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Abstract

Background: Numerous studies have explored image processing techniques aimed at enhancing ultrasound images to narrow
the performance gap between low-quality portable devices and high-end ultrasound equipment. These investigations often use
registered image pairs created by modifying the same image through methods like down sampling or adding noise, rather than
using separate images from different machines. Additionally, they rely on organ-specific features, limiting the models’
generalizability across various imaging conditions and devices. The challenge remains to develop a universal framework capable
of improving image quality across different devices and conditions, independent of registration or specific organ characteristics.

Objective: This study aims to develop a robust framework that enhances the quality of ultrasound images, particularly those
captured with compact, portable devices, which are often constrained by low quality due to hardware limitations. The framework
is designed to effectively process nonregistered ultrasound image pairs, a common challenge in medical imaging, across various
clinical settings and device types. By addressing these challenges, the research seeks to provide a more generalized and adaptable
solution that can be widely applied across diverse medical scenarios, improving the accessibility and quality of diagnostic imaging.

Methods: A retrospective analysis was conducted by using a cycle-consistent generative adversarial network (CycleGAN)
framework enhanced with perceptual loss to improve the quality of ultrasound images, focusing on nonregistered image pairs
from various organ systems. The perceptual loss was integrated to preserve anatomical integrity by comparing deep features
extracted from pretrained neural networks. The model’s performance was evaluated against corresponding high-resolution images,
ensuring that the enhanced outputs closely mimic those from high-end ultrasound devices. The model was trained and validated
using a publicly available, diverse dataset to ensure robustness and generalizability across different imaging scenarios.

Results: The advanced CycleGAN framework, enhanced with perceptual loss, significantly outperformed the previous
state-of-the-art, stable CycleGAN, in multiple evaluation metrics. Specifically, our method achieved a structural similarity index
of 0.2889 versus 0.2502 (P<.001), a peak signal-to-noise ratio of 15.8935 versus 14.9430 (P<.001), and a learned perceptual
image patch similarity score of 0.4490 versus 0.5005 (P<.001). These results demonstrate the model’s superior ability to enhance
image quality while preserving critical anatomical details, thereby improving diagnostic usefulness.

Conclusions: This study presents a significant advancement in ultrasound imaging by leveraging a CycleGAN model enhanced
with perceptual loss to bridge the quality gap between images from different devices. By processing nonregistered image pairs,
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the model not only enhances visual quality but also ensures the preservation of essential anatomical structures, crucial for accurate
diagnosis. This approach holds the potential to democratize high-quality ultrasound imaging, making it accessible through low-cost
portable devices, thereby improving health care outcomes, particularly in resource-limited settings. Future research will focus
on further validation and optimization for clinical use.

(JMIR Biomed Eng 2024;9:e58911) doi: 10.2196/58911
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Introduction

Ultrasound imaging is crucial in medical diagnostics due to its
noninvasive nature and high accuracy. It provides point-of-care
assessments that have been increasingly adopted by health care
professionals [1,2]. Historically, technology has been limited
to large, expensive devices typically found in specialized
medical settings. However, there has been a transformative shift
toward the development and adoption of compact, handheld
ultrasound devices [3,4]. These smaller devices promise to
democratize access to medical imaging by making it more
affordable and widely available. Yet, the miniaturization and
cost-effectiveness often come at the expense of image quality,
a trade-off primarily attributable to hardware constraints [5-7].

Machine learning algorithms have been explored to enhance
low-quality images without the need for hardware improvements
[8]. For instance, generative adversarial networks (GANs) [9]
have been used to create high-quality reconstructions of
ultrasound images and videos, providing a cost-efficient avenue
for the enhancement of portable ultrasound devices [10-12].
The cycle-consistent generative adversarial network
(CycleGAN) framework, which is particularly useful for
image-to-image translations without requiring paired data, has
become increasingly popular [13]. The technology has been
applied across a spectrum of tasks including, style transfer [14],
where the appearance of one image is transformed to match
another style, and object transfiguration [13,15,16], which
involves changing 1 object in an image into another while
retaining the overall structure. In medical imaging, CycleGANs
have been used in tasks such as pixel-wise translation in
echocardiography [17]. CycleGANs have also been applied in
cross-modality medical image translation such as converting
computed tomography to magnetic resonance imaging [18].
The architecture has even found use in histopathology to
standardize microscopy staining for more accurate diagnoses
[19].

We hypothesize that the integration of computational algorithms,
particularly CycleGAN, can mitigate the disparities in images
acquired from different medical imaging devices. Traditional
training approaches for these models artificially introduce
corruption into medical images to create pixel-wise pairs
[20-22]. However, these methods typically fail to encapsulate
the different characteristics of images acquired using different
devices. Acquiring paired images using different devices leads
to technical issues as images are captured at different time
instances with varying orientations, leading to structural changes
that cannot be completely resolved using image registration.

In this work, we benchmark several key models that are highly
relevant to our task of ultrasound image enhancement. Pix2Pix
[4] uses conditional adversarial networks for paired
image-to-image translation, making it effective for directly
comparing low- and high-quality images. CycleGAN [5] enables
unpaired image-to-image translation, which is crucial when
paired datasets are not available. Registration GAN (RegGAN)
[6] focuses on medical image translation by aligning structural
content using a registration network, and multilevel
structure-preserved GAN (MSPGAN) [7] introduces a multilevel
structure-preserved GAN for domain adaptation in intravascular
ultrasound analysis. However, the current state-of-the-art is the
stability-enhanced CycleGAN [1], which specifically addresses
domain transformation challenges in unpaired ultrasound
images, making it particularly relevant and effective for our
specific application.

Evaluation metrics play a critical role in assessing the
effectiveness of image enhancement models. Commonly used
metrics include structural similarity index (SSI), peak
signal-to-noise ratio (PSNR), and locally normalized
cross-correlation (LNCC) [5,10-12,23]. While these metrics are
widely accepted, they primarily capture low-frequency
information and may not adequately reflect true image quality,
particularly in preserving high-frequency details, which are
crucial for medical diagnostics. Models that perform well on
these traditional metrics may produce visually appealing images
but fail to retain essential high-frequency content, leading to a
loss of critical diagnostic information and perceptual quality
[24]. To address this limitation, we incorporate the learned
perceptual image patch similarity (LPIPS) [24] metric in our
evaluations. LPIPS is designed to capture perceptual differences
that align more closely with human visual perception, ensuring
that our method not only performs well quantitatively but also
produces qualitatively superior images, preserving both low-
and high-frequency details essential for accurate medical
analysis.

To overcome these challenges, our approach leverages
perceptual loss, which can eliminate the need for registration
and more accurately relate images from disparate domains.
Traditional loss functions used in CycleGAN can result in
hallucinated features in the enhanced images [25]. By
incorporating perceptual loss [24], more interpretable images
are generated that are more robust to registration artifacts [26].
This method can enhance the reliability and consistency of
images from handheld ultrasound devices to bridge the gap with
expensive high-end systems for greater equity in access to health
care.
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Methods

Study Design
In this study, we aim to address the challenge of enhancing
ultrasound image quality, particularly for images captured by
compact, portable devices that often suffer from lower quality
due to hardware limitations. To achieve this, we used a
CycleGAN framework enhanced with perceptual loss. This
approach focuses on processing nonregistered image pairs from
various organ systems, ensuring that the enhanced images retain
anatomical integrity and closely mimic high-resolution outputs.
Our method is designed to be robust, versatile, and applicable
across diverse clinical settings.

Model Overview
Our framework for generating high-quality images is a
modification of the CycleGAN architecture, designed to map
between 2 distinct imaging domains. In ultrasound image
enhancement, these domains correspond to low-quality (domain
L) and high-quality (domain H) images. The model uses 2
generators, GL and GH, and 2 discriminators, DL and DH (Figure
1). Note that the generators GL and GH share the same model
architecture. Similarly, the discriminators DL and DH share the

same model architecture. The generator GL is responsible for
converting an image from domain H, which represents
high-quality images, to domain L, characterized by low-quality
images. Conversely, the generator GH performs the opposite
transformation, taking an image from domain L and converting
it to align with domain H. This bidirectional transformation
process is essential for the task of image enhancement, as it
allows for the improvement of low-quality images by translating
them into their high-quality counterparts. The discriminators
aim to distinguish real images in their respective domains from
those transformed by the generators. A unique feature of this
approach is the cycle consistency loss [13], which plays a crucial
role in image quality enhancement. This loss ensures that when
an image is translated to the other domain and then reverted to
its original domain, it closely resembles the original image.
Specifically, for enhancing low-quality images to high-quality
images, the cycle consistency loss maintains the integrity of the
image content throughout the transformation process. This
prevents the introduction of artifacts and ensures that the
enhanced image retains the essential features of the original
low-quality image, resulting in a high-quality output that remains
true to the source. After training, the GH generator is used to
enhance images, maintaining essential structural attributes while
improving clarity and resolution.

Figure 1. An overview of the cycle generative adversarial network model training and loss computation framework. The solid black arrows indicate
the flow of data. The dashed red arrows indicate the flow of information for loss computation.

Model Description
GANs have seen transformative advancements, with CycleGAN
[13] representing a significant milestone in facilitating
unsupervised image-to-image translations. The GAN
architecture comprises 2 primary modules: the generator and
the discriminator.

The generator (Figure 2A) architecture is inspired by the
generator used by Isola et al [27]. The generator network is
structured as a UNet [28], divided into encoding and decoding
phases, incorporating detailed mechanisms for both
down-sampling and up-sampling the input data. The encoder
initiates with a 64-channel 2D convolutional layer designed to
capture broad contextual details. This phase uses multiple
down-sampling layers, each comprising a convolutional layer
with instance normalization and leaky rectified linear unit
(ReLU) activation functions. The instance normalization layers

stabilize the training process by normalizing the feature maps,
while leaky ReLU activations introduce nonlinearity and
mitigate the vanishing gradient problem. To enhance model
robustness, dropout layers are included in deeper layers of the
encoder. The down-sampling process reduces the spatial
dimensions while increasing the depth, thereby emphasizing
hierarchical feature extraction. In the decoding phase, the model
uses transposed convolutional layers for up-sampling, which
restores the spatial dimensions. Each up-sampling step involves
skipping connections from the corresponding down-sampling
layers, preserving detailed features from earlier stages. These
layers also incorporate instance normalization and ReLU
activations, where ReLU functions introduce nonlinearity,
promoting sparse activations and efficient learning. The final
layer uses a tanh activation function, scaling the output values
to [–1, 1], suitable for image generation tasks. This design
ensures effective image enhancement by maintaining
high-quality feature extraction and reconstruction.
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The discriminator (Figure 2B) distinguishes between real and
generated images. We use spectral normalization [29] to ensure
stability during training. Its architecture begins with a
convolutional layer that compresses spatial information and
expands depth followed by a leaky ReLU activation layer.
Subsequent layers maintain the use of spectral normalization
to ensure 1 – Lipschitz continuity. This constraint on the spectral
norm of each layer’s weights helps to balance the generator and

discriminator during training. The PatchGAN [27,30] style
discriminator output is a 30×30 grid with a depth of 1, which
provides a spatial map indicating the likelihood of each region
in the input image being real or generated. This final
classification output allows for a more detailed evaluation of
the image, helping to distinguish between authentic and synthetic
content across different spatial locations.

Figure 2. The model architectures. The (A) generator and (B) discriminator model architectures. The figure legend lists the different layers in the
models. ReLU: rectified linear unit.

Loss Function

Perceptual Loss
Conventional methodologies like mean squared error (MSE)
and SSI rely on pixel-wise alignment which makes them
unsuitable for nonregistered image pairs acquired using different
devices. The LPIPS metric addresses these constraints by
evaluating the perceptual similarity between images [24]. LPIPS
leverages deep features extracted from pretrained convolutional
networks, such as the visual geometry group network [31]. The
LPIPS metric comparing images X and Y is given by the
following equation.

where Fi and wi denotes the feature maps and optimized weights

from the ith layer of the pretrained network. Deep feature maps
are systematically extracted from every layer within the network,
ensuring a comprehensive reflection of the multi-scale
characteristics of human perceptual judgment. These features
are then unified through linear combination, optimizing the
weights to align with perceptual judgments assessed by human
evaluators. The LPIPS metric consistently outranks traditional
metrics, showcasing superior performance across an array of
perceptual judgment tasks [26]. This loss is calculated between

real images L and H, and those generated through the CycleGAN
framework’s generators as follows.

where H' represents GH(L) and L' represents GL(H).

Generator Loss
The generator’s loss function is a linear combination of several
distinct loss terms, each playing a pivotal role in optimizing
image translation between the 2 domains. First, adversarial loss
Ladv (DH,DL) induces the discriminators to perceive generated
images as genuine, whether they are translated from low to high
quality or vice versa.

Ladv (DH,DL) = MSE(1,DH) + MSE(1,DL)

Specifically, MSE calculates the discrepancy between the
discriminator’s predictions and an array of ones. The array of
ones represents the target output for real images, indicating that
the discriminator should classify these images as genuine. By
comparing the discriminator’s predictions to this ideal output,
the MSE helps measure how far the generated images are from
being perceived as real. These terms push the generator to
produce images that can convince the discriminator they belong
to the high-quality domain, thereby improving the realism and
quality of the generated images. Using an array of ones ensures
that the generator is continuously driven to reduce the difference
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between its output and real high-quality images, enhancing its
performance over time. The cycle loss Lcycle (GH,GL) prevents
the loss of critical image features by ensuring that an image
translated to the other domain and back yields the original
image.

where . and . The L1 loss LL1(GH,GL)
ensures that the generated images are closer to true high-quality
images in an L1 distance sense.

Finally, the aggregate generator loss, L(GH,GL,DH,DL), is
computed by combining all individual loss terms weighed by
their respective lambda constants.

By using this multifaceted loss function, the model ensures that
the generators achieve high-quality image translations while
preserving the intrinsic characteristics of the source domain.

Discriminator Loss
The discriminator loss function is designed to evaluate the
authenticity of images, incorporating the principle of label
smoothing to further enhance the model’s generalizability. The
discriminator is tasked with distinguishing between real images
from the dataset and synthetic images generated by the
corresponding generator.

For each domain, the discriminator computes scores for both
real and synthetic images. Conventionally, discriminators are
trained using hard labels, where real images are labeled as “1”
and synthetic images as “0.” However, hard labels can cause
vulnerability to adversarial perturbations—small, intentional
changes to the input that can deceive the model into making
incorrect predictions—and lead to overconfidence, where the
discriminator becomes excessively certain in its predictions.
Label smoothing improves the generalization and robustness
of neural networks by preventing overconfidence in predictions.
Szegedy et al [32] demonstrated its effectiveness in reducing
overfitting and enhancing performance in image classification.
Similarly, Salimans et al [33] applied 1-sided label smoothing
in the training of GANs, which helped stabilize training and
improve the quality of generated images. These studies support
the use of label smoothing as a strategy to mitigate the negative
effects of hard labels. In our framework, if the mean scores of
both real and synthetic images for the high-quality domain are
less than 0.9, the label 1.0 is used. Otherwise, a smoothing factor
of 0.9 is applied, meaning the real images are given a target
value slightly less than 1, to prevent overconfidence and promote
model robustness. The total discriminator loss, L(DH,DL), is

then computed by aggregating the individual MSE losses .

and . for high and low-quality domains, respectively.

Implementation Details
All models were trained for 300 epochs with a batch size of 4
images. We used the Adam optimizer for model optimization,

with a learning rate (3×10–4) set for both the generators and the
discriminators. A beta value of 0.9 for the first and 0.999 for
the second moments were used in each optimizer. A learning
rate scheduler reduced learning rates by half (γ=.5) every 100
epochs, to allow adaptability during training. Weights were
assigned to each loss term: λadv=1 for adversarial loss, λcycle=10
for cycle-consistency loss, λL1=2 for L1 loss, and λper=10 for
perceptual loss. The overall dataset was split with 70% for model
training, 10% for model validation, and 20% for the hold-out
test set. Gradient scaling was used to optimize the model’s
precision and speed. Code implementation will be made publicly
available.

Evaluation
The synthetic high-quality images generated by the model are
evaluated using 4 key metrics: SSI, LNCC, PSNR, and LPIPS.
Each of these metrics provides a unique perspective on the
fidelity and quality of the generated images compared to the
ground truth.

• SSI evaluates the structural fidelity between the generated

image H' and the actual high-quality image H. It considers
3 aspects: luminance, contrast, and structure. The SSI is
computed as follows.

where µH and µH' are the mean intensities, and are the

variances, and is the covariance between H' and H. The
constants C1 and C2 are used to stabilize the division.

• LNCC measures the local similarity in intensity patterns
between the generated and actual high-quality images. This
metric is particularly sensitive to local differences in
intensity, making it useful for detecting fine-grained
discrepancies. LNCC is calculated by dividing the
cross-correlation of local image patches by the product of
their local SDs.

where . and . are the local means of the patches.

• PSNR quantifies the error signal strength between the
generated and actual images, derived from the MSE. It is
defined as follows.
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where MAXI is the maximum possible pixel value of the image,

and MSE (H, H') is the mean squared error between H' and H.
A higher PSNR indicates that the generated image is closer to
the high-quality reference.

• LPIPS [24] is a perceptual metric that compares deep
features extracted from a neural network rather than directly
comparing pixel values. This approach better aligns with
human perception of image similarity. LPIPS is computed
by passing both the generated and actual images through a
pretrained deep network and measuring the distance
between their respective feature representations. Lower
LPIPS values indicate higher perceptual similarity.

Together, these metrics provide a comprehensive evaluation of
the generated images, which is particularly relevant for our
image enhancement task, where unregistered low-high quality
image pairs are compared. SSI and LNCC assess how well the
structural and intensity patterns are preserved during
enhancement, even when images are not perfectly aligned.
PSNR quantifies the reduction in error relative to the original
image, indicating overall fidelity. LPIPS, on the other hand,
evaluates perceptual quality, ensuring that the enhancement
appears natural and realistic to human observers, even in
challenging scenarios with misaligned inputs.

Ethical Considerations
This study did not involve the collection of new data from
human participants. The dataset used is publicly available and
provided as part of the 26th International Conference on Medical
Image Computing and Computer Assisted Intervention
(MICCAI 2023) USEnhance Challenge [34,35]. Therefore, no
ethics review or approval was required for this study. As the
study used publicly available data provided by the organizers
of the challenge, informed consent specific to this research was

not required. It is assumed that the original informed consent
for data collection includes provisions for secondary analysis
without requiring additional consent. All images used in this
study are fully deidentified with no personal health information
included. The dataset provided by the challenge organizers
ensured anonymity, thus protecting the privacy and
confidentiality of any potential human participants. There was
no direct interaction with human participants in this study;
hence, no compensation was provided. No images in this study
or its supplementary materials allow for the identification of
individual participants. All data are deidentified and anonymous,
ensuring that no individual can be recognized from the images
used.

Results

Overview
This study uses a dataset consisting of 2100 ultrasound images,
including 1050 pairs of low- and high-quality images (Table 1
[34]). These images were collected from 131 patients with
suspected thyroid tumors, carotid plaque, or breast cancer, along
with healthy participants. During scans, volunteers were
instructed to hold their breath for approximately 10 seconds to
minimize deformation, and landmark points were noted for
nonrigid registration to ensure the creation of accurate data
pairs. This well-curated dataset provides a robust foundation
for this study. This dataset was provided by the organizers of
the MICCAI 2023 USEnhance Challenge [34]. Our baseline
compares low-quality images directly to high-quality images
without any enhancement or learning-based processing, serving
as the starting point for evaluating the effectiveness of various
models, including our approach. The models benchmarked in
this study include Pix2Pix [27], MSPGAN [11], CycleGAN
[13], RegGAN [23], and stable CycleGAN [12]. Among these,
MSPGAN, RegGAN, and stable CycleGAN are the most recent
advancements and are considered state-of-the-art for this task.
To rigorously assess the improvements offered by our method,
we computed the statistical significance of our results using the
1-sided Wilcoxon signed rank test.

Table 1. Dataset summary across different ultrasound devices and organs.

Ultrasound image pairs, n (%)Patients (n=131), n (%)High-end deviceLow-end deviceOrgan

Total
(n=1050)

Testing
(n=210)

Training
(n=840)

291 (27.7)58 (27.6)233 (27.7)33 (25.2)Toshiba Aplio 500mSonics MU1Thyroid

286 (27.2)57 (27.1)229 (27.3)54 (41.2)Toshiba Aplio 500SSUNCarotid

271 (25.8)54 (25.7)217 (25.8)21 (16)General Electric LOGIQ E9SSUNAbdomen

202 (19.2)41 (19.5)161 (19.2)23 (17.6)Aixplorer ultrasound system
(SuperSonic Imaging SA)

mSonics MU1Breast

Quantitative Results
In the evaluation of the SSI, our proposed method achieved a
score of 0.2889 (Table 2), surpassing the reference low baseline
(0.2363; P<.001), as well as CycleGAN (0.2622; P<.001) and
stable CycleGAN (0.2502; P<.001). This places our method on
par with the top-performing models like Pix2Pix (0.2862;

PP>.99), MSPGAN (0.2796; P<.001), and RegGAN (0.2809;
P<.001). Among the methods evaluated, stable CycleGAN
exhibited the lowest SSI score, indicating the least effective
structural preservation. Pix2Pix, on the other hand, performed
slightly better than MSPGAN and RegGAN, highlighting its
strength in maintaining structural details. For LNCC, our method
recorded a score of 0.8454, which is significantly higher than
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the reference low baseline (0.7836; P<.001) and comparable to
the scores achieved by MSPGAN (0.8535; P>.99) and Pix2Pix
(0.8491; P>.99). While MSPGAN led in LNCC, the differences
between the top performing methods are minimal, underscoring
the similar performance levels across these models. Notably,
CycleGAN and stable CycleGAN scored 0.8271 (P<.001) and
0.8145 (P<.001), respectively, showing lower but still
competitive performance.

In terms of PSNR, the proposed method achieved a score of
15.8935, which is a marked improvement over the reference
low baseline (14.2978; P<.001). Although Pix2Pix (16.3914;
P>.99) and MSPGAN (16.2602; P>.99) reported higher PSNR
values, indicating lower overall error between the generated
and high-quality images, the differences between these models
and our approach are modest. RegGAN also performed well

with a score of (16.2721; P>.99), while CycleGAN (14.9126;
P<.001) and stable CycleGAN (14.9430; P<.001) had lower
PSNR values, indicating higher error rates. Finally, for the
LPIPS metric, our method demonstrated the best performance
with a score of 0.4490, significantly lower than Pix2Pix (0.4664;
P<.001), MSPGAN (0.4709; P<.001), and RegGAN (0.4855;
P<.001). This indicates that our method produced images that
were perceptually closer to high-quality outputs. CycleGAN
and stable CycleGAN reported LPIPS scores of 0.4828 (P<.001)
and 0.5005 (P<.001), respectively, with stable CycleGAN
showing the least favorable performance among all models in
terms of perceptual quality. Across these metrics, while certain
models like Pix2Pix and MSPGAN excel in specific metrics
such as LNCC and PSNR, our approach consistently delivers
competitive performance, particularly in SSI and LPIPS, making
it a robust framework for ultrasound image enhancement.

Table 2. Performance evaluation of models on the test set.

LPIPSe↓fPSNRd↑SSIc↑LNCCa↑bModel configurations

0.5080g14.2978g0.2363g0.7836gReference low

0.4664g16.39140.28620.8491Pix2Pix [27]

0.4709g16.26020.2796g0.8535MSPGANh [11]

0.4828g14.9126g0.2622g0.8271gCycleGANi [13]

0.4855g16.27210.2809g0.8475RegGANj [23]

0.5005g14.9430g0.2502g0.8145gStable CycleGAN [12]

0.449015.89350.28890.8454Proposed method

aLNCC: locally normalized cross-correlation.
b↑: higher scores are better.
cSSI: structural similarity index.
dPSNR: peak signal-to-noise ratio.
eLPIPS: learned perceptual image patch similarity
f↓: lower scores are better.
gStatistically significant improvement.
hMSPGAN: multilevel structure-preserved generative adversarial network.
iCycleGAN: cycle-consistent generative adversarial network.
jRegGAN: registration generative adversarial network.

Qualitative Results
Qualitative analysis further illustrates the differences in the
generated images across the models. As shown in Figures 3 and
4, methods such as Pix2Pix, MSPGAN, and RegGAN, despite
their higher scores in SSI, LNCC, and PSNR, often produce
images that lack anatomical detail and introduce distortions that
may affect clinical interpretation. In contrast, methods like
CycleGAN, Stable CycleGAN, and our proposed approach

maintain the integrity of anatomical structures, ensuring that
the generated images closely resemble the original high-quality
images. Our approach is particularly effective in preventing the
loss of critical diagnostic information, which is essential for
accurate medical assessments. While quantitative metrics
provide a useful evaluation framework, the qualitative results
underscore the importance of preserving anatomical integrity,
an area where our method excels.
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Figure 3. A comparative visualization of ultrasound scans from the test set, showcasing the performance of different enhancement frameworks on the
same high-low quality image pair. Each subfigure corresponds to a different model’s output, allowing for a direct comparison of the anatomical
preservation and image quality achieved by each approach. (A) reference low, (B) Pix2Pix [27], (C) MSPGAN [11], (D) RegGAN [23], (E) reference
high, (F) CycleGAN [13], (G) stable CycleGAN [12], and (H) proposed method. CycleGAN: cycle-consistent generative adversarial network; MSPGAN:
multilevel structure-preserved generative adversarial network; RegGAN: registration generative adversarial network.

Figure 4. A comparative visualization of ultrasound scans from the test set, showcasing the performance of different enhancement frameworks on the
same high-low quality image pairs. (A) Thyroid, (B) carotid, (C) liver, (D) kidney, and (E) breast. CycleGAN: cycle-consistent generative adversarial
network; MSPGAN: multilevel structure-preserved generative adversarial network; RegGAN: registration generative adversarial network.
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Discussion

In this study, we developed and evaluated an advanced
CycleGAN framework enhanced with perceptual loss to address
the challenge of varying image quality in ultrasound imaging
across different devices. Our primary objective was to improve
the quality of low-resolution ultrasound images captured by
portable devices while preserving anatomical integrity, which
is critical for accurate clinical diagnostics. The results from our
evaluation demonstrated that the integration of perceptual loss
enhanced the quality of the generated images, achieving strong
performance in key metrics such as SSI and LPIPS, though
slightly lower in LNCC and PSNR compared to other models.
These outcomes suggest that our approach represents a
significant step toward bridging the gap between low- and
high-quality ultrasound images, making it particularly beneficial
for portable, handheld devices that often struggle with image
quality due to hardware limitations.

The use of perceptual loss in our model allowed for a more
direct and meaningful comparison between low- and
high-quality images, which contrasts with previous studies that
treated these domains as independent [12]. By leveraging paired
images from different devices, our model was able to learn the
nuances of quality differences in a manner that closely mirrors
real-world clinical scenarios. This pairing led to significant
improvements in metrics such as SSI and LPIPS, indicating that
our model preserves structural fidelity and local intensity
patterns more effectively than current state-of-the-art
approaches. However, it is important to note that while some
models, such as Pix2Pix, MSPGAN, and RegGAN, achieve
high scores in SSI, LNCC, and PSNR, they often do so at the
expense of anatomical integrity. These models tend to remove
or alter critical anatomical structures, leading to a loss of
valuable diagnostic information. In contrast, our approach retains
the anatomical content while producing comparable performance
in these metrics and outperforming all other models in LPIPS,

which measures perceptual quality. This balance between
maintaining anatomical fidelity and achieving high image quality
is a significant strength of our method, making it more suitable
for clinical applications where accuracy is paramount.

Despite these promising results, there are some limitations to
our approach that need to be addressed in future work. The
reliance on perceptual loss, while beneficial for maintaining
image fidelity, introduces additional computational complexity,
leading to longer training times. This requirement could be a
limitation in scenarios where computational resources are limited
or rapid model deployment is necessary. Additionally, while
our model has demonstrated strong performance across a
well-curated dataset, the findings need to be validated through
extensive real-world applications across diverse datasets and
imaging conditions to ensure robustness and generalizability.
Furthermore, the current model is designed to work across
various organ systems and diseases, but future research could
explore the development of more specialized models tailored
to specific clinical contexts, potentially optimizing performance
for targeted diagnostic tasks.

To conclude, this work introduced an advanced
CycleGAN-based framework that effectively enhances
ultrasound image quality across devices by using perceptual
loss to train on paired images. Our findings demonstrate the
feasibility of bridging the image quality gap between low- and
high-quality ultrasound images, thereby improving the
accessibility and equity of high-quality diagnostic imaging. As
we move forward, it will be crucial to conduct clinical validation
of this approach across a wide range of medical scenarios and
explore its application to other imaging modalities. This result
could pave the way for integrating our model into routine
clinical practice, ultimately enhancing diagnostic accuracy and
improving patient outcomes. By making high-quality imaging
more accessible, particularly through portable ultrasound
devices, our approach holds the potential to significantly impact
health care delivery and patient care on a global scale.
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