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Abstract

Background: Stroke therapy is essential to reduce impairments and improve motor movements by engaging autogenous
neuroplasticity. Traditionally, stroke rehabilitation occurs in inpatient and outpatient rehabilitation facilities. However, recent
literature increasingly explores moving the recovery process into the home and integrating technology-based interventions. This
study advances this goal by promoting in-home, autonomous recovery for patients who experienced a stroke through
robotics-assisted rehabilitation and classifying stroke residual severity using machine learning methods.

Objective: Our main objective is to use kinematics data collected during in-home, self-guided therapy sessions to develop
supervised machine learning methods, to address a clinician’s autonomous classification of stroke residual severity–labeled data
toward improving in-home, robotics-assisted stroke rehabilitation.

Methods: In total, 33 patients who experienced a stroke participated in in-home therapy sessions using Motus Nova robotics
rehabilitation technology to capture upper and lower body motion. During each therapy session, the Motus Hand and Motus Foot
devices collected movement data, assistance data, and activity-specific data. We then synthesized, processed, and summarized
these data. Next, the therapy session data were paired with clinician-informed, discrete stroke residual severity labels: “no range
of motion (ROM),” “low ROM,” and “high ROM.” Afterward, an 80%:20% split was performed to divide the dataset into a
training set and a holdout test set. We used 4 machine learning algorithms to classify stroke residual severity: light gradient
boosting (LGB), extra trees classifier, deep feed-forward neural network, and classical logistic regression. We selected models
based on 10-fold cross-validation and measured their performance on a holdout test dataset using F1-score to identify which
model maximizes stroke residual severity classification accuracy.

Results: We demonstrated that the LGB method provides the most reliable autonomous detection of stroke severity. The trained
model is a consensus model that consists of 139 decision trees with up to 115 leaves each. This LGB model boasts a 96.70%
F1-score compared to logistic regression (55.82%), extra trees classifier (94.81%), and deep feed-forward neural network (70.11%).

Conclusions: We showed how objectively measured rehabilitation training paired with machine learning methods can be used
to identify the residual stroke severity class, with efforts to enhance in-home self-guided, individualized stroke rehabilitation.
The model we trained relies only on session summary statistics, meaning it can potentially be integrated into similar settings for
real-time classification, such as outpatient rehabilitation facilities.

(JMIR Biomed Eng 2024;9:e56980) doi: 10.2196/56980
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Introduction

Stroke is a leading cause of mortality and disability worldwide,
and the economic costs of treatment and poststroke care are
substantial [1]. In 2019, there were 12.2 million incident cases
of stroke, 101 million prevalent stroke cases, and 6.55 million
deaths from stroke [2]. The severity of a stroke can range from
mild to severe, with severe strokes often leading to long-term
disability or even death. Stroke rehabilitation typically involves
a team of health care professionals, including doctors, nurses,
therapists, and other specialists. The specific goals and
interventions of stroke rehabilitation vary depending on the
individual’s needs and abilities. They may include physical
therapy to improve mobility; occupational therapy to improve
the ability to perform daily activities; speech therapy to improve
communication skills; and cognitive therapy to improve
memory, problem-solving, and other cognitive abilities. While
traditionally recovery has taken place in inpatient and outpatient
rehabilitation facilities, there is growing recent literature about
moving the recovery process into the home [3,4] and integrating
technology-based interventions [5]. This study takes steps to
achieve this goal of in-home and autonomous recovery for
patients who experienced a stroke via robotics-assisted stroke
rehabilitation and classification of stroke residual severity via
machine learning methods.

Machine learning in health care and stroke rehabilitation is not
a new concept (see Reyna et al [6], Alabi et al [7], Cerasa et al
[8], and Harari et al [9] as notable examples of this vast research
field and Campagnini et al [10] for a systematic review of
machine learning methods for poststroke rehabilitation recovery
prediction). In particular, multiple studies have been performed
to predict outcomes in patient survival, locoregional recurrences,
and long-term outcomes in patients who experienced an
ischemic stroke [11-15]. Similarly, studies focused on motor
function have leveraged retrospective health care data and
targeted predicting the short- and long-term functional ability
[16-18]. Such studies represent an exciting step forward in stroke
rehabilitation but have some limitations. These limitations
include the use of health care data that are infrequently measured
(sometimes entirely limited to admission data), which can
hamper the performance of models that rely on large datasets
for generalizability. Similarly, most studies limit their scope to
predicting short- and long-term outcomes and may fail to capture
some of the day-to-day changes survivors’ who have
experienced a stroke experience.

This study aims to overcome these limitations by quantifying
the progress of patient improvement via in-home therapy
sessions using Motus Nova robotics rehabilitation technology
[19] that captures upper and lower body motion. The Motus
Hand and Motus Foot devices are robotic therapeutic devices
designed to be used by survivors who have experienced a stroke
with residual upper and lower extremity impairments at home
without needing help from a clinician or caregiver. The
neuromotor mechanism by which the Motus Hand and Motus
Foot help rehabilitate patients who have experienced a stroke

is rooted in the results from constraint-induced movement
therapy studies [20,21] and focus on getting survivors of stroke
high volumes of repetitive task practice. The Motus Hand and
Motus Foot engage the affected wrist or ankle of the user,
guiding them through various therapeutic exercises targeting
various functional tasks (eg, gross motor control, fine motor
control, and precision tracking). Earlier versions of the
technology have been shown to have clinically significant
improvements in depressive symptoms, functional independence,
upper extremity use in functional tasks, distance walking, and
gait speed [19,22,23].

Traditionally, to determine the functional ability of survivors
of stroke, they will be assessed by a clinician during often
infrequent clinical visits (whether through an outpatient
rehabilitation facility, visiting a neurologist, or a primary care
physician). The time scale of these assessments fails to capture
the progress made during the recovery process when it happens.
Using machine learning and therapy session, kinematic
measurements promise to have a central role in rehabilitation
decision-making in determining whether patient therapy is
improving. Machine learning is the methodology that allows
computers to learn from experience. By constructing and training
supervised classifiers to learn decision rules from data, automatic
solutions can be exploited to make predictions on new data
[24,25]. As in many health care, disease, or machine learning
research applied in a clinical setting, labeling of patient data by
a clinician is necessary [6]. This study applies the same heuristic
methodologies. Our goal is to use kinematics data collected
during in-home, self-guided therapy sessions to construct
supervised machine learning methods to address the autonomous
classification of stroke residual severity–labeled data toward
improving in-home, robotics-assisted, individualized stroke
rehabilitation.

Methods

Therapeutic Intervention Description
The Motus Hand and Motus Foot each consist of 2 major
components: a peripheral (see the bottom panel of Figure 1 for
a close-up of the Motus Hand peripheral) that the patient
attaches to their affected limb and a console that guides their
therapy routine and assessment using a video game interface.
The peripherals have a pneumatic actuator that can dynamically
provide assistance or resistance by filling an air muscle in the
peripheral that moves the wrist or ankle joint. The wrist or ankle
joint of the peripheral has an embedded angle and pressure
sensor that transmits live angle and pressure data to the console.
This allows the console to give the user immediate visual
feedback of their movement through avatars in a video game
on the screen. The therapeutic video game activities can provide
a dynamic feedback loop consisting of in-game goals (eg, ships
to shoot or coins to collect) that drive user movements, which
correspond to movement on the screen, allowing the console to
react and set new goals or obstacles. This feedback loop is
designed to promote sensory motor function.
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A therapy session with the Motus Hand or Motus Foot consists
of stretching, gross motor control, fine motor control, and
endurance exercises, depending on the patient’s needs. This
process is depicted in Figure 1, where a Motus Hand user is
playing “Cosmic Tennis,” a gross motor control exercise that
plays like the classic arcade game Pong [26]. The user’s wrist
or ankle movement corresponds to the movement of the paddle

on the right-hand side of the screen, and the goal is to hit the
ball back and forth to score on the artificial intelligence
(AI)–controlled opponent. Because of the user-guided nature
of a therapy session with the Motus Hand or Motus Foot, therapy
sessions can vary greatly in length. In the data collected, therapy
sessions range from 5 to 60 minutes and between 1 and 10
therapeutic activities.

Figure 1. Patients do therapy sessions with the Motus Hand or Motus Foot using a pneumatically driven exogenous robotic device worn on the affected
hand, arm, or foot (the Motus Hand is depicted in the bottom panel). The peripheral acts as a game controller (through an angle sensor embedded in the
wrist joint) that allows users to play therapeutic video games that dynamically adapt to their needs and provide the requisite assistance or resistance
(computer screen in the bottom panel).

Study Design
The Motus Hand and Motus Foot collect high-resolution angle
and pressure data from sensors embedded in the wrist or ankle
joints and the pressure management system. These
high-resolution data are collected at a frequency of 30 Hz and
stored in a time series database. Other information collected
during a therapy session includes score, peripheral type (Motus
Hand or Motus Foot), and current game (therapeutic activity).
This study used anonymous data collected from 33 patients who
experienced a stroke. In total, those patients performed 32,902
therapeutic activities (ie, each unique activity performed in each
therapy session). These therapy session data are then divided
using an 80%:20% split into a training dataset and a holdout
test set. The training set is used for training the classification
models, and the test set is reserved for the final model
evaluation.

To use the data collected during a therapy session to classify a
patient’s stroke residual severity autonomously, each patient
was given a guided assessment with a clinician using the Motus
Hand or Motus Foot to classify them as having a high range of
motion (ROM), low ROM, or no ROM. These classification
levels are intentionally chosen to be coarse to mimic the
environment in a rehabilitation therapy session.

To find an ideal classifier, we use to consider the training and
performance of 4 machine learning algorithms: light gradient
boosting (LGB) [27], extra trees classifier [28], deep
feed-forward neural network (DNN) [29], and multiclass logistic
regression (LR) [30]. A practical model is then constructed
using the most common data measured in each session based
on the maximum score per session per patient. Unsupervised
learning methods are then applied to the training dataset, such
as the correlation matrix and principal component analysis
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(PCA), to show that all variables collected are relevant to the
study. After performing dimensionality reduction analysis, the
models are selected using 10-fold cross-validation on the
training dataset with the mean and SD of accuracy from each
computational experiment. Afterward, the following metrics
determine the model’s performance, including the accuracy,
precision, and recall from the confusion matrix. The

macroaverage F1-score was used to judge the efficacy of the
models, as this is a multiclassification problem [31], and as
such, accuracy would be an insufficient measure. Figure 2
provides a high-level overview of the data collection, analysis,
processing, and modeling that ultimately produces the final
classification results.

Figure 2. Concept diagram of the overall data analysis and modeling. In total, 33 patients perform in-home therapy using the Motus Hand and Motus
Foot rehabilitation devices. Sensors in the devices capture live angle and pressure data. These data are then processed and summarized to provide
summary statistics of 32,902 therapeutic activities. This provides the base dataset for the analysis presented in this paper, with 11 features and 32,902
points. These data are then split and prepared for use in training a supervised machine learning model to classify the stroke severity of the patient.

Details of Data Collection
Throughout a therapy session using the Motus Hand or Motus
Foot, live angle data (measured in degrees from a natural
midpoint in wrist or ankle placement) are collected from the
sensor embedded in the wrist or ankle joint at 30 readings per
second. These “raw” angle sensor data are then stored in a time
series database (InfluxDB [32]). In addition to the
high-resolution angle data, pressure readings (measured in PSI)
are taken from the pressure management system at 30
measurements per second. While these readings are not high
resolution compared to state-of-the-art kinematics technology
[33], it is significantly higher resolution than what a typical
physician would have access to during assessments in a normal
physical therapy visit.

Each therapy session for a patient includes a selection of about
30 activities that focus on several types of motor function,
including gross motor control, fine motor control, flexor tone

reduction, endurance, reaction time, and tracking. A patient can
participate in more than 1 video game (therapeutic activity)
during a patient session. The score is recorded and stored once
the patient completes the video game. The scores for each game
are not necessarily standardized. This means a score of 100 in
one game can represent a dramatically different performance
than a score of 100 in another. The score is collected each time
a player performs an action in the game that would increase or
decrease the score, so this field is collected more irregularly
and infrequently than angle and pressure data. Gender and other
biometric data such as age, height, and weight are not included
in the patient description or the analysis.

Clinician Labeling
To train a classifier for determining stroke residual severity,
our dataset must have appropriate labels corresponding to the
patient’s level of function around the time the data were
collected. During a series of video calls and using the Motus
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Hand and Motus Foot technology, a clinician met with each
individual and performed a series of assessments. Remote
assessment of extremity function using an external device has
been studied and indicates that it is noninferior to in-person
assessment when done properly [34]. The clinician used the
potentiometer [35] embedded in the wrist or ankle joint of the
Motus Hand or Motus Foot and a “clinician dashboard” interface
to read live angle and pressure data from the patient and provide
them the requisite assistance to stretch the patient’s wrist or
ankle to collect passive and active ROM thresholds. With these

assessments, the clinician estimated each individual’s active
ROM and passive ROM and characterized their level of function
as “no ROM,” “low ROM,” or “high ROM.” While these labels
are quite broad, the labeling process is hardly a simple
algorithm. At the clinician’s discretion, quantitative and
qualitative factors must apply an appropriate label. In particular,
the clinician recorded the minimum or maximum angle reached
for the assessment performed, the type of assessment performed,
and a label summarizing the patient’s ROM level. These data
are summarized in Table 1.

Table 1. Example patient label table assessed by a clinician during telehealth session.

Clinician classificationAssessmentMinimum angleMaximum anglePatient ID

NoPassive–20371495

NoPassive–16212273

NoPassive–15402085

NoPassive–9442098

NoPassive–12281864

NoPassive–18372040

LowPassive–18432097

LowAssisted–17–32356

LowAssisted–17–32356

LowAssisted–23521688

LowPassive–12541876

LowPassive–20462029

LowPassive–18301458

HighAssisted–12101637

HighAssisted–1682282

HighAssisted–15391781

HighAssisted–18102360

All patients first were given a passive ROM assessment, in
which they were stretched as far as their wrist or ankle would
allow without experiencing pain or discomfort. Next, an active
ROM assessment was conducted. In this assessment, the patient
bends their wrist or ankle as far up and down as they can without
any assistance from the Motus Hand or Motus Foot and without
compensating with other parts of their bodies (hips, shoulders,
etc). Depending on the patient’s assessed active ROM, an
assisted ROM assessment was performed. This assessment
consists of providing patients with varying amounts of assistance
and recording their ROM in the presence of an upward force.

We define a patient as “assisted” or “passive” based on the most
arduous assessment performed on the patient. The low ROM
label contains a combination of patients who either did or did
not have enough movement for the assisted ROM assessment.
All patients who are classified with a high ROM (low residual
stroke severity) were able to complete the assisted ROM
assessment. This is important when noticing that patients with
ID 2085 and 1781 (blue) have a similar total ROM (maximum
angle–minimum angle), but patient ID 1781 requires clinician
assistance to reach their maximum ROM. However, there is

ambiguity in some labels. For example, take patient ID 2356
(red), where it can be argued that the patient should have a high
stroke residual severity (corresponding to low or no ROM),
given the low total ROM with assistance. This is where the
clinician has other outside factors that contribute to the final
labeled classification of a patient. The clinician is visually able
to assess the level of tone and spasticity that a patient may be
exhibiting, which would not necessarily be captured in the
minimum and maximum ROM values. The assessment results
and labels were reviewed and confirmed by an additional expert.

Data Processing
To create a more manageable dataset for the labeling task, we
generate summary statistics of the high-resolution data for each
activity performed during a therapy session. First, to compensate
for sensor reading issues, we smooth outliers out of the raw
time series data (replacing data points in the 99th and 1st
percentile with the value of the 99th and 1st percentile,
respectively). Then, summarize the angle (relative to a reference
midpoint in degrees) and pressure (in PSI) using the following
variables: Rmin, the minimum ROM for a game; Rmax, the
maximum ROM for a game; Rmean, the mean ROM for a game;
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Pmin, the minimum pressure for a game; Fflex, the maximum
centripetal force generated while moving downward (flexion
for upper extremities and plantar flexion for lower extremities);
Fext, the maximum centripetal force generated while moving
upward (extension for upper extremities and dorsiflexion for
lower extremities); Pmax, the maximum pressure for a game;
and Pmean, the mean pressure for a game. We finally pair these
game-level summary statistics with the number of movements
performed in the game (Nmov), the maximum score in the game
(Score), and the total time spent playing that game during a
therapy session (tgame).

This transformation from high-resolution data to game-level
summary statistics provides a much more manageable dataset
to which we can apply the clinician labels. A patient with low
ROM (as labeled by the clinician) has little ROM during each
game throughout a session. Using this idea, we construct a new
dataset from each activity (game) a patient takes part in during
a session, with each row having a unique (patient ID, session
ID, and game ID) tuple. It is worth noting that a patient is
unlikely to take part in every activity over the course of a
therapy session; often, they gravitated to a few choice activities
during each session. A summary of the data in each row in the
described dataset is presented in Table 2.

After combining the data into this standardized dataset, the data
then require sanitization, analysis, and normalization. The “role”

column indicates whether a variable is part of the feature set,
the labels, or not used in the model training at all. To sanitize
the data, we fill in missing values, correct invalid sensor values,
and throw out data that did not represent a meaningful
therapeutic exercise.

To isolate games with insufficient activity to draw meaningful
conclusions, we restrict the number of movements, Nmov,
performed during a game (therapeutic activity). A “movement”
is any change of direction recorded in the angle sensor after
noise is smoothed out of the time series. We remove any game
(therapeutic activity) with fewer than 3 movements, as no
significant therapeutic exercise can be performed with fewer
than 3 movements (under assistance from the robotic Motus
Hand or Foot).

Before performing any data analysis, the harmonized dataset is
partitioned using an 80%:20% split into a training set and a
holdout test set. The training set is used for exploratory data
analysis and model training. All normalization and
transformation techniques derived from the training set are then
applied to the test set before the final predictive measures are
computed. This is done to prevent data leakage from including
the test set in the derivation of normalization and transformation
techniques. The test dataset is reserved for the final performance
measures in the Results section.

Table 2. Session game data dictionary.

ExampleUnitRoleDescriptionVariable

–3.047709105NewtonFeatureMaximum centripetal force generated moving in the downward direction during
an activity (computed from derivatives of angle data)

F flex

3.251405759NewtonFeatureMaximum centripetal force generated moving in the upward direction during
an activity (computed from derivatives of angle data)

F ext

10IntegerFeatureThe number of completed movements during an activityN mov

–25DegreesFeatureAbsolute minimum angle detected by angle sensor during an activityR min

46.41941DegreesFeatureAbsolute maximum angle detected during an activityR max

15SecondsFeatureTotal time spent performing therapy during an activityt game

–0.04511994PSIFeatureMinimum pressure applied by the sensor during an activityP min

10.30989PSIFeatureMaximum pressure applied by the sensor during an activityP max

3.590553432PSIFeatureAverage pressure applied by the sensor during an activityP mean

100IntegerFeatureMaximum score achieved during an activityScore

Hand0, 1FeaturePeripheral type variable indicating the hand or footh

High0, 1, 2LabelDesignate stroke severity label by a clinician (high, low, and no)Class

4IntegerNot usedUnique identifier for each game (therapeutic activity) that is available on the
Motus Hand or Foot

g

11IntegerNot usedAnonymous identifier for each patient using the Motus Hand or Foot in this
study

p

782,302,348,734IntegerNot usedUnique identifier for each session performed on the Motus Hand or Foots
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Exploratory Data Analysis

Data Distribution
It is well-known that proper data normalization is critical for
maximizing model performance across machine learning
applications and methods [36]. Knowing the proper

normalization technique for each feature requires a cursory
dataset analysis. In Figure 3, we show representative
distributions of the features that will be input variables for our
comparative model analysis. While some variables are not
normally distributed, assuming that the data are normally
distributed is sufficient considering the results [37].

Figure 3. Example of the distribution plots for 4 of the random variables for each therapeutic activity color-coded by the class label from the clinician.
The plots are (A) distribution of minimum angle, (B) distribution of maximum pressure, (C) distribution of average pressure, and (D) distribution of
maximum pressure. An explanation for each variable in the dataset is given in Table 2. Subsequently, random variables are distributed normally, which
is crucial for using the z score when inputting into a machine learning algorithm.

Correlation
We analyze the correlation among the features in our dataset to
identify potential redundancies. Then, we look at the principal
component decomposition [38] to see if the variation in the data
can be meaningfully reduced to a lower dimensional space. The
correlation matrix for the feature set, constructed by computing
the correlation between each pair of features in the dataset, is
shown in Figure 4.

Because a correlation matrix points to potential relationships
between features, it can indicate the feasibility of dimensionality
reduction when preparing a dataset for building a classifier. If
2 variables are highly correlated, that is, |Cor(X, Y)|>0.9, Shin
and Park [39] suggest that one of those variables can be dropped
from the analysis. We use this threshold of 0.9 where
appropriate.

There exists a strong negative correlation between Fext and Fflex

approximately at –0.9. However, we chose not to exclude either
variable from our analysis due to their relevance in neuromotor
recovery. For survivors who have experienced a stroke with
upper extremity impairment, hypertonia often results in distinct
patterns of volitional flexion (downward pushing force) and
extension (upward pushing force) improvement [40].

The correlation between the mean pressure for an activity, Pmean,
and maximum pressure for an activity, Pmax, with the value of
0.80, indicates that the Motus Hand or Foot applied more
pressure on average in each activity; however, because this
correlation fails to surpass the threshold of 0.90, we do not drop
either variable. Similarly, the correlation (0.60) between game
time, tgame, and game score, Score, is intuitive: the longer a
patient plays a game, the higher their score. Unfortunately, this
correlation also does not meet the threshold for exclusion in the
final feature set.

JMIR Biomed Eng 2024 | vol. 9 | e56980 | p. 7https://biomedeng.jmir.org/2024/1/e56980
(page number not for citation purposes)

Jeter et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 4. Correlation matrix for the feature set, excluding identification variables such as patient ID, session ID, game ID, and start time. A correlation
threshold of |Cor(X, Y)|>0.9 was used for variable exclusion in dimensionality reduction. Notably, Fflex and Fext show a strong negative correlation.
Despite this, both were included in the analysis because the development of downward pushing strength (flexion in upper extremities and plantar flexion
in lower extremities) does not imply the development of upward pushing strength (extension in upper extremities and dorsiflexion in lower extremities).

Dimensionality Reduction
Another informative approach for analyzing the potential for
dimensionality reduction in a feature set is PCA. Principal
components are new variables constructed as linear
combinations of the initial variables. These linear combinations
ensure that the new variables (ie, principal components) are
uncorrelated and that as few components as possible contain
most of the information from the initial variables. Explained
variance is a statistical measure of how much variation in a
dataset is attributable to each principal component (eigenvectors)
generated by the PCA method [41]. Explained variance thus

allows us to rank the components in order of importance and
to focus on the most important ones when interpreting the results
of our analysis.

In Figure 5, we show the explained variance of each principal
component contributes to the total variation in the feature set.
No component can be described as dominant, as none accounts
for more than 20% of the variance in the initial dataset.

Given this and the results from our correlation analysis, no
variables present in the principal dataset were excluded from
the feature set.
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Figure 5. Depiction of the principal components with the explained variance ratio. As shown, 95% of the explained variance is contributed by all
principal components. As a result, all variables are used in the machine learning model for the analysis.

Model Description
Here, we provide a brief overview of the models compared in
the Results section. LR is a classical statistical technique for
binary classification. The technique consists of mapping the
probability of an event happening to a logistic curve with the
model inputs as dependent variables. LR is still widely used
and is a common first model when performing classification
because it is easy to implement and interpret.

Gradient boosting decision tree (GBDT) is a widely used
machine learning algorithm due to its efficiency, accuracy, and
interpretability [27]. The algorithm uses smaller “weaker
classifiers” with a number of leaves. By taking a weighted
average of these several “weaker classifiers,” we then can
construct a “stronger classifier” [42]. By training several weaker
models, this process is known as AdaBoosting. It results in a
stronger model by adding more leaves to the decision tree and
taking a weighted combination of these weaker models, where
the weights are determined by the performance [43].

The DNN is a high-performance deep learning model with
varying hidden layers. Several architectures were tested on the
training dataset to see if there was an increase in performance
by adding hidden layers (from 4 to 8) or a reduction in nodes
in each input layer [44]. The rectified linear unit activation
function was implemented into the model instead of the sigmoid
function. Both were tried. Accuracy results from the
computational experiment could surpass 80%, regardless of
adding more layers, changing the hidden layer input size, or
changing the activation function. The best-performing DNN
trained in our analysis has 3 hidden layers with the input size
of the hidden layers as 8, 5, and 8, respectively. Layer size,
learning rates, batch size, and epoch size were all
hyperparameters tuned during the training process.

The extra trees classifier is an ensemble learning method for
classification. Ensemble learning is a machine learning
technique that combines the predictions of multiple individual
models to produce a more accurate and robust final prediction.
The basic idea is to train multiple models independently, each
with a different algorithm or set of hyperparameters, and then
combine their predictions at the end [45]. This is similar to the
AdaBoosting concept with LGB, where models can be combined
by averaging or weighting their predictions [46]. The model
uses entropy as the splitting criterion for the trees, with 100%
of the features considered at each split. The maximum number
of leaf nodes for each tree is 8717, and the model is comprised
of 42 trees [46].

Ethical Considerations
This study was approved by the institutional review board of
Georgia State University (IRB H24270). This research involves
the analysis of preexisting, nonidentifiable data. No direct
interaction or intervention with human participants occurred
during the course of this study. The study relies solely on data
generated by the commercial company Motus Nova for
nonresearch purposes. All methods followed relevant guidelines
and regulations approved by the Georgia State University
institutional review board that waived the informed consent and
designated this study as no human participants research.

Results

The original harmonized dataset (described in Table 2) contained
all the scores, the minimum and maximum ROM, and minimum
and maximum pressure, and we took the maximum score per
game per session. Due to the smaller dataset, the training and
testing were split on the 80%:20% principle, where for 80% of
the data, the training set was used to train the models (with a
subset of this set being used for training hyperparameters where
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appropriate). For the remaining 20%, the holdout test set was
used to compare the performance of the models after training.

Table 3 shows a performance based on 10-fold cross-validation
for each machine learning classification algorithm applied to
the training set. K-fold cross-validation is used to verify that a
high-accuracy model does not necessarily overfit the training
data. The training dataset is randomly divided into 10 different
subsets or “folds” [47]. Each of these folds is then used as the
new training data, while another is used as the new testing data
for fitting a new model. We then take the mean and SD of the
model accuracy across the 10 folds.

From Table 3, it is clear that both the neural network and LR
perform poorly compared to the tree-based methods (extra trees
classifier and LGB). The poor performance for LR is likely due
to the assumption that there is a linear relationship between the
features and the labels, that is, the points corresponding to each
label can be nicely separated by a hyperplane (the N-dimensional
extension of a line in 2D or plane in 3D). On the other hand,
neural networks tend to perform poorly on small datasets like
the therapy dataset we have compiled. This is because, while
able to capture nonlinear decision boundaries, neural networks
are prone to overfitting the training dataset. Tree-based methods
provide an excellent combination of low bias but are still able
to capture a nonlinear decision boundary.

Figure 6 presents the confusion matrix of each of the supervised
learning methods. A confusion matrix is used to represent the
algorithm’s performance visually. Each row of the matrix
represents the instances in an actual class, while each column
represents the instances in a predicted class or vice versa. We
represent the percentage over the exact numeric number for
display purposes. Three performance metrics come from the
confusion matrix: precision, recall, and the F1-score. Accuracy
measures the proportion of predicted positives that are truly
positive. Recall measures the proportion of predicted negatives
that are truly negative. To compare the performance of each
model, we use the F1-score. The F1-score is the harmonic mean
of the precision and recall [31]. In this case, this is
macroaveraging (treating all classes equally important).

A full breakdown of the performance measures (precision, recall,
and F1-score) for all models on the holdout test set is shown in
Table 4. It is important to notice that while the extra trees
classifier has a comparable accuracy (picking the correct label)
with the LGB method, LGB performs reliably better than all of
the other models when also weighing false positives and false
negatives (precision, recall, and F1-score). Remarkably, the
LGB model best fits the dataset with a weighted average
F1-score of 96.70% compared to LR (55.82%), extra trees
classifier (94.81%), and DNN (70.11%).

Table 3. Training set cross-validation algorithm accuracy.

Accuracy (%), mean (SD)Algorithm

96.40 (0.4)Extra trees classifier

94 (0.4)Light gradient boosting

71.70 (0.7)Neural network

61.20 (0.5)Logistic regression

Figure 6. Confusion matrices for (A) light gradient boosting (LGB) and (B) logistic regression. Considering the false negative column of the no
classification, it is seen that the LGB model greatly improved this classification. This is especially important when classifying a patient as having “no”
stroke severity when they are actually a “high” severity. Misclassifications can be particularly dangerous, ranging from providing inadequate therapy
to a patient with high ROM to injuring a user with low ROM with therapy designed for a user with high ROM. ROM: range of motion.
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Table 4. Performance measures on the holdout test dataset for each model for each label type.

Performance metricModel and label

F1-score (%)Recall (%)Precision (%)

Extra trees classifier

94.1292.8395.44Low

92.7591.1094.46High

95.7897.0494.55No

94.8194.8494.82Weighted average

Light gradient boosting

96.2095.6196.80Low

95.7394.9796.49High

97.2697.8396.70No

96.7096.7096.70Weighted average

Deep feed-forward neural network

69.3264.9474.34Low

38.8228.2761.93High

78.8687.7171.64No

70.1171.9471.14Weighted average

Logistic regression

46.1237.6159.61Low

14.158.2748.77High

73.0289.4261.71No

55.8260.9659.15Weighted average

Discussion

Principal Findings
We have demonstrated that objectively measured rehabilitation
training combined with machine learning methods can be
effectively used to identify residual stroke severity classes. This
approach aims to enhance in-home, self-guided, individualized
stroke rehabilitation. We have tackled several challenges
commonly faced in health care applications of machine learning,
such as processing data with varying physical quantities,
handling errors in sensory data, and addressing ambiguous
classifications due to human error.

Comparison to Prior Work
Previous studies have largely focused on predicting short- and
long-term functional ability based on clinical variables from an
inpatient hospital stay immediately after stroke [16-18] or they
have used robotic measurements to predict clinical measurement
scores [48,49]. Meanwhile, our study focuses on data collected
during rehabilitation in the in-home setting that is used to predict
residual stroke severity.

In those previous studies, the algorithms most frequently used
were linear and LR. However, these methods showed poor
accuracy (less than 80%) with our dataset, prompting us to
explore different approaches. We found that the LGB method
provided substantially higher accuracy, despite being applied

to a relatively small dataset. LGB is advantageous for real-time
autonomous stroke residual severity classification; it is known
to be easily transferable and requires relatively little
computational resources [27].

Strengths and Limitations
Our study design ensures that the model can make decisions
based on summary statistics typically available in an outpatient
rehabilitation setting. This design enables retraining of the model
in an outpatient environment, similar to an in-home setting.
Consequently, the model can offer a second opinion on a
patient’s stroke residual severity or potentially replace a
clinician’s assessment. This capability allows for a more targeted
therapy routine based on the stroke residual severity
classification.

A notable limitation is that the model may need retraining to
accommodate specific data collected in each outpatient setting,
accounting for differences in the data. Such data collection can
be challenging and costly, particularly for outpatient facilities
with low patient volumes.

Future Directions
Future work involves building an expanded and more
sophisticated dataset. Real-time processing of sensor data will
enable a classifier to interact with users in real time, recognizing
and classifying subtle changes in their motor function. This
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capability will allow clinicians (AI or otherwise) to prescribe
personalized, targeted interventions that are most impactful.

Additionally, integrating real-time understanding of a patient’s
needs with an in-home robotic therapy device like the Motus
Hand and Motus Foot will provide immediate feedback. An AI
in therapeutic games can detect patient needs, such as fatigue,
during a therapy session and adapt its strategy accordingly.
Further research could also explore finer-grained severity
classifications, such as labeling patients based on their total
ROM or amount of tone, which would require more labeled
data to train the machine learning model properly.

Conclusions
Autonomous classification is becoming more important for
successful rehabilitation, as rehabilitation begins to move out
of the clinical setting. Still, it faces challenges with the
accessibility and volume of appropriate clinical data for training
models and model access to user data for classification.

By leveraging the in-home stroke rehabilitation robotics
provided by the Motus Hand and Motus Foot, we have made
significant progress in addressing these issues that prevent

adequate training of an autonomous classification model. With
the data collected from self-guided, in-home therapy sessions,
we could train a classification model to identify the stroke
residual severity in 33 patients. We compared 4 different
models: extra trees classifier, LGB, DNN, and LR, finding the
LGB method to outscore the other 3 with an average F1-score
of 94%. The LGB method is a particularly powerful model for
this case because it combines interpretability and portability.

Because our model relies only on therapy session summary
statistics, the proposed method is expected to be successful
when applied to comparable rehabilitation datasets. Once
trained, the model is highly portable and can be integrated into
similar rehabilitation settings, such as outpatient rehabilitation
facilities with appropriate technological resources, to provide
an autonomous real-time classification of stroke residual
severity. Additionally, when paired with something like the
Motus Hand and Motus Foot technology, our classifier provides
the opportunity to develop personalized training based on the
stroke residual severity of the individual and adapt the therapy
exercises to each patient’s needs. The efficacy of real-time
classification and adaptation remains a subject of future study.

Acknowledgments
The authors would like to thank Motus Nova for providing the raw sensor data used in this study. This work was supported by
the National Science Foundation (United States; grant CMMI-1953135).

Data Availability
The datasets generated and analyzed during this study are not publicly available because they are owned by Motus Nova, LLC,
but are available from the corresponding author on reasonable request.

Authors' Contributions
RJ and IB designed and conceptualized the study and contributed to project administration. IB curated the data. RG and RJ
contributed to the methodology, investigation, and formal analysis. All authors interpreted the results and drafted and edited the
manuscript.

Conflicts of Interest
The authors acknowledge no conflicts of interest. Although the access to in-home stroke rehabilitation data, collected using the
Motus Hand and Motus Foot devices and provided by Motus Nova, was crucial for the conception of this study, the company
did not influence the methods, results, or discussions presented herein. All analyses and interpretations were conducted
independently by the research team to ensure unbiased and objective findings.

References

1. GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic
analysis for the global burden of disease study 2019. Lancet Neurol. 2021;20(10):795-820. [FREE Full text] [doi:
10.1016/S1474-4422(21)00252-0] [Medline: 34487721]

2. GBD 2016 Stroke Collaborators. Global, regional, and national burden of stroke, 1990-2016: a systematic analysis for the
Global Burden of Disease Study 2016. Lancet Neurol. 2019;18(5):439-458. [FREE Full text] [doi:
10.1016/S1474-4422(19)30034-1] [Medline: 30871944]

3. Epalte K, Grjadovojs A, Bērziņa G. Use of the digital assistant vigo in the home environment for stroke recovery: focus
group discussion with specialists working in neurorehabilitation. JMIR Rehabil Assist Technol. 2023;10:e44285. [FREE
Full text] [doi: 10.2196/44285] [Medline: 37058334]

4. Arntz A, Weber F, Handgraaf M, Lällä K, Korniloff K, Murtonen K, et al. Technologies in home-based digital rehabilitation:
scoping review. JMIR Rehabil Assist Technol. 2023;10:e43615. [doi: 10.2196/43615] [Medline: 37253381]

5. Broderick M, O'Shea R, Burridge J, Demain S, Johnson L, Bentley P. Examining usability, acceptability, and adoption of
a self-directed, technology-based intervention for upper limb rehabilitation after stroke: cohort study. JMIR Rehabil Assist
Technol. 2023;10:e45993. [FREE Full text] [doi: 10.2196/45993] [Medline: 37603405]

JMIR Biomed Eng 2024 | vol. 9 | e56980 | p. 12https://biomedeng.jmir.org/2024/1/e56980
(page number not for citation purposes)

Jeter et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

https://air.unimi.it/handle/2434/866438
http://dx.doi.org/10.1016/S1474-4422(21)00252-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34487721&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1474-4422(19)30034-1
http://dx.doi.org/10.1016/S1474-4422(19)30034-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30871944&dopt=Abstract
https://rehab.jmir.org/2023//e44285/
https://rehab.jmir.org/2023//e44285/
http://dx.doi.org/10.2196/44285
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37058334&dopt=Abstract
http://dx.doi.org/10.2196/43615
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37253381&dopt=Abstract
https://rehab.jmir.org/2023//e45993/
http://dx.doi.org/10.2196/45993
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37603405&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


6. Reyna MA, Josef CS, Jeter R, Shashikumar SP, Westover MB, Nemati S, et al. Early prediction of sepsis from clinical
data: the PhysioNet/Computing in Cardiology Challenge 2019. Crit Care Med. 2020;48(2):210-217. [FREE Full text] [doi:
10.1097/CCM.0000000000004145] [Medline: 31939789]

7. Alabi RO, Elmusrati M, Sawazaki-Calone I, Kowalski LP, Haglund C, Coletta RD, et al. Comparison of supervised machine
learning classification techniques in prediction of locoregional recurrences in early oral tongue cancer. Int J Med Inform.
2020;136:104068. [doi: 10.1016/j.ijmedinf.2019.104068] [Medline: 31923822]

8. Cerasa A, Tartarisco G, Bruschetta R, Ciancarelli I, Morone G, Calabrò RS, et al. Predicting outcome in patients with brain
injury: differences between machine learning versus conventional statistics. Biomedicines. 2022;10(9):2267. [FREE Full
text] [doi: 10.3390/biomedicines10092267] [Medline: 36140369]

9. Harari Y, O'Brien MK, Lieber RL, Jayaraman A. Inpatient stroke rehabilitation: prediction of clinical outcomes using a
machine-learning approach. J Neuroeng Rehabil. 2020;17(1):71. [FREE Full text] [doi: 10.1186/s12984-020-00704-3]
[Medline: 32522242]

10. Campagnini S, Arienti C, Patrini M, Liuzzi P, Mannini A, Carrozza MC. Machine learning methods for functional recovery
prediction and prognosis in post-stroke rehabilitation: a systematic review. J Neuroeng Rehabil. 2022;19(1):54. [FREE Full
text] [doi: 10.1186/s12984-022-01032-4] [Medline: 35659246]

11. Heo J, Yoon JG, Park H, Kim YD, Nam HS, Heo JH. Machine learning-based model for prediction of outcomes in acute
stroke. Stroke. 2019;50(5):1263-1265. [doi: 10.1161/STROKEAHA.118.024293] [Medline: 30890116]

12. Saber H, Somai M, Rajah GB, Scalzo F, Liebeskind DS. Predictive analytics and machine learning in stroke and neurovascular
medicine. Neurol Res. 2019;41(8):681-690. [doi: 10.1080/01616412.2019.1609159] [Medline: 31038007]

13. Wang W, Kiik M, Peek N, Curcin V, Marshall IJ, Rudd AG, et al. A systematic review of machine learning models for
predicting outcomes of stroke with structured data. PLoS One. 2020;15(6):e0234722. [FREE Full text] [doi:
10.1371/journal.pone.0234722] [Medline: 32530947]

14. Fernandez-Lozano C, Hervella P, Mato-Abad V, Rodríguez-Yáñez M, Suárez-Garaboa S, López-Dequidt I, et al. Random
forest-based prediction of stroke outcome. Sci Rep. 2021;11(1):10071. [FREE Full text] [doi: 10.1038/s41598-021-89434-7]
[Medline: 33980906]

15. Someeh N, Mirfeizi M, Asghari-Jafarabadi M, Alinia S, Farzipoor F, Shamshirgaran SM. Predicting mortality in brain
stroke patients using neural networks: outcomes analysis in a longitudinal study. Sci Rep. 2023;13(1):18530. [FREE Full
text] [doi: 10.1038/s41598-023-45877-8] [Medline: 37898678]

16. Lin W, Chen C, Tseng Y, Tsai Y, Chang C, Wang H, et al. Predicting post-stroke activities of daily living through a machine
learning-based approach on initiating rehabilitation. Int J Med Inform. 2018;111:159-164. [doi:
10.1016/j.ijmedinf.2018.01.002] [Medline: 29425627]

17. Gupta VP, Garton AL, Sisti JA, Christophe BR, Lord AS, Lewis AK, et al. Prognosticating functional outcome after
intracerebral hemorrhage: the ICHOP score. World Neurosurg. 2017;101:577-583. [FREE Full text] [doi:
10.1016/j.wneu.2017.02.082] [Medline: 28242488]

18. Kim JK, Choo YJ, Chang MC. Prediction of motor function in stroke patients using machine learning algorithm: development
of practical models. J Stroke Cerebrovasc Dis. 2021;30(8):105856. [doi: 10.1016/j.jstrokecerebrovasdis.2021.105856]
[Medline: 34022582]

19. Butler A, Housley SN, Chen YA, Wolf S. Increasing access to cost effective home-based robotic telerehabilitation for
stroke survivors. 2017. Presented at: 2017 International Symposium on Wearable Robotics and Rehabilitation (WeRob);
November 5-8, 2017; Houston, TX. URL: https://ieeexplore.ieee.org/document/8383873

20. Sawaki L, Butler AJ, Leng X, Wassenaar PA, Mohammad YM, Blanton S, et al. Constraint-induced movement therapy
results in increased motor map area in subjects 3 to 9 months after stroke. Neurorehabil Neural Repair. 2008;22(5):505-513.
[FREE Full text] [doi: 10.1177/1545968308317531] [Medline: 18780885]

21. Wolf SL, Blanton S, Baer H, Breshears J, Butler AJ. Repetitive task practice: a critical review of constraint-induced
movement therapy in stroke. Neurologist. 2002;8(6):325-338. [FREE Full text] [doi: 10.1097/01.nrl.0000031014.85777.76]
[Medline: 12801434]

22. Butler AJ, Bay C, Wu D, Richards KM, Buchanan S, Yepes M. Expanding tele-rehabilitation of stroke through in-home
robot-assistedtherapy. Int J Phys Med Rehabil. 2014;02(02):1-11. [doi: 10.4172/2329-9096.1000184]

23. Wolf SL, Sahu K, Bay RC, Buchanan S, Reiss A, Linder S, et al. The HAAPI (Home Arm Assistance Progression Initiative)
trial: a novel robotics delivery approach in stroke rehabilitation. Neurorehabil Neural Repair. 2015;29(10):958-968. [FREE
Full text] [doi: 10.1177/1545968315575612] [Medline: 25782693]

24. Cai S, Li G, Zhang X, Huang S, Zheng H, Ma K, et al. Detecting compensatory movements of stroke survivors using
pressure distribution data and machine learning algorithms. J Neuroeng Rehabil. 2019;16(1):131. [FREE Full text] [doi:
10.1186/s12984-019-0609-6] [Medline: 31684970]

25. Thakkar HK, Liao WW, Wu CY, Hsieh YW, Lee TH. Predicting clinically significant motor function improvement after
contemporary task-oriented interventions using machine learning approaches. J Neuroeng Rehabil. 2020;17(1):131. [FREE
Full text] [doi: 10.1186/s12984-020-00758-3] [Medline: 32993692]

26. Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, et al. Playing atari with deep reinforcement
learning. ArXiv. Preprint posted online on December 19, 2013. [doi: 10.48550/arXiv.1312.5602]

JMIR Biomed Eng 2024 | vol. 9 | e56980 | p. 13https://biomedeng.jmir.org/2024/1/e56980
(page number not for citation purposes)

Jeter et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

https://europepmc.org/abstract/MED/31939789
http://dx.doi.org/10.1097/CCM.0000000000004145
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31939789&dopt=Abstract
http://dx.doi.org/10.1016/j.ijmedinf.2019.104068
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31923822&dopt=Abstract
https://www.mdpi.com/resolver?pii=biomedicines10092267
https://www.mdpi.com/resolver?pii=biomedicines10092267
http://dx.doi.org/10.3390/biomedicines10092267
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36140369&dopt=Abstract
https://jneuroengrehab.biomedcentral.com/articles/10.1186/s12984-020-00704-3
http://dx.doi.org/10.1186/s12984-020-00704-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32522242&dopt=Abstract
https://jneuroengrehab.biomedcentral.com/articles/10.1186/s12984-022-01032-4
https://jneuroengrehab.biomedcentral.com/articles/10.1186/s12984-022-01032-4
http://dx.doi.org/10.1186/s12984-022-01032-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35659246&dopt=Abstract
http://dx.doi.org/10.1161/STROKEAHA.118.024293
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30890116&dopt=Abstract
http://dx.doi.org/10.1080/01616412.2019.1609159
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31038007&dopt=Abstract
https://dx.plos.org/10.1371/journal.pone.0234722
http://dx.doi.org/10.1371/journal.pone.0234722
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32530947&dopt=Abstract
https://doi.org/10.1038/s41598-021-89434-7
http://dx.doi.org/10.1038/s41598-021-89434-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33980906&dopt=Abstract
https://doi.org/10.1038/s41598-023-45877-8
https://doi.org/10.1038/s41598-023-45877-8
http://dx.doi.org/10.1038/s41598-023-45877-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37898678&dopt=Abstract
http://dx.doi.org/10.1016/j.ijmedinf.2018.01.002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29425627&dopt=Abstract
https://europepmc.org/abstract/MED/28242488
http://dx.doi.org/10.1016/j.wneu.2017.02.082
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28242488&dopt=Abstract
http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2021.105856
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34022582&dopt=Abstract
https://ieeexplore.ieee.org/document/8383873
https://europepmc.org/abstract/MED/18780885
http://dx.doi.org/10.1177/1545968308317531
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18780885&dopt=Abstract
https://europepmc.org/abstract/MED/12801434
http://dx.doi.org/10.1097/01.nrl.0000031014.85777.76
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12801434&dopt=Abstract
http://dx.doi.org/10.4172/2329-9096.1000184
https://europepmc.org/abstract/MED/25782693
https://europepmc.org/abstract/MED/25782693
http://dx.doi.org/10.1177/1545968315575612
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25782693&dopt=Abstract
https://jneuroengrehab.biomedcentral.com/articles/10.1186/s12984-019-0609-6
http://dx.doi.org/10.1186/s12984-019-0609-6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31684970&dopt=Abstract
https://jneuroengrehab.biomedcentral.com/articles/10.1186/s12984-020-00758-3
https://jneuroengrehab.biomedcentral.com/articles/10.1186/s12984-020-00758-3
http://dx.doi.org/10.1186/s12984-020-00758-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32993692&dopt=Abstract
http://dx.doi.org/10.48550/arXiv.1312.5602
http://www.w3.org/Style/XSL
http://www.renderx.com/


27. Ke G, Meng Q, Finely T, Wang T, Chen W, Ma W, et al. LightGBM: a highly efficient gradient boosting decision tree.
2017. Presented at: Advances in Neural Information Processing Systems 30 (NIPS 2017); December 04, 2017:3149-3157;
Red Hook, NY. URL: https://papers.nips.cc/paper_files/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.
html

28. Geurts P, Ernst D, Wehenkel L. Extremely randomized trees. Mach Learn. 2006;63(1):3-42. [doi: 10.1007/s10994-006-6226-1]
29. Wang S, Cao G, Shang Z. Deep neural network classifier for multi-dimensional functional data. ArXiv. Preprint posted

online on May 17, 2022. 2022. [doi: 10.48550/arXiv.2205.08592]
30. Xie P, Kim JK, Zhou Y, Ho Q, Kumar A, Yu Y, et al. Distributed machine learning via sufficient factor broadcasting.

ArXiv. Preprint posted online on September 7, 2015. 2015. [doi: 10.48550/arXiv.1409.5705]
31. Düntsch I, Gediga G. Confusion matrices and rough set data analysis. J Phys Conf Ser. 2019;1229(1):012055. [doi:

10.1088/1742-6596/1229/1/012055]
32. Naqvi SNZ, Yfantidou S. Time series databases and InfluxDB. Universite Libre de Bruxelles. 2017. URL: https://cs.

ulb.ac.be/public/_media/teaching/influxdb_2017.pdf [accessed 2024-09-06]
33. Porciuncula F, Roto AV, Kumar D, Davis I, Roy S, Walsh CJ, et al. Wearable movement sensors for rehabilitation: a

focused review of technological and clinical advances. PM R. 2018;10(9 Suppl 2):S220-S232. [FREE Full text] [doi:
10.1016/j.pmrj.2018.06.013] [Medline: 30269807]

34. Gopal A, Hsu WY, Allen DD, Bove R. Remote assessments of hand function in neurological disorders: systematic review.
JMIR Rehabil Assist Technol. 2022;9(1):e33157. [FREE Full text] [doi: 10.2196/33157] [Medline: 35262502]

35. Maceira-Elvira P, Popa T, Schmid A, Hummel FC. Wearable technology in stroke rehabilitation: towards improved diagnosis
and treatment of upper-limb motor impairment. J Neuroeng Rehabil. 2019;16(1):142. [FREE Full text] [doi:
10.1186/s12984-019-0612-y] [Medline: 31744553]

36. Sola J, Sevilla J. Importance of input data normalization for the application of neural networks to complex industrial
problems. IEEE Trans Nucl Sci. 1997;44(3):1464-1468. [FREE Full text]

37. Goldstein ML, Morris SA, Yen GG. Problems with fitting to the power-law distribution. Eur Phys J B. 2004;41(2):255-258.
[doi: 10.1140/epjb/e2004-00316-5]

38. Bro R, Smilde AK. Principal component analysis. Anal Methods. 2014;6(9):2812-2831. [doi: 10.1039/c3ay41907j]
39. Shin YJ, Park CH. Analysis of correlation based dimension reduction methods. Int J Appl Math Comput Sci.

2011;21(3):549-558. [FREE Full text] [doi: 10.2478/v10006-011-0043-9]
40. Doussoulin A, Bacco JL, Rivas C, Saiz JL. Association between postural patterns of spastic upper extremity and functional

independence after TBI and stroke. NeuroRehabilitation. 2020;46(4):551-559. [doi: 10.3233/NRE-203042] [Medline:
32508335]

41. Wold S, Esbensen K, Geladi P. Principal component analysis. Chemom Intell Lab Syst. 1987;2(1-3):37-52. [doi:
10.1016/0169-7439(87)80084-9]

42. Schapire RE. The strength of weak learnability. Mach Learn. 1990;5(2):197-227. [doi: 10.1007/bf00116037]
43. Chengsheng T, Huacheng L, Bing X. AdaBoost typical Algorithm and its application research. MATEC Web Conf.

2017;139(2):00222. [doi: 10.1051/matecconf/201713900222]
44. Shamshirband S, Fathi M, Dehzangi A, Chronopoulos AT, Alinejad-Rokny H. A review on deep learning approaches in

healthcare systems: taxonomies, challenges, and open issues. J Biomed Inform. 2021;113:103627. [FREE Full text] [doi:
10.1016/j.jbi.2020.103627] [Medline: 33259944]

45. Ganaie M, Hu M, Malik A, Tanveer M, Suganthan P. Ensemble deep learning: a review. Eng Appl Artif Intell.
2022;115:105151. [doi: 10.1016/j.engappai.2022.105151]

46. Arya M, Sastry G, Motwani A, Kumar S, Zaguia A. A novel extra tree ensemble optimized DL framework (ETEODL) for
early detection of diabetes. Front Public Health. 2022;9:797877. [FREE Full text] [doi: 10.3389/fpubh.2021.797877]
[Medline: 35242738]

47. Shao J. Linear model selection by cross-validation. J Am Stat Assoc. 1993;88(422):486-494. [doi:
10.1080/01621459.1993.10476299]

48. Zariffa J, Myers M, Coahran M, Wang RH. Smallest real differences for robotic measures of upper extremity function after
stroke: implications for tracking recovery. J Rehabil Assist Technol Eng. 2018;5:2055668318788036. [FREE Full text]
[doi: 10.1177/2055668318788036] [Medline: 31191947]

49. Mostafavi SM, Glasgow JI, Dukelow SP, Scott SH, Mousavi P. Prediction of stroke-related diagnostic and prognostic
measures using robot-based evaluation. 2013. Presented at: 2013 IEEE 13th International Conference on Rehabilitation
Robotics (ICORR); June 24-26, 2013; Seattle, WA. URL: http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/
IEEE_ICORR_2013/contents/papers/249.pdf

Abbreviations
AI: artificial intelligence
DNN: deep feed-forward neural network
LGB: light gradient boosting

JMIR Biomed Eng 2024 | vol. 9 | e56980 | p. 14https://biomedeng.jmir.org/2024/1/e56980
(page number not for citation purposes)

Jeter et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

https://papers.nips.cc/paper_files/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html
https://papers.nips.cc/paper_files/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html
http://dx.doi.org/10.1007/s10994-006-6226-1
http://dx.doi.org/10.48550/arXiv.2205.08592
http://dx.doi.org/10.48550/arXiv.1409.5705
http://dx.doi.org/10.1088/1742-6596/1229/1/012055
https://cs.ulb.ac.be/public/_media/teaching/influxdb_2017.pdf
https://cs.ulb.ac.be/public/_media/teaching/influxdb_2017.pdf
https://europepmc.org/abstract/MED/30269807
http://dx.doi.org/10.1016/j.pmrj.2018.06.013
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30269807&dopt=Abstract
https://rehab.jmir.org/2022/1/e33157/
http://dx.doi.org/10.2196/33157
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35262502&dopt=Abstract
https://jneuroengrehab.biomedcentral.com/articles/10.1186/s12984-019-0612-y
http://dx.doi.org/10.1186/s12984-019-0612-y
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31744553&dopt=Abstract
https://ieeexplore.ieee.org/document/589532
http://dx.doi.org/10.1140/epjb/e2004-00316-5
http://dx.doi.org/10.1039/c3ay41907j
https://intapi.sciendo.com/pdf/10.2478/v10006-011-0043-9
http://dx.doi.org/10.2478/v10006-011-0043-9
http://dx.doi.org/10.3233/NRE-203042
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32508335&dopt=Abstract
http://dx.doi.org/10.1016/0169-7439(87)80084-9
http://dx.doi.org/10.1007/bf00116037
http://dx.doi.org/10.1051/matecconf/201713900222
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(20)30255-0
http://dx.doi.org/10.1016/j.jbi.2020.103627
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33259944&dopt=Abstract
http://dx.doi.org/10.1016/j.engappai.2022.105151
https://europepmc.org/abstract/MED/35242738
http://dx.doi.org/10.3389/fpubh.2021.797877
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35242738&dopt=Abstract
http://dx.doi.org/10.1080/01621459.1993.10476299
https://journals.sagepub.com/doi/abs/10.1177/2055668318788036?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.1177/2055668318788036
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31191947&dopt=Abstract
http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_ICORR_2013/contents/papers/249.pdf
http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_ICORR_2013/contents/papers/249.pdf
http://www.w3.org/Style/XSL
http://www.renderx.com/


LR: logistic regression
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