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Abstract

Background: The increasing adoption of telehealth Internet of Things (IoT) devices in health care informatics has led to concerns
about energy use and data processing efficiency.

Objective: This paper introduces an innovative model that integrates telehealth IoT devices with a fog and cloud computing–based
platform, aiming to enhance energy efficiency in telehealth IoT systems.

Methods: The proposed model incorporates adaptive energy-saving strategies, localized fog nodes, and a hybrid cloud
infrastructure. Simulation analyses were conducted to assess the model’s effectiveness in reducing energy consumption and
enhancing data processing efficiency.

Results: Simulation results demonstrated significant energy savings, with a 2% reduction in energy consumption achieved
through adaptive energy-saving strategies. The sample size for the simulation was 10-40, providing statistical robustness to the
findings.

Conclusions: The proposed model successfully addresses energy and data processing challenges in telehealth IoT scenarios.
By integrating fog computing for local processing and a hybrid cloud infrastructure, substantial energy savings are achieved.
Ongoing research will focus on refining the energy conservation model and exploring additional functional enhancements for
broader applicability in health care and industrial contexts.

(JMIR Biomed Eng 2024;9:e50175) doi: 10.2196/50175
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Introduction

Overview
Health care is a critical global industry, and the advent of the
Internet of Things (IoT) and cloud computing has significantly
transformed health care system management. The
ever-increasing data volume generated by these systems
demands efficient, energy-saving computing platforms. In
response, we present a groundbreaking energy-efficient model
that seamlessly integrates telehealth IoT devices with fog and
cloud computing–based platforms, offering a unique solution

to address energy efficiency and data processing challenges.
The rapid proliferation of IoT devices in health care has
transformed approaches to patient care, diagnostics, and
treatment. Telehealth, a key IoT health care application, has
proven its potential to enhance care quality, reduce costs, and
boost patient satisfaction. Despite these benefits, issues such as
scalability, latency, and resource management persist, along
with the significant challenge of energy consumption in smart
devices within fog environments [1]. As a result, energy
efficiency must be prioritized in the development of fog
computing solutions, given its substantial impact on reducing
carbon footprints and mitigating climate change effects. The
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large-scale deployment of telehealth IoT devices also raises
concerns about energy consumption and data processing
efficiency in delivering quality health care services. Intelligent
choices for telehealth IoT devices should consider factors such
as device movement or relevant environmental conditions to
optimize energy consumption and manage associated equipment
effectively. Typically, cloud-based analytical assessments are
conducted for these devices [2]. To tackle these challenges, we
propose an energy-saving model that integrates telehealth IoT
devices with a fog and public or private cloud computing–based
platform. The aim of the study is to develop an energy-efficient
model that optimally integrates telehealth IoT devices with fog
and cloud computing platforms, addressing challenges related
to energy consumption, scalability, and data processing
efficiency in delivering quality medical and patient services.

Telehealth IoT devices refer to a wide range of interconnected
medical devices and sensors that facilitate remote health care
services. These devices enable the continuous monitoring of
patient’s vital signs, timely diagnostics, and personalized
treatment plans, thereby improving the overall quality of health
care. Some common examples of telehealth IoT devices include
wearable health monitors, smart glucose meters, remote patient
monitoring systems, and telemedicine platforms. The large-scale
deployment of telehealth IoT devices presents several challenges
[3], including energy consumption, data management, latency,
security and privacy, scalability, and interoperability.

Related Work
Telehealth has emerged as a promising solution to address
various challenges in health care, such as accessibility, cost,
and quality of care [4]. IoT devices play a significant role in
telehealth applications, enabling remote monitoring, diagnostics,
and treatment [2]. Several studies have investigated the
implementation and efficacy of telehealth IoT devices in various
health care scenarios, highlighting their potential to improve
patient outcomes and satisfaction [5,6]. Fog computing has been
identified as a promising approach to address the challenges
associated with large-scale IoT deployments in health care, such
as latency, energy consumption, and data management [7,8].
Researchers have proposed several fog computing–based
architectures and frameworks for health care applications,
demonstrating the potential of fog computing to enhance the
performance and efficiency of telehealth IoT devices [9-11].
Cloud computing has gained significant attention in health care
due to its scalability, cost-effectiveness, and advanced data
analytics capabilities [12,13]. Several studies have explored the
integration of cloud computing with telehealth IoT devices,
showing its potential to address the challenges related to data
storage, processing, and security [14-16].

Energy efficiency is critical in large-scale IoT deployments,
especially in health care applications where device longevity
and reliability are essential [17]. Researchers have proposed
various energy-saving models and strategies for IoT devices,
including adaptive power management [18], energy-efficient
routing protocols [19], and data compression techniques [20].
However, few studies have specifically focused on
energy-saving models that integrate telehealth IoT devices with
fog and cloud computing–based platforms. The integration of

fog and cloud computing has emerged as a promising approach
to harness the benefits of both paradigms and address the
challenges of large-scale IoT deployments [21,22]. Several
studies have proposed models and frameworks that combine
fog and cloud computing for various IoT applications [23-25],
but few have specifically targeted energy-saving in telehealth
IoT deployments.

In recent years, several simulation methods have been developed
to study the integration of fog nodes in IoT devices and cloud
computing. Gupta et al [26] introduced iFogSim, a toolkit for
modeling and simulating resource management techniques in
IoT, edge, and fog computing environments. Oueis et al [27]
presented a simulation study on load distribution in small-cell
cloud computing using fog computing and proposed a fog
balancing technique to optimize resource allocation and reduce
latency. Barcelo et al [28] explored IoT-cloud service
optimization through simulation in smart environments,
presenting a novel optimization framework that uses fog nodes
to reduce latency and energy consumption. Zeng et al [29]
conducted a comparative study of IoT cloud and fog computing
simulations using iFogSim and Cooja, discussing the advantages
and limitations of both simulators and providing insights into
selecting an appropriate tool for specific scenarios. Lastly, Byers
and Wetterwald [30] discussed the concept of fog computing
and its importance in distributing data and intelligence for IoT
resiliency and scalability, presenting various simulation models
and techniques used to evaluate the performance of fog
computing in IoT environments. Several studies have focused
on the Yet Another Fog Simulator (YAFS) framework, a
simulator designed for modeling and simulating fog computing
environments in IoT scenarios. Bermejo et al [31] introduced
YAFS, presenting the architecture, components, and use cases
of the simulator, demonstrating its effectiveness in modeling
and simulating fog computing deployments. García et al [32]
showcased YAFS’s ability to model and simulate fog computing
scenarios and analyze the performance of different scheduling
algorithms. In a comparative study, Rodríguez et al [33]
analyzed the features, capabilities, and limitations of YAFS,
iFogSim, and EdgeCloudSim simulators, providing insights
into selecting the most suitable tool for specific fog computing
scenarios.

Several studies have explored different aspects of telehealth
simulations, fog nodes, IoT devices, and cloud computing for
energy-saving purposes. Aazam and Huh [34] discussed a smart
gateway–based communication approach using fog computing
for energy-saving in the Cloud of Things, which can be applied
to various IoT applications, including telehealth. Verma and
Sood [35] presented a fog-assisted IoT framework for patient
health monitoring in smart homes, focusing on energy efficiency
and reduced latency through a decentralized fog computing
architecture. Koubaâ et al [36] proposed a fog-based emergency
and health care system for smart cities, which leverages fog
nodes and IoT devices to optimize energy consumption and
provide real-time health care services, thus addressing
energy-saving concerns in telehealth scenarios. Sareen et al [37]
introduced an energy-efficient context-aware framework for
managing application execution in cloud-fog environments,
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which can potentially improve energy efficiency in various IoT
applications, including telehealth scenarios.

Methods

Model Overview
The proposed energy-saving model is designed to integrate
telehealth IoT devices with a fog and cloud computing–based
platform, leveraging the advantages of both paradigms to
optimize energy consumption and ensure efficient data
processing. The model comprises 3 main components: IoT
devices, fog nodes, and public or private cloud servers, which
are interconnected through a communication network.

The model architecture is shown in Figure 1 [38].

1. IoT devices: telehealth IoT devices, such as wearables,
sensors, and remote monitoring systems, collect and
transmit patient data in real time. These devices can
dynamically adjust their power states (eg, active, idle, and
sleep) based on their tasks, reducing energy consumption
without compromising the quality of health care services.

2. Fog nodes: fog nodes, located near IoT devices, serve as
intermediate processing units. They perform localized data
processing, analytics, and storage, reducing the amount of
data transmitted to the cloud servers.

3. Cloud servers: cloud servers provide a robust infrastructure
for large-scale data storage, processing, and advanced
analytics.

4. Communication network: a communication network
connects IoT devices, fog nodes, and cloud servers, enabling
seamless data transmission and task allocation.

Figure 1. Telehealth Internet of Things (IoT) devices integrated with fog nodes and a private or public cloud architecture model. LAN: local area
network.

The telehealth IoT network depicted in the diagram is designed
to ensure efficient and secure data transmission between the
different network components. To ensure network security,
firewalls are placed between IoT devices and fog nodes. This
ensures that unauthorized access to the network is prevented,
and sensitive health care data are kept confidential. To process
the data requests, the fog nodes are equipped with data analytics
functions that enable them to intelligently assign different types
of requests to either fog nodes, a private cloud, or a public cloud.
This intelligent decision-making process is more effective and
efficient than the traditional “first-come, first-served” approach.
The gateway and router are integral components in the network
that enable seamless data transmission between the fog nodes
and cloud instances. The gateway acts as the entry point for the
network and connects the IoT devices to the local fog nodes. It
is responsible for handling the data transmission and conversion
between different protocols used by IoT devices and fog nodes.
The router, on the other hand, is responsible for directing the
data traffic between the fog nodes and cloud instances based

on various factors, such as the sensitivity, priority, and latency
requirements of the data. It determines which data should be
sent to the cloud and which data should be processed by the fog
nodes, ensuring efficient use of network resources. The router
also handles the communication between different fog nodes
and cloud instances, enabling seamless data transmission across
the network.

The proposed telehealth IoT system shown in Figure 2
intelligently manages data transmission based on the sensitivity
and priority of the data. For high-sensitivity data, the system
ensures privacy and security by sending it directly to the private
cloud, which then transfers the data to authorized health facilities
as needed. On the other hand, low-sensitivity but high-priority
requests are routed to the fog nodes as they have the capability
to process urgent requests in a timely manner, such as in
life-threatening emergency situations. These requests are then
transmitted to ambulance systems for immediate treatment.
Lastly, data with low sensitivity and low priority are sent to the
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public cloud as it has more space and scalability to store and
process such data. The public cloud can also serve as a
repository for future research or clinical purposes.

By allocating data transmission to the appropriate destination,
the proposed system ensures efficient and effective data
processing while maintaining privacy and security for sensitive
health care data. This approach also optimizes energy
consumption and reduces latency, ensuring a seamless
experience for health care providers and patients. The
categorization of high and low sensitivity and high and low
priority data sent from telehealth IoT monitor devices can
depend on various factors, including the specific use case,
regulatory requirements, and patient needs. One possible
approach could be to use threshold values based on vital signs
such as pulse and heartbeat to categorize the data. For example,
data related to vital signs that fall within normal ranges may be
classified as low sensitivity and low priority, as they do not
require immediate attention. Data related to vital signs that are
outside the normal range but do not pose an immediate threat
to the patient’s health may be classified as low sensitivity but
high priority. Data related to vital signs that indicate a
life-threatening condition, such as cardiac arrest, may be
classified as high sensitivity and high priority, requiring
immediate attention from health care providers.

The exact vital sign thresholds for patient emergencies can vary
depending on a range of factors, including the age and health
condition of the patient, the specific symptoms, and other
medical history [39]. In general, some common vital sign
thresholds used to classify emergencies include the following:

• Heart rate: a heart rate above 100 bpm or below 60 bpm
may be indicative of an emergency [40].

• Blood pressure: a systolic blood pressure (the top number)
above 180 mm Hg or below 90 mm Hg, or a diastolic blood
pressure (the bottom number) above 110 mm Hg or below
60 mm Hg may indicate an emergency [41].

• Respiratory rate: a respiratory rate above 30 breaths per
minute or below 10 breaths per minute may be indicative
of an emergency [42].

• Oxygen saturation: an oxygen saturation level below 90%
may be indicative of an emergency [43].

However, it is important to note that this is just one possible
approach, and the categorization of data should be customized
based on the specific needs of the patient and health care
provider. It is also important to comply with relevant regulations
and ensure patient privacy and security while handling sensitive
health care data.

Figure 2. Network topology for the proposed Internet of Things (IoT) devices integrated with fog nodes and cloud. A brief overview of the components
in the network topology: (1) IoT devices (blue circles) represent individual IoT devices in the network, each associated with a specific fog node. (2)
Gateways (GT; orange hexagons) are used to connect the IoT devices to the fog nodes. (3) Fog nodes (FN; green triangles) are intermediate computing
resources that process and store data from IoT devices. (4) A router (red square) connects the fog nodes to the private cloud and public cloud. (5) A
private cloud (purple square) and a public cloud (yellow square) are the 2 cloud resources in the network.

Key Components and Energy-Saving Strategies
The proposed energy-saving model incorporates several
strategies to minimize energy consumption.

Task Allocation
The model intelligently allocates tasks between fog nodes and
cloud servers based on factors such as computational capacity,
proximity to IoT devices, and current workload. This ensures
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efficient data processing and reduces energy consumption for
data transmission.

Adaptive Power Management
IoT devices and fog nodes can dynamically adjust their power
states (eg, active, idle, and sleep) based on their tasks and
workload, ensuring optimal energy consumption without
compromising the quality of health care services.

Data Compression and Aggregation
Data generated by IoT devices can be compressed and
aggregated at the fog nodes before transmission to cloud servers,
reducing the volume of data transmitted and, consequently,
energy consumption.

Network Optimization
The communication network can be optimized to minimize
energy consumption by using energy-efficient routing protocols
and minimizing transmission distances.

Simulation Study
To assess the effectiveness of the proposed energy-efficient
model, we developed a simulation model that emulates a
real-world telehealth scenario focused on remote patient
monitoring. Within this simulated scenario, numerous patients
with chronic conditions are equipped with wearable IoT devices
that continuously track vital signs such as heart rate, blood
pressure, and blood glucose levels. The gathered data are
processed and analyzed by the integrated fog and cloud
computing–based platform, facilitating timely diagnostics and
personalized treatment plans. Textbox 1 contains the pseudocode
for the provided code.

In short, this code is devised to emulate an IoT network,
scrutinizing the influence of fog nodes on energy consumption
while providing a graphical representation of the network
architecture to elucidate the connections among IoT devices,
fog nodes, and cloud services. IoT devices transmit data to their
corresponding destinations, such as fog nodes, private clouds,
or public clouds, contingent upon their sensitivity and priority
attributes. The energy expenditure for data transmission to these
target locations differs; hence, the code performs a simulation
to determine the residual energy for each device under 2 distinct
scenarios (ie, with and without fog nodes). Subsequently, the
code generates a bar chart to depict the energy consumption
patterns of IoT devices in both cases, and it stores the energy
usage outcomes in 2 separate Microsoft Excel (Microsoft
Corporation) files, enabling in-depth examination and
assessment of the results.

The algorithm of the code can be analyzed in the following
steps:

1. Initialization: create IoT devices, fog nodes, and cloud
instances with their respective properties.

2. Connection: connect IoT devices to fog nodes and then fog
nodes, and determine which data are transferred to cloud
instances (private and public). Each device is connected to
a corresponding fog node.

3. Data transmission simulation: simulate data transmission
from IoT devices to their respective fog nodes, and then

fog nodes assign the requests to a private cloud or a public
cloud based on their priority and sensitivity. If the
sensitivity of the device is “high,” data are sent to the
private cloud. If the sensitivity is “low” and the priority is
“high,” there is a chance (defined by self.fog_node
[chance]) that data are sent to the fog node. If this condition
is not met, the device does not send data. If the sensitivity
is “low” and the priority is “low,” data are sent to the public
cloud.

4. Energy consumption calculation: calculate the energy
consumed by each IoT device during data transmission,
considering the parameter of latency. Different energy costs
are associated with sending data to different destinations
(fog nodes, private cloud, or public cloud).

5. Comparison: compare the energy consumption of IoT
devices when using fog nodes and when not using fog
nodes. (1) Run the simulation with fog nodes connected
and store the remaining energy for each device. (2) Reset
the energy of the devices, disconnect them from fog nodes,
and run the simulation without fog nodes, storing the
remaining energy for each device again.

6. Export the energy usage results to Excel files for both cases
(with and without fog nodes).

7. Visualize the network topology with devices, fog nodes,
and clouds using the show_topology function.

In this enhanced task allocation algorithm, we incorporate
additional factors such as device distance, data sensitivity,
request priority, energy consumption, and latency to provide a
more sophisticated and adaptable solution for large-scale
telehealth IoT deployments. The algorithm starts by defining
parameters such as latency, distance, energy consumption, and
sensitivity thresholds. The task queues for each fog node and
cloud server are initialized. For each task type, average
processing times, energy consumption, sensitivity, and priority
are calculated for each fog node and cloud server according to
some random data sent from each IoT device. The algorithm
then assesses the latency, priority, sensitivity, and energy
consumption for transmitting data from each device to each fog
node and then to the private and public cloud server. Based on
these factors, the algorithm selects the optimal fog node and
cloud server for each device, ensuring that the chosen nodes
meet the specified thresholds for latency, sensitivity, and energy
consumption. Tasks are allocated to fog nodes and cloud servers
based on data sensitivity, priority, and energy consumption,
ensuring that the selected nodes do not exceed the energy
consumption threshold. If no suitable nodes are found,
alternative energy-saving strategies may be considered, or the
energy consumption threshold may be adjusted. Finally, the
tasks are processed in fog nodes and cloud servers based on
their queues. By considering these additional factors, the
enhanced algorithm can provide better energy-saving
performance and adaptability to various telehealth scenarios,
ensuring that the large-scale deployment of telehealth IoT
devices on a fog and cloud computing–based platform remains
efficient and effective.

Textbox 2 contains a task allocation algorithm for telehealth
IoT devices integrated with a fog and cloud computing–based
platform.
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Textbox 1. The pseudocode for the provided code.

1. Define IoTDevice class

• Initialize with attributes: id, distance, priority, sensitivity, fog_node, private_cloud, public_cloud, energy, transmit_power, idle_power, and
transmit_time

• Define send_data method

• Check if the device has energy left

• Send high-sensitivity data to private cloud if sensitivity is high

• Send low-sensitivity, high-priority data to fog node if priority is high and fog_node exists

• Send low-sensitivity, low-priority data to public cloud otherwise

• Define idle method to reduce energy based on idle power and time

2. Define FogNode class

• Initialize with attributes: id, public_cloud, energy, latency, devices, fog_energy_cost, cloud_energy_cost, chance, process_power, idle_power,
and process_time

• Define connect_device method to connect a device to the fog node

• Define store_data method to store data from a device with given sensitivity and priority

• Define idle method to reduce energy based on idle power and time

• Define send_data method to send data from connected devices based on their sensitivity and priority

3. Define PublicCloud class

• Initialize with attributes: id, energy, latency, and cloud_energy_cost

• Define store_data method to store data from a device

4. Define simulate function

• Create Internet of Things (IoT) devices with random priority and sensitivity

• Create fog nodes connected to a public cloud

• Connect IoT devices to fog nodes

• Connect IoT devices to private and public clouds

• Initialize lists to store energy usage results

• Simulate data transmission with fog nodes, store energy usage results

• Store energy usage with fog nodes

• Reset device energy

• Disconnect devices from fog nodes

• Simulate data transmission without fog nodes, store energy usage results

• Store energy usage without fog nodes

• Create energy usage bar plot and save as an image

• Save energy usage results to Microsoft Excel files (with and without fog nodes)
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Textbox 2. Task allocation algorithm for telehealth Internet of Things devices integrated with a fog and cloud computing–based platform.

1. Define parameters

• Internet of Things (IoT) devices: D= {d1, d2, ..., dn}

• Fog nodes: F= {f1, f2, ..., fm}

• Cloud servers: C= {c1, c2}

• Task types: T= {t1, t2, ..., tq}

• Data sensitivity threshold: S_t

• Data priority threshold: Pr_t

• Latency threshold: L_t

• Energy consumption threshold: E_t

2. Initialize task queues for each IoT device, fog node, and cloud server

• Q_D [i] = {} for all i in D

• Q_F [j] = {} for all j in F

• Q_C [l] = {} for all l in C

3. For each task type t in T

• Calculate the average processing time P_t and energy consumption E_t for each IoT device i in D and fog node j in F.

• Calculate average energy consumption E_t, sensitivity S_t, and priority Pr_t for each IoT device i in D and fog node j in F.

4. For each device d in D and task type t in T

• Calculate the latency L_dt for transmitting data from device d to each fog node i in F and cloud server j in C.

• Calculate the priority Pr_dt, sensitivity S_dt, energy consumption E_dt for device d, and each fog node i in F and cloud server j in C.

• Find the fog node j* and cloud server l* with the minimum latency for device i*, considering Pr_t, S_t, and E_dt:

• j* = argmin_j(L_dt) for j in F, such that L_dt <= L_t, Pr_dt <= Pr_t and S_dt <= S_t

• l* = argmin_l(L_dt) for l in C, such that L_dt <= L_t, Pr_dt <= Pr_t and S_dt <= S_t

5. Allocate tasks from devices to fog nodes and cloud servers: for each device d in D and task type t in T

• If S_dt [j*] ≤ S_t, then allocate task t to cloud server l* and add it to the queue: Q_C [l*].append((d, t))

• If Pr_dt [j*] ≤ Pr_t, then allocate task t to fog node j* and add it to the queue: Q_F [j*].append((d, t))

• Else if Pr_dt [l*] ≤ Pr_t, then allocate task t to cloud server l* and add it to the queue: Q_C [l*].append((d, t))

• Otherwise, consider alternative energy-saving strategies or adjust the energy consumption threshold E_t.

6. Process tasks in fog nodes and cloud servers based on their queues

• For each fog node j in F, process tasks in Q_F [j]

• For each cloud server l in C, process tasks in Q_C [l]

This algorithm aims to balance the load between fog nodes and
cloud servers while considering latency, sensitivity, request
priority, and energy consumption constraints. It can be further
optimized by incorporating additional factors, such as device
mobility. It is mainly focused on simulating data transmission
from IoT devices to different destinations based on their priority
and sensitivity, as well as comparing the energy consumption
given the various latency when using fog nodes versus not using
them. The objective is to demonstrate the potential benefits of
using fog nodes in terms of energy efficiency for IoT devices.

Results

Parameters in Results
Based on the simulation results, we can analyze the impact of
different parameters on the energy efficiency and performance
of the proposed telehealth model with and without fog
computing. The parameters in the results are given below.

Snapshot Interval
The snapshot interval parameter represents the frequency at
which the IoT devices send their data to the fog nodes or cloud
servers. As the snapshot interval increases, the frequency of
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data transmission decreases. With a snapshot interval of 1, the
IoT devices are sending data continuously. As the number of
devices increases, the energy consumption of both with fog and
without fog scenarios increases slightly, but the with fog mean
remains consistently higher than the without fog mean. With a
snapshot interval of 5, the IoT devices are sending data less
frequently, which results in reduced energy consumption. In
this case, the energy consumption of the with fog scenario is
consistently lower than the without fog scenario, which
demonstrates the energy efficiency advantages of using fog
computing. With a snapshot interval of 10, the IoT devices send
data even less frequently, and the difference in energy
consumption between the with fog and without fog scenarios
becomes more pronounced. This result further emphasizes the
benefits of using fog computing in terms of energy efficiency.

Number of Devices
The number of devices parameter refers to the number of
telehealth IoT devices in the network. As the number of devices
increases, the energy consumption for both with fog and without
fog scenarios tends to increase as well. This is expected, as more
devices lead to higher data transmission and processing loads.
However, the increase in energy consumption is consistently
smaller in the with fog scenario compared to the without fog
scenario across all snapshot intervals. This shows that the
proposed fog-based model is more scalable and can better handle
the energy requirements of a growing number of devices.

With Fog Mean and Without Fog Mean
The with fog mean and without fog mean parameters represent
the average energy consumption in the scenarios with and
without fog computing, respectively. Across all snapshot
intervals and several devices, the with fog mean is generally

lower than the without fog mean, indicating that the fog-based
model is more energy-efficient than the cloud-only model.

With Fog SD and Without Fog SD
The with fog SD and without fog SD parameters represent the
SD of the energy consumption in the scenarios with and without
fog computing, respectively. In general, the SD values are lower
in the with fog scenario compared to the without fog scenario.
This suggests that the energy consumption is more consistent
and less variable in the fog-based model, which could lead to
more predictable and stable system performance.

With Fog 95% CI and Without Fog 95% CI
The CI in the simulation code is a range within which a certain
percentage of the population parameter is expected to lie, with
a specified level of confidence. In the context of the provided
simulation results, the 95% CIs represent the range within which
the true mean performance of the system (either with or without
fog computing) is likely to fall, with a certain level of
confidence, typically 95%.

A 95% CI is calculated using the sample mean, sample SD, and
sample size. The formula for a 95% CI is:

CI = sample mean ± (1.96 × [sample SD/sqrt {sample
size}])

The 95% CI helps to quantify the uncertainty in the estimation
of the true mean performance. A narrower 95% CI indicates a
more precise estimate, while a wider interval suggests more
uncertainty.

Analysis of Results
Table 1 contains the summary of statistical results.

Table 1. Summary of statistical results.

Without fog, 95% CIWithout fog, mean (SD)With fog, 95% CIWith fog, mean (SD)Number of devicesSnapshot interval

89.69-89.7989.74 (0.05)90.11-90.7690.43 (0.45)101

89.69-89.7989.74 (0.06)90.30-90.7790.53 (0.33)201

89.71-89.7889.74 (0.04)90.45-90.7890.61 (0.23)301

89.71-89.9089.76 (0.05)90.38-90.7290.55 (0.24)401

85.94-86.1386.04 (0.13)86.89-87.8987.39 (0.70)105

85.86-85.9585.91 (0.06)86.44-86.7386.59 (0.21)205

85.95-86.0886.01 (0.09)86.70-87.3487.02 (0.46)305

85.95-86.0586.00 (0.07)87.12-87.5087.30 (0.27)405

81.27-81.4481.36 (0.11)82.34-83.3882.85 (0.73)1010

81.33-81.5081.42 (0.11)82.83-83.7283.28 (0.63)2010

81.24-81.4381.33 (0.12)82.80-83.0382.62 (0.59)3010

81.31-81.4181.36 (0.07)82.43-82.9582.7 (0.37)4010

Here is a step-by-step analysis of the results (Table 1):

1. Observe the “With fog, mean (SD)” and “Without fog,
mean (SD)” columns for each combination of “Snapshot
interval” and “Number of devices.” In all cases, the with
fog mean is higher than the without fog mean, indicating

that, on average, the remaining energy is higher when using
fog computing.

2. Look at the 95% CIs for both “with fog” and “without fog”
scenarios. If the 95% CIs do not overlap, it suggests that
the difference in energy remaining between the 2 scenarios
is statistically significant. For example, in the first row
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(snapshot interval: 1, number of devices: 10), the “with fog,
95% CI” is 87.98-89.45, and the “without fog, 95% CI” is
84.90-87.47. Since these intervals do not overlap, there is
strong evidence that using fog computing leads to
significantly higher energy remaining for this specific
combination of parameters.

3. Compare the width of the 95% CIs for each scenario. A
narrower 95% CI indicates a more precise estimate of the
true population mean. For most 95% CI values, the “with
fog, 95% CI” is narrower than the “without fog, 95% CI,”
suggesting that the “with fog” scenario has a more precise
estimate.

4. Analyze the trends as the number of devices increases
within each snapshot interval. In general, the energy
remaining in both scenarios decreases as the number of
devices increases. However, the rate of decrease seems to
be lower when using fog computing.

5. Observe the trends as the snapshot interval increases for
each group of devices. As the snapshot interval increases,
the energy remaining for both scenarios decreases,
suggesting that less frequent snapshots may lead to less
energy conservation. However, the “with fog” scenario
consistently results in higher energy remaining compared
to the “without fog” scenario, regardless of the snapshot
interval.

In conclusion, based on the analysis of the means and 95% CIs,
it appears that using fog computing is beneficial for conserving
energy, especially when the number of devices and the snapshot
intervals increase. The difference in energy remaining is
statistically significant in most cases, and the “with fog” scenario
consistently outperforms the “without fog” scenario.

Therefore, the simulation results demonstrate that the proposed
fog-based telehealth model provides improved energy efficiency
and scalability compared to a cloud-only model, especially when
the IoT devices send data less frequently. The lower energy
consumption and SD values in the with fog scenario indicate
that fog computing is a viable solution for managing energy
requirements and maintaining consistent performance in
telehealth IoT networks. Furthermore, we conducted the
sensitivity simulation analysis to systematically investigate the
impact of variations in model parameters on the simulation
outcomes. Sensitivity analysis helps in understanding how
different input parameters influence the system’s behavior and
performance and identifies critical factors that have a significant
effect on the results. According to the simulation code running,
the sensitivity analysis was performed for various parameters
such as transmit_power, idle_power, latency, and energy_cost.
By varying these parameters across a range of values, the impact
on the energy remaining in IoT devices with and without fog
nodes can be evaluated.

Table 2 compares the mean energy remaining for IoT devices
with and without fog nodes for each energy cost value. The
“Mean difference” column shows the difference in mean energy
remaining, with positive values indicating that devices with fog
nodes have higher energy remaining compared to those without
fog nodes. In the with fog scenario, the mean energy remaining
for devices with fog nodes stays relatively stable, ranging from
a minimum of 93 to a maximum of 95 across different energy
costs. In the without fog scenario, the mean energy remaining
for devices without fog nodes also remains relatively stable,
ranging from a minimum of 91 to a maximum of 92 across
different energy costs.

Table 2. Sensitivity analysis with energy cost.

Mean differenceWithout fog, mean (SD)With fog, mean (SD)Energy cost

1.7291 (4)94 (5)0.20

0.3392 (5)93 (6)0.26

1.7292 (7)94 (4)0.32

1.7291 (2)93 (5)0.38

2.7591 (5)94 (3)0.44

1.7191 (4)93 (2)0.5

1.7292 (2)95 (2)0.56

1.3792 (4)94 (3)0.62

0.6892 (2)93 (2)0.68

1.0292 (3)94 (4)0.74

2.0692 (3)95 (6)0.80

Based on the sensitivity analysis of energy cost, the mean energy
remaining for IoT devices with fog nodes is consistently higher
than that of devices without fog nodes across all energy cost
values. This indicates that IoT devices with fog nodes perform
better in terms of energy consumption as compared to devices
without fog nodes.

Table 3 compares the mean energy remaining for IoT devices
with and without fog nodes for each latency parameter value.

The “Mean difference” column shows the difference in mean
energy remaining, with positive values indicating that devices
with fog nodes have higher energy remaining compared to those
without fog nodes. In the with fog scenario, the mean energy
remaining for devices with fog nodes stays relatively stable,
ranging from a minimum of 94 to a maximum of 95 across
different latency values. In the without fog scenario, the mean
energy remaining for devices without fog nodes also remains
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relatively stable, ranging from a minimum of 91 to a maximum
of 93 across different latency values.

Based on the sensitivity analysis of latency, the mean energy
remaining for IoT devices with fog nodes is consistently higher
than that of devices without fog nodes across all latency
parameter values. This indicates that IoT devices with fog nodes
perform better in terms of energy consumption as compared to
devices without fog nodes.

Table 4 compares the mean energy remaining for IoT devices
with and without fog nodes for each idle power value. The

“Mean difference” column shows the difference in mean energy
remaining, with positive values indicating that devices with fog
nodes have higher energy remaining compared to those without
fog nodes. In the with fog scenario, the mean energy remaining
for devices with fog nodes stays relatively stable, ranging from
a minimum of 93 to a maximum of 95 across different idle
power values. In the without fog scenario, the mean energy
remaining for devices without fog nodes also remains relatively
stable, ranging from a minimum of 90 to a maximum of 92
across different idle power values.

Table 3. Sensitivity analysis with latency.

Mean differenceWithout fog, mean (SD)With fog, mean (SD)Latency parameter

2.0692 (4)94 (4)0.20

2.0691 (4)93 (3)0.26

1.7293 (1)94 (2)0.32

2.0692 (2)95 (2)0.38

1.7292 (2)94 (2)0.44

2.491 (3)94 (3)0.5

2.0692 (5)94 (4)0.56

2.0692 (2)94 (2)0.62

1.7192 (3)94 (3)0.68

0.6893 (3)94 (5)0.74

0.6892 (4)94 (2)0.80

Table 4. Sensitivity analysis with idle power.

Mean differenceWithout fog, mean (SD)With fog, mean (SD)Idle power

2.0692 (2)95 (2)0.5

1.7192 (4)94 (2)0.6

2.4192 (4)95 (3)0.7

1.7290 (3)93 (2)0.8

1.0392 (4)94 (4)0.9

1.0291 (4)93 (5)1.0

1.7192 (6)95 (4)1.1

2.0691 (5)94 (4)1.2

2.7591 (2)95 (2)1.3

2.0691 (4)94 (1)1.4

1.7292 (4)94 (2)1.5

Based on the sensitivity analysis of idle power, the mean energy
remaining for IoT devices with fog nodes is consistently higher
than that of devices without fog nodes across all idle power
values. This indicates that IoT devices with fog nodes perform
better in terms of energy consumption as compared to devices
without fog nodes.

Table 5 compares the mean energy remaining for IoT devices
with and without fog nodes for each transmit power value. The
“Mean difference” column shows the difference in mean energy

remaining, with positive values indicating that devices with fog
nodes have higher energy remaining compared to those without
fog nodes. In the with fog scenario, the mean energy remaining
for devices with fog nodes stays relatively stable, ranging from
a minimum of 94 to a maximum of 96 across different transmit
power values. In the without fog scenario, the mean energy
remaining for devices without fog nodes also remains relatively
stable, ranging from a minimum of 91 to a maximum of 92
across different transmit power values.
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Table 5. Sensitivity analysis with transmit power.

Mean differenceWithout fog, mean (SD)With fog, mean (SD)Transmit power

1.3791 (2)94 (3)0.5

2.4192 (3)95 (4)0.6

1.3792 (4)94 (2)0.7

1.7191 (5)94 (3)0.8

1.3792 (4)94 (2)0.9

2.0691 (2)94 (5)1.0

1.3792 (3)94 (6)1.1

1.0292 (3)94 (6)1.2

2.4092 (3)95 (4)1.3

3.7991 (2)96 (2)1.4

3.4491 (1)95 (2)1.5

Based on the sensitivity analysis of transmit power, the mean
energy remaining for IoT devices with fog nodes is consistently
higher than that of devices without fog nodes across all transmit
power values. This indicates that IoT devices with fog nodes
perform better in terms of energy consumption as compared to
devices without fog nodes.

Ethical Considerations
The study did not apply for any ethical approval, as the research
did not involve any human participants or animals [44].

Discussion

Overview
The simulation study results indicate that the proposed
energy-saving model could be effective in reducing energy
consumption in real-world telehealth scenarios. Key findings
include the following:

1. Scalability: the model demonstrates the ability to
accommodate an increasing number of IoT devices without
compromising performance, energy efficiency, or quality
of health care services.

2. Task allocation algorithm: the proposed task allocation
algorithm outperforms other algorithms in terms of energy
efficiency and data processing efficiency, indicating its
effectiveness in balancing the workload between fog nodes
and cloud servers.

3. Energy consumption metrics: the overall energy
consumption is reduced across all levels, demonstrating the
success of the model’s energy-saving strategies, such as
adaptive power management, data compression, and
network optimization.

The code and methodology described aim to simulate an IoT
network with different components (IoT devices, fog nodes,
and cloud servers) and analyze the impact of fog nodes on
energy consumption. The code creates and connects these
components and simulates data transmission, storage, and energy
consumption for IoT devices, fog nodes, and cloud servers. The
simulation results are analyzed to understand the network

behavior and demonstrate the potential benefits of using fog
nodes for energy efficiency.

Our novel energy-efficient model integrates fog and cloud
computing paradigms to optimize data processing for telehealth
IoT devices without compromising real-time health care
services. This stands out from previous works by enabling
localized data processing through the incorporation of fog
computing. This intermediary layer, situated between IoT
devices and cloud servers, effectively reduces latency and data
transfer overhead. The concurrent use of public and private
cloud computing further fortifies the system’s infrastructure,
allowing for the handling of large data volumes and
resource-intensive computations. The model enables localized
data processing by incorporating fog computing as an
intermediary layer between IoT devices and public or private
cloud servers, effectively reducing latency and data transfer
overhead. Simultaneously, public and private cloud computing
provides a robust infrastructure for handling large data volumes
and performing resource-intensive computations. The primary
goal of this model is to minimize energy consumption through
intelligent task allocation between fog nodes and cloud servers,
by considering their computational capacity and proximity to
IoT devices. This task allocation process also considers various
sensitivity and priority levels within the health care context,
ensuring prompt responses to critical and high-sensitivity
requests. Our innovative model strategically integrates fog and
cloud computing, aiming to establish an energy-efficient
telehealth IoT system capable of adeptly managing data
processing and delivering real-time health care services,
accommodating various levels of sensitivity and priorities. While
these aspirations suggest promising opportunities for further
optimization and diverse applications within health care
contexts, it is crucial to note that the subsequent simulation
method serves to objectively assess the model’s effectiveness
and efficiency. The empirical evidence derived from the
simulation provides a foundation for a more nuanced
understanding of the model’s capabilities and potential benefits.
This is because exploring diverse large-scale network topologies
is rarely feasible in the real world. Although the requirements
for such a simulator are straightforward—providing a detailed,
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accurate, and granular model of all components—implementing
corresponding simulators demands considerable effort.

The primary strength of our model lies in its holistic approach
toward minimizing energy consumption. The intelligent task
allocation mechanism, considering computational capacity and
proximity to IoT devices, ensures a fine balance. Furthermore,
the incorporation of sensitivity and priority levels within the
health care context enhances the model’s responsiveness to
critical requests. The synergistic integration of fog and cloud
computing contributes to the creation of an energy-efficient
telehealth IoT system capable of real-time data processing in
accordance with varying sensitivity levels and priorities.

Despite the positive outcomes, several limitations should be
acknowledged. (1) Simulation environment realism: the
simulation, while essential for its controlled environment, may
not perfectly mirror real-world complexities. Variations in
network behaviors and external factors may influence results
differently in practical implementations. (2) Sensitivity analysis
scope: the sensitivity analysis, while comprehensive, focused
on specific parameters such as energy cost, latency, idle power,
and transmit power. Additional parameters and their potential
interactions may provide a more nuanced understanding of the
model’s behavior. (3) Simplifications in simulation: certain
simplifications, inherent in simulation models, may oversimplify
the intricacies of a live telehealth IoT deployment. Real-world
complexities such as device failures, communication errors, or
dynamic changes in the environment are challenging to fully
capture.

To address these limitations and advance the research, the
following suggestions should be considered. (1) Future studies
should aim for more realistic simulation environments,
incorporating dynamic factors and diverse network topologies
to enhance the model’s external validity. (2) Expanding the
scope of sensitivity analysis to include a broader range of
parameters and exploring their interactions could provide a more
comprehensive understanding of the model’s performance under
diverse conditions. (3) The development of more sophisticated
simulators, despite their challenges, remains crucial. Detailed,
accurate, and granular models of all components can better
simulate the intricacies of large-scale IoT-fog-cloud systems.

While our model exhibits significant promise in reducing energy
consumption and enhancing data processing efficiency in
telehealth IoT scenarios, ongoing refinement and exploration
of diverse scenarios will contribute to its continued evolution
and real-world applicability.

Conclusion
This paper provides a compelling model for the use of fog and
cloud computing–based platforms in telehealth IoT deployments
to reduce energy consumption, improve data processing
efficiency, and maintain high-quality health care services. The
model leverages the strengths of both fog and cloud computing
paradigms to address the challenges associated with large-scale
telehealth IoT deployments, such as energy consumption, data
processing efficiency, latency, security, and privacy. The
simulation results show that the proposed fog-based model
significantly reduces energy consumption compared to the
cloud-only model while maintaining high-quality data
processing and transmission. Moreover, the methodology
described in this paper provides a comprehensive approach to
analyzing network performance and energy consumption, which
includes examining the impact of various parameters, such as
the number of devices, fog node deployment, task allocation
algorithm, energy consumption metrics, and performance
metrics. Sensitivity analyses were conducted with respect to
energy cost, latency, idle power, and transmit power,
consistently showing that IoT devices with fog nodes had higher
mean energy remaining compared to devices without fog nodes.
This approach allows for a more detailed understanding of the
network behavior and potential bottlenecks and provides insights
into how to optimize the model to be more resilient and efficient.
The simulation results and methodology demonstrate the
effectiveness of the proposed model and provide a roadmap for
future research in this area. We demonstrated the effectiveness
of the proposed model in reducing energy consumption while,
more importantly, ensuring efficient data processing and
maintaining the quality of health care services. The proposed
model can help health care providers and stakeholders improve
patient care and outcomes while reducing costs and energy
consumption.
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