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Abstract

Background: Wearable sensors are rapidly evolving, particularly in health care, due to their ability to facilitate continuous or
on-demand physiological monitoring.

Objective: This study aimed to design and validate a wearable sensor prototype incorporating photoplethysmography (PPG)
and long-range wide area network technology for heart rate (HR) measurement during a functional test.

Methods: We conducted a transversal exploratory study involving 20 healthy participants aged between 20 and 30 years without
contraindications for physical exercise. Initially, our laboratory developed a pulse wearable sensor prototype for HR monitoring.
Following this, the participants were instructed to perform the Incremental Shuttle Walk Test while wearing the Polar H10 HR
chest strap sensor (the reference for HR measurement) and the wearable sensor. This test allowed for real-time comparison of
HR responses between the 2 devices. Agreement between these measurements was determined using the intraclass correlation
coefficient (ICC3.1) and Lin concordance correlation coefficient. The mean absolute percentage error was calculated to evaluate
reliability or validity. Cohen d was used to calculate the agreement’s effect size.

Results: The mean differences between the Polar H10 and the wearable sensor during the test were –2.6 (95% CI –3.5 to –1.8)
for rest HR, –4.1 (95% CI –5.3 to –3) for maximum HR, –2.4 (95% CI –3.5 to –1.4) for mean test HR, and –2.5 (95% CI –3.6 to
–1.5) for mean recovery HR. The mean absolute percentage errors were –3% for rest HR, –2.2% for maximum HR, –1.8% for
mean test HR, and –1.6% for recovery HR. Excellent agreement was observed between the Polar H10 and the wearable sensor
for rest HR (ICC3.1=0.96), mean test HR (ICC3.1=0.92), and mean recovery HR (ICC3.1=0.96). The agreement for maximum HR
(ICC3.1=0.78) was considered good. By the Lin concordance correlation coefficient, the agreement was found to be substantial
for rest HR (rc=0.96) and recovery HR (rc=0.96), moderate for mean test HR (rc=0.92), and poor for maximum HR (rc=0.78).
The power of agreement between the Polar H10 and the wearable sensor prototype was large for baseline HR (Cohen d=0.97),
maximum HR (Cohen d=1.18), and mean recovery HR (Cohen d=0.8) and medium for mean test HR (Cohen d= 0.76).

Conclusions: The pulse-wearable sensor prototype tested in this study proves to be a valid tool for monitoring HR at rest, during
functional tests, and during recovery compared with the Polar H10 reference device used in the laboratory setting.
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Introduction

Recent decades have seen remarkable advancements in wearable
sensor technology, a vital link between human physiological
systems and wireless communication platforms [1]. This
integration has led to significant innovations in biosensors and
wearable sensors, particularly in the health field, enabling
continuous and intermittent monitoring of physiological
parameters [2].

These advancements offer a wide range of capabilities, including
the detection of movement, assessment of heart rate (HR)
variability, monitoring of sleep cycles, measurement of stress
markers, evaluation of gait and balance, and detection of falls,
as well as assessment of cutaneous temperature and respiratory
parameters [3-9]. Among these metrics, HR is a critical
parameter, serving as a key determinant for individualized
aerobic exercise regimens across various intensity levels [10,11].
Wearable sensors, which can noninvasively capture and provide
biofeedback, hold promise for optimizing exercise routines
based on HR metrics [12].

The current market is saturated with numerous brands of HR
monitoring devices, each claiming precision in their
measurements. Popular brands include Apple Watch, Fitbit
(Google), Polar (Polar Electro Oy), Xiaomi (Mi), and Garmin
(Garmin Ltd) [13-15]. In this context, photoplethysmography
(PPG) is the most used technology for measuring and monitoring
HR [16]. Despite their widespread availability, many of these
devices come with a high price tag, limiting their accessibility
to a significant portion of the population. One device that has
received validation for its accuracy in HR assessment is the
Polar H10 chest strap, particularly when compared with the
electrocardiogram, a gold-standard apparatus for HR assessment.
The Polar H10 consistently demonstrates reliability during rest
and various physical activity levels [17,18]. However, the cost
varies from US $99.95 to US $600, representing a barrier to
widespread adoption [19-21].

Existing wearable sensors on the market are often limited to
connecting with their brand-specific mobile apps, which
typically display HR data but lack gamification features.
Gamification refers to integrating game-like elements, such as
rewards, challenges, leaderboards, and feedback systems, into
nongame contexts like health and fitness. These techniques have
demonstrated an ability to increase user motivation, engagement,
and adherence to physical activity routines by making the
process more interactive and rewarding. Notably, the effects of
gamification are not solely short-lived or due to novelty;
research has shown that gamification can maintain long-term
behavioral change by reinforcing positive habits and fostering
user autonomy and competence [22,23]. Despite these benefits,
a notable gap exists in integrating wearable sensors and
gamification. According to a recent systematic review,
combining wearable devices with gamified apps presents a

promising strategy to enhance the effectiveness of interventions
aimed at increasing physical activity. However, the current body
of research lacks high-quality studies examining how this
integration can specifically promote maintained physical activity
levels [24].

In light of these considerations, this study aims to design and
validate a wearable sensor prototype equipped with PPG and
long-range wide area network (LoRaWAN) technology for
measuring HR during functional evaluations. The ultimate goal
is to incorporate this technology into a gamified app, which will
provide exercise prescriptions and motivate adherence through
interactive and engaging features.

Methods

Study Design
This transversal exploratory study was conducted from August
to December 2022 at the Universidade Federal de Ciências da
Saúde de Porto Alegre to evaluate the feasibility and initial
outcomes of the wearable sensor prototype. The transversal
design was chosen to provide a snapshot of the prototype’s
performance within a specific time frame. The participants were
recruited according to predefined inclusion criteria, which
typically included healthy individuals aged between 20 and 30
years without physical exercise contraindications. Exclusion
criteria, if any, were also clearly delineated to ensure the safety
and integrity of the study participants (Multimedia Appendix
1).

Participants
The study included healthy adults aged between 20 and 30 years
without medical contraindications for physical exercise.
Exclusion criteria comprised individuals with visual
impairments, those with chronic conditions such as
musculoskeletal or neurological diseases that could impede
participation in the exercise protocol, and those who could not
read or write. Since the study is an exploratory evaluation of a
wearable sensor prototype, participants were recruited through
convenience sampling using social media platforms, specifically
WhatsApp (Meta). Invitations were distributed through various
social groups and individual contacts on the platform, targeting
individuals who met the predefined inclusion criteria. Before
accepting the invitation, potential participants were informed
about the study’s objectives, procedures, and eligibility
requirements. Only those who responded positively and met
the inclusion criteria were enrolled in the study, totaling 20
participants. This sample size was chosen to provide sufficient
data to assess the feasibility and initial outcomes of the prototype
within the constraints of the study’s scope and resources.

Developed Wearable Sensor Prototype
The prototype operates based on HR measurement using PPG.
The peak-to-peak interval of the PPG signal is used to detect
the HR. However, motion artifacts can contaminate the PPG
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signal during physical activity, interfering with HR estimation.
These artifacts primarily result from ambient movement. Some
filters were applied to address this issue.

The prototype uses PPG technology and incorporates a
traditional PPG HR extraction algorithm based on the discrete
Fourier transform [25]. PPG is a method that measures changes
in light absorption corresponding to arterial blood volume
fluctuations during systole using optical measurements [26,27].
The peak-to-peak interval of the PPG signal is used to detect
the HR. Similar to the technology used in pulse oximeters, the
sensor relies on optical techniques to estimate HR [26,28]. It
consists of a photodetector and a light source that illuminates
the skin to detect variations in light caused by changes in skin
blood flow [28]. However, motion artifacts can harm the PPG
signal during physical activity, interfering with HR
measurement. These artifacts primarily result from ambient

movement. Some filters were applied to address this issue. The
collected data were stored in the cloud. Following prototype
development, the LoRaWAN network was selected for
transmitting sensor data over an exercise area of up to 10 km.
After preprocessing, the sensor data are transmitted through
LoRaWAN to a central concentrator, where they are encrypted
and subsequently sent to a secure cloud-based database. Each
user’s data history is stored in this cloud database, allowing for
sensor validation, statistical analysis, and future integration with
gamification interfaces. Data were continuously collected at a
sample rate of 500 Hz and securely stored in the cloud, capturing
detailed information with each heartbeat. Figure 1 illustrates
the schematic diagram of the wearable sensor prototype,
including its circuit, and provides a photo of the physical
prototype. The prototype weighs approximately 150 grams and
measures 5 × 7 centimeters.

Figure 1. Wearable sensor prototype schematic. LoRaWAN: long-range wide area network; PPG: photoplethysmography; USB: universal serial bus.

Data Collection
Following the development of the wearable sensor prototype
for HR monitoring, a validation test was conducted using the
Incremental Shuttle Walk Test (ISWT), a well-established and
safe walking test for assessing functional capacity [28,29]. The
participants underwent 2 ISWTs, with the second test
administered 7 to 14 days after the initial examination. Figure
2 presents the flowchart of inclusion and systematic procedures.

The ISWT involves graded bidirectional movement along a
10-meter corridor in response to audio cues. The standard test

consists of 12 one-minute stages, starting at 0.5 m/s and
increasing by 0.17 m/s each minute [29,30]. This study modified
the protocol to include 3 additional stages, potentially allowing
healthy participants to reach maximum exertion [31]. The test
concludes when participants signal their inability to continue
or fail to maintain the pace [30]. During the ISWT, participants
wore the wearable sensor prototype on their nondominant wrist
and the Polar H10 chest strap (Polar Electro Oy), the HR
reference [17,18]. HR data were collected at three points: (1)
at three minutes pretest, (2) during the test, and (3) at three
minutes posttest. The average HR collected during each period
was used in the analyses.
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Figure 2. Flowchart of inclusion and methodical procedure. HR: heart rate.

Statistical Analysis
The quantitative outcomes were depicted as means and SD. The
normality of the data was assessed using the Shapiro-Wilk test.

The 2-tailed t test was used to compare HR measurements from
the Polar H10 and the wearable sensor prototype. Agreement
between these measurements was determined using the intraclass
correlation coefficient (ICC3,1), with interpretations categorized
as (1) <0.5=poor; (2) 0.5-0.75=moderate; (3) 0.75-0.9=good;
and (4) >0.9=excellent [32]. In addition, the Lin concordance
correlation coefficient was used to assess agreement between
methods, with interpretations of (1) <0.9=poor; (2)
0.9-0.95=moderate; (3) 0.95-0.99=substantial; (4) >0.99=almost
perfect [33].

The mean absolute percentage error (MAPE) was calculated to
evaluate reliability or validity, with MAPE values ≤5%
indicating high reliability or validity [34]. To calculate the effect
size of agreement, Cohen d was used, with interpretations of
(1) ≥1=very large; (2) 0.8=large; (3) 0.5=medium; (4) 0.2=small
[35]. Bland-Altman plots were used to display agreement upper
and lower limits and bias (mean difference), following the
approach described by Bland and Altman [36]. A significance
level of .05 was set for all tests. All analyses were conducted
using IBM SPSS Statistics for Windows (version 27.0; IBM
Corp.).

Ethical Considerations
The study conformed to the resolution 466/2012 of the Brazilian
National Health Council. It was approved by the local ethical
committee for Research on Human Beings at the Universidade
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Federal de Ciências da Saúde de Porto Alegre (approval
54492221.80000.5345). Before participation, all individuals
provided informed consent by signing the Informed Consent
Form. No financial incentives were given to participants in the
research.

Results

A total of 20 participants were recruited, consisting of 12 men
and 8 women, with a mean age of 23.3 (SD 2.1) years, height
of 169 (SD 8.4) cm, weight of 71 (SD 31) kg, and BMI of 24.5
(SD 4.5) kg/m². The distance performed in the ISWT was 1190.2
(SD 250.6) m.

The Shapiro-Wilk test was used to test the normality of Polar
H10 baseline HR (P=.02), Polar H10 maximum HR (P=.08),
Polar H10 mean test HR (P=.88), Polar H10 recovery HR
(P=.04), prototype baseline HR (P=.18), prototype maximum
HR (P=.26), prototype mean test HR (P=.08), prototype
recovery HR (P=.05).

Comparison of HR measurements between the Polar H10 and
the wearable sensor prototype revealed the following mean
differences (Table 1): (1) rest HR –2.6 (95% CI –3.5 to –1.8);
(2) maximum HR –4.1 (95% CI –5.3 to –3); (3) mean test HR
–2.4 (95% CI –3.5 to –1.4); and (4) mean recovery HR –2.5
(95% CI –3.6 to –1.5).

Table 1. Mean, SD, and mean absolute percentage error obtained for heart rate (HR) of the chest strap of the Polar H10 sensor and wearable sensor
prototype during the rest period, maximum HR, mean test HR, and mean recovery HR (after 3 minutes).

Difference (Polar H1-prototype)Prototype, mean (SD)Polar H10, mean (SD)

95% CIMAPE%aBias

–3.5 to –1.8–3–2.689.4 (12.5)86.7 (12.6)Rest HR (bpmb)

–5.3 to –3–2.2–4.1194.9 (8.4)190.7 (7)Maximum test HR (bpm)

–3.5 to –1.4–1.8–2.4139.9 (9.7)137.5 (9.7)Mean test HR (bpm)

–3.6 to –1.5–1.6–2.5156.3 (14.2)153.8 (13.6)Recovery HR (bpm)

aMAPE: mean absolute percentage error.
bbpm: beats per minute.

Analyses demonstrated excellent agreement between the Polar
H10 chest strap and the wearable sensor prototype (Table 2) for
rest HR (ICC3.1=0.96), mean test HR (ICC3.1=0.92), and mean
recovery HR (ICC3.1=0.96) and good agreement for maximum
HR (ICC3.1=0.78). By the Lin concordance correlation

coefficient, the agreement was found to be substantial for rest
HR (rc=0.96) and recovery HR (rc=0.96), moderate for mean
test HR (rc=0.92), and poor for maximum HR (rc=0.78). The
power of agreement between Polar H10 and the wearable sensor
prototype was large for baseline HR, maximum HR, and mean
recovery HR and medium for mean test HR (Table 2).

Table 2. Agreement between the heart rate measurement of the wearable sensor prototype and Polar H10 evaluated by the intraclass correlation
coefficient (ICC3.1), Lin concordance correlation coefficient (rc), and effect size of agreement (Cohen d).

Cohen d95% CIr c95% CIICC3.1

0.970.92-0.970.950.71-0.980.96Rest HRa

1.180.66-0.860.780.09-0.930.78Maximum test HR

0.760.85-0.950.920.7-0.970.92Mean test HR

0.80.92-0.970.960.82-0.980.96Recovery HR

aHR: heart rate.

Bland-Altman [36] plots (Figure 3) depict the agreement for all
variables. Most HR measurements at rest, during the test, and
recovery fell within the upper and lower limits of the
Bland-Altman [36] graphs, indicating measurement agreement.

Although some tests did not fall within these limits, the error
is tolerable, as the values are not clinically significant for
exercise prescription based on HR zones.
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Figure 3. Bland-Altman analysis comparing the Polar H10 sensor chest strap and the wearable sensor prototype on (A) heart rate (HR) during the rest
period, (B) maximum HR, (C) mean test HR (C), and (D) recovery HR. The center solid line in each plot represents the mean bias (difference) between
each paired value as absolute HR. The top and bottom dashed lines are 1.96 SDs from the mean difference.

Discussion

Principal Findings
Our analysis revealed a significant agreement between the HR
measurements taken by our developed wearable sensor prototype
and the Polar H10 strap. The wearable sensor is a valid
instrument for HR monitoring during rest, exercise, and recovery
periods. However, the prototype does not accurately measure
maximum HR.

Comparison to Previous Work
Low-cost sensors (priced below US $100) are pivotal in clinical
practice and rehabilitation. They aid in physiological
measurements for diagnosis and evidence-based practices and
are vital for gamified apps promoting physical activity and
rehabilitation [37]. Our findings advance the incorporation of
low-cost sensor feedback into gamified apps.

We opted for LoRaWAN technology due to its
cost-effectiveness and expansive range. Furthermore, the ease
of its integration with smartphones made it a compelling choice
[38].

Monitoring HR is pivotal for accurate exercise intensity
determination and prescription. It is a proven method for

athletes, healthy individuals, and patients with cardiovascular
conditions [10,11,39-42]. Our results corroborate that our
wearable sensor is reliable, with excellent ICCs to rest HR,
mean test HR, and recovery. According to the Lin concordance
correlation coefficient, the agreement ranges from substantial
to moderate in the same variables [33].

Our error percentages are in alignment with the established
literature. For instance, Fuller et al [13] showcased that 56.5%
of wearable HR measurements had an error within 3%. Our
prototype displayed consistent accuracy with MAPE values
lower than 3%, aligning with previous research stipulating such
thresholds for reliability and validity [13].

We observed the most significant MAPE during resting periods.
However, as the literature suggests, pulse sensors often exhibit
reduced MAPE during escalated speeds [15,42]. This behavior
matches our findings during the ISWT.

The agreement was within the Bland-Altman plots’ upper and
lower limits [36], but some tests were outside this range. This
outside may be due to the difference in the technology used by
the Polar H10 and the prototype that used the PPG. In this case,
PPG technology has a limitation of susceptibility to motion
artifacts caused by hand movement and differences in
photosensitivity between individuals, which may limit data
precision [43,44]. In the Bland-Altman plots [36], the agreement
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must be evaluated from a clinical point of view. In this context,
the error HR is tolerable and does not limit the use of the
wearable sensor prototype in exercise.

Strengths and Limitations
Our study has some potential limitations: (1) it was conducted
in a controlled laboratory environment, which may not fully
capture real-world conditions; (2) participants were healthy and
belonged to a younger age group, limiting the generalizability
of our findings to broader populations; (3) temperature
conditions were controlled between 20 and 24°C, and we did
not explore how the device performs under varying
environmental conditions, which could impact its reliability;
and (4) we did not compare the wearable sensor with others
across different temperatures. These factors limit the
applicability of our findings to diverse settings, age groups, and
health statuses. Future studies will address these limitations by
testing the wearable sensor in uncontrolled environments and
across a broader range of populations and conditions, including
older adults and individuals with varying health statuses. In
addition, further investigation is needed to assess how different
environmental factors, such as temperature, affect sensor
performance.

One of the key strengths of our study is the creation of a
low-cost wearable sensor that can be integrated into a gamified
app. This approach not only makes the technology accessible
but also encourages user engagement through interactive
features. The wearable’s accurate HR measurement ensures safe
exercise intensity recommendations, making it a valuable tool
for personalized fitness monitoring.

Future Directions
Our device is precisely engineered to seamlessly integrate with
gamified apps, enhancing user experience through real-time HR
biofeedback. The traditional devices are often limited to
brand-specific apps, our prototype leverages an open database
architecture that allows for flexibility and interoperability with
various platforms. It transmits HR signals through an antenna
and stores them in a cloud-based database, enabling real-time
access and processing of HR data. It is essential to effectively
implement gamification strategies. Key features that make our
device particularly suitable for this integration include the
following. First, real-time HR biofeedback: the ability to
transmit HR data in real time is crucial for interactive gamified
experiences, allowing users to receive instant feedback on their
performance and adjust their activity accordingly. Second, open
database architecture: the flexibility of our open architecture
enables compatibility with various fitness and gamification
platforms, supporting the customization of exercise routines,
challenges, and user profiles based on real-time data. This
flexibility allows third-party developers to easily integrate the
device into their systems. Third, cloud-based scalability: the
cloud storage system provides secure and scalable data
management and supports advanced analytics. This enables
integration with machine learning algorithms that dynamically

adjust game elements (eg, difficulty levels, rewards) based on
user performance and trends. Fourth, personalization and
adaptability: our device offers personalized feedback by
analyzing the user’s HR data, making it highly adaptive to
individual needs. This enhances engagement by offering
customized rewards, progress tracking, and social
interaction—proven elements of effective gamification. These
features empower users by fostering a more interactive and
responsive fitness ecosystem. The combination of real-time data
processing, personalized feedback, and cloud-based analytics
uniquely equip the device to enhance motivation and adherence
to health goals through gamification.

This study is a pilot, and we plan to conduct further research to
refine both the wearable sensor and the algorithm used for HR
measurement, specifically using the discrete Fourier transform
to improve accuracy, particularly when measuring maximum
HR. The prototype does not consistently measure maximum
HR with optimal precision. This may be due to 2 primary
factors: further refinement of the PPG algorithm and motion
artifacts during high-intensity exercise. To address these
limitations, future improvements will focus on enhancing the
PPG algorithm to filter out noise better and more accurately
track HR at higher intensities. In addition, we plan to implement
techniques to mitigate motion artifacts, such as using more
advanced filtering methods or improving the sensor’s attachment
to the body to reduce movement interference. These
enhancements are expected to improve the sensor’s overall
performance and accuracy in measuring maximum HR.

After refining the algorithm, we also plan to reduce the device’s
weight and size, addressing other ergonomic issues. We will
use 3D printing technology to help refine the design and reduce
the size. This iteration will enhance ergonomic comfort and
make the device more convenient and practical for users during
physical exercise.

The production cost of the wearable sensor prototype was
approximately US $38.50, excluding the antenna. At this stage,
our objective is not to conduct a cost-effectiveness study, as the
wearable sensor prototype is still under development. Therefore,
we cannot present a final price or provide a detailed cost
comparison with other commercially available devices. In future
research, we plan to perform a cost-effectiveness study and
compare our prototype’s costs and capabilities with similar
devices.

Conclusion
In conclusion, our wearable sensor prototype effectively
measures HR, drawing parallels with the Polar H10 sensor for
rest HR during testing and recovery in the laboratory
environment. Future work will involve integrating this wearable
sensor prototype into gamified apps based on the validation
performed in this work. This integration is expected to enhance
adherence to regular exercise and ensure accurate intensity
prescription, thereby maximizing the potential benefits for users.
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