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Abstract

Background: Venovenous extracorporeal membrane oxygenation (VV-ECMO) is a therapy for patients with refractory respiratory
failure. The decision to decannulate someone from extracorporeal membrane oxygenation (ECMO) often involves weaning trials
and clinical intuition. To date, there are limited prognostication metrics to guide clinical decision–making to determine which
patients will be successfully weaned and decannulated.

Objective: This study aims to assist clinicians with the decision to decannulate a patient from ECMO, using Continuous
Evaluation of VV-ECMO Outcomes (CEVVO), a deep learning–based model for predicting success of decannulation in patients
supported on VV-ECMO. The running metric may be applied daily to categorize patients into high-risk and low-risk groups.
Using these data, providers may consider initiating a weaning trial based on their expertise and CEVVO.

Methods: Data were collected from 118 patients supported with VV-ECMO at the Columbia University Irving Medical Center.
Using a long short-term memory–based network, CEVVO is the first model capable of integrating discrete clinical information
with continuous data collected from an ECMO device. A total of 12 sets of 5-fold cross validations were conducted to assess the
performance, which was measured using the area under the receiver operating characteristic curve (AUROC) and average precision
(AP). To translate the predicted values into a clinically useful metric, the model results were calibrated and stratified into risk
groups, ranging from 0 (high risk) to 3 (low risk). To further investigate the performance edge of CEVVO, 2 synthetic data sets
were generated using Gaussian process regression. The first data set preserved the long-term dependency of the patient data set,
whereas the second did not.

Results: CEVVO demonstrated consistently superior classification performance compared with contemporary models (P<.001
and P=.04 compared with the next highest AUROC and AP). Although the model’s patient-by-patient predictive power may be
too low to be integrated into a clinical setting (AUROC 95% CI 0.6822-0.7055; AP 95% CI 0.8515-0.8682), the patient risk
classification system displayed greater potential. When measured at 72 hours, the high-risk group had a successful decannulation
rate of 58% (7/12), whereas the low-risk group had a successful decannulation rate of 92% (11/12; P=.04). When measured at
96 hours, the high- and low-risk groups had a successful decannulation rate of 54% (6/11) and 100% (9/9), respectively (P=.01).
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We hypothesized that the improved performance of CEVVO was owing to its ability to efficiently capture transient temporal
patterns. Indeed, CEVVO exhibited improved performance on synthetic data with inherent temporal dependencies (P<.001)
compared with logistic regression and a dense neural network.

Conclusions: The ability to interpret and integrate large data sets is paramount for creating accurate models capable of assisting
clinicians in risk stratifying patients supported on VV-ECMO. Our framework may guide future incorporation of CEVVO into
more comprehensive intensive care monitoring systems.

(JMIR Biomed Eng 2024;9:e48497) doi: 10.2196/48497
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Introduction

Background
Extracorporeal life support (ECLS) is a suite of
resource-intensive therapies indicated in patients with refractory
respiratory failure or cardiogenic shock [1]. This intervention
involves cannulation of central or peripheral arteries and veins
to provide forward flow through a circuit with a mechanical
pump and gas exchange device, also called a membrane
oxygenator. Air is connected to the membrane oxygenator to
deliver oxygen and remove carbon dioxide from the circulating
blood. Established indications for venovenous extracorporeal
membrane oxygenation (VV-ECMO) exist in the literature, and
the use of this technology was expanded during the COVID-19
pandemic [2]. The VV-ECMO configuration is specifically used
for patients experiencing severe lung injury. This setup is
designed to provide oxygenation and decarboxylation support
without offering the additional hemodynamic assistance found
in the venoarterial configuration. VV-ECMO is considered a
last resort therapy for patients with end-stage respiratory failure
[3], with an overall survival rate of 60% [4].

Decannulating a patient from VV-ECMO is a clinical challenge
that requires considerable training and expertise from provider
teams in the intensive care unit. Clinicians assess trends in the
patient’s vital signs, physical examination, response to various
therapies, laboratory biochemistries, and radiographic studies.
When the decision is made to proceed, decannulation is usually
accomplished through a weaning trial during which VV-ECMO
is gradually reduced. To date, there are limited prognostication
scores that successfully predict when patients are ready to
undergo a weaning trial. In this study, we present an artificial
intelligence model capable of running in real time that
incorporates discrete and continuous variables that clinicians
may use in their assessment of patients for decannulation from
VV-ECMO support.

Related Work
Multiple predictive scores have been developed to help
clinicians prognosticate before cannulation. The 6 most common
prognostication scores for adult respiratory failure supported
on extracorporeal membrane oxygenation (ECMO) are
ECMOnet, Predicting Death for Severe Ards on VV-ECMO,
Respiratory ECMO Survival Prediction, Roch, Venovenous
ecmo mortality score, and Prediction of Survival on ECMO
Therapy score [5] (Table S1 in Multimedia Appendix 1 [6-11]).

Although these 6 scores are commonly used, they have 2 main
drawbacks. First, all input information is recorded before
cannulation to ECLS because the primary intent of the models
is to be used to determine which candidates were most likely
to benefit from the intervention. Second, all scores use logistic
regression to predict outcomes or identify significant variables.
Logistic regression requires high-quality data from static
variables, which limits the types of data that can be inputted.
Thus, sequential or time-series data such as laboratory values
and vital signs must be limited to a single time point or
summarized. Furthermore, these statistical models are limited
in terms of capturing nonlinear effects and interactions between
variables.

To date, no studies have mitigated both issues to improve the
prediction of successful decannulation in patients supported on
VV-ECMO. However, some researchers have attempted to use
deep learning to predict specific clinical events.

Abbasi et al [12] used clinical and ECLS data to compare 2
approaches, deep learning and traditional statistical
methodology, to develop a model to predict hemorrhage and
thrombosis events. The deep learning model outperformed linear
regression in both hemorrhage and thrombosis data sets,
suggesting that more complex models may achieve better
predictive power. Other authors have applied deep learning and
modified logistic regression to predict survival on
venoarterial-ECMO (VA-ECMO) only. Ayers et al [13] used
48 hours of laboratory values after VA-ECMO cannulation to
predict survival to discharge using a deep neural network.

Similarly, Loyaga et al [14] used clinical, echocardiographic,
laboratory, and hemodynamic characteristics to predict 30-day
mortality in patients on VA-ECMO using the elastic-net method.
None of these studies used data obtained from the ECMO
devices, and instead used laboratory values, clinical scores, and
disease severity to train their models. These approaches leave
a large amount of valuable information unused. In the hospital,
clinicians adjust the parameters of ECMO support in real time
according to the patient’s condition and pathophysiology.
Modern devices capture the interplay between the patient and
ECMO by continuously collecting perfusion data [15]. Analysis
of information-dense perfusion data may be leveraged to
improve the prediction accuracy of clinically meaningful
outcomes in ECLS care.

Incorporating more granular data requires a new model that is
capable of integrating categorical and time-series data. The
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prevalence of recurrent neural networks (RNNs) in health care
data science has increased recently. The ability of RNNs to
efficiently understand time dependencies makes this approach
beneficial in certain types of medical data, such as ventilator
settings [16], vital signs [17], medication administration [18],
imaging studies [19], and radiology reports [20]. One type of
RNN, long short-term memory (LSTM), is specifically designed
for long time series, such as our data set with weeks-long
hospital courses. LSTM can encode these time series into a
compressed latent space, which can be concatenated with static
variables, such as age, gender, and other clinical characteristics.

Novelty
The innovation of our study is two-fold: (1) data source and (2)
algorithm design. Perfusion data were collected from the ECMO
devices and recorded at highly granular intervals. Our analysis
sheds new light on the effectiveness of ECMO. Second, unlike
prior work using laboratory values, clinical scores, and other
static data, the patient information used in our study was both
dynamic and static. Using a 2-headed neural network, our
predictive algorithm efficiently incorporates static information,
such as sex and clinical scores, along with dynamic data. LSTM
networks encode the perfusion time-series data into a latent
space, which is then concatenated with an encoding of the static
variables. This new latent space was used to classify patients.

We present the Continuous Evaluation of VV-ECMO Outcomes
(CEVVO) predictive model for determining successful
decannulation from VV-ECMO using both pre- and
postcannulation data. When using both, the model can
continuously update its prediction, providing a running measure
for patient potential recovery. Such a measure may help
clinicians and patient families make more informed decisions
about care. Using synthetic data sets, we demonstrate that
understanding time dependence is the essential ingredient to
accurate predictions. Our framework also guides the
categorization of patients into high-risk and low-risk groups,
alerting care providers about which patients may be better
candidates for weaning trials and decannulation.

Methods

Problem Formulation
Health care data of this type can be presented in two
components: (1) clinical information that remains unchanged
over the ECMO course, such as age and sex, which are
considered static features, and (2) variables that change over
time, such as laboratory values and perfusion data, which are
considered temporal variables. This study follows the
conventions presented in the study by Yoon et al [21]. We define
S as a vector space of static features, and X as a vector space of
temporal features. Let S ∈ S and X ∈ X be random vectors with
specific values denoted by s and x. Each patient is a tuple of (s,
x1:T), where T is the number of time steps. For clarity, patients
in our training set were indexed by n ∈ 1,...,N. Therefore, the

training data set is denoted as D = (sn,xn,1:T)N
n=1. Each patient

also had a categorical outcome y ∈ {0,1}, which forms vector
Y across all patients, with 0 representing unsuccessful
decannulation and 1 representing success. We define the

probability distribution p(Y|S,X1:T), and our goal is to use
training data D to learn a density p̂(Y|S, X1:T) that best
approximates p(Y|S,X1:T). This is achieved through the
optimization in equation 1:

Minp̂ DKL (p(Y|S,X1:T) || p̂(Y|S, X1:T)) (1)

The abovementioned Kullback-Leibler divergence can be
calculated through the loss function in equation 2. This is
identical to the cross-entropy because the entropy of the ground
truth distribution is 0. The model can best approximate the true
distribution by using backpropagation to minimize equation 2:

L = (−1/N) ∑N
n=1 (yn log(ŷn) + (1−yn) log(1− ŷn)) (2)

Synthetic Data Set
We hypothesized that the high performance of the LSTM-based
architecture is owing to its superior ability to capture long-term
dependencies in the data set. To test this notion, 2 synthetic data
sets of size N=234 and t=2054 were generated using a Gaussian
process regression (GPR) model [22]. As GPR is nonparametric,
it can generate synthetic data without making assumptions about
the underlying relationships between variables and dynamics
over time. By tuning parameters of the generative model, we
can adjust the strength of long-term dependencies in the data.
Using the GPR model, we sample data from a multivariable
normal distribution, in which the covariance encodes
dependencies between time points as shown in equation 3:

ƒ~ (μ, Σ) (3)

where denotes the expected values of the inputs and denotes
the covariance. The covariance is encoded by a radial basis
function (RBF) kernel, as shown in equation 4. The length scale
parameter L of the RBF adjusts the local smoothing. Higher
values for this parameter encode dependencies over a longer
period, leading to smoother dynamics.

k(xi,xj) = exp(-(d(xi,xj)
2/(2L)) (4)

where d(xi,xj) denotes the Euclidean distance. The long-term
dependencies are captured by the probability of observing
specific values conditioned on earlier time points. This
assumption is reasonable in our application to VV-ECMO and
not necessarily held in previous models such as logistic
regression and some deep neural networks. The performance
of previous models on GPR data is thus not affected by different
choices of length scale, whereas the LSTM-based model should
lose its advantage with increasing length scale.

Two groups of synthetic data were created: the first with L=1
and the second with L=100, and it was expected that CEVVO
would be the only one to perform substantially better on L=1.
The other models should have similar performance between
L=1 and L=100. The length scale had to be larger than or equal
to each time step; therefore, L=1 was close to the minimum
allowable length scale.

Model Design
A general overview of this framework is presented in Figure 1.
It is composed of 2 independent heads: a static (clinical) data
encoder and a temporal feature (perfusion) encoder.
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Theoretically, each distills the relevant information from the 2
data sets (clinical and perfusion) before concatenating them in

the classification block.

Figure 1. The overall architecture of the model. The double-headed approach allows the model to integrate static and dynamic data. Solid lines denote
function application, and dashed lines denote loss computation. LSTM: long short-term memory.

The static information encoder is based on an autoencoding
scheme along with an additional final dense layer. The first
dense layer had 32 nodes, the second layer had 33, and the final
layer had 25 nodes. These dimensions were chosen via Bayesian
optimization hyperparameter tuning implemented through the
Keras Python package by Chollet et al [23].

The perfusion information encoder was based on LSTM layers.
These recurrent networks were found to work exceedingly well,
as they were built on the assumption that earlier time points
have marginal effects on later time points. A 1×1 convolutional
layer was first used to expand the feature map before the LSTM
to create a projection shortcut and act as a filter. The tanh
activation function allowed the convolution layer to increase,
decrease, or negate certain input values. Although an additional

LSTM layer could do this processing, the convolution layer
contained significantly fewer parameters. The filter size for the
convolution and the LSTMs was 1024, which was also chosen
via Bayesian optimization hyperparameter tuning.

The classification block concatenated the final outputs of the
clinical information encoder and the perfusion encoder. By this
point, the original clinical inputs were reduced from 32 to 25,
and the original perfusion inputs were reduced from 16,432 to
1024. These 2 final layers were concatenated into a final layer
of 1049. This led to a single output neurone with a sigmoid
activation, which acted as the final prediction. This prediction
was then compared with the ground truth, and the loss was
calculated using the binary cross-entropy. The average of all
the losses was calculated with equation 2. These losses were
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backpropagated through the network to make the probability
distribution generated by the model resemble the reality.

Defining Patient Risk Grouping
For the risk groups to have meaning, the calibration of the model
must be assessed. A calibration plot for the training set was
created and showed an S-shaped misalignment. The
misalignment was corrected using Platt scaling.

Four clinical groups were defined with respect to the calibrated
mean and SD of the model’s predictions on D. Let MD and SD

be the mean and SD of the sigmoid output values of training
data D. The grouping was determined according to equation 5:

| 0, if x <= MD -SD

| 1, if MD - SD < x <=MD

fgroup(x) = | 2, if MD < x <= MD + SD(5)

| 3, if MD + SD < x

Ethical Considerations
This study was conducted in accordance with the institutional
review board of the Columbia University (#AAAT0563).

Data
A retrospective chart review was performed, and continuous
perfusion data and clinical information were collected from 118
patients cannulated to VV-ECMO at a high-volume ECMO
center’s intensive care unit between January 1, 2020, and

December 31, 2021. Patients reconfigured to venoaterial-venous
or venoarterial were excluded.

Patient data were collected from Spectrum Medical software
(Quantum Informatics), which records data from each patient’s
ECMO machine. Six relevant perfusion variables were selected
with expert insight and were collected at 120-second intervals.
These were the pressure change across the membrane lung, the
venous drainage pressure, the blood flow across the ECMO
circuit, the pump head rotation speed (needed to generate the
blood flow), the sweep gas flow (rate of oxygenated gas flowing
through the membrane lung), and length of time the patient was
supported on ECMO. Two additional perfusion variables were
created to account for differences between patients: the flow
across the pump divided by the patient’s BMI and the sweep
gas flow divided by the flow across the pump. In addition to
these 8 perfusion variables, 12 clinical variables were selected:
decannulation result, age, sex, cause of respiratory distress,
BMI, cardiac arrest before ECMO, shock (ie, hemodynamic
instability) before ECMO, reinfusion and drainage cannulation
location, reinfusion and drainage cannula size, and the type of
ventilation provided (Table S2 in Multimedia Appendix 1). The
12 clinical variables included the outcome label, which was not
included in the input data. Further clinical information that was
not included in the model can be found in Table S3 in
Multimedia Appendix 1. An example of 5 successful and 5
unsuccessful patients is shown in Figure 2. The chaotic nature
of the perfusion variables helps to justify more advanced
machine learning methods.
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Figure 2. Extracorporeal membrane oxygenation (ECMO) perfusion data for 5 example patients with successful (green) or unsuccessful (red)
decannulation. RPM: revolutions per minute.

To enable incorporation of all time points in each VV-ECMO
run, the first preprocessing step involved truncation, which
refers to clipping the perfusion data set at different percentages
of the total run. For each patient, in addition to the 100% of the
ECMO run (ie, the full run), the first 90%, the first 80%,..., the
first 10% of the run were appended as additional runs. Thus,
the full data set involved 1180 sequences of data points, 10 for
each patient. Each data point consisted of a 3D perfusion time
series (patient deidentified ID code, time step, and variable) and
2D clinical data (patient deidentified ID code and variable).

Owing to varying ECMO run lengths, each time-series sequence
was standardized to 2054 time steps. This length was the largest
size possible, given the GPU constraints. Standardization was
performed by averaging dense time steps and forward-filling
empty steps. The remaining empty time steps were set to 0.
Truncations were treated as full runs, that is, the final values
for the 10% and the 100% truncation occurred at the same time
step—2053. Each truncation is, in effect, stretched over the
2054 time steps. This ensures that the model is not given hints
about which truncation it is seeing.
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The performance of the model was evaluated through
cross-validation. In each iteration, the list of patient IDs was
randomized and split into 5 groups of 23 patients, each with 18
successful and 5 unsuccessful patients. Three random patients
were excluded to have 5 groups of the same size. Three groups
of patients (69/115, 60% of the total) were chosen as the training
data set, one group (23/115, 20%) was chosen as the validation
set, and one group (23/115, 20%) was chosen as the test set.
This process was repeated 5 times until each group had been
included in the test set once. The patient list was then
randomized again to begin the next cross-fold validation. This
ensured that the training set, validation set, test set, and unused
patients differed each time. In total, there were 12 iterations of
this 5-fold cross-validation.

Each set of training data consisted of 69 patients, and the
validation and test sets had 23 patients. Including all truncations,
the training set had 690 data points, and the validation and test
sets had 230 data points each.

The data sets were then scaled using MinMaxScaler from the
sklearn Python package by Pedregosa et al [24]. The scaler was
trained on the training data and then used to transform all 3 sets.

Synthetic Data Set
The GPRs were generated using the Gaussian process regressor
Python package sklearn Pedregosa et al [24]. Two different data
sets were generated with different values for the length scale of
the RBF kernel (1, 100). A GPR model was first fit to
unnormalized perfusion data from all patients. To generate more
realistic synthetic data, patients were divided into successful
and unsuccessful decannulation groups and sorted according to
the ECMO run time. They were then grouped into triplets based
on these criteria, which resulted in 30 successful triplets and 8
unsuccessful triplets. To create the training data for the GPRs,
each patient’s age, gender, and BMI were extracted and
normalized using the StandardScaler from the sklearn Python
package by Pedregosa et al [24]. These, in addition to a time-step
value, were treated as independent variables. The dependent
variable was the unnormalized perfusion data from the triplet.
Each GPR was trained only on a single perfusion variable, so
each triplet had 8 GPRs, 1 for each perfusion variable. For each
of the 30 successful triplets, each GPR model was sampled 3
times for a total of 90 synthetic successful patients. For the 8
unsuccessful triplets, each GPR was sampled 18 times for a
total of 144 synthetic unsuccessful patients. A diagram of this
process is shown in Figure 3.

Figure 3. Diagram of the process of generating synthetic patient data. Solid boxes indicate patient data (including synthetic), and dotted boxes indicate
a Gaussian process regression (GPR) model fit to real patient data. The sampling of the GPRs step was repeated 2 times, 1 for each kernel length scale.

The triplets were then split into training, validation, and test
sets in the same manner as the original patient data. For each
iteration of the 5 cross-folds validation, the triplets were
randomized and split into groups of 7, each with 6 successful
triplets and 1 unsuccessful triplet. A random set of 3 (38%)
unsuccessful triplets, out of 8, were not included in each
interaction of the 5 cross-folds. This was done to guarantee that
each group had the same number of triplets. Inside the groups,
each of the 6 successful triplets yielded 3 synthetic patients,

whereas the 1 unsuccessful triplet yielded 18 synthetic patients.
This balanced out each group, with a total of 36 synthetic
patients per group. Three groups were assigned to the training
set, one group was the validation set, and the last group was the
test set. Similar to the real data, the test set was rotated until
each synthetic patient was tested.

Model Assessment
After each model was trained, predictions were calculated for
the test sets. Each prediction varied between 0 and 1 owing to
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the sigmoid activation in the final neurone. To assess
performance, area under the receiver operating characteristic
curve (AUROC) and the average precision (AP) were calculated
using the sklearn package. AP approximated the area under the
precision-recall curve. The predictions and ground truths were
sampled 5000 times with replacement to create the AUROC
and AP CIs. The bootstrapping pseudocode for estimating the
AUROC CIs can be found in algorithm S1 in Multimedia
Appendix 1. This bootstrapping code was then repeated for
different subsets of the data. The AUROC and AP CIs were
calculated for each day after cannulation between 0 and 24 (eg,
the AUROC and AP for all data points ending on day 10,
including truncations). These values were plotted along with
their CIs. For the synthetic data, the bootstrapping method was
only used on the entirety of each data set.

A successful model is expected to provide accurate and reliable
insight into whether a patient will be decannulated.

Results

Model Performance on Real Data
The model’s overall performance on the real data achieved an
average AUROC of 0.6937 (95% CI 0.6822-0.7055). The mean
AP was 0.8599 (95% CI 0.8515-0.8682).

A clinically relevant breakdown is AUROC and AP by day, as
shown in Figures 4 and 5. Therefore, we observed that tight CIs
begin to expand after day 11 as the number of data points
decreased. By limiting the time frame to only include patient
data points sampled between days 3 and 11, the AUROC 95%
CI was 0.7048-0.7428, and the AP 95% CI was 0.9074-0.9261.

Figure 4. The area under the receiver operating characteristic curve (AUROC; in green) computed from all samples within a 1-day time frame, for
example, AUROC for samples collected between days 0 and 1 are shown on day 1. Purple bars indicate the number of data points occurring on that day
(right y-axis).

Figure 5. The average precision (AP; in green) computed from all samples within a 1-day time frame, for example, AP for samples collected between
days 0 and 1 are shown on day 1. Purple bars indicate the number of data points occurring on that day (right y-axis).

Model Comparison on Real Data
As detailed in Table S2 in Multimedia Appendix 1, ECMOnet,
Predicting Death for Severe Ards on VV-ECMO, Respiratory
ECMO Survival Prediction, Roch, Venovenous ecmo mortality

score, and Prediction of Survival on ECMO Therapy score rely
on either logistic regression or recursive partitioning analysis
to determine the patient grouping or scoring classification. To
provide a fair comparison with the proposed model, the AUROC
and AP calculations were repeated with a logistic regression
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model and a decision tree. Both models were trained on the
same training data and assessed on the same test data as the
proposed model. Moreover, the 95% CIs were determined with
the bootstrapping algorithm presented in algorithm S1 in
Multimedia Appendix 1. Furthermore, to provide a comparison
with the study by Ayers et al [13], a dense neural network was
included. Finally, a Naive Bayes model was included to
demonstrate the necessity of including dependence between
time points. Unlike the LSTM, Naive Bayes assumes conditional

independence between features, making previous models
incapable of understanding the time series as anything beyond
a bag of values. Table 1 demonstrates that CEVVO is the most
effective model for ECMO data, showing a significant
improvement compared with other methods. Using a
permutation test, CEVVO demonstrated a significantly higher
AUROC (all P values <.001) and AP (all P values <.04) than
all other methods.

Table 1. Comparison of Continuous Evaluation of Venovenous Extracorporeal Membrane Oxygenation Outcomes (CEVVO) with other models used
previously.

P value compared with CEVVO
(AP)

P value compared with CEVVO
(AUROC)

Total APb, 95% CITotal AUROCa, 95% CIModel name

——c0.8515-0.86820.6822-0.7055CEVVO

.04<.0010.8396-0.85660.6395-0.6626Logistic regression

<.001<.0010.8111-0.82550.5876-0.6081Naive Bayes

<.001<.0010.8148-0.83220.5673-0.5908Dense network

<.001<.0010.5273-0.54670.5419-0.5596Decision tree

aAUROC: area under the receiver operator characteristic.
bAP: average precision.
cNot applicable.

Risk Classification System
The calibration plot of the training data is shown in Figure S1
in Multimedia Appendix 1. The classic S-shaped misalignment
indicated that Platt scaling would improve the calibration. Both
the calibrated training and test sets are shown in Figure 6.

Using the predictions as an indication of favorable or
unfavorable outcomes, patients can be stratified into groups
based on their prediction value using equation 5. The clinically
relevant measures of performance are shown in Figures 7 and

8. These charts were created by finding the nearest predicted
value of each patient before either 72 or 96 hours, sorting them
into groups according to equation 5, and then charting their
decannulation result. Patients decannulated before 72 or 96
hours were excluded. In the 72-hour case, the groups had a
successful decannulation rate of 58% (7/12) for group 0, 77%
(17/22) for group 1, 88% (42/48) for group 2, and 92% (11/12)
for group 3. In the 96-hour case, the groups had successful
decannulation rates of 54% (6/11), 85% (17/20), 81% (42/50),
and 100% (9/9), respectively.

Figure 6. The calibration plot for both the training and test set prediction. Each set of predictions has been scaled. The green line shows the theoretical
perfect calibration, and the purple bars show the number of data points in each bin.
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Figure 7. Patient result based on groupings at 72 hours. ECMO: extracorporeal membrane oxygenation.

Figure 8. Patient result based on groupings at 96 hours. ECMO: extracorporeal membrane oxygenation.

A Boschloo exact test between groups 0 and 3 yielded P values
of .04 for 72 hours and .01 for 96 hours.

Necessity of Time Dependencies
To ensure that each of the synthetic data sets were comparable
with each other and the original, a t-distributed Stochastic
Neighbor Embedding [25] was used (Figure 9). A more concrete
example is shown in Figure 10, where a single synthetic input

was run through both the L=1 and L=100 GPRs and then
compared with an original patient.

The procedure specified in the Model Assessment section was
repeated for CEVVO, logistic regression, and dense network
on the synthetic data set. The 95% CI for the AUROC is shown
in Table 2. The expected result is observed where logistic
regression and the dense network show no change in
performance. CEVVO shows a significant drop in performance
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despite having similar, nonlinear properties to the dense network.

Figure 9. 2D t-distributed Stochastic Neighbor Embedding (tSNE) of the 2 synthetic sequential data set and the original patient data. Each dot represents
a synthetic patient; the red dots indicate data generated using a radial basis function (RBF) with L=1, the green dots indicate data generated using length
L=100, and the blue dots indicate the original data. The significant overlap connotes similarity between the literal values.

Figure 10. An example synthetic patient, shown in both the L=1 and L=100 data sets compared with a similar real patient (in blue). ECMO: extracorporeal
membrane oxygenation; RPM: revolutions per minute.

Table 2. Comparison of Continuous Evaluation of Venovenous Extracorporeal Membrane Oxygenation Outcomes (CEVVO) with top-performing
models used previously on each synthetic data set.

P value between L=1 and
L=100

Total AUROC for L=100 synthetic data set,
95% CI

Total AUROCa for L=1 synthetic data set,
95% CI

Model name

<.0010.7424-0.78490.8223-0.8583CEVVO

.460.7814-0.81900.7813-0.8213Logistic regression

.170.6924-0.73520.7080-0.7513Dense network

aAUROC: area under the receiver operator characteristic.
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Discussion

Principal Findings
VV-ECMO is an invasive and resource-intensive therapy used
for patients with refractive respiratory failure. Decannulation
from ECMO is generally performed through a weaning trial, in
which the ECMO support, measured as flow through the circuit,
is titrated down. Experienced clinician decision-making with
careful consideration of patient hemodynamics, response to
therapy, and pathophysiology informs the decision on when to
perform the weaning trial. Our study investigates a novel
approach to analyzing clinical information and perfusion
hemodynamics in real time to assist clinicians with the decision
of when to move forward with decannulation from VV-ECMO.

Although CEVVO was more accurate at predicting the success
of decannulation than other models, the model should be
considered as an additional data point to guide clinical
management. Patients stratified to the high-risk group had a
higher risk of therapy failure, with >50% of the patients in this
group successfully decannulated in both the 72 and 96 hour
cases. As expected, the calibration plot also showed that patients
in the low-risk group were decannulated successfully more
often. Using these data, clinicians may reference the model and
elect to start weaning trials on patients stratified to the low-risk
cohort sooner.

Comparison With Prior Work
To the best of our knowledge, CEVVO is the first to use ECMO
perfusion data and a deep learning architecture to provide
clinical decision support for the decannulation decision for
VV-ECMO. By using a model that can successfully combine
dynamic and static data, significantly improved performance
on binary classification can be achieved when compared with
other models. Using perfusion data and clinical information,
CEVVO was trained to classify patients by decannulation
outcome (successful or unsuccessful). The performance was
evaluated using 3 criteria: AUROC, AP, and the clinical
usefulness of predictions. Relative to other models noted in the
literature, such as logistic regression and decision trees, the
LSTM-based model showed significant improvement on the
ECMO machine data set.

Performance
The AUROC and AP scores for the full data set had 95% CIs
of 0.6822-0.7055 and 0.8515-0.8682, demonstrating a fair ability
to predict exact outcomes. This was marginally improved to
95% CIs of 0.7048-0.7428 and 0.9074-0.9261 by limiting the
data set to only consider data points collected 3 to 11 days after
cannulation. However, these numbers only represented the
average performance.

Synthetic Data
The use of GPR-created data sets further cemented the notion
that the novelty of the architecture, understanding time
dependence, is truly what is responsible for the performance
edge over other models. The assumption of temporal dependence
is inherent in the data as it is medically motivated. There is an
expectation that the specific value of the perfusion data shares

much mutual information with the outcome. The L=1, L=100,
and original data sets are very similar in their t-distributed
Stochastic Neighbor Embedding projection, differing only
slightly in the specific values. However, as shown in Figure 10,
within the L=100 group, the local structure was obliterated,
leading to a loss of information about how later time points
affect the outcome probability. Logistic regression explicitly
assumes that each time point is independent, and thus, it has
highly similar AUROC distributions (P=.46) compared with
the dense network (P=.17) and CEVVO (P<.001). The nonlinear
nature of dense neural networks is able to approximate time
dependence but is less efficient than the LSTM-based
architecture.

Risk Classification
These initial measures of performance were then used to
contextualize the clinical predictions: stratifying people into
groups, based on associated risk, to predict recovery. The
numerical value of each patient’s prediction was divided into
groups, and patients were followed to their decannulation result.
For the grouping to be useful, there should be some difference
in the success percentage that increases from the high-risk group
to the low-risk group. This result was observed in this study.
When measured at 72 hours, 58% (7/12) of the patients in the
high-risk group had a successful decannulation, whereas 92%
(11/12) of the patients in the low-risk group were successfully
decannulated (P=.04). When measured at 96 hours, the
successful decannulation percentage was similar: 54% (6/11)
of the patients in the high-risk group and 100% (9/9) patients
in the low-risk group were successfully decannulated (P=.01).

Limitations
Cohort studies using retrospective data collection are subject
to inherent bias. We mitigated bias in this study by including
all consecutive patients supported on VV-ECMO at our center.

Incomplete data recording from the ECMO devices may have
contributed to this model. In the future, this could be mitigated
by increasing the sample size and improving data capture
methodology.

Clinically, patients with different indications for ECMO support
vary in their hospital course, and the number of different disease
etiologies may have been too few for the model to learn. Larger
cohorts may help mitigate the issues related to an underpowered
data set. Furthermore, model performance declined beyond a
period of approximately 11 days, which may be attributed to a
challenging hospital course with heterogeneous factors and an
increased risk for complications. The effectiveness of ECMO
as a long-term therapy remains unclear, and our data support
this conclusion.

Future Direction
In the future, more information about each patient’s hospital
course, such as administration of vasopressors, ventilator
settings, imaging studies, and other interventions may be used
to develop an improved model. Indeed, more data and reducing
unaccounted variables may improve model performance over
longer periods. Extending this study to include patients on other
forms of ECLS, such as VA-ECMO and cardiogenic shock,
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may be helpful in guiding clinical management. We suggest
that larger and more comprehensive repositories of health care

data may improve the management of patients considered most
critically ill.
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