p.176https://biomedeng.jmir.org/2024/1/e54159
(page number not for citation purposes)

Wodu et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


earlier report [36], spasticity and muscle weakness can result in immobility.

Figure 3. Participants with poor hand function taking part in the 8-week rehabilitation exercise.

Strengths
The UK National Clinical Guideline for Stroke stipulates that
stroke survivors should be considered for rehabilitation at any
point after the stroke to potentially gain benefits [37]. However,
an earlier study [38] that measured the accuracy of physical
therapists’ early prediction of upper limb function reported that
stroke survivors with ARAT scores more than 10 are those
principally qualified to undergo rehabilitation exercises; this
potentially excludes stroke survivors with poor hand function
from taking part in hand rehabilitation. This study shows that
not all stroke survivors with poor hand function should be
considered ineligible to make use of hand rehabilitation devices,
as those with some range of motion in their hand, as seen in
participants with ARAT scores of 7 and 9 (see Table 4), can
still benefit from hand rehabilitation devices and thus active
hand rehabilitation.

Limitations
Only participants who exhibited poor hand function with an
ARAT score of 0 were not able to benefit from active hand
rehabilitation using devices. Those in this category whose poor
hand function was due to muscle weakness were unable to carry
out any intended active movement on the hand rehabilitation
devices (see Table 4), even when supported to place their hand
on them. In contrast, those whose poor hand function was due
to hand stiffness or tightness, in addition to their inability to
carry out intended active movement, were also faced with the
problem of accessibility, which made it difficult for them to fit
the device.

A limitation of this study was the inability to assess these
conditions (muscle weakness and muscle tone or
tightness)—examined to be responsible for the poor hand
function—using the relevant outcome measures, such as
motricity index, grip strength or pinch strength (for muscle

weakness), or the Modified Ashworth Scale (for spasticity) [39],
to quantify their severity. However, their severity was such that
the hand was not useful in carrying out any of the ARAT tasks
[31], as indicated by an ARAT score of 0.

Future Direction
Improvement in technological advancement has led to the
development of devices such as rehabilitation gloves (smart or
robotic gloves) that can be useful in stretching the hands of
stroke survivors with poor hand function without requiring their
active participation [40,41]. However, only stroke survivors
with low spasticity (who possess some range of active motion
in the hand [42]) may be able to make use of these rehabilitation
gloves [40]. This means those with considerable muscle stiffness
resulting in difficulty in passive motion [42] are still unlikely
to freely access these devices; thus, future design of
rehabilitation devices for hand rehabilitation should consider
the problem of device accessibility in people with poor hand
function due to considerable muscle stiffness or tightness.

Conclusions
It is therefore concluded that not all stroke survivors with
impairments in their hands can interact with the available hand
rehabilitation technologies, as those with an ARAT score of 0
cannot actively interact with any hand rehabilitation device.
Thus, the selection of devices for hand rehabilitation should
first consider the hand function of the affected stroke survivor.
Since muscle stiffness or tightness in the hand results in poor
hand function that can impede access to hand rehabilitation
devices, future design of devices for hand rehabilitation should
consider the accessibility needs of those with poor hand function
as a result of hand stiffness or tightness. A similar observational
study involving more stroke survivors will help ascertain the
percentage of stroke survivors who fall into the category of
having poor hand function and is therefore recommended.

 

Acknowledgments
This study would not have been possible without the support of the Sir Jules Thorn Centre for the Co-creation of Rehabilitation
Technology, University of Strathclyde.

JMIR Biomed Eng 2024 | vol. 9 | e54159 | p.177https://biomedeng.jmir.org/2024/1/e54159
(page number not for citation purposes)

Wodu et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Data Availability
The data sets generated during this study are available from the corresponding author upon reasonable request.

Authors' Contributions
All authors contributed to the study’s methodology, investigation, and administration. Specifically, COW was involved with the
conceptualizing, original draft writing, formal analysis, and visualization of the work. GS and MS were involved with editing
and review of the draft, and AK was involved with the supervision of the project.

Conflicts of Interest
None declared.

References
1. Sarikaya H, Ferro J, Arnold M. Stroke prevention--medical and lifestyle measures. Eur Neurol 2015 Jan 6;73(3-4):150-157

[FREE Full text] [doi: 10.1159/000367652] [Medline: 25573327]
2. Feigin VL, Forouzanfar MH, Krishnamurthi R, Mensah GA, Connor M, Bennett DA, et al. Global and regional burden of

stroke during 1990-2010: findings from the Global Burden of Disease Study 2010. Lancet 2014 Jan 18;383(9913):245-254
[FREE Full text] [doi: 10.1016/s0140-6736(13)61953-4] [Medline: 24449944]

3. King D, Wittenberg R, Patel A, Quayyum Z, Berdunov V, Knapp M. The future incidence, prevalence and costs of stroke
in the UK. Age Ageing 2020 Feb 27;49(2):277-282 [FREE Full text] [doi: 10.1093/ageing/afz163] [Medline: 31957781]

4. Rücker V, Wiedmann S, O'Flaherty M, Busch MA, Heuschmann PU. Decline in regional trends in mortality of stroke
subtypes in Germany from 1998 to 2015. Stroke 2018 Nov;49(11):2577-2583. [doi: 10.1161/STROKEAHA.118.023193]
[Medline: 30355214]

5. Patel A, Berdunov V, Quayyum Z, King D, Knapp M, Wittenberg R. Estimated societal costs of stroke in the UK based
on a discrete event simulation. Age Ageing 2020 Feb 27;49(2):270-276 [FREE Full text] [doi: 10.1093/ageing/afz162]
[Medline: 31846500]

6. Langhorne P, Coupar F, Pollock A. Motor recovery after stroke: a systematic review. Lancet Neurol 2009 Aug;8(8):741-754.
[doi: 10.1016/S1474-4422(09)70150-4] [Medline: 19608100]

7. Lai SM, Studenski S, Duncan PW, Perera S. Persisting consequences of stroke measured by the Stroke Impact Scale. Stroke
2002 Jul;33(7):1840-1844. [doi: 10.1161/01.str.0000019289.15440.f2] [Medline: 12105363]

8. Buccino G, Solodkin A, Small SL. Functions of the mirror neuron system: implications for neurorehabilitation. Cogn Behav
Neurol 2006 Mar;19(1):55-63. [doi: 10.1097/00146965-200603000-00007] [Medline: 16633020]

9. Borghese NA, Essenziale J, Mainetti R, Mancon E, Pagliaro R, Pajardi G. Hand rehabilitation and telemonitoring through
smart toys. Sensors (Basel) 2019 Dec 13;19(24):5517 [FREE Full text] [doi: 10.3390/s19245517] [Medline: 31847216]

10. Ates S, Haarman CJW, Stienen AHA. SCRIPT passive orthosis: design of interactive hand and wrist exoskeleton for
rehabilitation at home after stroke. Auton Robot 2016 Jul 12;41(3):711-723. [doi: 10.1007/s10514-016-9589-6]

11. Pollock A, Baer G, Campbell P, Choo PL, Forster A, Morris J, et al. Physical rehabilitation approaches for the recovery of
function and mobility after stroke. Stroke 2014 Oct;45(10):e202. [doi: 10.1161/strokeaha.114.006275]

12. Iemmi V, Gibson L, Blanchet K, Kumar KS, Rath S, Hartley S, et al. Community-based rehabilitation for people with
disabilities in low-and middle-income countries: a systematic review. Campbell Syst Rev 2015 Sep 1;11(1):1-177. [doi:
10.4073/csr.2015.15]

13. Mauritz KH. Gait training in hemiplegia. Eur J Neurol 2002 May 25;9 Suppl 1(s1):23-29; dicussion 53. [doi:
10.1046/j.1468-1331.2002.0090s1023.x] [Medline: 11918646]

14. Korzeniewska E, Krawczyk A, Mróz J, Wyszyńska E, Zawiślak R. Applications of smart textiles in post-stroke rehabilitation.
Sensors (Basel) 2020 Apr 22;20(8):2370 [FREE Full text] [doi: 10.3390/s20082370] [Medline: 32331218]

15. Kim D. The effects of hand strength on upper extremity function and activities of daily living in stroke patients, with a
focus on right hemiplegia. J Phys Ther Sci 2016 Sep;28(9):2565-2567 [FREE Full text] [doi: 10.1589/jpts.28.2565] [Medline:
27799695]

16. Everard G, Declerck L, Detrembleur C, Leonard S, Bower G, Dehem S, et al. New technologies promoting active upper
limb rehabilitation after stroke: an overview and network meta-analysis. Eur J Phys Rehabil Med 2022 Aug;58(4):530-548
[FREE Full text] [doi: 10.23736/S1973-9087.22.07404-4] [Medline: 35666491]

17. Kilbride C, Scott DJM, Butcher T, Norris M, Ryan JM, Anokye N, et al. Rehabilitation via home based gaming exercise
for the upper-limb post stroke (RHOMBUS): protocol of an intervention feasibility trial. BMJ Open 2018 Nov
21;8(11):e026620 [FREE Full text] [doi: 10.1136/bmjopen-2018-026620] [Medline: 30467137]

18. Myers M. Rehab device enables stroke survivors with arm disabilities to do more training. Imperial College London. 2021
Sep 1. URL: https://tinyurl.com/wxydv9dc [accessed 2022-02-11]

19. Mutalib SA, Mace M, Seager C, Burdet E, Mathiowetz V, Goldsmith N. Modernising grip dynamometry: inter-instrument
reliability between GripAble and Jamar. BMC Musculoskelet Disord 2022 Jan 24;23(1):80 [FREE Full text] [doi:
10.1186/s12891-022-05026-0] [Medline: 35073887]

JMIR Biomed Eng 2024 | vol. 9 | e54159 | p.178https://biomedeng.jmir.org/2024/1/e54159
(page number not for citation purposes)

Wodu et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

https://boris.unibe.ch/id/eprint/63625
http://dx.doi.org/10.1159/000367652
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25573327&dopt=Abstract
https://europepmc.org/abstract/MED/24449944
http://dx.doi.org/10.1016/s0140-6736(13)61953-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24449944&dopt=Abstract
https://europepmc.org/abstract/MED/31957781
http://dx.doi.org/10.1093/ageing/afz163
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31957781&dopt=Abstract
http://dx.doi.org/10.1161/STROKEAHA.118.023193
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30355214&dopt=Abstract
https://europepmc.org/abstract/MED/31846500
http://dx.doi.org/10.1093/ageing/afz162
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31846500&dopt=Abstract
http://dx.doi.org/10.1016/S1474-4422(09)70150-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19608100&dopt=Abstract
http://dx.doi.org/10.1161/01.str.0000019289.15440.f2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12105363&dopt=Abstract
http://dx.doi.org/10.1097/00146965-200603000-00007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16633020&dopt=Abstract
https://air.unimi.it/handle/2434/697222
http://dx.doi.org/10.3390/s19245517
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31847216&dopt=Abstract
http://dx.doi.org/10.1007/s10514-016-9589-6
http://dx.doi.org/10.1161/strokeaha.114.006275
http://dx.doi.org/10.4073/csr.2015.15
http://dx.doi.org/10.1046/j.1468-1331.2002.0090s1023.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11918646&dopt=Abstract
https://www.mdpi.com/resolver?pii=s20082370
http://dx.doi.org/10.3390/s20082370
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32331218&dopt=Abstract
https://europepmc.org/abstract/MED/27799695
http://dx.doi.org/10.1589/jpts.28.2565
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27799695&dopt=Abstract
https://www.minervamedica.it/index2.t?show=R33Y2022N04A0530
http://dx.doi.org/10.23736/S1973-9087.22.07404-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35666491&dopt=Abstract
https://bmjopen.bmj.com/lookup/pmidlookup?view=long&pmid=30467137
http://dx.doi.org/10.1136/bmjopen-2018-026620
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30467137&dopt=Abstract
https://tinyurl.com/wxydv9dc
https://bmcmusculoskeletdisord.biomedcentral.com/articles/10.1186/s12891-022-05026-0
http://dx.doi.org/10.1186/s12891-022-05026-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35073887&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


20. Rinne P, Mace M, Nakornchai T, Zimmerman K, Fayer S, Sharma P, et al. Democratizing neurorehabilitation: how accessible
are low-cost mobile-gaming technologies for self-rehabilitation of arm disability in stroke? PLoS One 2016 Oct
5;11(10):e0163413 [FREE Full text] [doi: 10.1371/journal.pone.0163413] [Medline: 27706248]

21. Kerr A, Grealy MA, Kuschmann A, Rutherford R, Rowe P. A co-creation centre for accessible rehabilitation technology.
Front Rehabil Sci 2021 Jan 7;2:820929 [FREE Full text] [doi: 10.3389/fresc.2021.820929] [Medline: 36188853]

22. Mace M, Rinne P, Liardon JL, Uhomoibhi C, Bentley P, Burdet E. Elasticity improves handgrip performance and user
experience during visuomotor control. R Soc Open Sci 2017 Feb;4(2):160961 [FREE Full text] [doi: 10.1098/rsos.160961]
[Medline: 28386448]

23. Garry MI, Loftus A, Summers JJ. Mirror, mirror on the wall: viewing a mirror reflection of unilateral hand movements
facilitates ipsilateral M1 excitability. Exp Brain Res 2005 May 8;163(1):118-122. [doi: 10.1007/s00221-005-2226-9]
[Medline: 15754176]

24. Johnson M. Transcutaneous electrical nerve stimulation: mechanisms, clinical application and evidence. Rev Pain 2007
Aug;1(1):7-11 [FREE Full text] [doi: 10.1177/204946370700100103] [Medline: 26526976]

25. Mahmood A, Veluswamy SK, Hombali A, Mullick A, Solomon JM. Effect of transcutaneous electrical nerve stimulation
on spasticity in adults with stroke: a systematic review and meta-analysis. Arch Phys Med Rehabil 2019 Apr;100(4):751-768.
[doi: 10.1016/j.apmr.2018.10.016] [Medline: 30452892]

26. Hamzah N, Giban NI, Mazlan M. Robotic upper limb rehabilitation using Armeo®Spring for chronic stroke patients at
University Malaya Medical Centre (UMMC). 2017 Dec 7 Presented at: 2nd International Conference for Innovation in
Biomedical Engineering and Life Sciences; December 10-13, 2017; Penang, Malaysia p. 225-230. [doi:
10.1007/978-981-10-7554-4_39]

27. Laver KE, Lange B, George S, Deutsch JE, Saposnik G, Crotty M. Virtual reality for stroke rehabilitation. Cochrane
Database Syst Rev 2017 Nov 20;11(11):CD008349 [FREE Full text] [doi: 10.1002/14651858.CD008349.pub4] [Medline:
29156493]

28. Bui J, Luauté J, Farnè A. Enhancing upper limb rehabilitation of stroke patients with virtual reality: a mini review. Front
Virtual Real 2021 Nov 8;2:595771. [doi: 10.3389/frvir.2021.595771]

29. da Silva ESM, Ocamoto GN, Santos-Maia GLD, de Fátima Carreira Moreira Padovez R, Trevisan C, de Noronha MA, et
al. The effect of priming on outcomes of task-oriented training for the upper extremity in chronic stroke: a systematic review
and meta-analysis. Neurorehabil Neural Repair 2020 Jun 26;34(6):479-504. [doi: 10.1177/1545968320912760] [Medline:
32452242]

30. Buma FE, Raemaekers M, Kwakkel G, Ramsey NF. Brain function and upper limb outcome in stroke: a cross-sectional
fMRI study. PLoS One 2015 Oct 6;10(10):e0139746 [FREE Full text] [doi: 10.1371/journal.pone.0139746] [Medline:
26440276]

31. Wilson N, Howel D, Bosomworth H, Shaw L, Rodgers H. Analysing the Action Research Arm Test (ARAT): a cautionary
tale from the RATULS trial. Int J Rehabil Res 2021 Jun 01;44(2):166-169 [FREE Full text] [doi:
10.1097/MRR.0000000000000466] [Medline: 33741815]

32. Nair KPS, Marsden J. The management of spasticity in adults. BMJ 2014 Aug 05;349:g4737. [doi: 10.1136/bmj.g4737]
[Medline: 25096594]

33. Sommerfeld DK, Eek EU, Svensson A, Holmqvist LW, von Arbin MH. Spasticity after stroke. Stroke 2004 Jan;35(1):134-139.
[doi: 10.1161/01.str.0000105386.05173.5e]

34. Francisco GE, Wissel J, Platz T, Li S. Post-stroke spasticity. In: Platz T, editor. Clinical Pathways in Stroke Rehabilitation.
Cham, Switzerland: Springer; Jan 15, 2021:149-173.

35. Li S. Spasticity, motor recovery, and neural plasticity after stroke. Front Neurol 2017 Apr 03;8:120 [FREE Full text] [doi:
10.3389/fneur.2017.00120] [Medline: 28421032]

36. Raghavan P. Upper limb motor impairment after stroke. Phys Med Rehabil Clin N Am 2015 Nov;26(4):599-610 [FREE
Full text] [doi: 10.1016/j.pmr.2015.06.008] [Medline: 26522900]

37. National Clinical Guideline for Stroke for the UK and Ireland. London, United Kingdom: Intercollegiate Stroke Working
Party; 2023 May 4. URL: https://www.strokeguideline.org [accessed 2023-09-12]

38. Nijland RHM, van Wegen EEH, Harmeling-van der Wel BC, Kwakkel G, Early Prediction of Functional Outcome After
Stroke Investigators. Accuracy of physical therapists' early predictions of upper-limb function in hospital stroke units: the
EPOS Study. Phys Ther 2013 Apr;93(4):460-469. [doi: 10.2522/ptj.20120112] [Medline: 23139424]

39. Lang CE, Bland MD, Bailey RR, Schaefer SY, Birkenmeier RL. Assessment of upper extremity impairment, function, and
activity after stroke: foundations for clinical decision making. J Hand Ther 2013;26(2):104-114;quiz 115 [FREE Full text]
[doi: 10.1016/j.jht.2012.06.005] [Medline: 22975740]

40. Fardipour S, Hadadi M. Investigation of therapeutic effects of wearable robotic gloves on improving hand function in stroke
patients: a systematic review. Curr J Neurol 2022 Apr 04;21(2):125-132 [FREE Full text] [doi: 10.18502/cjn.v21i2.10496]
[Medline: 38011474]

41. Kang M, Yun SJ, Lee SY, Oh B, Lee HH, Lee S, et al. Effects of upper-extremity rehabilitation using smart glove in patients
with subacute stroke: results of a prematurely terminated multicenter randomized controlled trial. Front Neurol 2020 Nov
9;11:580393 [FREE Full text] [doi: 10.3389/fneur.2020.580393] [Medline: 33240205]

JMIR Biomed Eng 2024 | vol. 9 | e54159 | p.179https://biomedeng.jmir.org/2024/1/e54159
(page number not for citation purposes)

Wodu et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

https://dx.plos.org/10.1371/journal.pone.0163413
http://dx.doi.org/10.1371/journal.pone.0163413
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27706248&dopt=Abstract
https://europepmc.org/abstract/MED/36188853
http://dx.doi.org/10.3389/fresc.2021.820929
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36188853&dopt=Abstract
https://royalsocietypublishing.org/doi/10.1098/rsos.160961?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.1098/rsos.160961
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28386448&dopt=Abstract
http://dx.doi.org/10.1007/s00221-005-2226-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15754176&dopt=Abstract
https://europepmc.org/abstract/MED/26526976
http://dx.doi.org/10.1177/204946370700100103
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26526976&dopt=Abstract
http://dx.doi.org/10.1016/j.apmr.2018.10.016
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30452892&dopt=Abstract
http://dx.doi.org/10.1007/978-981-10-7554-4_39
https://europepmc.org/abstract/MED/29156493
http://dx.doi.org/10.1002/14651858.CD008349.pub4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29156493&dopt=Abstract
http://dx.doi.org/10.3389/frvir.2021.595771
http://dx.doi.org/10.1177/1545968320912760
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32452242&dopt=Abstract
https://dx.plos.org/10.1371/journal.pone.0139746
http://dx.doi.org/10.1371/journal.pone.0139746
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26440276&dopt=Abstract
https://europepmc.org/abstract/MED/33741815
http://dx.doi.org/10.1097/MRR.0000000000000466
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33741815&dopt=Abstract
http://dx.doi.org/10.1136/bmj.g4737
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25096594&dopt=Abstract
http://dx.doi.org/10.1161/01.str.0000105386.05173.5e
https://europepmc.org/abstract/MED/28421032
http://dx.doi.org/10.3389/fneur.2017.00120
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28421032&dopt=Abstract
https://europepmc.org/abstract/MED/26522900
https://europepmc.org/abstract/MED/26522900
http://dx.doi.org/10.1016/j.pmr.2015.06.008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26522900&dopt=Abstract
https://www.strokeguideline.org
http://dx.doi.org/10.2522/ptj.20120112
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23139424&dopt=Abstract
https://europepmc.org/abstract/MED/22975740
http://dx.doi.org/10.1016/j.jht.2012.06.005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22975740&dopt=Abstract
https://europepmc.org/abstract/MED/38011474
http://dx.doi.org/10.18502/cjn.v21i2.10496
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38011474&dopt=Abstract
https://europepmc.org/abstract/MED/33240205
http://dx.doi.org/10.3389/fneur.2020.580393
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33240205&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


42. Harb A, Kishner S. Modified Ashworth Scale. In: StatPearls. Treasure Island, FL: StatPearls Publishing; 2024.

Abbreviations
ARAT: Action Research Arm Test

Edited by T Leung; submitted 31.10.23; peer-reviewed by J Quinzaños, A Perez Sanpablo; comments to author 15.02.24; revised
version received 10.04.24; accepted 01.06.24; published 26.06.24.

Please cite as:
Wodu CO, Sweeney G, Slachetka M, Kerr A
Stroke Survivors’ Interaction With Hand Rehabilitation Devices: Observational Study
JMIR Biomed Eng 2024;9:e54159
URL: https://biomedeng.jmir.org/2024/1/e54159 
doi:10.2196/54159
PMID:38922668

©Chioma Obinuchi Wodu, Gillian Sweeney, Milena Slachetka, Andrew Kerr. Originally published in JMIR Biomedical Engineering
(http://biomsedeng.jmir.org), 26.06.2024. This is an open-access article distributed under the terms of the Creative Commons
Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work, first published in JMIR Biomedical Engineering, is properly cited. The complete
bibliographic information, a link to the original publication on https://biomedeng.jmir.org/, as well as this copyright and license
information must be included.

JMIR Biomed Eng 2024 | vol. 9 | e54159 | p.180https://biomedeng.jmir.org/2024/1/e54159
(page number not for citation purposes)

Wodu et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

https://biomedeng.jmir.org/2024/1/e54159
http://dx.doi.org/10.2196/54159
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38922668&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


Original Paper

Classifying Residual Stroke Severity Using Robotics-Assisted
Stroke Rehabilitation: Machine Learning Approach

Russell Jeter1,2*, PhD; Raymond Greenfield1*, MSci; Stephen N Housley2,3, PT, DPT, PhD; Igor Belykh1,4, Prof Dr,
PhD
1Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, United States
2Motus Nova, LLC, Atlanta, GA, United States
3Laboratory for Sensorimotor Integration, Georgia Institute of Technology, Atlanta, GA, United States
4Neuroscience Institute, Georgia State University, Atlanta, GA, United States
*these authors contributed equally

Corresponding Author:
Igor Belykh, Prof Dr, PhD
Department of Mathematics and Statistics
Georgia State University
PO Box 4110
Atlanta, GA, 30302 410
United States
Phone: 1 404 413 6411
Fax: 1 404 413 6403
Email: ibelykh@gsu.edu

Abstract

Background: Stroke therapy is essential to reduce impairments and improve motor movements by engaging autogenous
neuroplasticity. Traditionally, stroke rehabilitation occurs in inpatient and outpatient rehabilitation facilities. However, recent
literature increasingly explores moving the recovery process into the home and integrating technology-based interventions. This
study advances this goal by promoting in-home, autonomous recovery for patients who experienced a stroke through
robotics-assisted rehabilitation and classifying stroke residual severity using machine learning methods.

Objective: Our main objective is to use kinematics data collected during in-home, self-guided therapy sessions to develop
supervised machine learning methods, to address a clinician’s autonomous classification of stroke residual severity–labeled data
toward improving in-home, robotics-assisted stroke rehabilitation.

Methods: In total, 33 patients who experienced a stroke participated in in-home therapy sessions using Motus Nova robotics
rehabilitation technology to capture upper and lower body motion. During each therapy session, the Motus Hand and Motus Foot
devices collected movement data, assistance data, and activity-specific data. We then synthesized, processed, and summarized
these data. Next, the therapy session data were paired with clinician-informed, discrete stroke residual severity labels: “no range
of motion (ROM),” “low ROM,” and “high ROM.” Afterward, an 80%:20% split was performed to divide the dataset into a
training set and a holdout test set. We used 4 machine learning algorithms to classify stroke residual severity: light gradient
boosting (LGB), extra trees classifier, deep feed-forward neural network, and classical logistic regression. We selected models
based on 10-fold cross-validation and measured their performance on a holdout test dataset using F1-score to identify which
model maximizes stroke residual severity classification accuracy.

Results: We demonstrated that the LGB method provides the most reliable autonomous detection of stroke severity. The trained
model is a consensus model that consists of 139 decision trees with up to 115 leaves each. This LGB model boasts a 96.70%
F1-score compared to logistic regression (55.82%), extra trees classifier (94.81%), and deep feed-forward neural network (70.11%).

Conclusions: We showed how objectively measured rehabilitation training paired with machine learning methods can be used
to identify the residual stroke severity class, with efforts to enhance in-home self-guided, individualized stroke rehabilitation.
The model we trained relies only on session summary statistics, meaning it can potentially be integrated into similar settings for
real-time classification, such as outpatient rehabilitation facilities.

(JMIR Biomed Eng 2024;9:e56980)   doi:10.2196/56980
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Introduction

Stroke is a leading cause of mortality and disability worldwide,
and the economic costs of treatment and poststroke care are
substantial [1]. In 2019, there were 12.2 million incident cases
of stroke, 101 million prevalent stroke cases, and 6.55 million
deaths from stroke [2]. The severity of a stroke can range from
mild to severe, with severe strokes often leading to long-term
disability or even death. Stroke rehabilitation typically involves
a team of health care professionals, including doctors, nurses,
therapists, and other specialists. The specific goals and
interventions of stroke rehabilitation vary depending on the
individual’s needs and abilities. They may include physical
therapy to improve mobility; occupational therapy to improve
the ability to perform daily activities; speech therapy to improve
communication skills; and cognitive therapy to improve
memory, problem-solving, and other cognitive abilities. While
traditionally recovery has taken place in inpatient and outpatient
rehabilitation facilities, there is growing recent literature about
moving the recovery process into the home [3,4] and integrating
technology-based interventions [5]. This study takes steps to
achieve this goal of in-home and autonomous recovery for
patients who experienced a stroke via robotics-assisted stroke
rehabilitation and classification of stroke residual severity via
machine learning methods.

Machine learning in health care and stroke rehabilitation is not
a new concept (see Reyna et al [6], Alabi et al [7], Cerasa et al
[8], and Harari et al [9] as notable examples of this vast research
field and Campagnini et al [10] for a systematic review of
machine learning methods for poststroke rehabilitation recovery
prediction). In particular, multiple studies have been performed
to predict outcomes in patient survival, locoregional recurrences,
and long-term outcomes in patients who experienced an
ischemic stroke [11-15]. Similarly, studies focused on motor
function have leveraged retrospective health care data and
targeted predicting the short- and long-term functional ability
[16-18]. Such studies represent an exciting step forward in stroke
rehabilitation but have some limitations. These limitations
include the use of health care data that are infrequently measured
(sometimes entirely limited to admission data), which can
hamper the performance of models that rely on large datasets
for generalizability. Similarly, most studies limit their scope to
predicting short- and long-term outcomes and may fail to capture
some of the day-to-day changes survivors’ who have
experienced a stroke experience.

This study aims to overcome these limitations by quantifying
the progress of patient improvement via in-home therapy
sessions using Motus Nova robotics rehabilitation technology
[19] that captures upper and lower body motion. The Motus
Hand and Motus Foot devices are robotic therapeutic devices
designed to be used by survivors who have experienced a stroke
with residual upper and lower extremity impairments at home
without needing help from a clinician or caregiver. The
neuromotor mechanism by which the Motus Hand and Motus
Foot help rehabilitate patients who have experienced a stroke

is rooted in the results from constraint-induced movement
therapy studies [20,21] and focus on getting survivors of stroke
high volumes of repetitive task practice. The Motus Hand and
Motus Foot engage the affected wrist or ankle of the user,
guiding them through various therapeutic exercises targeting
various functional tasks (eg, gross motor control, fine motor
control, and precision tracking). Earlier versions of the
technology have been shown to have clinically significant
improvements in depressive symptoms, functional independence,
upper extremity use in functional tasks, distance walking, and
gait speed [19,22,23].

Traditionally, to determine the functional ability of survivors
of stroke, they will be assessed by a clinician during often
infrequent clinical visits (whether through an outpatient
rehabilitation facility, visiting a neurologist, or a primary care
physician). The time scale of these assessments fails to capture
the progress made during the recovery process when it happens.
Using machine learning and therapy session, kinematic
measurements promise to have a central role in rehabilitation
decision-making in determining whether patient therapy is
improving. Machine learning is the methodology that allows
computers to learn from experience. By constructing and training
supervised classifiers to learn decision rules from data, automatic
solutions can be exploited to make predictions on new data
[24,25]. As in many health care, disease, or machine learning
research applied in a clinical setting, labeling of patient data by
a clinician is necessary [6]. This study applies the same heuristic
methodologies. Our goal is to use kinematics data collected
during in-home, self-guided therapy sessions to construct
supervised machine learning methods to address the autonomous
classification of stroke residual severity–labeled data toward
improving in-home, robotics-assisted, individualized stroke
rehabilitation.

Methods

Therapeutic Intervention Description
The Motus Hand and Motus Foot each consist of 2 major
components: a peripheral (see the bottom panel of Figure 1 for
a close-up of the Motus Hand peripheral) that the patient
attaches to their affected limb and a console that guides their
therapy routine and assessment using a video game interface.
The peripherals have a pneumatic actuator that can dynamically
provide assistance or resistance by filling an air muscle in the
peripheral that moves the wrist or ankle joint. The wrist or ankle
joint of the peripheral has an embedded angle and pressure
sensor that transmits live angle and pressure data to the console.
This allows the console to give the user immediate visual
feedback of their movement through avatars in a video game
on the screen. The therapeutic video game activities can provide
a dynamic feedback loop consisting of in-game goals (eg, ships
to shoot or coins to collect) that drive user movements, which
correspond to movement on the screen, allowing the console to
react and set new goals or obstacles. This feedback loop is
designed to promote sensory motor function.
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A therapy session with the Motus Hand or Motus Foot consists
of stretching, gross motor control, fine motor control, and
endurance exercises, depending on the patient’s needs. This
process is depicted in Figure 1, where a Motus Hand user is
playing “Cosmic Tennis,” a gross motor control exercise that
plays like the classic arcade game Pong [26]. The user’s wrist
or ankle movement corresponds to the movement of the paddle

on the right-hand side of the screen, and the goal is to hit the
ball back and forth to score on the artificial intelligence
(AI)–controlled opponent. Because of the user-guided nature
of a therapy session with the Motus Hand or Motus Foot, therapy
sessions can vary greatly in length. In the data collected, therapy
sessions range from 5 to 60 minutes and between 1 and 10
therapeutic activities.

Figure 1. Patients do therapy sessions with the Motus Hand or Motus Foot using a pneumatically driven exogenous robotic device worn on the affected
hand, arm, or foot (the Motus Hand is depicted in the bottom panel). The peripheral acts as a game controller (through an angle sensor embedded in the
wrist joint) that allows users to play therapeutic video games that dynamically adapt to their needs and provide the requisite assistance or resistance
(computer screen in the bottom panel).

Study Design
The Motus Hand and Motus Foot collect high-resolution angle
and pressure data from sensors embedded in the wrist or ankle
joints and the pressure management system. These
high-resolution data are collected at a frequency of 30 Hz and
stored in a time series database. Other information collected
during a therapy session includes score, peripheral type (Motus
Hand or Motus Foot), and current game (therapeutic activity).
This study used anonymous data collected from 33 patients who
experienced a stroke. In total, those patients performed 32,902
therapeutic activities (ie, each unique activity performed in each
therapy session). These therapy session data are then divided
using an 80%:20% split into a training dataset and a holdout
test set. The training set is used for training the classification
models, and the test set is reserved for the final model
evaluation.

To use the data collected during a therapy session to classify a
patient’s stroke residual severity autonomously, each patient
was given a guided assessment with a clinician using the Motus
Hand or Motus Foot to classify them as having a high range of
motion (ROM), low ROM, or no ROM. These classification
levels are intentionally chosen to be coarse to mimic the
environment in a rehabilitation therapy session.

To find an ideal classifier, we use to consider the training and
performance of 4 machine learning algorithms: light gradient
boosting (LGB) [27], extra trees classifier [28], deep
feed-forward neural network (DNN) [29], and multiclass logistic
regression (LR) [30]. A practical model is then constructed
using the most common data measured in each session based
on the maximum score per session per patient. Unsupervised
learning methods are then applied to the training dataset, such
as the correlation matrix and principal component analysis
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(PCA), to show that all variables collected are relevant to the
study. After performing dimensionality reduction analysis, the
models are selected using 10-fold cross-validation on the
training dataset with the mean and SD of accuracy from each
computational experiment. Afterward, the following metrics
determine the model’s performance, including the accuracy,
precision, and recall from the confusion matrix. The

macroaverage F1-score was used to judge the efficacy of the
models, as this is a multiclassification problem [31], and as
such, accuracy would be an insufficient measure. Figure 2
provides a high-level overview of the data collection, analysis,
processing, and modeling that ultimately produces the final
classification results.

Figure 2. Concept diagram of the overall data analysis and modeling. In total, 33 patients perform in-home therapy using the Motus Hand and Motus
Foot rehabilitation devices. Sensors in the devices capture live angle and pressure data. These data are then processed and summarized to provide
summary statistics of 32,902 therapeutic activities. This provides the base dataset for the analysis presented in this paper, with 11 features and 32,902
points. These data are then split and prepared for use in training a supervised machine learning model to classify the stroke severity of the patient.

Details of Data Collection
Throughout a therapy session using the Motus Hand or Motus
Foot, live angle data (measured in degrees from a natural
midpoint in wrist or ankle placement) are collected from the
sensor embedded in the wrist or ankle joint at 30 readings per
second. These “raw” angle sensor data are then stored in a time
series database (InfluxDB [32]). In addition to the
high-resolution angle data, pressure readings (measured in PSI)
are taken from the pressure management system at 30
measurements per second. While these readings are not high
resolution compared to state-of-the-art kinematics technology
[33], it is significantly higher resolution than what a typical
physician would have access to during assessments in a normal
physical therapy visit.

Each therapy session for a patient includes a selection of about
30 activities that focus on several types of motor function,
including gross motor control, fine motor control, flexor tone

reduction, endurance, reaction time, and tracking. A patient can
participate in more than 1 video game (therapeutic activity)
during a patient session. The score is recorded and stored once
the patient completes the video game. The scores for each game
are not necessarily standardized. This means a score of 100 in
one game can represent a dramatically different performance
than a score of 100 in another. The score is collected each time
a player performs an action in the game that would increase or
decrease the score, so this field is collected more irregularly
and infrequently than angle and pressure data. Gender and other
biometric data such as age, height, and weight are not included
in the patient description or the analysis.

Clinician Labeling
To train a classifier for determining stroke residual severity,
our dataset must have appropriate labels corresponding to the
patient’s level of function around the time the data were
collected. During a series of video calls and using the Motus
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Hand and Motus Foot technology, a clinician met with each
individual and performed a series of assessments. Remote
assessment of extremity function using an external device has
been studied and indicates that it is noninferior to in-person
assessment when done properly [34]. The clinician used the
potentiometer [35] embedded in the wrist or ankle joint of the
Motus Hand or Motus Foot and a “clinician dashboard” interface
to read live angle and pressure data from the patient and provide
them the requisite assistance to stretch the patient’s wrist or
ankle to collect passive and active ROM thresholds. With these

assessments, the clinician estimated each individual’s active
ROM and passive ROM and characterized their level of function
as “no ROM,” “low ROM,” or “high ROM.” While these labels
are quite broad, the labeling process is hardly a simple
algorithm. At the clinician’s discretion, quantitative and
qualitative factors must apply an appropriate label. In particular,
the clinician recorded the minimum or maximum angle reached
for the assessment performed, the type of assessment performed,
and a label summarizing the patient’s ROM level. These data
are summarized in Table 1.

Table 1. Example patient label table assessed by a clinician during telehealth session.

Clinician classificationAssessmentMinimum angleMaximum anglePatient ID

NoPassive–20371495

NoPassive–16212273

NoPassive–15402085

NoPassive–9442098

NoPassive–12281864

NoPassive–18372040

LowPassive–18432097

LowAssisted–17–32356

LowAssisted–17–32356

LowAssisted–23521688

LowPassive–12541876

LowPassive–20462029

LowPassive–18301458

HighAssisted–12101637

HighAssisted–1682282

HighAssisted–15391781

HighAssisted–18102360

All patients first were given a passive ROM assessment, in
which they were stretched as far as their wrist or ankle would
allow without experiencing pain or discomfort. Next, an active
ROM assessment was conducted. In this assessment, the patient
bends their wrist or ankle as far up and down as they can without
any assistance from the Motus Hand or Motus Foot and without
compensating with other parts of their bodies (hips, shoulders,
etc). Depending on the patient’s assessed active ROM, an
assisted ROM assessment was performed. This assessment
consists of providing patients with varying amounts of assistance
and recording their ROM in the presence of an upward force.

We define a patient as “assisted” or “passive” based on the most
arduous assessment performed on the patient. The low ROM
label contains a combination of patients who either did or did
not have enough movement for the assisted ROM assessment.
All patients who are classified with a high ROM (low residual
stroke severity) were able to complete the assisted ROM
assessment. This is important when noticing that patients with
ID 2085 and 1781 (blue) have a similar total ROM (maximum
angle–minimum angle), but patient ID 1781 requires clinician
assistance to reach their maximum ROM. However, there is

ambiguity in some labels. For example, take patient ID 2356
(red), where it can be argued that the patient should have a high
stroke residual severity (corresponding to low or no ROM),
given the low total ROM with assistance. This is where the
clinician has other outside factors that contribute to the final
labeled classification of a patient. The clinician is visually able
to assess the level of tone and spasticity that a patient may be
exhibiting, which would not necessarily be captured in the
minimum and maximum ROM values. The assessment results
and labels were reviewed and confirmed by an additional expert.

Data Processing
To create a more manageable dataset for the labeling task, we
generate summary statistics of the high-resolution data for each
activity performed during a therapy session. First, to compensate
for sensor reading issues, we smooth outliers out of the raw
time series data (replacing data points in the 99th and 1st
percentile with the value of the 99th and 1st percentile,
respectively). Then, summarize the angle (relative to a reference
midpoint in degrees) and pressure (in PSI) using the following
variables: Rmin, the minimum ROM for a game; Rmax, the
maximum ROM for a game; Rmean, the mean ROM for a game;
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Pmin, the minimum pressure for a game; Fflex, the maximum
centripetal force generated while moving downward (flexion
for upper extremities and plantar flexion for lower extremities);
Fext, the maximum centripetal force generated while moving
upward (extension for upper extremities and dorsiflexion for
lower extremities); Pmax, the maximum pressure for a game;
and Pmean, the mean pressure for a game. We finally pair these
game-level summary statistics with the number of movements
performed in the game (Nmov), the maximum score in the game
(Score), and the total time spent playing that game during a
therapy session (tgame).

This transformation from high-resolution data to game-level
summary statistics provides a much more manageable dataset
to which we can apply the clinician labels. A patient with low
ROM (as labeled by the clinician) has little ROM during each
game throughout a session. Using this idea, we construct a new
dataset from each activity (game) a patient takes part in during
a session, with each row having a unique (patient ID, session
ID, and game ID) tuple. It is worth noting that a patient is
unlikely to take part in every activity over the course of a
therapy session; often, they gravitated to a few choice activities
during each session. A summary of the data in each row in the
described dataset is presented in Table 2.

After combining the data into this standardized dataset, the data
then require sanitization, analysis, and normalization. The “role”

column indicates whether a variable is part of the feature set,
the labels, or not used in the model training at all. To sanitize
the data, we fill in missing values, correct invalid sensor values,
and throw out data that did not represent a meaningful
therapeutic exercise.

To isolate games with insufficient activity to draw meaningful
conclusions, we restrict the number of movements, Nmov,
performed during a game (therapeutic activity). A “movement”
is any change of direction recorded in the angle sensor after
noise is smoothed out of the time series. We remove any game
(therapeutic activity) with fewer than 3 movements, as no
significant therapeutic exercise can be performed with fewer
than 3 movements (under assistance from the robotic Motus
Hand or Foot).

Before performing any data analysis, the harmonized dataset is
partitioned using an 80%:20% split into a training set and a
holdout test set. The training set is used for exploratory data
analysis and model training. All normalization and
transformation techniques derived from the training set are then
applied to the test set before the final predictive measures are
computed. This is done to prevent data leakage from including
the test set in the derivation of normalization and transformation
techniques. The test dataset is reserved for the final performance
measures in the Results section.

Table 2. Session game data dictionary.

ExampleUnitRoleDescriptionVariable

–3.047709105NewtonFeatureMaximum centripetal force generated moving in the downward direction during
an activity (computed from derivatives of angle data)

F flex

3.251405759NewtonFeatureMaximum centripetal force generated moving in the upward direction during
an activity (computed from derivatives of angle data)

F ext

10IntegerFeatureThe number of completed movements during an activityN mov

–25DegreesFeatureAbsolute minimum angle detected by angle sensor during an activityR min

46.41941DegreesFeatureAbsolute maximum angle detected during an activityR max

15SecondsFeatureTotal time spent performing therapy during an activityt game

–0.04511994PSIFeatureMinimum pressure applied by the sensor during an activityP min

10.30989PSIFeatureMaximum pressure applied by the sensor during an activityP max

3.590553432PSIFeatureAverage pressure applied by the sensor during an activityP mean

100IntegerFeatureMaximum score achieved during an activityScore

Hand0, 1FeaturePeripheral type variable indicating the hand or footh

High0, 1, 2LabelDesignate stroke severity label by a clinician (high, low, and no)Class

4IntegerNot usedUnique identifier for each game (therapeutic activity) that is available on the
Motus Hand or Foot

g

11IntegerNot usedAnonymous identifier for each patient using the Motus Hand or Foot in this
study

p

782,302,348,734IntegerNot usedUnique identifier for each session performed on the Motus Hand or Foots
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Exploratory Data Analysis

Data Distribution
It is well-known that proper data normalization is critical for
maximizing model performance across machine learning
applications and methods [36]. Knowing the proper

normalization technique for each feature requires a cursory
dataset analysis. In Figure 3, we show representative
distributions of the features that will be input variables for our
comparative model analysis. While some variables are not
normally distributed, assuming that the data are normally
distributed is sufficient considering the results [37].

Figure 3. Example of the distribution plots for 4 of the random variables for each therapeutic activity color-coded by the class label from the clinician.
The plots are (A) distribution of minimum angle, (B) distribution of maximum pressure, (C) distribution of average pressure, and (D) distribution of
maximum pressure. An explanation for each variable in the dataset is given in Table 2. Subsequently, random variables are distributed normally, which
is crucial for using the z score when inputting into a machine learning algorithm.

Correlation
We analyze the correlation among the features in our dataset to
identify potential redundancies. Then, we look at the principal
component decomposition [38] to see if the variation in the data
can be meaningfully reduced to a lower dimensional space. The
correlation matrix for the feature set, constructed by computing
the correlation between each pair of features in the dataset, is
shown in Figure 4.

Because a correlation matrix points to potential relationships
between features, it can indicate the feasibility of dimensionality
reduction when preparing a dataset for building a classifier. If
2 variables are highly correlated, that is, |Cor(X, Y)|>0.9, Shin
and Park [39] suggest that one of those variables can be dropped
from the analysis. We use this threshold of 0.9 where
appropriate.

There exists a strong negative correlation between Fext and Fflex

approximately at –0.9. However, we chose not to exclude either
variable from our analysis due to their relevance in neuromotor
recovery. For survivors who have experienced a stroke with
upper extremity impairment, hypertonia often results in distinct
patterns of volitional flexion (downward pushing force) and
extension (upward pushing force) improvement [40].

The correlation between the mean pressure for an activity, Pmean,
and maximum pressure for an activity, Pmax, with the value of
0.80, indicates that the Motus Hand or Foot applied more
pressure on average in each activity; however, because this
correlation fails to surpass the threshold of 0.90, we do not drop
either variable. Similarly, the correlation (0.60) between game
time, tgame, and game score, Score, is intuitive: the longer a
patient plays a game, the higher their score. Unfortunately, this
correlation also does not meet the threshold for exclusion in the
final feature set.
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Figure 4. Correlation matrix for the feature set, excluding identification variables such as patient ID, session ID, game ID, and start time. A correlation
threshold of |Cor(X, Y)|>0.9 was used for variable exclusion in dimensionality reduction. Notably, Fflex and Fext show a strong negative correlation.
Despite this, both were included in the analysis because the development of downward pushing strength (flexion in upper extremities and plantar flexion
in lower extremities) does not imply the development of upward pushing strength (extension in upper extremities and dorsiflexion in lower extremities).

Dimensionality Reduction
Another informative approach for analyzing the potential for
dimensionality reduction in a feature set is PCA. Principal
components are new variables constructed as linear
combinations of the initial variables. These linear combinations
ensure that the new variables (ie, principal components) are
uncorrelated and that as few components as possible contain
most of the information from the initial variables. Explained
variance is a statistical measure of how much variation in a
dataset is attributable to each principal component (eigenvectors)
generated by the PCA method [41]. Explained variance thus

allows us to rank the components in order of importance and
to focus on the most important ones when interpreting the results
of our analysis.

In Figure 5, we show the explained variance of each principal
component contributes to the total variation in the feature set.
No component can be described as dominant, as none accounts
for more than 20% of the variance in the initial dataset.

Given this and the results from our correlation analysis, no
variables present in the principal dataset were excluded from
the feature set.
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Figure 5. Depiction of the principal components with the explained variance ratio. As shown, 95% of the explained variance is contributed by all
principal components. As a result, all variables are used in the machine learning model for the analysis.

Model Description
Here, we provide a brief overview of the models compared in
the Results section. LR is a classical statistical technique for
binary classification. The technique consists of mapping the
probability of an event happening to a logistic curve with the
model inputs as dependent variables. LR is still widely used
and is a common first model when performing classification
because it is easy to implement and interpret.

Gradient boosting decision tree (GBDT) is a widely used
machine learning algorithm due to its efficiency, accuracy, and
interpretability [27]. The algorithm uses smaller “weaker
classifiers” with a number of leaves. By taking a weighted
average of these several “weaker classifiers,” we then can
construct a “stronger classifier” [42]. By training several weaker
models, this process is known as AdaBoosting. It results in a
stronger model by adding more leaves to the decision tree and
taking a weighted combination of these weaker models, where
the weights are determined by the performance [43].

The DNN is a high-performance deep learning model with
varying hidden layers. Several architectures were tested on the
training dataset to see if there was an increase in performance
by adding hidden layers (from 4 to 8) or a reduction in nodes
in each input layer [44]. The rectified linear unit activation
function was implemented into the model instead of the sigmoid
function. Both were tried. Accuracy results from the
computational experiment could surpass 80%, regardless of
adding more layers, changing the hidden layer input size, or
changing the activation function. The best-performing DNN
trained in our analysis has 3 hidden layers with the input size
of the hidden layers as 8, 5, and 8, respectively. Layer size,
learning rates, batch size, and epoch size were all
hyperparameters tuned during the training process.

The extra trees classifier is an ensemble learning method for
classification. Ensemble learning is a machine learning
technique that combines the predictions of multiple individual
models to produce a more accurate and robust final prediction.
The basic idea is to train multiple models independently, each
with a different algorithm or set of hyperparameters, and then
combine their predictions at the end [45]. This is similar to the
AdaBoosting concept with LGB, where models can be combined
by averaging or weighting their predictions [46]. The model
uses entropy as the splitting criterion for the trees, with 100%
of the features considered at each split. The maximum number
of leaf nodes for each tree is 8717, and the model is comprised
of 42 trees [46].

Ethical Considerations
This study was approved by the institutional review board of
Georgia State University (IRB H24270). This research involves
the analysis of preexisting, nonidentifiable data. No direct
interaction or intervention with human participants occurred
during the course of this study. The study relies solely on data
generated by the commercial company Motus Nova for
nonresearch purposes. All methods followed relevant guidelines
and regulations approved by the Georgia State University
institutional review board that waived the informed consent and
designated this study as no human participants research.

Results

The original harmonized dataset (described in Table 2) contained
all the scores, the minimum and maximum ROM, and minimum
and maximum pressure, and we took the maximum score per
game per session. Due to the smaller dataset, the training and
testing were split on the 80%:20% principle, where for 80% of
the data, the training set was used to train the models (with a
subset of this set being used for training hyperparameters where
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appropriate). For the remaining 20%, the holdout test set was
used to compare the performance of the models after training.

Table 3 shows a performance based on 10-fold cross-validation
for each machine learning classification algorithm applied to
the training set. K-fold cross-validation is used to verify that a
high-accuracy model does not necessarily overfit the training
data. The training dataset is randomly divided into 10 different
subsets or “folds” [47]. Each of these folds is then used as the
new training data, while another is used as the new testing data
for fitting a new model. We then take the mean and SD of the
model accuracy across the 10 folds.

From Table 3, it is clear that both the neural network and LR
perform poorly compared to the tree-based methods (extra trees
classifier and LGB). The poor performance for LR is likely due
to the assumption that there is a linear relationship between the
features and the labels, that is, the points corresponding to each
label can be nicely separated by a hyperplane (the N-dimensional
extension of a line in 2D or plane in 3D). On the other hand,
neural networks tend to perform poorly on small datasets like
the therapy dataset we have compiled. This is because, while
able to capture nonlinear decision boundaries, neural networks
are prone to overfitting the training dataset. Tree-based methods
provide an excellent combination of low bias but are still able
to capture a nonlinear decision boundary.

Figure 6 presents the confusion matrix of each of the supervised
learning methods. A confusion matrix is used to represent the
algorithm’s performance visually. Each row of the matrix
represents the instances in an actual class, while each column
represents the instances in a predicted class or vice versa. We
represent the percentage over the exact numeric number for
display purposes. Three performance metrics come from the
confusion matrix: precision, recall, and the F1-score. Accuracy
measures the proportion of predicted positives that are truly
positive. Recall measures the proportion of predicted negatives
that are truly negative. To compare the performance of each
model, we use the F1-score. The F1-score is the harmonic mean
of the precision and recall [31]. In this case, this is
macroaveraging (treating all classes equally important).

A full breakdown of the performance measures (precision, recall,
and F1-score) for all models on the holdout test set is shown in
Table 4. It is important to notice that while the extra trees
classifier has a comparable accuracy (picking the correct label)
with the LGB method, LGB performs reliably better than all of
the other models when also weighing false positives and false
negatives (precision, recall, and F1-score). Remarkably, the
LGB model best fits the dataset with a weighted average
F1-score of 96.70% compared to LR (55.82%), extra trees
classifier (94.81%), and DNN (70.11%).

Table 3. Training set cross-validation algorithm accuracy.

Accuracy (%), mean (SD)Algorithm

96.40 (0.4)Extra trees classifier

94 (0.4)Light gradient boosting

71.70 (0.7)Neural network

61.20 (0.5)Logistic regression

Figure 6. Confusion matrices for (A) light gradient boosting (LGB) and (B) logistic regression. Considering the false negative column of the no
classification, it is seen that the LGB model greatly improved this classification. This is especially important when classifying a patient as having “no”
stroke severity when they are actually a “high” severity. Misclassifications can be particularly dangerous, ranging from providing inadequate therapy
to a patient with high ROM to injuring a user with low ROM with therapy designed for a user with high ROM. ROM: range of motion.
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Table 4. Performance measures on the holdout test dataset for each model for each label type.

Performance metricModel and label

F1-score (%)Recall (%)Precision (%)

Extra trees classifier

94.1292.8395.44Low

92.7591.1094.46High

95.7897.0494.55No

94.8194.8494.82Weighted average

Light gradient boosting

96.2095.6196.80Low

95.7394.9796.49High

97.2697.8396.70No

96.7096.7096.70Weighted average

Deep feed-forward neural network

69.3264.9474.34Low

38.8228.2761.93High

78.8687.7171.64No

70.1171.9471.14Weighted average

Logistic regression

46.1237.6159.61Low

14.158.2748.77High

73.0289.4261.71No

55.8260.9659.15Weighted average

Discussion

Principal Findings
We have demonstrated that objectively measured rehabilitation
training combined with machine learning methods can be
effectively used to identify residual stroke severity classes. This
approach aims to enhance in-home, self-guided, individualized
stroke rehabilitation. We have tackled several challenges
commonly faced in health care applications of machine learning,
such as processing data with varying physical quantities,
handling errors in sensory data, and addressing ambiguous
classifications due to human error.

Comparison to Prior Work
Previous studies have largely focused on predicting short- and
long-term functional ability based on clinical variables from an
inpatient hospital stay immediately after stroke [16-18] or they
have used robotic measurements to predict clinical measurement
scores [48,49]. Meanwhile, our study focuses on data collected
during rehabilitation in the in-home setting that is used to predict
residual stroke severity.

In those previous studies, the algorithms most frequently used
were linear and LR. However, these methods showed poor
accuracy (less than 80%) with our dataset, prompting us to
explore different approaches. We found that the LGB method
provided substantially higher accuracy, despite being applied

to a relatively small dataset. LGB is advantageous for real-time
autonomous stroke residual severity classification; it is known
to be easily transferable and requires relatively little
computational resources [27].

Strengths and Limitations
Our study design ensures that the model can make decisions
based on summary statistics typically available in an outpatient
rehabilitation setting. This design enables retraining of the model
in an outpatient environment, similar to an in-home setting.
Consequently, the model can offer a second opinion on a
patient’s stroke residual severity or potentially replace a
clinician’s assessment. This capability allows for a more targeted
therapy routine based on the stroke residual severity
classification.

A notable limitation is that the model may need retraining to
accommodate specific data collected in each outpatient setting,
accounting for differences in the data. Such data collection can
be challenging and costly, particularly for outpatient facilities
with low patient volumes.

Future Directions
Future work involves building an expanded and more
sophisticated dataset. Real-time processing of sensor data will
enable a classifier to interact with users in real time, recognizing
and classifying subtle changes in their motor function. This
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capability will allow clinicians (AI or otherwise) to prescribe
personalized, targeted interventions that are most impactful.

Additionally, integrating real-time understanding of a patient’s
needs with an in-home robotic therapy device like the Motus
Hand and Motus Foot will provide immediate feedback. An AI
in therapeutic games can detect patient needs, such as fatigue,
during a therapy session and adapt its strategy accordingly.
Further research could also explore finer-grained severity
classifications, such as labeling patients based on their total
ROM or amount of tone, which would require more labeled
data to train the machine learning model properly.

Conclusions
Autonomous classification is becoming more important for
successful rehabilitation, as rehabilitation begins to move out
of the clinical setting. Still, it faces challenges with the
accessibility and volume of appropriate clinical data for training
models and model access to user data for classification.

By leveraging the in-home stroke rehabilitation robotics
provided by the Motus Hand and Motus Foot, we have made
significant progress in addressing these issues that prevent

adequate training of an autonomous classification model. With
the data collected from self-guided, in-home therapy sessions,
we could train a classification model to identify the stroke
residual severity in 33 patients. We compared 4 different
models: extra trees classifier, LGB, DNN, and LR, finding the
LGB method to outscore the other 3 with an average F1-score
of 94%. The LGB method is a particularly powerful model for
this case because it combines interpretability and portability.

Because our model relies only on therapy session summary
statistics, the proposed method is expected to be successful
when applied to comparable rehabilitation datasets. Once
trained, the model is highly portable and can be integrated into
similar rehabilitation settings, such as outpatient rehabilitation
facilities with appropriate technological resources, to provide
an autonomous real-time classification of stroke residual
severity. Additionally, when paired with something like the
Motus Hand and Motus Foot technology, our classifier provides
the opportunity to develop personalized training based on the
stroke residual severity of the individual and adapt the therapy
exercises to each patient’s needs. The efficacy of real-time
classification and adaptation remains a subject of future study.
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Abbreviations
AI: artificial intelligence
DNN: deep feed-forward neural network
LGB: light gradient boosting
LR: logistic regression
PCA: principal component analysis
ROM: range of motion
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