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Abstract

Background: Cell concentration in body fluid is an important factor for clinical diagnosis. The traditional method involves
clinicians manually counting cells under microscopes, which is labor-intensive. Automated cell concentration estimation can be
achieved using flow cytometers; however, their high cost limits accessibility. Microfluidic systems, although cheaper than flow
cytometers, still require high-speed cameras and syringe pumps to drive the flow and ensure video quality. In this paper, we
present SmartFlow, a low-cost solution for cell concentration estimation using smartphone-based computer vision on 3D-printed,
pump-free microfluidic platforms.

Objective: The objective was to design and fabricate microfluidic chips, coupled with clinical utilities, for cell counting and
concentration analysis. We answered the following research questions (RQs): RQ1, Can gravity drive the flow within the
microfluidic chips, eliminating the need for external pumps? RQ2, How does the microfluidic chip design impact video quality
for cell analysis? RQ3, Can smartphone-captured videos be used to estimate cell count and concentration in microfluidic chips?

Methods: To answer the 3 RQs, 2 experiments were conducted. In the cell flow velocity experiment, diluted sheep blood flowed
through the microfluidic chips with and without a bottleneck design to answer RQ1 and RQ2, respectively. In the cell concentration
analysis experiment, sheep blood diluted into 13 concentrations flowed through the microfluidic chips while videos were recorded
by smartphones for the concentration measurement.

Results: In the cell flow velocity experiment, we designed and fabricated 2 versions of microfluidic chips. The ANOVA test
(Straight: F6, 99=6144.45, P<.001; Bottleneck: F6, 99=3475.78, P<.001) showed the height difference had a significant impact on
the cell velocity, which implied gravity could drive the flow. The video sharpness analysis demonstrated that video quality

followed an exponential decay with increasing height differences (video quality=100e–k×Height) and a bottleneck design could

effectively preserve video quality (Straight: R2=0.95, k=4.33; Bottleneck: R2=0.91, k=0.59). Samples from the 13 cell concentrations
were used for cell counting and cell concentration estimation analysis. The accuracy of cell counting (n=35, 60-second samples,

R2=0.96, mean absolute error=1.10, mean squared error=2.24, root mean squared error=1.50) and cell concentration regression

(n=39, 150-second samples, R2=0.99, mean absolute error=0.24, mean squared error=0.11, root mean squared error=0.33 on a
logarithmic scale, mean average percentage error=0.25) were evaluated using 5-fold cross-validation by comparing the algorithmic
estimation to ground truth.

Conclusions: In conclusion, we demonstrated the importance of the flow velocity in a microfluidic system, and we proposed
SmartFlow, a low-cost system for computer vision–based cellular analysis. The proposed system could count the cells and estimate
cell concentrations in the samples.
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Introduction

Overview
Cell counting and concentration analysis are common practices
to help us understand a variety of health conditions. This
includes counting cells where they are supposed to be, in our
blood, where a low red blood cell count can suggest conditions
such as anemia [1], which can lead to fatigue and other serious
complications if untreated. Similarly, elevated white blood cell
counts can be a marker of infections or hematological diseases
like acute leukemia [2]. Cell counting is also used to look for
cells where they should not be, such as our urine. Elevated red
blood cell concentration in urine samples serves as an indicator
of hematuria [3], which is an important indicator of kidney
disease, such as acute kidney injury and chronic glomerular
diseases [4]. Accurate and accessible measurement of cell
concentrations is therefore critical in both clinical diagnostics
and ongoing patient management.

Estimating cell concentrations in samples can be achieved with
both manual and automated methods [5]. The slide method
requires clinicians to separate the sample into components with
a centrifuge, prepare sample slides, conduct observations under
a microscope, and manually count the cells [6]. This method
demands a high level of expertise from clinicians, is subject to
human error, and can be labor-intensive [7]. An advancement
in this method is the imaging cytometer (eg, SpectraMax
MiniMax 300, Molecular Devices LLC) [8]. This incorporates
analysis software and image processing to remove the need for
staining in most use cases. These devices cost approximately
US $50,000 and still have many of the same issues as manual
methods. In addition, automated methods for estimating cell
concentration can involve the use of flow cytometers [9]. In this
technique, cells flow through a narrow beam of light, and the
scattering and fluorescence signals produced by the cells are
measured to obtain information about their properties. However,
flow cytometers are expensive (between US $100,000 and US
$500,000) and not as readily accessible as microscopes in
laboratory environments.

As microfluidic technologies become increasingly prevalent,
researchers are exploring the feasibility of automating cell
concentration analysis using microscopes coupled with
microfluidic platforms. Although these automated microfluidic
chips are more accessible than traditional flow cytometers, they
still require costly high-speed cameras and syringe pumps to
control flow rates and ensure video quality. These requirements
make microfluidic systems less accessible and could hinder the
widespread adoption of computer vision–powered microfluidic
medical devices [10,11].

To enhance the accessibility and affordability of automated cell
concentration estimation, we introduced SmartFlow. Different
from other microfluidic platforms, there is no syringe pump nor

high-speed camera setup in the SmartFlow design. Syringe
pumps are commonly used to drive the flow in microfluidic
platforms. On the other hand, SmartFlow leverages gravity to
drive the flow. Moreover, instead of using high-speed cameras,
smartphones are used for video recordings in SmartFlow. To
preserve the video quality, we introduced a bottleneck design
for the microfluidic channel by slowing down the flow velocity.
Therefore, a high-speed camera is not necessary in the
SmartFlow setup. The cost of the 3D-printed microfluidic chip
was around US $15, while smartphones and microscopes are
common and prevalent equipment in clinical settings. Therefore,
SmartFlow is much cheaper and more accessible than
commercial flow cytometers and other microfluidic systems.

SmartFlow can measure cell concentrations within a mean
absolute percentage error of 25% compared with the gold
standard. Our evaluation of SmartFlow covered a broad
spectrum of concentrations, ranging from those exceeding upper
bounds in blood to levels as low as those found in healthy urine
samples. In this paper, we answered the following research
questions (RQs): RQ1, Can gravity drive the flow within the
microfluidic chips, eliminating the need for external pumps or
pressure systems? RQ2, How does the microfluidic chip design
impact video quality for cell analysis? RQ3, Can
smartphone-captured videos be used to estimate cell count and
concentration in microfluidic chips?

We designed and conducted a cell flow velocity experiment and
cell concentration analysis experiment to validate 3 hypotheses.
Through the cell flow velocity experiment, we demonstrated
the importance of flow velocity control for computer
vision–based cellular analysis. We also illustrated how gravity
could be used to drive the flow and our bottleneck microfluidic
design could slow down the flow to ensure video quality. In the
cell concentration analysis experiment, we showed the design
of the microfluidic chip by improving the system we used in
the flow velocity experiment. We further demonstrated
SmartFlow could accurately count cells and estimate cell
concentrations.

We describe the following contributions in this paper: (1) the
design of SmartFlow, a 3D-printed, pump-free microfluidic
chip for cell concentration analysis on smartphones; (2) a
comparison of 2 versions of microfluidic chips and an evaluation
of their feasibility for speed control using smartphone-captured
video streams; (3) experiments to evaluate the performance of
SmartFlow for cell counting and concentration analysis.

Comparison With Prior Work
In this section, we discuss current low-cost microfluidic systems,
pumping systems for microfluidic chips, and computer vision
algorithms for cellular analysis. Moreover, we highlight the
contributions of this paper by comparing them with existing
work.
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Low-Cost Microfluidic Systems
Microfluidic systems are used to handle small amounts of liquid
samples and are widely used in particle manipulation, including
but not limited to particle detection and particle trapping [12,13].
Amiri et al [14] and Cha et al [15] proposed using microfluidic
chips with a curved design for particle separation. Hasan et al
[16] developed a polydimethylsiloxane microfluidic system to
capture cancer cells. Solis-Tinoco et al [17] constructed a
flexible microfluidic device to investigate live cell adhesion.
Wu et al [18] used acoustic, electrophoretic, and hydrodynamic
forces to prototype a microfluidic platform for cell separation.
Beyond cellular manipulation, microfluidic platforms have
demonstrated utility in the detection of H1N1 [19], H7N9 [20],
and SARS-CoV-2 [21] viruses.

Combined with smartphones, microfluidics can enhance
point-of-care diagnostic technologies. Chung et al [22] proposed
a smartphone-based fluorescence microfluidic platform to detect
norovirus in water samples, and Somvanshi et al [23] introduced
a microfluidic paper-based aptasensor device, coupled with
smartphone algorithms, to enable multiplexed detection of
pathogenic bacteria. Most smartphone-based microfluidic
platforms are limited to simple carriers containing biosamples
due to the inaccessibility of droplet generators and syringe
pumps [10]. Moreover, the use of 3D-printed microfluidics in
SmartFlow offers advantages over traditional
polydimethylsiloxane-based systems, such as greater flexibility,
lower fabrication costs, and easier accessibility, as demonstrated
by Au et al [24]. In comparison with existing
smartphone-integrated systems, SmartFlow proposes using a
3D-printed, pump-free design that relies solely on gravity for
fluid manipulation to eliminate the need for external
components.

Microfluidic Pumping System
Our paper explores the methods to control microfluidic flow
velocity for computer vision–based cellular analysis. Traditional
flow speed control is achieved by syringe pumps, which are
expensive and not ubiquitous in labs [25,26]. Therefore, previous
work explored different natural power sources to drive flow in
microfluidic systems [27]. Khor et al [28] and Xing et al [29]
used liquid surface tension to control the flow speed. However,
surface tension–driven techniques are hard to control and limited
to liquid viscosity.

Prior work also focused on gravity-driven microfluidic systems.
Goral et al [30] and Marimuthu and Kim [31] developed a
communicating vessel–based gravity-driven system for cell
cultures. Goral et al [30] used cellulose membranes to filter out
unnecessary cells. Reis et al [32] used a glass siphon and
multistep bioassays to quantify quantitative immunoassays. Kao
et al [33] used communicating vessels to generate droplets for
microfluidic analysis. Shin et al [34] designed a pressure-driven
microfluidic system for colorimetric bioassays, and Gao et al
[35] designed an external overflow unit to control the flow speed
in a communicating vessel setting. Wang et al [36] achieved
consistent flow speed using 2 siphons to keep the liquid surfaces.
Limjanthong et al [37] tilted a table to power the flow in a
microfluidic system for cultures of human-induced pluripotent
stem cells.

Unlike gravity-driven cell culture systems and bioassays,
computer vision–based microfluidic systems need to be observed
under microscopes. Therefore, computer vision–based systems
have stricter requirements for the flow velocity to ensure video
quality, as we discussed previously. We first demonstrated that
a high cell velocity could introduce motion blurriness to videos
and lead to poor video quality. We then explored the feasibility
of controlling the flow speed by using gravity to drive the flow
and introducing a bottleneck design in the microfluidic channel.
This technique can remove the high-speed cameras or syringe
pumps used in previous microfluidic systems. We believe this
is an important step to make smartphone-based microfluidic
platforms more accessible.

Cellular Analysis With Computer Vision
Prior work applied computer vision algorithms to cellular
analysis under microscopes. Red blood cell counting
experiments can be automatically conducted using Hough
transformation [38], and Lu et al [39] used cell signals in
fluorescence assays to count cells in microfluidic droplets. Zeng
et al [40] conducted a stained somatic cell counting experiment
with traditional computer vision on dairy samples. Dima et al
[41] and Shen et al [42] segmented florescence identities by
setting a threshold on microscopy images.

As the prevalence of deep learning has surged in recent years,
numerous studies have deployed deep learning models to
analyze microfluidic cells. You Only Look Once (YOLO) [43]
is a deep learning architecture proposed by Redmon et al [43]
for object detection. Li et al [44] used YOLO on light scattering
images to classify live and dead colonic adenocarcinoma cells.
YOLO was also applied by Gardner et al [45] on inflorescence
images to count cells in droplets. Moreover, Arjun et al [46]
proved YOLO can be used to detect the mixing status of
microfluidic droplets. High-speed cameras and convolutional
neural networks can also be used in cell segmentation [47]. Lee
et al [48] developed a user-friendly, fast deep learning model
on cell sorting tasks in microfluidic systems. Furthermore, a
convolutional neural network can be integrated into microscopic
cell counting regression [49,50] and red blood cell morphology
systems [51,52].

We applied dense optical flow algorithms in our study, given
the ability of cells to flow through videos captured on our
custom pump-free microfluidic platform. Compared with deep
learning models, a dense optical flow algorithm had better
interpretability, and it did not require a labor-intensive labelling
process for cell segmentation. Additionally, we validated the
effectiveness of our algorithms by manually counting the cells
and estimating cell concentrations across samples of varying
concentrations, which is considered the clinical standard for
body fluid analysis.

Methods

Overview
SmartFlow consists of a microfluidic chip, smartphone, and
microscope. One challenge with the pump-free microfluidic
chip is controlling the flow velocity. If the velocity is too high,
it can cause motion blur and poor video quality. Conversely, if
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the velocity is too low, the experiment duration can be
prolonged, especially at low cell concentrations, where not every
frame contains cells. To address these issues, we first conducted
flow velocity experiments to answer RQ1 and RQ2 using 2
different microfluidic chip designs. Based on the findings, we
designed a new microfluidic chip for the cell concentration
analysis experiment, which simplified the experimental setup
and answered RQ3. In this section, we discuss the smartphone
app, system setup, microfluidic chip design, and process for
both experiments. We also show how the 2 experiments can
answer the 3 RQs.

Fabrication
The microfluidic chips were fabricated with a PolyJet 3D printer
(Stratasys), which offers high-resolution printing using
photopolymers. During the printing process, the print head with
nozzles applied small droplets of material to the printing plate,

and ultraviolet light was used to harden the material
immediately. In this way, the microfluidic chips were
manufactured layer by layer. To ensure compatibility with
microscopes for cellular analysis, we selected a transparent
material during prototyping. This material has a light
transmittance of 85% to 92% and a yellow index of 0.6 to 1.2.
Additionally, water-soluble wax was used to support the hollow
structures during printing. Afterward, the printed chips were
immersed in water to dissolve the wax.

Smartphone App
The smartphone app was used to record videos through the
microscope’s eyepiece and was developed with Android Studio
in Java. A screenshot of the developed smartphone app is
illustrated in Figure 1. The camera was controlled using the
Camera2 application programming interface, while the video
was recorded using the MediaRecorder library.
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Figure 1. Screenshot of the smartphone app for data collection.

The application operated at a frame rate of 60 frames per second
(FPS) with 2K resolution (1920×1080) while visualizing the
video stream. It supported inputs like ISO, zoom ratio,
recordings’ file names for labelling, and focal distance, which
were the key parameters to ensure video quality. We found it
was important to maintain a fixed perspective without any digital
zoom-in or zoom-out and set the focal distance to infinity so
that any potential interference from the camera’s lens groups
can be eliminated. Experimenters can record the video by

pressing the start button and stop recording by pressing the
button again.

Ethics Approval
Since sheep blood was purchased (DSB250, HemoStat) for the
experiment, there were no human participants nor specimens
involved. Therefore, institutional review board approval was
not required. Data were collected between November 2023 and
June 2024.
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Cell Flow Velocity Experiment

Microfluidic Chip Design
We designed and fabricated 2 versions of microfluidic chips
for this experiment, as illustrated in Figure 2 and Figure 3. Flow
directions are highlighted with red arrows in the figures. Figure
2 shows the design of the straight version (version 1) of the

microfluidic chip, where inlet and outlet were connected by a
straight channel. The width of the channel was 2 mm, and the
depth of the channel was 25 µm. However, we observed that
the flow speed was highly sensitive to differences in the sample
surface height, making it still challenging to control the flow
velocity and maintain the video quality by adjusting the height
difference.

Figure 2. (A) Cross-sectional and (B) top views of the design for the straight microfluidic chip.

To address this issue, we further designed a bottleneck version
(version 2) of the microfluidic chip, shown in Figure 3.
Introducing a bottleneck serves to slow down the flow velocity
in 2 ways: First, according to Poiseuille's law, a narrower and

longer channel introduces more resistance to the flow; second,
the flow velocity decreases inversely with the cross-sectional
area when the flow volume remains constant.

Figure 3. (A) Cross-sectional and (B) top views of the microfluidic design with a bottleneck.

In this design, the channel remained at a depth of 25 µm. The
central portion of the channel retained the same 2-mm width as
the straight channel design to maintain comparability between
the 2 versions. The bottleneck portion, however, was narrowed
to 1 mm, reducing the cross-sectional area by one-half. This
dimension was chosen to introduce sufficient resistance while
still allowing cells to flow through the observation area without
excessive slowing or clogging. Both microfluidic chips use slide

covers sealed with ultraviolet glue to protect both the channel
area and the microscope objective lens from contamination.

Experimental Setup
Figure 4 illustrates the SmartFlow setup for the cell flow
velocity experiment. The system was modeled on the abstraction
of communicating vessels, in which gravity serves as the power
source. In communicating vessels, the liquid flows to reach
uniform surface heights when a height difference is created.
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Figure 4. SmartFlow setup for the cell flow velocity experiment. COTS: commercial off-the-shelf.

As shown in Figure 4, 2 syringes served as reservoirs filled with
the liquid sample, and the sample flows through the microfluidic
chip. In this experiment, we used 2 versions of microfluidic
chips, as illustrated in Figure 2 and Figure 3. A movable syringe
adapter was designed to secure the syringe on one side, and it
can be moved up and down manually as illustrated by the red
arrow in the figures. The purpose for this was to generate the
liquid surface height difference in the 2 syringes. A 21-gauge
needle was used for the syringes, with an inner diameter of
0.514 mm and an outer diameter of 0.819 mm. Needles and
microfluidic chips were connected with a plastic pipe with an
inner diameter of 1 mm. The needle was used on the syringe
because the needle was fitted for the plastic pipe so that it could
enhance airtightness at the connection junction and effectively
avoid sample leakage.

The smartphone was positioned directly in front of the eyepiece
of the optical microscope using a commercial off-the-shelf
(COTS) adapter. The COTS adapter allowed the smartphone
to move in 3 axes. We tuned the position of the smartphone to
ensure the view of the microscope from the eyepiece could be
captured by the smartphone. Furthermore, the microfluidic chip
was put on the stage of the microscope, and we adjusted the
position of the microfluidic chip using the microscope’s stage
controls and focus knobs to ensure the channel on the
microfluidic chip was in focus. To initiate the flow, positive
pressure was applied to one side of the syringe.

Experimental Process
The objective of this experiment was to answer whether gravity
can effectively drive the flow within the microfluidic chips,
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eliminating the need for external pumps or pressure systems
(RQ1). In addition, we aimed to determine if the bottleneck
design in the microfluidic chip reduces flow speed more
effectively than straight channel designs, resulting in improved
video quality for cell analysis (RQ2).

Before data collection, we captured images with gridded
microscope slides (R1L3S3P, Thorlabs Inc) to establish a
mapping correlation between image pixels and the actual scale
observed through the microscope. We configured the microscope
with an overall magnification of 1000 times, comprising a 10×
magnification for the eyepiece and 100× magnification for the
objective lens. The field number of the eyepieces was 22. We
further calculated that the mapping correlation between the
camera-captured image and the microscopy image was 5.37
pixels per µm.

We set up the entire system as shown in Figure 4 and diluted
the sheep blood 10 times by mixing 0.5 mL of blood and 4.5
mL of saline. Data collection was performed using the
application on the 2 chip versions, each with 7 different initial
liquid surface height differences. For the straight chip, the height
differences ranged from 0 cm to 0.7 cm, with increments of 0.1
cm in each trial. The height differences for the chip with the
bottleneck design varied from 0 cm to 3 cm, with increments
of 0.5 cm in each trial. We initially set the liquid surface to the

same level, observed the flow speed at 0, and raised 1 side of
the communicating vessels to the expected height difference.
The cell flow velocity was estimated using a dense optical flow
algorithm [53], in which dense optical flow could segment the
moving objects and calculate the moving velocity and
orientation of each pixel through adjacent frames in the videos.

Cell Concentration Analysis Experiment

Microfluidic Chip Design
The microfluidic chip design for this experiment was based on
the abstraction in the flow velocity experiment setup. Figure 5
illustrates the cross-sectional and top views of the designed
microfluidic chip used in this experiment. There are 4 chambers
from left to right: the waste-sample reservoir, observation area,
sample reservoir, and inlet. A slide cover was used to seal the
observation area to avoid contaminating the objectives. In
addition, a piece of plastic film was used to seal the
waste-sample chamber, which could also be used to initiate the
sample flow to the observation area. When using the
microfluidic chip, the sample was poured into the inlet chamber,
then the sample could automatically fill the sample reservoir.
The plastic film was pressed to clear the air out through the hole
(leftmost hole in Figure 5), then the hole would be blocked
before the plastic film was released to initiate the flow.

Figure 5. (A) Cross-sectional and (B) top views of the microfluidic chip showing, from left to right, the waste-sample reservoir, observation area,
sample reservoir, and inlet. The flow direction is from right to left.

Flow velocity was crucial to ensure the video quality, as fast
flow velocity could lead to blurriness in the videos captured by
the smartphone. Therefore, we designed an overflow mechanism
in the sample reservoir chamber, so the maximum liquid surface
height difference between the sample reservoir and the entrance
hole to the waste-sample reservoir was 2.5 mm. In addition, we
learned from the flow velocity experiment that a bottleneck
design could slow down the flow to ensure the cell video quality,
so the same principle was applied to the observation area. The
thinnest width of the channel was 0.4 mm, and the diameter of
the circle in the observation area was 2 mm.

Experimental Setup
In the cell concentration analysis experiment, a 3D-printed
microfluidic chip was placed under the microscope, while the
smartphone was placed in front of an eyepiece. This setup was
much simpler than the previous setup, as the syringes and plastic
pipes were discarded. This was achieved by abstracting the
system setup for the flow velocity experiment into the design
of the microfluidic chip for the cell concentration analysis
experiment. During the experiment, cell samples with different
concentrations flew through the microfluidic chip, and the videos
were recorded using the Android app.
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Experimental Process
To conduct this experiment, we used sheep blood and diluted
the blood with saline into 13 different concentrations. The red

blood cell count in sheep whole blood is 9-15×106 per microliter
[54]. We focused exclusively on red blood cells, as the
concentration of white blood cells is approximately 1000 times
lower [54], making them barely observable after dilution. The
concentrations used for the experiment are shown in Table 1,
and the visualization is illustrated in Figure 6. The blood
concentration is defined as the volume ratio between the blood

and the sample. For example, a solution with a concentration
of 0.1 has 1 microliter of blood contained in 10 microliters of
the solution. In this way, the blood concentration before dilution
is 1. In addition, the red blood cell count is defined by the
number of red blood cells per microliter of the samples. These
concentrations spanned a range that could be found in various
body fluid tests, ranging from diluted blood samples in typical
blood tests [55] to samples used for hematuria [56]. Videos
were recorded via the mobile app through the eyepiece while
the samples flowed through the microfluidic chip.

Table 1. The concentrations and red blood cell count used for the cell concentration analysis experiment.

Red blood cell count (per microliter)Blood concentration

9-15×1041×10–2

4.5-7.5×1045×10–3

2.25-3.75×1042.5×10–3

9-15×1031×10–3

4.5-7.5×1035×10–4

2.25-3.75×1032.5×10–4

9-15×1021×10–4

4.5-7.5×1025×10–5

2.25-3.75×1022.5×10–5

90-1501×10–5

45-755×10–6

22.5-37.52.5×10–6

9-151×10–6
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Figure 6. Visualization of the relationship between red blood cell count and blood concentration used for the cell concentration analysis experiment.

We used 2 ground truths to explore SmartFlow’s capability to
estimate cell count and concentrations in the samples (RQ3).
The first ground truth involved counting the cells manually from
recorded videos. The second ground truth relied on the known
blood concentrations for each sample during sample preparation.

Results

In this section, we describe the results for the flow velocity and
cell concentration analysis experiments and further discuss how
these experiments could answer the 3 RQs.

Cell Flow Velocity Experiment
We explored the relationship between the height difference and
flow velocity of the cells. Videos for each height difference and
each type of microfluidic chip were recorded with the
smartphone app, and we segmented the videos into 3 seconds
of footage. The data set included 210 videos lasting 3 seconds
each for the data analysis. These data were used to calculate the
cell flow velocity. The dense optical flow algorithm was applied
to every pair of adjacent frames within each sample.
Consequently, each sample contained 3 seconds × 60 frames
per second for 179 optical flow images, and the flow velocity
of the cells in each sample was estimated by computing the
mean of the values from the optical flow images of the cell
areas. The conversion between pixels and micrometers was

established through calibration using gridded microscope slides,
as discussed in the Experimental Process section.

Figure 7 illustrates the relationship between the height difference
and cell velocity on both microfluidic chips (version 1 and
version 2). Version 1 is the microfluidic chip with the straight
channel as illustrated in Figure 2, and version 2 is the
microfluidic chip with the bottleneck channel as shown in Figure
3. We used the square root function to approximate the cell
velocity and height difference (v=k√h, where k was the fitted

coefficient). The R2 for both fitted curves was 0.934. Since the
video footage was segmented independently, the cell velocity
followed a normal distribution, and the variances were almost
same, we leveraged ANOVAs to evaluate whether a height
difference can influence the cell velocity. In this way, ANOVAs
(version 1: F6, 99=6144.45, P<.001; version 2: F6, 99=3475.78,
P<.001) showed the height difference had a significant impact
on cell velocity, which answered RQ1. However, we noticed
that the flow velocity decreased when height differences
exceeded 4 mm on version 1 of the microfluidic chip. This was
because the cell flow speed was too fast to be calculated from
the videos recorded by the smartphone camera. Moreover, the
images displayed in Figure 7 illustrate that motion blurriness
could be introduced into the videos when the cell velocity
increased.
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Figure 7. Relationship between height difference and cell velocity.

We further performed quantitative analysis to examine the
relationship between video quality and height difference.
Laplacian variance (variance of the image after applying a 2D
Laplacian filter) was used to determine image sharpness, where
a higher variance indicates higher image sharpness. Video
quality was defined as the average sharpness across all frames.
To be more specific, for each video footage, Laplacian variance
was applied on each gray-scale frame in the footage. The
average Laplacian variance for each video footage was then
calculated. Cells would not move if the height difference was
0 cm; thus, there would be no motion blurriness. To calculate
the percentage video quality, we assumed the video footage
with the largest averaged Laplacian variance when the height
difference was 0 cm to be 100%. The video quality of the video
footage was then determined by dividing the averaged Laplacian
variance of the current video footage by the largest Laplacian
variance when the height difference was 0. That is:

Notice that we used the same cell concentration to conduct this
experiment to avoid the potential impact introduced by different
scenes. Figure 8 illustrates the relationship between height
difference and video quality on both versions of the microfluidic
chips, where the exponential decay functions (video

quality=100e–k×Height) were used to approximate the relationship

(version 1: video quality=100e–4.33×HeightDifference, R2=0.945;

version 2: video quality=100e–0.59×HeightDifference, R2=0.907).
Video quality was normalized by dividing by the maximum
sharpness observed among all samples. Similar to the analysis
on the height difference and cell velocity, videos recorded from
the smartphone app were segmented into 70 videos lasting 3
seconds each. These findings answer RQ2, suggesting that
bottleneck designs on microfluidic chips can decelerate flow
speed, thereby enhancing video quality.
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Figure 8. Relationship between height difference and normalized video quality.

Cell Concentration Analysis Experiment
We derived the coefficients to measure the number of cells that
flowed through and cell concentrations from the video footage.
The coefficient we used to measure the cells count was:

and the coefficient we used for the cell concentration prediction
was:

The assumption we made for the calculation was that the cells
were evenly distributed in the sample.

For each video footage, we first applied an adaptive threshold
algorithm to the first frame of the video to segment the

microscopic area from the entire image, and the center of the
microscopic area was calculated. The number of pixels of the
microscopic area were used as the field of view in the
Rcells_concentration calculation. The squared regions that were then
cropped from the center of microscopic areas were resized to
200×200 pixels, followed by dense optical flow [53] being
applied to calculate flow velocity and the number of cells in the
frame. Figure 9 is a visualization of the performance of the
algorithm. Similar to the flow velocity experiment, the cell
velocity of each frame was calculated by taking the average of
the optical flow images of the cell areas (masked by the
segmented cell area). The cell velocity of each frame was
estimated as the average velocity. We estimated the number of
cells in each frame by calculating the number of cell pixels
(white area in Figure 9C) segmented by the dense optical flow
algorithm. Figure 10 shows the details of the algorithm.
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Figure 9. Dense optical flow visualization, including the (A) original image, (B) dense optical flow, and (C) cell segmentation.

Figure 10. Pseudoalgorithm to calculate the cell concentration and cell count coefficients.

To validate the cell counting performance, we manually counted
the number of cells of 35 videos lasting 1 minute each, then we
calculated Rcells_count for each video. We used linear regression
analysis to predict the number of cells in the video footage based

on Rcells_count (f(x)=kx, where k=4.14×10–5), which rendered

good results as illustrated in Figure 11A (R2=0.97, mean

absolute error=0.95, mean squared error=1.61, root mean
squared error=1.27). We further used 5-fold cross-validation
(28 data points for training and 7 data points for validation) to
further evaluate the correlation between predicted cell count

and the ground truths, as shown in Figure 11B (R2=0.96, mean
absolute error=1.10, mean squared error=2.24, root mean
squared error=1.50).

JMIR Biomed Eng 2024 | vol. 9 | e62770 | p. 13https://biomedeng.jmir.org/2024/1/e62770
(page number not for citation purposes)

Wu et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 11. Relationships between the (A) ground truth cell count and Rcells_count and (B) predicted cell count and ground truth cell count.

We also investigated the cell concentration regression
performance of SmartFlow. We used a sliding window to first
segment each recorded video. We set a window size of 150
seconds, and we used a step size of 75 seconds. We than had a
total of 39 videos lasting 150 seconds each, and Rcells_concentration

was calculated for each video footage. To fit the curve between
Rcells_concentration and the ground truth concentrations, we first
took the logarithm on both Rcells_concentration and the ground truth
concentrations and fitted the logarithms with a linear regression
model (f(x)=kx+b, where k=1.04 and b=–3.85). We chose to use
linear regression analysis on the logarithmic scale because the

concentration differences ranged from 10–2 to 10–6, which could
bias the regression model if we used a mean squared error loss

function on the original scale. Figure 12A shows the fitted curve

achieved an R2 of 0.99, mean absolute error of 0.24, mean
squared error of 0.10, and root mean squared error of 0.32 on
the logarithmic scale and a mean average percentage error of
0.25. We further used 5-fold cross-validation (32 data points
for training and 7 data points for validating) to examine the
correlation between predicted and ground truth cell
concentrations, and the results are shown in Figure 12B. Our

approach achieved an R2 of 0.99, mean absolute error of 0.24,
mean squared error of 0.11, and root mean squared error of 0.33
on the logarithmic scale and a mean average percentage error
of 0.25. This experiment validated SmartFlow’s capability to
effectively estimate cell counts and concentrations (RQ3).
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Figure 12. Relationships between the (A) ground truth concentration and Rcells_concentration and (B) predicted cell concentration and ground truth.

Discussion

Principle Findings
In this paper, we presented the design and evaluation of
SmartFlow, a pump-free microfluidic platform for
smartphone-based cell concentration analysis. Our system is
more affordable than commercial flow cytometers and easier
to set up than previous microfluidic chips, as it eliminates the
need for syringe pumps and high-speed cameras by using gravity
to drive the flow. We also designed microfluidic chips and
conducted experiments to demonstrate the importance of
controlling cell flow velocity for maintaining video quality.
Additionally, an optical flow–based computer vision algorithm
accurately estimated cell counts and concentrations in samples.
We believe SmartFlow represents an important step toward
making smartphone-based microfluidic platforms more
accessible.

Strengths and Limitations

Cost and Accessibility
Flow cytometers are used for cellular analysis in laboratory
settings due to their high accuracy and precision. However, the
high cost of these devices—ranging from US $100,000 to US
$500,000—limits their accessibility, particularly in low-resource
regions. Furthermore, operating a flow cytometer requires
trained personnel, which further restricts their use to specialized
laboratory environments. In contrast, the SmartFlow system is
designed to be a low-cost, accessible alternative. The material
cost for the 3D-printed microfluidic chip is approximately US
$15, making it significantly more affordable. Additionally, our
system is built using a COTS smartphone adapter, smartphone,
and microscope, all of which are more commonly available in
clinical and point-of-care settings.

Gravity-Driven Design
The use of gravity-driven flow in our design offers practical
advantages, particularly in low-resource or point-of-care
settings. By eliminating the need for external pumps or complex
fluid control systems, the design simplifies the overall setup
and reduces the cost and technical complexity. This makes the
system more accessible for use in clinical settings, where
portability and ease of use are critical. However, the reliance
on gravity also introduces some challenges, as the flow becomes
more sensitive to height differences. In our experiments, we
addressed this by introducing a bottleneck channel design to
maintain a balance between flow speed and video quality. This
design approach not only improves performance in our system
but can also be applied to other microfluidic applications, such
as cell cultures, to achieve better flow velocity control in similar
gravity-driven setups.

Bottleneck Design
The flow velocity was highly sensitive to changes in height,
and due to the limitations of smartphone cameras, even small
increases in height differences could lead to motion blur in the
captured videos. The bottleneck design helped mitigate this
sensitivity by controlling cell velocity. Since the flow rate (the
volume of liquid passing through the channel per unit of time)
remains constant throughout the channel, it is determined by
the product of the cross-sectional area and flow velocity. In our
design, the observation area has a larger cross-sectional area
than the bottleneck, which has a smaller cross-sectional area.
As a result, the flow velocity in the observation area is lower,
and it becomes less sensitive to height variations. This reduction
in sensitivity effectively minimizes motion blur, allowing for
clearer, more stable video capture of the cells in the observation
area.
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Accuracy
We evaluated our system’s ability to predict blood
concentrations using a 5-fold cross-validation method. The
system achieved a mean absolute percentage error of 0.25 in
predicting blood concentrations when compared with the ground
truth. This demonstrates the system’s capability to perform
concentration estimation. However, the accuracy of established
technologies, such as flow cytometers, can serve as the ground
truth in clinical settings. Therefore, we plan to explore methods
to further improve the accuracy of our system by leveraging a
more accurate flow volume and cell counting measurement.

Future Directions

Different Cell Types
Although SmartFlow can estimate cell concentrations, it
currently only applies to single types of cells. Body fluids, such
as urine and blood, contain multiple cell types, and changes in
cell concentrations or morphology can be valuable indicators
of various diseases. Therefore, we plan to conduct studies by
further mixing different types of cells and integrating object
detection and segmentation deep learning models into the system
to support cell classification and segmentation.

Liquid Flow Measurement
The concentration ground truths we used were derived from
sample preparation. Even if our system can estimate the flow
velocity and the number of cells passing through the video, the
cell velocity might differ from the liquid’s flow velocity.
Moreover, the bubbles in the microfluidic channels could
potentially impact the flow dynamics. Therefore, we cannot
directly estimate cell concentration by dividing the number of
observed cells by the amount of liquid that flowed through.
However, clinical cell counting involves various criteria,
including the number of cells per microliter and number of cells
per high-power field after centrifugation under a microscope.
We will conduct studies to compare our system against multiple
clinical standards with more samples.

Cell Distribution
One assumption we made when calculating cell concentration
was that the cells were evenly distributed in the fluid. However,
over longer experiment durations, cells could settle down in the
microfluidic chip, resulting in uneven cell distribution. This
effect might influence the experiment results negatively when
cell concentrations are low. Therefore, we plan to collect more
data on low-concentration samples and evaluate the optimal
experiment duration to obtain robust results.

Generalizability of Body Fluids
Different biofluids can exhibit unique properties, such as
viscosity, hydrophobicity, and hydrophilicity, which may
interact differently with microfluidic material. Our system uses
gravity to drive the flow and uses a bottleneck design to achieve
better control over the flow velocity. These features are
grounded in fluid dynamics principles, making them adaptable
to fluids with diverse physical properties. By tuning the height
differential and adjusting the bottleneck geometry, we believe
the system can be optimized for a wide range of biofluids.
Nonetheless, further testing is required to fully explore its
applicability to fluids like saliva, urine, and cerebrospinal fluid,
where more pronounced variations in viscosity or particulate
matter may occur.

Conclusions
SmartFlow is a low-cost, smartphone-based, pump-free platform
that supports cell concentration regression. The bottleneck
microfluidic chip can be used to effectively preserve video
quality, and the proposed system could count the cells and
estimate cell concentrations in the samples. We believe
SmartFlow is an important stepping stone to achieving the goal
of building low-cost flow cytometers for clinicians and patients
by leveraging computer vision algorithms and pump-free
microfluidic platforms. Beyond illustrating the feasibility of
simplifying the cell concentration analysis, we envision its
potential to catalyze broader innovations in the field of
diagnostic technologies and contribute to the ongoing progress
in body fluid analysis.

Acknowledgments
This research is supported by internal funding.

Data Availability
The data sets generated during this study are available from the corresponding author on reasonable request.

Authors' Contributions
SW contributed to hardware, software, data collection, and data analysis. KS contributed to hardware. JC contributed to supervision.
ATA contributed to hardware and supervision. All authors contributed to conceptualization, editing, and review.

Conflicts of Interest
None declared.

References

1. Khan Z, Nawaz M, Khan A, Bacha U. Hemoglobin, red blood cell count, hematocrit and derived parameters for diagnosing
anemia in elderly males. Proceedings of the Pakistan Academy of Sciences. 2013;50(3):217-226. [FREE Full text]

JMIR Biomed Eng 2024 | vol. 9 | e62770 | p. 16https://biomedeng.jmir.org/2024/1/e62770
(page number not for citation purposes)

Wu et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

https://paspk.org/wp-content/uploads/proceedings/50,%20No.3/5bba6b12Hemoglobin,%20Red%20Blood%20Cell%20Count,%20Hematocrit%20and%20Derived%20Parameters%20for%20Diagnosing%20Anemia%20in%20Elderly%20Males.pdf
http://www.w3.org/Style/XSL
http://www.renderx.com/


2. Porcu P, Farag S, Marcucci G, Cataland S, Kennedy M, Bissell M. Leukocytoreduction for acute leukemia. Ther Apher.
Feb 09, 2002;6(1):15-23. [doi: 10.1046/j.1526-0968.2002.00402.x] [Medline: 11886572]

3. Rockall A, Newman-Sanders A, al-Kutoubi MA, Vale J. Haematuria. Postgrad Med J. Mar 1997;73(857):129-136. [FREE
Full text] [doi: 10.1136/pgmj.73.857.129] [Medline: 9135826]

4. Moreno JA, Yuste C, Gutiérrez E, Sevillano, Rubio-Navarro A, Amaro-Villalobos JM, et al. Haematuria as a risk factor
for chronic kidney disease progression in glomerular diseases: A review. Pediatr Nephrol. Apr 17, 2016;31(4):523-533.
[doi: 10.1007/s00467-015-3119-1] [Medline: 25980470]

5. Guillard RR, Sieracki MS. Counting cells in cultures with the light microscope. In: Algal culturing techniques. Burlington,
Mass. Elsevier/Academic Press; 2005:239-252.

6. Lynch EC. Peripheral blood smear. In: Walker HK, Hall WD, Hurst JW, editors. Clinical Methods: The History, Physical,
and Laboratory Examinations, 3rd Edition. Boston, MA. Butterworths; 1990.

7. Gulati G, Song J, Florea AD, Gong J. Purpose and criteria for blood smear scan, blood smear examination, and blood smear
review. Ann Lab Med. Jan 01, 2013;33(1):1-7. [FREE Full text] [doi: 10.3343/alm.2013.33.1.1] [Medline: 23301216]

8. SpectraMax MiniMax 300 Imaging Cytometer. Molecular Devices. URL: https://www.moleculardevices.com/products/
microplate-readers/accessories-consumables/spectramax-minimax-300-imaging-cytometer [accessed 2024-06-01]

9. Vembadi A, Menachery A, Qasaimeh MA. Cell cytometry: review and perspective on biotechnological advances. Front
Bioeng Biotechnol. Jun 18, 2019;7:147. [FREE Full text] [doi: 10.3389/fbioe.2019.00147] [Medline: 31275933]

10. Wang B, Li Y, Zhou M, Han Y, Zhang M, Gao Z, et al. Smartphone-based platforms implementing microfluidic detection
with image-based artificial intelligence. Nat Commun. Mar 11, 2023;14(1):1341. [FREE Full text] [doi:
10.1038/s41467-023-36017-x] [Medline: 36906581]

11. Zhou S, Chen B, Fu ES, Yan H. Computer vision meets microfluidics: a label-free method for high-throughput cell analysis.
Microsyst Nanoeng. Sep 21, 2023;9(1):116. [FREE Full text] [doi: 10.1038/s41378-023-00562-8] [Medline: 37744264]

12. Howell J, Hammarton TC, Altmann Y, Jimenez M. High-speed particle detection and tracking in microfluidic devices using
event-based sensing. Lab Chip. Aug 21, 2020;20(16):3024-3035. [FREE Full text] [doi: 10.1039/d0lc00556h] [Medline:
32700715]

13. Zhang H, Chon CH, Pan X, Li D. Methods for counting particles in microfluidic applications. Microfluid Nanofluidics.
Aug 20, 2009;7(6):739. [FREE Full text] [doi: 10.1007/s10404-009-0493-7] [Medline: 32214956]

14. Amiri HA, Asiaei S, Vatandoust F. Design optimization and performance tuning of curved-DC-iDEP particle separation
chips. Chemical Engineering Research and Design. Jan 2023;189:652-663. [doi: 10.1016/j.cherd.2022.11.049]

15. Cha H, Amiri HA, Moshafi S, Karimi A, Nikkhah A, Chen X, et al. Effects of obstacles on inertial focusing and separation
in sinusoidal channels: An experimental and numerical study. Chemical Engineering Science. Jul 2023;276:118826. [doi:
10.1016/j.ces.2023.118826]

16. Hasan MR, Peri SSS, Sabane VP, Mansur N, Gao JX, Nguyen KT, et al. One-step fabrication of flexible nanotextured
PDMS as a substrate for selective cell capture. Biomedical Physics & Engineering Express. Jan 22, 2018;4(2):025015.
[FREE Full text] [doi: 10.1088/2057-1976/aa89a6]

17. Solis-Tinoco V, Marquez S, Quesada-Lopez T, Villarroya F, Homs-Corbera A, Lechuga L. Building of a flexible microfluidic
plasmo-nanomechanical biosensor for live cell analysis. Sensors and Actuators B: Chemical. Jul 2019;291:48-57. [doi:
10.1016/j.snb.2019.04.038]

18. Wu Y, Chattaraj R, Ren Y, Jiang H, Lee D. Label-free multitarget separation of particles and cells under flow using acoustic,
electrophoretic, and hydrodynamic forces. Anal Chem. Jun 01, 2021;93(21):7635-7646. [doi: 10.1021/acs.analchem.1c00312]
[Medline: 34014074]

19. Lu P, Ma Y, Fu C, Lee G. A structure-free digital microfluidic platform for detection of influenza a virus by using magnetic
beads and electromagnetic forces. Lab Chip. Feb 21, 2020;20(4):789-797. [doi: 10.1039/c9lc01126a] [Medline: 31956865]

20. Xiao M, Xie K, Dong X, Wang L, Huang C, Xu F, et al. Ultrasensitive detection of avian influenza A (H7N9) virus using
surface-enhanced Raman scattering-based lateral flow immunoassay strips. Anal Chim Acta. Apr 11, 2019;1053:139-147.
[doi: 10.1016/j.aca.2018.11.056] [Medline: 30712559]

21. Kim S, Akarapipad P, Nguyen BT, Breshears LE, Sosnowski K, Baker J, et al. Direct capture and smartphone quantification
of airborne SARS-CoV-2 on a paper microfluidic chip. Biosens Bioelectron. Mar 15, 2022;200:113912. [FREE Full text]
[doi: 10.1016/j.bios.2021.113912] [Medline: 34973565]

22. Chung S, Breshears LE, Gonzales A, Jennings CM, Morrison CM, Betancourt WQ, et al. Norovirus detection in water
samples at the level of single virus copies per microliter using a smartphone-based fluorescence microscope. Nat Protoc.
Mar 29, 2021;16(3):1452-1475. [doi: 10.1038/s41596-020-00460-7] [Medline: 33514945]

23. Somvanshi SB, Ulloa AM, Zhao M, Liang Q, Barui AK, Lucas A, et al. Microfluidic paper-based aptasensor devices for
multiplexed detection of pathogenic bacteria. Biosens Bioelectron. Jul 01, 2022;207:114214. [doi:
10.1016/j.bios.2022.114214] [Medline: 35349894]

24. Au AK, Huynh W, Horowitz LF, Folch A. 3D-printed microfluidics. Angew Chem Int Ed Engl. Mar 14,
2016;55(12):3862-3881. [FREE Full text] [doi: 10.1002/anie.201504382] [Medline: 26854878]

25. Liu Y, Shen H, Yang X, Kang S, Cai L, Tian T, et al. Recent progress in microfluidic biosensors with different driving
forces. TrAC Trends in Analytical Chemistry. Jan 2023;158:116894. [doi: 10.1016/j.trac.2022.116894]

JMIR Biomed Eng 2024 | vol. 9 | e62770 | p. 17https://biomedeng.jmir.org/2024/1/e62770
(page number not for citation purposes)

Wu et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://dx.doi.org/10.1046/j.1526-0968.2002.00402.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11886572&dopt=Abstract
https://europepmc.org/abstract/MED/9135826
https://europepmc.org/abstract/MED/9135826
http://dx.doi.org/10.1136/pgmj.73.857.129
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9135826&dopt=Abstract
http://dx.doi.org/10.1007/s00467-015-3119-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25980470&dopt=Abstract
https://europepmc.org/abstract/MED/23301216
http://dx.doi.org/10.3343/alm.2013.33.1.1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23301216&dopt=Abstract
https://www.moleculardevices.com/products/microplate-readers/accessories-consumables/spectramax-minimax-300-imaging-cytometer
https://www.moleculardevices.com/products/microplate-readers/accessories-consumables/spectramax-minimax-300-imaging-cytometer
https://europepmc.org/abstract/MED/31275933
http://dx.doi.org/10.3389/fbioe.2019.00147
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31275933&dopt=Abstract
https://doi.org/10.1038/s41467-023-36017-x
http://dx.doi.org/10.1038/s41467-023-36017-x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36906581&dopt=Abstract
https://doi.org/10.1038/s41378-023-00562-8
http://dx.doi.org/10.1038/s41378-023-00562-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37744264&dopt=Abstract
https://eprints.gla.ac.uk/220884
http://dx.doi.org/10.1039/d0lc00556h
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32700715&dopt=Abstract
https://europepmc.org/abstract/MED/32214956
http://dx.doi.org/10.1007/s10404-009-0493-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32214956&dopt=Abstract
http://dx.doi.org/10.1016/j.cherd.2022.11.049
http://dx.doi.org/10.1016/j.ces.2023.118826
https://iopscience.iop.org/article/10.1088/2057-1976/aa89a6/meta
http://dx.doi.org/10.1088/2057-1976/aa89a6
http://dx.doi.org/10.1016/j.snb.2019.04.038
http://dx.doi.org/10.1021/acs.analchem.1c00312
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34014074&dopt=Abstract
http://dx.doi.org/10.1039/c9lc01126a
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31956865&dopt=Abstract
http://dx.doi.org/10.1016/j.aca.2018.11.056
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30712559&dopt=Abstract
https://europepmc.org/abstract/MED/34973565
http://dx.doi.org/10.1016/j.bios.2021.113912
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34973565&dopt=Abstract
http://dx.doi.org/10.1038/s41596-020-00460-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33514945&dopt=Abstract
http://dx.doi.org/10.1016/j.bios.2022.114214
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35349894&dopt=Abstract
https://europepmc.org/abstract/MED/26854878
http://dx.doi.org/10.1002/anie.201504382
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26854878&dopt=Abstract
http://dx.doi.org/10.1016/j.trac.2022.116894
http://www.w3.org/Style/XSL
http://www.renderx.com/


26. Lake JR, Heyde KC, Ruder WC. Low-cost feedback-controlled syringe pressure pumps for microfluidics applications.
PLoS One. Apr 3, 2017;12(4):e0175089. [FREE Full text] [doi: 10.1371/journal.pone.0175089] [Medline: 28369134]

27. Iakovlev AP, Erofeev AS, Gorelkin PV. Novel pumping methods for microfluidic devices: a comprehensive review.
Biosensors (Basel). Nov 01, 2022;12(11):956. [FREE Full text] [doi: 10.3390/bios12110956] [Medline: 36354465]

28. Khor JW, Lee UN, Berthier J, Berthier E, Theberge AB. Interfacial tension driven open droplet microfluidics. Adv Mater
Interfaces. Mar 06, 2023;10(7):1. [doi: 10.1002/admi.202202234] [Medline: 39584054]

29. Xing Y, Nourmohammadzadeh M, Elias JEM, Chan M, Chen Z, McGarrigle JJ, et al. A pumpless microfluidic device
driven by surface tension for pancreatic islet analysis. Biomed Microdevices. Oct 17, 2016;18(5):80. [doi:
10.1007/s10544-016-0109-4] [Medline: 27534648]

30. Goral VN, Zhou C, Lai F, Yuen PK. A continuous perfusion microplate for cell culture. Lab Chip. Mar 21,
2013;13(6):1039-1043. [doi: 10.1039/c2lc41102d] [Medline: 23344077]

31. Marimuthu M, Kim S. Pumpless steady-flow microfluidic chip for cell culture. Anal Biochem. Jun 15, 2013;437(2):161-163.
[doi: 10.1016/j.ab.2013.02.007] [Medline: 23453976]

32. Reis NM, Needs SH, Jegouic SM, Gill KK, Sirivisoot S, Howard S, et al. Gravity-driven microfluidic siphons: fluidic
characterization and application to quantitative immunoassays. ACS Sens. Dec 24, 2021;6(12):4338-4348. [FREE Full
text] [doi: 10.1021/acssensors.1c01524] [Medline: 34854666]

33. Kao Y, Kaminski TS, Postek W, Guzowski J, Makuch K, Ruszczak A, et al. Gravity-driven microfluidic assay for digital
enumeration of bacteria and for antibiotic susceptibility testing. Lab Chip. Jan 07, 2020;20(1):54-63. [doi:
10.1039/c9lc00684b] [Medline: 31774415]

34. Shin J, Lee G, Kim W, Choi S. A stand-alone pressure-driven 3D microfluidic chemical sensing analytic device. Sensors
and Actuators B: Chemical. Jul 2016;230:380-387. [doi: 10.1016/j.snb.2016.02.085]

35. Gao W, Liu M, Chen S, Zhang C, Zhao Y. Droplet microfluidics with gravity-driven overflow system. Chemical Engineering
Journal. Apr 2019;362:169-175. [doi: 10.1016/j.cej.2019.01.026]

36. Wang X, Zhao D, Phan DTT, Liu J, Chen X, Yang B, et al. A hydrostatic pressure-driven passive micropump enhanced
with siphon-based autofill function. Lab Chip. Jul 24, 2018;18(15):2167-2177. [FREE Full text] [doi: 10.1039/c8lc00236c]
[Medline: 29931005]

37. Limjanthong N, Tohbaru Y, Okamoto T, Okajima R, Kusama Y, Kojima H, et al. Gravity-driven microfluidic device placed
on a slow-tilting table enables constant unidirectional perfusion culture of human induced pluripotent stem cells. J Biosci
Bioeng. Feb 2023;135(2):151-159. [doi: 10.1016/j.jbiosc.2022.11.007] [Medline: 36586792]

38. Venkatalakshmi B, Thilagavathi K. Automatic red blood cell counting using hough transform. 2013. Presented at: IEEE
Conference on Information & Communication Technologies; April 11-12, 2013; Thuckalay, India. [doi:
10.1109/cict.2013.6558103]

39. Lu H, Caen O, Vrignon J, Zonta E, El Harrak Z, Nizard P, et al. High throughput single cell counting in droplet-based
microfluidics. Sci Rep. May 02, 2017;7(1):1366. [FREE Full text] [doi: 10.1038/s41598-017-01454-4] [Medline: 28465615]

40. Zeng Y, Jin K, Li J, Liu J, Li J, Li T, et al. A low cost and portable smartphone microscopic device for cell counting. Sensors
and Actuators A: Physical. May 2018;274:57-63. [doi: 10.1016/j.sna.2018.03.009]

41. Dima AA, Elliott JT, Filliben JJ, Halter M, Peskin A, Bernal J, et al. Comparison of segmentation algorithms for fluorescence
microscopy images of cells. Cytometry A. Jul 14, 2011;79(7):545-559. [FREE Full text] [doi: 10.1002/cyto.a.21079]
[Medline: 21674772]

42. Shen SP, Tseng H, Hansen KR, Wu R, Gritton HJ, Si J, et al. Automatic cell segmentation by adaptive thresholding (ACSAT)
for large-scale calcium imaging datasets. eNeuro. Sep 04, 2018;5(5):ENEURO.0056-18.2018. [doi:
10.1523/eneuro.0056-18.2018]

43. Redmon J, Divvala S, Girshick R, Farhadi A. You Only Look Once: Unified, Real-Time Object Detection. 2016. Presented
at: IEEE Conference on Computer Vision and Pattern Recognition (CVPR); June 27-30, 2016; Las Vegas, NV. [doi:
10.1109/cvpr.2016.91]

44. Li S, Li Y, Yao J, Chen B, Song J, Xue Q, et al. Label-free classification of dead and live colonic adenocarcinoma cells
based on 2D light scattering and deep learning analysis. Cytometry A. Nov 19, 2021;99(11):1134-1142. [FREE Full text]
[doi: 10.1002/cyto.a.24475] [Medline: 34145728]

45. Gardner K, Uddin MM, Tran L, Pham T, Vanapalli S, Li W. Deep learning detector for high precision monitoring of cell
encapsulation statistics in microfluidic droplets. Lab Chip. Oct 25, 2022;22(21):4067-4080. [FREE Full text] [doi:
10.1039/d2lc00462c] [Medline: 36214344]

46. Arjun A, Ajith R, Kumar Ranjith S. Mixing characterization of binary-coalesced droplets in microchannels using deep
neural network. Biomicrofluidics. May 2020;14(3):034111. [FREE Full text] [doi: 10.1063/5.0008461] [Medline: 32549924]

47. Heo YJ, Lee D, Kang J, Lee K, Chung WK. Real-time image processing for microscopy-based label-free imaging flow
cytometry in a microfluidic chip. Sci Rep. Sep 14, 2017;7(1):11651. [FREE Full text] [doi: 10.1038/s41598-017-11534-0]
[Medline: 28912565]

48. Lee K, Kim S, Doh J, Kim K, Chung WK. User-friendly image-activated microfluidic cell sorting technique using an
optimized, fast deep learning algorithm. Lab Chip. May 04, 2021;21(9):1798-1810. [doi: 10.1039/d0lc00747a] [Medline:
33734252]

JMIR Biomed Eng 2024 | vol. 9 | e62770 | p. 18https://biomedeng.jmir.org/2024/1/e62770
(page number not for citation purposes)

Wu et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

https://dx.plos.org/10.1371/journal.pone.0175089
http://dx.doi.org/10.1371/journal.pone.0175089
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28369134&dopt=Abstract
https://www.mdpi.com/resolver?pii=bios12110956
http://dx.doi.org/10.3390/bios12110956
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36354465&dopt=Abstract
http://dx.doi.org/10.1002/admi.202202234
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=39584054&dopt=Abstract
http://dx.doi.org/10.1007/s10544-016-0109-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27534648&dopt=Abstract
http://dx.doi.org/10.1039/c2lc41102d
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23344077&dopt=Abstract
http://dx.doi.org/10.1016/j.ab.2013.02.007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23453976&dopt=Abstract
https://doi.org/10.1021/acssensors.1c01524
https://doi.org/10.1021/acssensors.1c01524
http://dx.doi.org/10.1021/acssensors.1c01524
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34854666&dopt=Abstract
http://dx.doi.org/10.1039/c9lc00684b
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31774415&dopt=Abstract
http://dx.doi.org/10.1016/j.snb.2016.02.085
http://dx.doi.org/10.1016/j.cej.2019.01.026
https://europepmc.org/abstract/MED/29931005
http://dx.doi.org/10.1039/c8lc00236c
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29931005&dopt=Abstract
http://dx.doi.org/10.1016/j.jbiosc.2022.11.007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36586792&dopt=Abstract
http://dx.doi.org/10.1109/cict.2013.6558103
https://doi.org/10.1038/s41598-017-01454-4
http://dx.doi.org/10.1038/s41598-017-01454-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28465615&dopt=Abstract
http://dx.doi.org/10.1016/j.sna.2018.03.009
https://onlinelibrary.wiley.com/doi/10.1002/cyto.a.21079
http://dx.doi.org/10.1002/cyto.a.21079
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21674772&dopt=Abstract
http://dx.doi.org/10.1523/eneuro.0056-18.2018
http://dx.doi.org/10.1109/cvpr.2016.91
https://onlinelibrary.wiley.com/doi/10.1002/cyto.a.24475
http://dx.doi.org/10.1002/cyto.a.24475
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34145728&dopt=Abstract
https://europepmc.org/abstract/MED/36214344
http://dx.doi.org/10.1039/d2lc00462c
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36214344&dopt=Abstract
https://europepmc.org/abstract/MED/32549924
http://dx.doi.org/10.1063/5.0008461
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32549924&dopt=Abstract
https://doi.org/10.1038/s41598-017-11534-0
http://dx.doi.org/10.1038/s41598-017-11534-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28912565&dopt=Abstract
http://dx.doi.org/10.1039/d0lc00747a
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33734252&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


49. Chen H, Li Z, Zhang L, Sawaya P, Shi J, Wang P. Quantitation of femtomolar‐level protein biomarkers using a simple
microbubbling digital assay and bright‐field smartphone imaging. Angewandte Chemie. Aug 21, 2019;131(39):14060-14066.
[doi: 10.1002/ange.201906856]

50. Xue Y, Ray N, Hugh J, Bigras G. Cell Counting by Regression Using Convolutional Neural Network. In: Hua G, Jégou
H, editors. Computer Vision – ECCV 2016 Workshops. ECCV 2016. Lecture Notes in Computer Science(), vol 9913.
Cham, Switzerland. Springer; 2016.

51. Xu M, Papageorgiou DP, Abidi SZ, Dao M, Zhao H, Karniadakis GE. A deep convolutional neural network for classification
of red blood cells in sickle cell anemia. PLoS Comput Biol. Oct 19, 2017;13(10):e1005746. [FREE Full text] [doi:
10.1371/journal.pcbi.1005746] [Medline: 29049291]

52. Aliyu HA, Sudirman R, Abdul Razak MA, Abd Wahab MA. Red blood cells abnormality classification: deep learning
architecture versus support vector machine. IJIE. Nov 01, 2018;10(7):1. [doi: 10.30880/ijie.2018.10.07.004]

53. Farnebäck G. Two-Frame Motion Estimation Based on Polynomial Expansion. In: Bigun J, Gustavsson T, editors. Image
Analysis. SCIA 2003. Lecture Notes in Computer Science, vol 2749. Berlin, Germany. Springer; 2003.

54. D125: Complete Blood Count (CBC). Infovets. URL: http://infovets.com/books/smrm/D/D125.htm [accessed 2024-06-01]
55. Manual RBCs count using Neubauer Chamber. Medical Lab Notes. Jan 27, 2024. URL: https://medicallabnotes.com/

manual-rbcs-count-using-neubauer-chamber/ [accessed 2024-06-01]
56. Oyaert MN, Speeckaert MM, Delanghe JR. Microhematuria: AUA/SUFU guideline. Letter. Journal of Urology. Jun

2021;205(6):1848-1849. [doi: 10.1097/ju.0000000000001522]

Abbreviations
COTS: commercial off-the-shelf
RQ: research question
YOLO: You Only Look Once

Edited by A Coristine; submitted 08.07.24; peer-reviewed by T Phairatana, HA Amiri; comments to author 11.09.24; revised version
received 04.11.24; accepted 24.11.24; published 23.12.24

Please cite as:
Wu S, Song K, Cobb J, Adams AT
Pump-Free Microfluidics for Cell Concentration Analysis on Smartphones in Clinical Settings (SmartFlow): Design, Development,
and Evaluation
JMIR Biomed Eng 2024;9:e62770
URL: https://biomedeng.jmir.org/2024/1/e62770
doi: 10.2196/62770
PMID:

©Sixuan Wu, Kefan Song, Jason Cobb, Alexander T Adams. Originally published in JMIR Biomedical Engineering
(http://biomsedeng.jmir.org), 23.12.2024. This is an open-access article distributed under the terms of the Creative Commons
Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work, first published in JMIR Biomedical Engineering, is properly cited. The complete
bibliographic information, a link to the original publication on https://biomedeng.jmir.org/, as well as this copyright and license
information must be included.

JMIR Biomed Eng 2024 | vol. 9 | e62770 | p. 19https://biomedeng.jmir.org/2024/1/e62770
(page number not for citation purposes)

Wu et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://dx.doi.org/10.1002/ange.201906856
https://dx.plos.org/10.1371/journal.pcbi.1005746
http://dx.doi.org/10.1371/journal.pcbi.1005746
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29049291&dopt=Abstract
http://dx.doi.org/10.30880/ijie.2018.10.07.004
http://infovets.com/books/smrm/D/D125.htm
https://medicallabnotes.com/manual-rbcs-count-using-neubauer-chamber/
https://medicallabnotes.com/manual-rbcs-count-using-neubauer-chamber/
http://dx.doi.org/10.1097/ju.0000000000001522
https://biomedeng.jmir.org/2024/1/e62770
http://dx.doi.org/10.2196/62770
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

