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Abstract

Background: The digital era has witnessed an escalating dependence on digital platforms for news and information, coupled
with the advent of “deepfake” technology. Deepfakes, leveraging deep learning models on extensive data sets of voice recordings
and images, pose substantial threats to media authenticity, potentially leading to unethical misuse such as impersonation and the
dissemination of false information.

Objective: To counteract this challenge, this study aims to introduce the concept of innate biological processes to discern
between authentic human voices and cloned voices. We propose that the presence or absence of certain perceptual features, such
as pauses in speech, can effectively distinguish between cloned and authentic audio.

Methods: A total of 49 adult participants representing diverse ethnic backgrounds and accents were recruited. Each participant
contributed voice samples for the training of up to 3 distinct voice cloning text-to-speech models and 3 control paragraphs.
Subsequently, the cloning models generated synthetic versions of the control paragraphs, resulting in a data set consisting of up
to 9 cloned audio samples and 3 control samples per participant. We analyzed the speech pauses caused by biological actions
such as respiration, swallowing, and cognitive processes. Five audio features corresponding to speech pause profiles were
calculated. Differences between authentic and cloned audio for these features were assessed, and 5 classical machine learning
algorithms were implemented using these features to create a prediction model. The generalization capability of the optimal model
was evaluated through testing on unseen data, incorporating a model-naive generator, a model-naive paragraph, and model-naive
participants.

Results: Cloned audio exhibited significantly increased time between pauses (P<.001), decreased variation in speech segment
length (P=.003), increased overall proportion of time speaking (P=.04), and decreased rates of micro- and macropauses in speech
(both P=.01). Five machine learning models were implemented using these features, with the AdaBoost model demonstrating
the highest performance, achieving a 5-fold cross-validation balanced accuracy of 0.81 (SD 0.05). Other models included support
vector machine (balanced accuracy 0.79, SD 0.03), random forest (balanced accuracy 0.78, SD 0.04), logistic regression, and
decision tree (balanced accuracies 0.76, SD 0.10 and 0.72, SD 0.06). When evaluating the optimal AdaBoost model, it achieved
an overall test accuracy of 0.79 when predicting unseen data.

Conclusions: The incorporation of perceptual, biological features into machine learning models demonstrates promising results
in distinguishing between authentic human voices and cloned audio.

(JMIR Biomed Eng 2024;9:e56245) doi: 10.2196/56245
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Introduction

An increasing number of individuals rely on digital platforms
as their primary sources of news and information [1]. People
often trust what they consume on the internet without doing any
research on the source. There is a technological advancement
significantly influencing the production of digital media known
as “deepfake.” Deepfake constitutes a synthetic reproduction
of media content, both auditory and visual, carefully crafted to
closely represent the physical attributes and vocal characteristics
of a specific individual. Its use spans many domains, notably
in entertainment, where it can be used for the digital replication
of actors for special effects or the creation of intricately detailed
characters in video games [2].

Deepfakes are generated through the aggregation of substantial
data sets, including voice recordings, images, and video
segments [3]. This research specifically targets the detection of
audio deepfakes, relying solely on voice data for both deepfake
development and detection method testing. The voice data sets
serve as the foundation for training deep learning models,
predominantly deep neural networks, with the primary objective
of encoding unique and distinguishable attributes and
characteristics found in human voices, like speech patterns and
intonation [3]. Following successful model training, it gains the
capability to produce replicated voice data by processing input
audio or text [3]. While initially trained with substantial data
sets, deepfake generation models posttraining can produce new
voice clones with minimal audio input, synthesizing voice data
to replicate the target voice’s distinctive traits based on learned
patterns during the training phase.

This technology is valuable in many domains including voice
assistants, voice dubbing for multimedia, professional
voiceovers, and the narration of audiobooks [4]. Deepfake
content can be generated rapidly once a model is trained, thereby
significantly improving efficiency across many industries.
Unfortunately, the irresponsible and unethical misuse of
deepfakes is prevalent, encompassing impersonation, the
dissemination of false information, and violation of privacy
[5,6]. Due to the dynamic and rapidly evolving nature of this
technology, remaining updated with the ongoing advancements
in deepfake detection is challenging [7].

Individuals need a reliable tool to verify that the information
they are consuming is authentic. Several outdated deepfake
detection machine learning methods have high levels of
accuracy, achieving up to 100% accuracy on a data set [8].
However, these accurate predictions are restricted to the level
of advancement of the deepfakes that the detection models are
trained with [9]. For example, the previously mentioned tool
that achieved 100% accuracy was trained and tested on a data
set of deepfakes generated in 2019, which are of much lower
quality than the level of deepfakes available in 2023 [8].
Furthermore, recent work has shown that out-of-domain voice
clone detectors (ie, voice detectors applied outside of the data
set in which they were applied) had extremely low performance,
obtaining an area under the receiver operator curve (AUC) of
25% [10]. A more robust detection method might involve

searching for the absence of biological features in the cloned
voice, rather than the presence of digital features [11].

Activities such as respiration, swallowing, and cognitive
processes can influence speech production and the pattern of
pauses in authentic speech. Although voice cloning processes
may closely mimic human speech production, machines have
no requirements for speech breaks and instead rely on training
data to indicate where these pauses occur. This may result in
subtle but detectable differences in the way pauses are present
in authentic versus cloned audio. Indeed, when humans were
asked to distinguish between audio deepfakes and authentic
voices, one of the primary justifications for a fake audio
classification was unnatural pauses in the recordings [10].
Furthermore, when these features were integrated into a
classification regime, a moderate accuracy (approximately 85%)
was achieved when analyzing deepfakes by perceptual features
such as the amplitude of speech and pauses within a recording
[12]. However, that study only assessed the use of a single voice
cloning software (ElevenLabs) and a small number of cloned
voices (9 built-in text-to-speech (TTS) voices and voices cloned
from 2 celebrities). Furthermore, the training, validation, and
testing sets were not split by participants, so it is assumed that
recordings from the same participant are present in both the
training and testing data sets.

We posit that the absence of regular human vocal biomarkers,
characterized by the pause pattern in a speech segment, will be
effective in differentiating cloned audio from authentic audio.
For a more comprehensive understanding of model performance
on out-of-domain data, we test the proposed methodology in
the following ways:

1. On real and cloned audio recordings the model was not
exposed to during training, including built-in TTS obtained
from the cloning models

2. On a paragraph the model was not exposed to during
training

3. On a new cloning software the model was not exposed to
during training

Methods

Recruitment
A total of 49 adult participants (20 male) were recruited for this
study between June and August 2023 in Toronto, Canada. The
participant pool exhibited diversity in terms of ethnicity and
had various types and strengths of accents. Exclusion criteria
for recruitment included: (1) any person not living in Canada,
(2) any person below the age of 18 years, and (3) any speech
pathology or condition impeding the production of standard
speech, such as stuttering, vocal cord pathology, tracheostomy,
or the common cold. No restrictions on gender, ethnicity,
accents, or other demographic data were implemented in the
recruitment procedure.

The summarized protocol, as illustrated in Figure 1, involves
participants recording the required voice samples for the training
of 3 distinct deepfake models and a control version of 3 test
paragraphs. Subsequently, each deepfake model generates each
test paragraph, resulting in a total of 9 deepfake audio samples,
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in addition to the 3 control samples for each participant. It is
worth noting that some participants were unable to complete
the necessary training voice recordings for 1 or 2 of the deepfake

generators due to time constraints, resulting in varying numbers
of recordings and deepfakes among participants.

Figure 1. General study protocol overview comprising the audio collection section and detection model development for a participant used in model
training. Note that for participants not used in model training (“Model-Naïve Participants”), all data are used for model testing. ADA: AdaBoost; DT:
decision tree; LR: logistic regression; RF: random forest; SVM: support vector machine.

Ethics Approval
The research protocol received approval from the Canadian
SHIELD Ethics Review Board (REB Tracking Number
2023-06-003).

Audio Samples
In this study, we generated deepfakes using 3 publicly available
and user-friendly web-based models: ElevenLabs [13], Podcastle
[14], and Descript [15]. Each of these models required different
training data. ElevenLabs had the least specific training
requirements and was provided approximately 10 minutes of
voice recordings, Descript required 10 minutes of speech
samples, and Podcastle required participants to read 70 short
phrases.

Recordings took place in a quiet room with participants seated
in front of a MacBook Pro with 2.8 GHz Quad-Core Intel Core
i7. They were instructed to articulate their speech clearly at a
standard speaking volume, using the laptop’s built-in
microphone to record. The laptop screen displayed the text that
participants were required to read for the collection of voice
sample data, including the 3 test paragraphs used in the
development of the classification model.

All audio samples were saved in the Waveform Audio Format.
The respective voice sample data were input for each deepfake
generation model for the training process. Upon completion of
the model training, a TTS technique was used to generate
deepfake versions of the 3 test paragraphs for each model.

Each voice cloning platform also provides pregenerated TTS
voices. We generated each of the 3 paragraphs using all available
pregenerated TTS to be used in model testing.

Feature Generation
The aim of the analysis was to characterize cloned voices using
amplitude-agnostic perceptual voice features, primarily
characterized by the pause patterns within a speech segment.
Speech segments were identified using a voice activity detector
(VAD Solero) in Python [16]. The time between speech
segments was calculated and classified as a micropause if the
time between segments was greater than or equal to 0.1 seconds
and less than 0.5 seconds. It was classified as a macropause if
the time between segments was greater than or equal to 0.5
seconds (Figure 2). The recording was trimmed so that the
recording began at the beginning of the first speech segment
and concluded at the end of the final speech segment. Overall,
five features were obtained to denote the pause pattern:
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1. SpeechAV: The average speech segment length.
2. SpeechSD: The SD of the speech segment lengths.
3. SpeechProp: The proportion of time speaking, calculated

by the sum of all the speech segment lengths divided by
the length of the entire recording.

4. MiRate: The rate of micropauses, calculated by dividing
the number of micropauses by the length of the trimmed
recording (in minutes).

5. MaRate: The rate of macropauses, calculated by dividing
the number of macropauses by the length of the trimmed
recording (in minutes).

Previous work published by Barrington et al [12] evaluated
perceptual features to compare audio deepfakes and authentic
voices. In this work, 4 summary metrics to characterize the
pauses were generated: the average length of a pause, the SD
of the pauses, the pause ratio, and the total number of pauses.
We slightly modified and expanded these features to align with

our hypothesis. Rather than the average length and SD of the
pauses, we used the average length and SD of the speech
segments. We hypothesized that cloned audio would have longer
periods between pauses, as they would have no requirements
for biological processes such as breathing or swallowing.
Furthermore, instead of reporting the number of pauses, which
is dependent on the text spoken and the length of the recording,
we exclusively reported pause rates. To account for the
differences in pause lengths, we calculated the rates of both
micropauses and macropauses.

Contrary to the work published by Barrington et al [12], we
chose not to include amplitude features. The amplitude of a
voice recording can be influenced by the type of microphone
used in recording and the distance of the participant to the
microphone. Due to this variation, and the desire to evaluate
pause metrics exclusively, we chose to remove
amplitude-associated features from our feature set.

Figure 2. Sample speech and pause illustration. Black segments indicate speech segments, red segments illustrate micro pauses (pauses<0.5 seconds
and ≥0.1 seconds), and yellow segments indicate macro pauses (pauses≥0.5 seconds).

Audio Feature Information
Audio features were compared between authentic and cloned
audio. All analysis was conducted in Python. Statistical analysis
was conducted using the scipy Python package [17]. P values
were calculated using the Mann–Whitney U test. Statistical
significance is defined as P<.05.

Detection Model Generation
An experiment was conducted to assess 5 models to determine
the most suitable machine learning tool for this application:
random forest (RF), decision tree (DT), logistic regression (LR),
support vector machine (SVM), and AdaBoost (ADA) models.
Neural networks, although useful in previous deepfake detection
methods, perform best with large amounts of training data and
tend to overfit with smaller data sets. We aimed to show speech
pause patterns could be used to create a robust model even with
a small amount of training data, so neural networks were not
included in the current analysis.

A 5-fold stratified group cross-validation was used during model
training and hyperparameter tuning to find the optimal model.
Paragraphs 1 and 2 in Multimedia Appendix 1, and ElevenLabs

and Podcastle generators were used in model training. A total
of 30 participants were used in cross-validation (approximately
60% of participants). All recordings corresponding to a
participant were kept in the same group, such that if a participant
was in one of the folds, all the authentic and cloned recordings
obtained from that participant were in the same fold. The total
number of recordings used in cross-validation model training
is displayed in Table 1.

All analysis was conducted in Python. Models were trained
using the scikit-learn Python package [18]. Hyperparameters
were tuned using the GridSearch algorithm in scikit-learn, using
the parameters denoted in Multimedia Appendix 2. Accuracy
is defined as

Model performance was assessed by the average balanced
accuracy of all folds for a model, defined as
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where k is the fold number, sensitivity is the accuracy of the
model in predicting audio deepfakes, and specificity is the
accuracy of the model in predicting authentic audio.

Table 1. Number of recordings collected and generated.

Total data (P1/P2/P3), nTesting data set (P1/P2/P3c), nTraining data set (P1a/P2b), n

384 (126/122/136)257 (63/58/136)127 (63/64)All recordings

ElevenLabs

19 (7/5/7)19 (7/5/7)—dPretrained recordings

73 (26/23/24)28 (4/0/24)45 (22/23)Cloned recordings

92 (33/28/31)47 (11/5/31)45 (22/23)Total recordings

Podcastle

53 (18/18/17)53 (18/18/17)—Pretrained recordings

57 (19/18/20)30 (6/4/20)27 (13/14)Cloned recordings

110 (37/36/37)83 (24/22/37)27 (13/14)Total recordings

Descript

6 (2/2/2)6 (2/2/2)—Pretrained recordings

46 (13/16/17)46 (13/16/17)—Cloned recordings

52 (15/17/18)52 (15/17/18)—Total recordings

Authentic

130 (41/40/49)75 (13/13/49)55 (28/27)Total recordings

aP1: paragraph 1.
bP2: paragraph 2.
cP3: paragraph 3.
dNot applicable.

Optimal Model Testing
The optimal model from the detection model generation was
tested on unseen data. For testing, there were three subgroups
of data:

1. Audio recordings from individuals the model was not
exposed to during training. This subgroup consists of:
• Participant audio recordings that were not used in

model training (“Model-Naïve Participants”). Note that
for a participant to be “Model-Naïve”, neither authentic
nor cloned audio obtained from that participant was
used in model training.

• Built-in, pretrained TTS obtained from the cloning
models (“Pre-Generated TTS”)

2. A paragraph the model was not exposed to during training
(“Model-Naïve Paragraph”; P3, Multimedia Appendix 1).

3. A new cloning software the model was not exposed to
during training (“Model-Naïve Generator”). This was the
Descript generator.

The model was tested in such a way that each testing datapoint
was Model-Naïve in at least 1 of the 3 above subgroups. Data
classes used in model training are denoted as “Model-Trained”.

Results

Audio Feature Information
The 5 audio features corresponding to the speech pause profiles
were calculated from the training data and are displayed in Table
2. Overall, cloned audio was significantly associated with
increased time between pauses (P<.001), decreased variation
in the length of speech segments (P=.003), increased overall
proportion of time speaking (P=.04), and a decreased rate of
micro- and macropauses in speech (both P=.01).
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Table 2. Participant and recording data for model features for training data.

P valuesaCloned audio, mean (SD)Authentic audio, mean (SD)Feature

<.0013.49 (1.23)2.93 (1.76)SpeechAV

.0031.22 (0.89)1.51 (1.83)SpeechSD

.040.89 (0.04)0.87 (0.04)SpeechProp

.019.47 (4.25)11.72 (4.34)MiRate

.015.78 (2.74)7.04 (3.39)MaRate

aP value calculated using Mann-Whitney U test. Statistical significance defined as P<.05.

Detection Model Generation
Five classical machine learning algorithms were implemented
to create the prediction model, using the 5 features presented
in Table 2. A total of 127 recordings were used to train each
model and 257 recordings were used to test each model (see
Table 1). The optimal performance was obtained by an ADA
model, achieving a 5-fold cross-validation balanced accuracy
of 0.81 (SD 0.05). The subsequent models were SVM (balanced
accuracy 0.79, SD 0.03) and RF (balanced accuracy 0.78, SD
0.04), followed by LR and DT (balanced accuracies 0.76, SD
0.10 and 0.72, SD 0.06). Unsurprisingly, the models that are

traditionally less prone to overfitting (ADA and SVM) were
the models that had the best performance, whereas the model
that was more likely to overfit (DT) had the poorest
performance. Furthermore, ADA and other boosted models can
experience the curse of dimensionality when data have many
features. By using a small feature set (5 features), we avoided
this problem, and ADA achieved a high cross-validated
accuracy. Receiver operator curves of all models are shown in
Figure 3, and additional model metrics are presented in Table
3. Tuned model hyperparameters are presented in Multimedia
Appendix 2.

Figure 3. Average receiver operator curves with variability of all models. The results presented are calculated using the optimal parameter set for each
model after Grid Search cross-validation. ADA: AdaBoost; AUC: area under the receiver operator curve; DT: decision tree; LR: logistic regression;
RF: random forest; ROC: receiver operator curves; SVM: support vector machine.
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Table 3. Model prediction results for all models.

f1-score, mean (SD)Precision, mean (SD)Cloned voice accuracy,
mean (SD)

Authentic voice accura-
cy, mean (SD)

Balanced accuracy,
mean (SD)

Modela

0.84 (0.04)0.82 (0.07)0.87 (0.08)0.75 (0.09)0.81 (0.05)AdaBoostb

0.82 (0.02)0.80 (0.03)0.85 (0.05)0.73 (0.06)0.79 (0.03)Support vector machine

0.81 (0.05)0.80 (0.07)0.83 (0.07)0.73 (0.08)0.78 (0.04)Random Forest

0.81 (0.08)0.79 (0.11)0.83 (0.09)0.70 (0.16)0.76 (0.10)Logistic Regression

0.73 (0.09)0.77 (0.07)0.73 (0.15)0.71 (0.08)0.72 (0.06)Decision Tree

aResults presented are calculated using the optimal parameter set for each model after Grid Search cross-validation.
bOptimal model.

Optimal Model Testing
The optimal ADA model was tested on trained and naïve
generators and participants with the paragraphs used in model
training (Table 4), and a Model-Naïve paragraph (Table 5). The
optimal overall testing performance was obtained when the
model was tested on pretrained paragraphs for naïve participants
(0.89 overall accuracy). The poorest authentic classification
accuracy was obtained when trained participants spoke a new
paragraph (accuracy 0.70), potentially indicating the model was
overfit to the paragraphs used in training by trained participants.
The highest authentic classification accuracy was obtained by
model-naive participants speaking model-trained paragraphs
with an accuracy of 0.96. Conversely, the detection of cloned

and pregenerated voices typically performed better on
Model-Naïve paragraphs (most accuracies >0.70). The exception
to this was the Model-Naïve Generator which had an overall
accuracy of 0.67. However, the number of datapoints for this
category was extremely small (N=3) so this accuracy may not
be the best representation of the Model-Naïve Generator
performance. Pregenerated voices with the trained paragraphs
had the lowest performance of all the model testing (overall
0.67 accuracy), but classification performance was much higher
in the model-naive paragraph (overall accuracy 0.89). When
the results of all confusion matrices in Tables 4 and 5 are
compiled, the overall accuracy of all testing data was 0.79 with
an AUC of 0.88.

Table 4. Confusion matrices of model test results for model-trained paragraphs (P1 and P2).

AccuracyPredicted fakePredicted authentic

Model-trained participants

———aAuthentic

———Model-trained generator

0.773175Model-naïve generator

0.773——Overall

Model-naïve participants

0.962125Authentic

0.769103Model-trained generator

0.87571Model-naïve generator

0.894——Overall

Pregenerated TTSb

———Authentic

0.6463117Model-trained generator

1.0040Model-naïve generator

0.673——Overall

aNot applicable.
bTTS: text-to-speech.
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Table 5. Confusion matrices of model test results for the Model-Naïve paragraph (P3).

AccuracyPredicted fakePredicted authentic

Model-trained participants

0.704819Authentic

0.806297Model-trained generator

1.00140Model-naïve generator

0.805——aOverall

Model-naïve participants

0.727616Authentic

0.87571Model-trained generator

0.66721Model-naïve generator

0.758——Overall

Pregenerated TTSb

———Authentic

0.875213Model-trained generator

1.0020Model-naïve generator

0.885——Overall

aNot applicable.
bTTS: text-to-speech.

Discussion

Principal Findings
This paper outlines the development of an audio deepfake
detection model that capitalizes on the distinctive biological
vocal characteristics to distinguish between genuine human
speech and machine-generated audio. Voice clone samples were
created for each participant using 3 publicly available platforms:
Descript, ElevenLabs, and Podcastle. To compare these cloned
samples with the participants’ authentic voice recordings, a
variety of perceptual features were calculated to characterize
the pause pattern in a recording. The hypothesis was that the
speech and pause pattern would be distinguishable between
authentic voice recordings and voice clones, as a
machine-generated audio sample would not be under the same
biological requirements as a human. Machines have no
requirements for breathing or swallowing, and their processing
time is magnitudes shorter than humans. Even if machines
falsely replicate the pauses in speech, their lack of necessity for
these processes may create subtle distinctions in the overall
pause patterns. Our results support this finding, and 5 perceptual
pause features were used to create a detection model for cloned
audio.

To generate the voice classification model, 5 machine learning
algorithms were used. An ADA model emerged as the most
capable of classification, achieving an accuracy of 0.81 (SD
0.05) in 5-fold cross-validation and similar accuracy (0.79)
across all testing experiments. The accuracy is in line with
previous pause rate detection methods [12], although the testing
methodology presented here allows for more comprehensive
conclusions about the extendibility of the model results and

possible implications for future work. Overall, Model-Naïve
participants, a variety of generators, and Model-Naïve
paragraphs were used to test the feasibility of the approach.

In the 5-fold cross-validation model optimization, we achieved
an accuracy of 0.75 (SD 0.09) for authentic audio and 0.87 (SD
0.08) for cloned audio. Authentic accuracy may have been lower
due to the inherent variation in real human speech, as
demonstrated by the higher SDs of the pause metrics in Table
1 compared with cloned audio. This could result in decreased
performance, as authentic audio may be more likely to overlap
with cloned audio features and thus be harder to classify.
Furthermore, we did not prioritize authentic speech accuracy
in cross-validation, instead optimizing based on balanced class
accuracy. Future models could prioritize authentic audio
accuracy in model training and hyperparameter tuning if higher
authentic accuracy is preferred.

It is important to note that the text the model was tested on had
a distinct effect on the performance of the model. In authentic
audio samples, the model performed better on known text for
both Model-Trained and Model-Naïve participants. Conversely,
in Model-Naïve clones, performance improved when the model
was tested on a new paragraph. This effect was evident in both
pregenerated TTS and Model-Naïve Participant clones for the
Model-Trained generators. This may indicate a tendency for
the model to slightly overfit to the paragraphs on which it was
trained. When exposed to new participants, its performance
declines. That being said, the model accuracy for authentic audio
from Model-Naïve participants was 0.73. This is within half an
SD of the cross-validated authentic audio accuracy (0.75, SD
0.09), further supporting the use of speech pause metrics for
robust model prediction.
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Incorporating features associated with real, biological processes
(such as breathing, thinking, and swallowing) into a deepfake
prediction algorithm is likely to enhance its reliability and
longevity in the face of ongoing advancements in deepfake
technologies. Instead of solely relying on a model trained on
the current state of deepfake generation, which may struggle to
maintain accuracy as technology evolves, the inclusion of
biological features offers valuable insights that enable the model
to adapt and effectively detect inauthentic voices. This approach
enhances the model’s resilience against evolving deepfake
techniques.

Comparison to Prior Work
High-performance current models are typically trained on
spectral or deep-learned audio features obtained from the current
state of deepfake generation. This permits for an extremely high
accuracy in voice clones in a similar domain to the training data
but new advancements and subtle changes in these obscure
features could soon make these prediction models obsolete.
Indeed, when a high-accuracy prediction model was tested on
new, out-of-domain voice clones in a recent study, the prediction
accuracy was abysmal (AUC is approximately 25%) [10]. We
aimed to evaluate the use of perceptual features in current and
future model implementations by testing model performance
on a completely new generator. Overall, our model performance
on a new generator was a success, and the average accuracy of
classification of the new generator was 0.87. This generator
provided no audio files for model training, and as such, we can
conclude that this technique may be extended to out-of-domain
cloning processes.

Limitations
This research identified certain limitations in the audio quality
variation, linguistic diversity, and deepfake generators used in
our study. First, since we created a new cloned audio data set,
we only had a small amount of data to train and test the
prediction model, and the exclusively English-focused
experiments did not account for the potential impact of diverse
accents or languages on our results. Small data sets may lead
to model overfitting, which we attempted to mitigate using a
comprehensive model testing methodology. Further exploration
in this domain with a larger and more diverse data set
encompassing various accents and languages is warranted, as
it has the potential to strengthen the robustness of our
conclusions and provide a more comprehensive understanding
of model performance across linguistic variations.

Second, although the pause rate biomarker enhanced prediction
accuracy, it introduced the time requirement of sufficiently long
audio samples to accurately calculate pause rate data. An older
data set that has been widely used for testing and training
previous detection tools consisted of samples shorter than 5
seconds, rendering them incompatible with our model [19]. We
prioritize the analysis of longer samples due to their higher
potential for misuse in the context of misinformation or
impersonation scams. Therefore, our detection tool was
optimized for modern voice cloning generators and prioritized
longer audio outputs over compatibility with previous deepfake
data sets.

Third, another limitation concerns the variation of deepfake
generation methods. Our study featured 3 distinct tools to
introduce variability in deepfake audio samples. Nevertheless,
numerous other models exist and possess subtle distinctions
that were not covered in our investigation. While we anticipate
that the incorporation of vocal biomarkers will enable accurate
predictions regardless of the generation method, we did not test
deepfakes produced by alternative tools. This decision stemmed
from the recognition that there are numerous methods with
slight variations in cloned audio samples, compelling us to focus
on some of the most prominent and accessible tools.

Future Directions
In this study, we aim to show that speech pause metrics may
contribute to robust deepfake detection models, and that trained
models using these features perform well on out-of-domain data
such as new audio deepfake generators or audio samples from
new individuals. Further research should perform an ablation
study to compare spectral features and pause pattern features,
specifically focusing on testing on unknown data.

Conclusions
In conclusion, the integration of vocal biomarkers into machine
learning models shows promise in distinguishing between
authentic voice recordings and cloned samples. Given the
escalating prevalence of unethical deepfake applications
involving impersonation, fraud, and the dissemination of
misinformation, establishing a reliable method for verifying
source authenticity is crucial. Biological processes and vocal
biomarkers offer a potential avenue for enhancing detection
methodologies, suggesting a possible means to mitigate the risk
of detection tools being rapidly outpaced by advancing deepfake
generation technologies.

Acknowledgments
The authors would like to thank Klick Inc for their support in this research. The authors also thank Anirudh Thommandram for
his consultation and insight on the study methodology. The authors used the generative AI tool ChatGPT by OpenAI [20] for
general-purpose grammatical editing. All generated text was further reviewed and revised by the study group. No results or
conclusions were impacted. The study was internally funded by Klick Inc.

Data Availability
The data sets generated or analyzed during this study are not publicly available due terms in the ethics approval and informed
consent. The code used for analysis is available from the corresponding author on reasonable request.

JMIR Biomed Eng 2024 | vol. 9 | e56245 | p. 9https://biomedeng.jmir.org/2024/1/e56245
(page number not for citation purposes)

Kulangareth et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Authors' Contributions
NVK was responsible for conceptualization, methodology, software, investigation, data curation, and writing of the original draft
and its review and editing. JK contributed to methodology, software, validation, formal analysis, investigation, and writing of
the original draft and its review and editing. Additionally, JK was involved in visualization. JO participated in the methodology,
investigation, and writing of the original draft and its review and editing. JO also contributed to visualization. YF played a role
in the conceptualization, methodology, investigation, and writing of the original draft and its review and editing. YF also provided
supervision.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Speech paragraphs.
[DOCX File , 14 KB-Multimedia Appendix 1]

Multimedia Appendix 2
Hyperparameter tuning.
[DOCX File , 14 KB-Multimedia Appendix 2]

References

1. Chen Y, Conroy NK, Rubin VL. News in an online world: the need for an “automatic crap detector”. Proc Assoc Info Sci
Tech. 2016;52(1):1-4. [FREE Full text] [doi: 10.1002/pra2.2015.145052010081]

2. Murphy G, Ching D, Twomey J, Linehan C. Face/Off: changing the face of movies with deepfakes. PLoS One.
2023;18(7):e0287503. [FREE Full text] [doi: 10.1371/journal.pone.0287503] [Medline: 37410765]

3. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial nets. 2014. Presented
at: Neural Information Processing Systems; December 8-11, 2014; Montreal, Canada. URL: https://proceedings.neurips.cc/
paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Reviews.html

4. Chadha A, Kumar V, Kashyap S, Gupta M. Deepfake: an overview. In: Rodrigues JJPC, Ganzha M, Singh PK, Tanwar S,
Wierzchoń ST, editors. Proceedings of Second International Conference on Computing, Communications, and Cyber-Security:
IC4S 2020. Singapore. Springer; 2021;557-566.

5. Borges L, Martins B, Calado P. Combining similarity features and deep representation learning for stance detection in the
context of checking fake news. J Data Inf Qual. 2019;11(3):1-26. [FREE Full text] [doi: 10.1145/3287763]

6. Vaccari C, Chadwick A. Deepfakes and disinformation: exploring the impact of synthetic political video on deception,
uncertainty, and trust in news. Soc Media Soc. Feb 19, 2020;6(1):205630512090340. [FREE Full text] [doi:
10.1177/2056305120903408]

7. Engler A. Fighting deepfakes when detection fails. Brookings. 2019. URL: https://www.brookings.edu/articles/fighting-deep
fakes-when-detection-fails/ [accessed 2024-02-21]

8. Malik H, Changalvala R. Fighting AI with AI: fake speech detection using deep learning. In: Audio Engineering Society.
2019. Presented at: 2019 AES International Conference on Audio Forensics; June 18-20, 2019; Porto, Portugal. URL:
https://www.aes.org/e-lib/browse.cfm?elib=20479 [doi: 10.17743/aesconf.2019.978-1-942220-28-2]

9. Mcuba M, Singh A, Ikuesan RA, Venter H. The effect of deep learning methods on deepfake audio detection for digital
investigation. Procedia Comput Sci. 2023;219:211-219. [FREE Full text] [doi: 10.1016/j.procs.2023.01.283]

10. Mai KT, Bray S, Davies T, Griffin LD. Warning: humans cannot reliably detect speech deepfakes. PLoS One.
2023;18(8):e0285333. [FREE Full text] [doi: 10.1371/journal.pone.0285333] [Medline: 37531336]

11. Patil K, Kale S, Dhokey J, Gulhane A. Deepfake detection using biological features: a survey. ArXiv. Preprint posted online
January 14, 2023. [FREE Full text]

12. Barrington S, Barua R, Koorma G, Farid H. Single and multi-speaker cloned voice detection: from perceptual to learned
features. IEEE; 2023. Presented at: 2023 IEEE International Workshop on Information Forensics and Security (WIFS);
December 4-7, 2023;1-6; Nürnberg, Germany. [doi: 10.1109/wifs58808.2023.10374911]

13. Generative voice AI. ElevenLabs. 2023. URL: https://elevenlabs.io/ [accessed 2024-01-21]
14. Podcasting made easy. Podcastle. 2023. URL: https://podcastle.ai/ [accessed 2024-02-21]
15. Descript. 2023. URL: https://www.descript.com/ [accessed 2024-02-21]
16. Silero vad: pre-trained enterprise-grade voice activity detector (vad), number detector and language classifier. GitHub.

2021. URL: https://github.com/snakers4/silero-vad [accessed 2024-02-21]
17. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0: fundamental algorithms

for scientific computing in Python. Nat Methods. 2020;17(3):261-272. [FREE Full text] [doi: 10.1038/s41592-019-0686-2]
[Medline: 32015543]

JMIR Biomed Eng 2024 | vol. 9 | e56245 | p. 10https://biomedeng.jmir.org/2024/1/e56245
(page number not for citation purposes)

Kulangareth et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=biomedeng_v9i1e56245_app1.docx&filename=dc62b7b6625ea0d9812d066f4aa61ee9.docx
https://jmir.org/api/download?alt_name=biomedeng_v9i1e56245_app1.docx&filename=dc62b7b6625ea0d9812d066f4aa61ee9.docx
https://jmir.org/api/download?alt_name=biomedeng_v9i1e56245_app2.docx&filename=a1042a087aa4ff183a45ebd29f87ce03.docx
https://jmir.org/api/download?alt_name=biomedeng_v9i1e56245_app2.docx&filename=a1042a087aa4ff183a45ebd29f87ce03.docx
https://asistdl.onlinelibrary.wiley.com/doi/full/10.1002/pra2.2015.145052010081
http://dx.doi.org/10.1002/pra2.2015.145052010081
https://dx.plos.org/10.1371/journal.pone.0287503
http://dx.doi.org/10.1371/journal.pone.0287503
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37410765&dopt=Abstract
https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Reviews.html
https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Reviews.html
https://dl.acm.org/doi/abs/10.1145/3287763
http://dx.doi.org/10.1145/3287763
https://journals.sagepub.com/doi/full/10.1177/2056305120903408
http://dx.doi.org/10.1177/2056305120903408
https://www.brookings.edu/articles/fighting-deepfakes-when-detection-fails/
https://www.brookings.edu/articles/fighting-deepfakes-when-detection-fails/
https://www.aes.org/e-lib/browse.cfm?elib=20479
http://dx.doi.org/10.17743/aesconf.2019.978-1-942220-28-2
https://www.sciencedirect.com/science/article/pii/S1877050923002910
http://dx.doi.org/10.1016/j.procs.2023.01.283
https://dx.plos.org/10.1371/journal.pone.0285333
http://dx.doi.org/10.1371/journal.pone.0285333
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37531336&dopt=Abstract
https://arxiv.org/abs/2301.05819
http://dx.doi.org/10.1109/wifs58808.2023.10374911
https://elevenlabs.io/
https://podcastle.ai/
https://www.descript.com/
https://github.com/snakers4/silero-vad
https://air.unimi.it/handle/2434/848184
http://dx.doi.org/10.1038/s41592-019-0686-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32015543&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


18. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: machine learning in Python. J
Mach Learn Res. 2011;12:2825-2830. [FREE Full text]

19. Liu X, Wang X, Sahidullah M, Patino J, Delgado H, Kinnunen T, et al. Asvspoof 2021: towards spoofed and deepfake
speech detection in the wild. IEEE/ACM Trans Audio Speech Lang Process. 2023;31:2507-2522. [FREE Full text] [doi:
10.1109/taslp.2023.3285283]

20. ChatGPT 3.5. OpenAI. 2024. URL: https://chat.openai.com/chat [accessed 2024-02-21]

Abbreviations
ADA: AdaBoost
AUC: area under the receiver operator curve
DT: decision tree
LR: logistic regression
RF: random forest
SVM: support vector machine
TTS: text-to-speech
VAD: voice activity detector

Edited by T Leung; submitted 16.01.24; peer-reviewed by R Iyer, K Mai; comments to author 25.01.24; revised version received
31.01.24; accepted 17.02.24; published 21.03.24

Please cite as:
Kulangareth NV, Kaufman J, Oreskovic J, Fossat Y
Investigation of Deepfake Voice Detection Using Speech Pause Patterns: Algorithm Development and Validation
JMIR Biomed Eng 2024;9:e56245
URL: https://biomedeng.jmir.org/2024/1/e56245
doi: 10.2196/56245
PMID:

©Nikhil Valsan Kulangareth, Jaycee Kaufman, Jessica Oreskovic, Yan Fossat. Originally published in JMIR Biomedical
Engineering (http://biomsedeng.jmir.org), 21.03.2024. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work, first published in JMIR Biomedical Engineering, is properly cited. The
complete bibliographic information, a link to the original publication on https://biomedeng.jmir.org/, as well as this copyright
and license information must be included.

JMIR Biomed Eng 2024 | vol. 9 | e56245 | p. 11https://biomedeng.jmir.org/2024/1/e56245
(page number not for citation purposes)

Kulangareth et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf?ref=https:/
https://ieeexplore.ieee.org/document/10155166
http://dx.doi.org/10.1109/taslp.2023.3285283
https://chat.openai.com/chat
https://biomedeng.jmir.org/2024/1/e56245
http://dx.doi.org/10.2196/56245
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

