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Abstract

Background: Cardiovascular diseases (CVDs) are the leading cause of death globally, and almost one-half of all adults in the
United States have at least one form of heart disease. This review focused on advanced technologies, genetic variables in CVD,
and biomaterials used for organ-independent cardiovascular repair systems.

Objective: A variety of implantable and wearable devices, including biosensor-equipped cardiovascular stents and biocompatible
cardiac patches, have been developed and evaluated. The incorporation of those strategies will hold a bright future in the
management of CVD in advanced clinical practice.

Methods: This study employed widely used academic search systems, such as Google Scholar, PubMed, and Web of Science.
Recent progress in diagnostic and treatment methods against CVD, as described in the content, are extensively examined. The
innovative bioengineering, gene delivery, cell biology, and artificial intelligence–based technologies that will continuously
revolutionize biomedical devices for cardiovascular repair and regeneration are also discussed. The novel, balanced, contemporary,
query-based method adapted in this manuscript defined the extent to which an updated literature review could efficiently provide
research on the evidence-based, comprehensive applicability of cardiovascular devices for clinical treatment against CVD.

Results: Advanced technologies along with artificial intelligence–based telehealth will be essential to create efficient implantable
biomedical devices, including cardiovascular stents. The proper statistical approaches along with results from clinical studies
including model-based risk probability prediction from genetic and physiological variables are integral for monitoring and
treatment of CVD risk.

Conclusions: To overcome the current obstacles in cardiac repair and regeneration and achieve successful therapeutic applications,
future interdisciplinary collaborative work is essential. Novel cardiovascular devices and their targeted treatments will accomplish
enhanced health care delivery and improved therapeutic efficacy against CVD. As the review articles contain comprehensive
sources for state-of-the-art evidence for clinicians, these high-quality reviews will serve as a first outline of the updated progress
on cardiovascular devices before undertaking clinical studies.

(JMIR Biomed Eng 2025;10:e65366)   doi:10.2196/65366
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Introduction

Cardiovascular diseases (CVDs) are the leading cause of death
globally, accounting for an estimated 17.9 million deaths in
2019 according to a report from the World Health
Organization. Almost one-half of all adults in the United States
have at least one form of heart disease [1]. Myocardial infarction
(MI) is caused by ischemia in the coronary artery, primarily due
to blocked arteries resulting from atherosclerosis [2]. This
blockage damages the myocardium, reducing its contractile
capacity, which leads to a decreased ejection fraction and,
ultimately, heart failure [3]. In the United States, one healthy
heart becomes infarcted every 40 seconds [4].

Preserving tissue and cellular function is crucial for maintaining
heart functionality. Numerous signaling pathways and genetic
factors associated with MI survival have been periodically
reviewed [5-7]. There is a growing emphasis on understanding
the mechanisms involved in myocardial repair and regeneration
[8]. Reports from organizations such as the Transnational
Alliance for Regenerative Therapies in Cardiovascular
Syndromes highlight the importance of these mechanisms. Key
principles affecting reparative and regenerative potential include
survival and protection, cell-cell communication, angiogenesis
and vascularization, cardiomyogenesis, molecular regulation
of the cell cycle and proliferation, inflammation reduction, and
cardiac aging [7,9].

An increase in reactive oxygen species (ROS) is a hallmark of
ischemic cardiomyopathy [10]. ROS, such as hydrogen peroxide
(H2O2) and hydroxyl radicals, play a significant role in MI and
can be considered ideal regulators for patients post-MI [11].
The concentration of H2O2 in healthy cells is about 0.02 mM,
whereas intracellular concentrations above 0.1 mM induce
oxidative stress and cell death [12,13]. Given that extracellular
H2O2 concentrations can be 10 to 100 times higher than
intracellular levels [14], careful monitoring of H2O2 levels in
cells is essential for prevention and treatment. As ROS play an

integral role in platelet aggregation and vasodilation, inhibitors
of vasodilation and platelet aggregation are commonly adapted
as a therapeutic means against MI [15].

Regarding the treatment methods against CVD, organ transplant
has been the most efficient strategy. Despite the preference for
organ donor replacement in treating CVD, the shortage of organ
donors has driven significant research into human-scale
cardiovascular organs and functional tissue substitutes [16,17].
Challenges such as complex fabrication processes [18], poor
mechanical properties [19], and biocompatibility and
immunogenic issues [20] remain unresolved.

Designing prostheses requires fabricating matrix constructs with
complex shapes and sizes for clinical applications [21].
Prostheses and implantable devices have varying requirements
that are categorized into chemical, mechanical, electrical, and
thermal characteristics [22]. Additionally, these devices must
be biocompatible, be nonimmunogenic, and maintain functional
capabilities within the body’s biological environment [23].
Although serious infections or side effects from cardiovascular
prostheses are rare, infected prostheses can be fatal [24].

Hydrogels, which are hydrophilic polymeric scaffolds with
unique 3-dimensional structures, can absorb large amounts of
water or biological fluids, making them potential candidates for
cardiovascular tissue engineering [23]. Various synthetic and
natural polymers are used in implantable hydrogels, with natural
polymers like collagen offering higher immunity and
biodegradable properties over synthetic ones.

This review focused on genetic variables in CVD, advanced
technologies, and biomaterials for organ-independent
cardiovascular repair systems (Figure 1). A variety of
implantable and wearable devices, including biosensor-equipped
cardiovascular stents and biocompatible cardiac patches, have
been developed and evaluated. Finally, future research directions
in the rapidly evolving fields of 3D-printed biomedical devices,
artificial intelligence (AI), and multifunctional sensing devices
are discussed.

Figure 1. Cardiac repair and regeneration via advanced technologies and gene therapy.

Advanced Assessment Technologies for
Cardiac Image and Genetic Factors

Image Features Extracted From Imaging Modalities
Risk variables used for the classification of CVD progression
include radiological imaging features and genetic factors. The
complex nature of cardiovascular structures makes stenosis

assessment from image modalities a serious challenge. In
general, imaging features are considered radiomic-based
biomarkers or indicators rather than pathological symptoms.
An assessment of imaging features can serve as a quantitative
index extractable from such imaging modalities as magnetic
resonance imaging, computed tomography angiography (CTA),
and optical coherence tomography [25]. Even though a
semiquantitative estimation of coronary stenosis is feasible via
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a thorough assessment of image features over an extended
period, this process requires advanced technology expertise and
labor-intensive effort.

In particular, coronary CTA, a noninvasive examination
technique, plays an integral role in the evaluation and treatment
of coronary artery disease (CAD) [26]. For instance, dual-source
CTA allows for improved resolutions of implantable devices,
including intrinsically higher-density stents, whose adversities
are due to distortion reduction stemming from thick strut slices
[27]. This approach makes it possible to conduct advanced
cardiac imaging analysis, even though its invasive nature
sometimes yields a high risk of fatality and complications
[28-30].

As the number of images exponentially grows, the lack of ability
to accurately label those images causes intrinsic limitations in
the interpretation of the data [31]. A recent surge of AI
techniques could serve as an ideal solution, enhancing the
accuracy of a quantitative assessment of segmented features,
including intima-media thickness ascertained by such computed
algorithms as convolutional neural networks, UNet, UNet+, and
DenseNet [32]. AI techniques and associated programmed
models are for accurate identification of patterns, abnormalities,
and defects in images, leading to enhanced efficiency and a
reduction in errors inherent in human inspection [33].

Evolving Gene Therapy Against CVD

Genetic Factors in the Assessment of CVD Risk
Genes are involved in most cardiovascular functions, starting
with the robustness of blood vessels to the way cells interact.
People with a family history of heart disease could share
common environmental factors, such as the intake habits of
drinking water and daily food and exposure to chemicals,
including carbon monoxide, in the air. As most cardiac
disorders, including arrhythmias, congenital heart disease,
cardiomyopathy, and high blood cholesterol, can be inherited
[34], assessing genetic variants or biomarkers to identify at-risk
individuals is integral to the prevention and treatment of CVD
[35].

Genetic variations acquired by children from parents in the
DNA of the eggs and sperm can influence every cell of a child’s
body, not only in the development process but also in the onset
of heart disease [36]. An 8-year follow-up study found that CVD
risk increased by 75% with a paternal history and about 60%
with a maternal history of premature CVD, implying that certain
genes can significantly enhance the risk of heart disease [37].
In the same study, a 16-year follow-up investigation found that
a family history of premature CAD (age <50 years) marked a
44% higher risk of CVD mortality.

The pooled cohort equations for risk classification have been
adapted based on genetic variants and medication decisions,
including statins [38]. On the other hand, polygenic risk score
(PRS) generation based on the relationships between the amount
and frequency of genetic variants and the onset of specific
diseases [39-41] has been explored for the assessment of genetic
risk and extrapolation of individual outcomes [42]. The PRS
could be accompanied by family history, lifestyle, and
environmental factors [43,44] and fortified with emerging

technologies, including proteomics, when determining an
individual’s genetic predisposition to CVD [45,46]. PRS mostly
outperforms traditional risk scores in the prediction of individual
outcomes, and additional AI-based transfer learning could
further upgrade the relatively less accurate performance on
translating PRS from ancestry to different ethnicities that are
mostly unknown and unvalidated [47].

Genes that could reduce the development of plaque around
infected regions would prevent neointimal formation [48]. The
primary CVD endogenous biological variants include C-reactive
protein, a liver protein released in response to inflammation
[8,49], and plasma levels of low-density lipoprotein cholesterol
[50], a seminal risk factor for the development of coronary heart
disease. In addition, pro-inflammatory CD4+ cells with CD28
expression [49,51], cardiac troponin I [52], and the number of
regulatory T lymphocytes [53] are frequently examined as
specific biomarkers for the diagnosis of acute MI. Also, specific
genes (eg, APOB, LDLR, and PCSK9 genes for familial
hypercholesterolemia and BAG3, LMNA, MYH7, PLN,
RBM20, SCN5A, TTN, TNNC1, TNNI3, TNNT2, and TPM1
genes for dilated cardiomyopathy) were recommended by the
American Heart Association to be tested for the diagnosis of
monogenic CVDs [54].

Along with those biological variants, pathological genetic factors
or symptoms assessed for CVD include carotid intima thickness
[55,56] and vascular function (which occur in the early stage
of familial hypercholesterolemia) [57,58]. Detection of those
genetic markers as part of familial cascade screening programs
in familial hypercholesterolemia can lead to preventive effects,
where subsequent medical therapy can lower long-term CVD
risk [55,59]. A combined application of various genetic factors
based on each patient’s genetic profile may guarantee an
efficient treatment strategy against CVD [35].

Even though genetic factors play a significant role in developing
conditions of CVD, the screening processes including a health
DNA test can only reveal certain genetic mutations that increase
the risk and responses [60]. Subsequently, the relationship
between genetic factors and risk scores is sometimes poor due
to the fact that those having the genetic mutation do not
necessarily have the same lifestyle factors, including basic health
measures. Therefore, proper statistical approaches along with
the results from clinical studies including model-based risk
probability prediction from each or combined genetic variables
are integral for genetic-based prediction of the CVD risk [61].

AI for Cardiovascular Gene Therapy
Genes (DNA, small interfering RNA, and microRNA) that could
interfere with the development of plaque around infected regions
are conjugated on biomedical devices like cardiovascular stents
to prevent neointimal formation. An advanced monitoring
process of genetic data and clinical data from electronic health
records could lead to a fast and precise clinical decision and
achieve customized treatment, eventually alleviating CVD via
the detection of CVD symptoms at an early stage. However,
the efficiency of cardiovascular gene therapy has been hampered
by some obstacles, such as insufficient gene propagation, a lack
of delivery mechanisms, and insufficient cell-vector interactions
[62]. Moreover, health care providers may negatively influence
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clinical outcomes due to the lack of discipline in the treatment
algorithms and the absence of established regulations to handle
early-onset data [63,64].

Combined AI models will address highly complicated
cardiovascular clinical genetics [65]. AI profoundly apprehends
complex patterns in imaging profiles and offers quantitative
assessments of radiographic properties, serving as a valuable
tool for enhancing imaging postprocessing. For instance, a
combined convolutional neural network and recurrent neural
network has achieved enhanced accuracy in predicting stenosis
(≥50%) upon examining genetic variables grouped into training
and testing samples [32,66]. This approach has obtained similar
outcomes in the quantitative assessment of the growing number
of segmented image features, including intima-media thickness
for CVD [31,32].

In general, the advanced technology involved with AI is
revolutionizing the method that ensures the accuracy,
completeness, consistency, and validity of clinically applicable
gene data [67]. In parallel, researchers should follow established
guidance on using information from the digital world, as several
guidelines have already been issued by institutional review
boards to properly maintain genetic data integrity [68]. As a
result of the increase in genetic testing and the fear of privacy
breaches by health providers, employers, and society, the
disciplines of ethics, public health, and genetics have also
emerged. The health professional should make a compromise
between providing proper arrangements for patient care and
protecting personal privacy. In the near future, the adaptation
of AI in radiomics will lead to precise and automated analysis
of genetic variables involved with disease onset and progress.

Telehealth Genetic Counseling Between Patients and
Genetic Counselors
To improve the efficacy of the diagnosis and assessment of
CVD risk, the prediction tools, including telehealth systems,
should assess endogenous genetic compounds involved with

heart failure, atherosclerosis, and CAD [67,69]. Telehealth
genetic counseling, including videoconferencing and telephone
counseling, was compared with in-person genetic counseling
for the degree of outcomes specific to patient experiences and
accessibility to various treatment methods. The patients
expressed the highest satisfaction with genetic counseling
provided by media devices, such as telephone and video [70-72].
Moreover, telehealth genetic counseling is considered equitable
to in-person genetic counseling across numerous domains, even
though those studies were conducted with telehealth systems
that were less robust and accurate than what is available today.

The benefits and limitations of telehealth from the perspectives
of the patients and genetic counselors have been thoroughly
examined to resolve potential uncertainty in the analysis
processes [73-75]. Those limitations include technical
challenges, difficulty in rapport and the subsequent psychosocial
issues, and lack of clinical complement [74,76]. There needs to
be some conceptual changes in the current status of telehealth
approaches over time, providing continuous advancement in
involved technologies [76,77].

Mobile Sensors for Cardiovascular Information
Systems
Remote monitoring is considered the ambulatory tracing of vital
signs and other medical indicators of a patient’s health and
recovery status via a telemedicine system without the patient
meeting doctors or being present in the clinic (Figure 2) [78].
The Food and Drug Administration has recognized the
importance of devices such as continuous temperature
monitoring or continuous glucose monitoring devices that allow
health care providers to remotely monitor patients, including
those that measure body temperature, respiratory rate, heart
rate, and blood pressure. In addition, a new approach based on
advanced technologies for various physiological variables and
biomarkers has performed continuous in-time monitoring as
well as subsequent customized treatment strategies.

Figure 2. Schematic Representation of Remote Monitoring System of Biosensor/Cardiac Implantable Electronic Device.
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The current roles of mobile sensors explored in telehealth
technologies and further challenges in CVD will specifically
emphasize (1) accurate assessment and diagnosis of vital signs
or biomarkers from CVDs, (2) reliable and reproducible sensing
systems to monitor the progress of a patient’s disease status,
and (3) wearable devices with maintenance of battery life and
restoration of interaction sensitivity capable of assessing
cardiovascular information of patients at risk [79-81].

The problem arises when analyzing data from mobile sensors
due to a lack of normalization and implementation of proprietary
interfaces to the respective device or platform. In daily life,
numerous portals provided by each sensor manufacturer should
be simultaneously traced and aggregated into the existing
database for each cardiovascular patient [82]. Thus, the
integration of data obtained from patients with heart failure or
implantable cardiac devices needs to be properly conducted to
store data in a structured and interoperable way for timely
clinical and scientific evaluations [83,84].

Advanced Systems Currently Available
for CVD

Biomaterials for Organ-Independent Cardiovascular
Repair Systems

Required Properties for Organ-Independent
Cardiovascular Repair Systems
The highly ordered myocardium capacity for electrical integrity
and electrical conduction between healthy and infarcted cells
starts to diminish as the relatively disordered fibrous scar tissue
disposition increases in the myocardium, leading to systolic and
diastolic dysfunction and cardiac arrhythmia [85]. As heart
transplantation is limited due to a shortage of organ donors,
organ-independent systems, including cardiac patches, grafts,
and scaffolds, play an essential role in cardiac repair and
treatment of MI [86].

Biomaterial systems function like normal cardiac tissues,
providing excellent electrical conductivity, mechanical strength,
and biological activities to infarcted heart tissues [87]. Novel
biomaterial-based systems offer self-renewal and regeneration
in the damaged heart, serving as various resources for cardiac
tissue repair for those with CVD. For instance, cardiac patches
provide mechanical support to the myocardial wall and passively
prevent the infarcted myocardium following MI by reducing
myocardial wall stress and preventing left ventricular dilation
and remodeling [88].

Hydrogels for Organ-Independent Cardiovascular Repair
Systems
Hydrogels are soft and moist injectable biomaterials with
properties similar to those of human soft tissues. They are
minimally invasive and serve as a vehicle for the delivery of
therapeutic agents in situ [89,90]. Conductive hydrogel systems
based on low-dimensional inorganic nanomaterials, such as
carbon nanotubes and graphene derivatives [23], and
simultaneously loaded with stem cells, growth factors, cytokines,
or oligonucleotides, are found to alleviate cardiac casualties by

promoting angiogenesis and cardiomyocyte proliferation and
reducing fibrosis and apoptosis.

In addition, a complex hydrogel patch is produced by principles

of fabrication via Fe+3-induced ionic coordination between a
homogeneous network of dopamine-gelatin conjugates and
dopamine-functionalized polypyrrole [91]. The Schiff base
reaction between oxidized sodium hyaluronic acid and
hydrazided hyaluronic acid was explored to form an injectable
hydrogel patch. Added bioactive peptides, a 7-amino acid
peptide, loaded in collagen-based hydrogel reduced cell
apoptosis, enhanced Sca-1+ recruitment and differentiation of
stem cells, and enhanced neovascularization formation, which
resulted in improved heart function in a mouse MI model [90].

Cardiac Patch

Therapeutic Patch as an Effective Strategy
All the delivery methods for MI recovery drugs, primarily via
the oral route but occasionally via an intravenous route, direct
injection to the heart, and drug-eluting stents, have their own
limitations in resolving MI-induced loss of cardiomyocytes
[92]. Advanced formulations, including cardiac patches, have
demonstrated their efficiencies in functional recovery for drug
carriers with targeted and local delivery of cardiovascular drugs,
nutrients, and cells. Moreover, patches not only are capable of
providing necessary mediators in multiple therapies to recover
the affected area but also strengthen the damaged area with
induced cell attachment and proliferation [93].

Types of Patches and Their Applications for MI Recovery
Therapeutic patches are divided into two types based on the
presence or absence of cells: cell-based patches and acellular
patches. As there is a lack of regeneration of cardiomyocytes,
cells such as human-induced pluripotent stem cells,
mesenchymal stem cells, and skeletal myoblasts are often
introduced to restore cardiac function [94].

Newly introduced cells can lead to enhanced angiogenesis,
lowered fibrosis, and apoptosis of cardiomyocytes [2]. Due to
the inefficiency of generating new heart tissue from
cardiomyocytes, acellular cardiac patches, which might include
paracrine factors such as proteins, RNA, growth factors, or small
molecules, are occasionally explored to accomplish
cardioprotective effects [95].

The biocompatibility of the source biomaterial often entails a
serious challenge in designing any implantable patches [96].
Moreover, the biomaterial should be similar to that of host
tissues from the perspectives of biochemical, mechanical, and
topographical properties [97,98]. For instance,
poly(hydroxyethyl) methacrylate (pHEMA) polymer has
demonstrated biocompatibility and has been used for biomedical
applications, including drug delivery [99,100], contact lenses
[101,102], and tissue engineering [103,104]. However, the low
viscous nature of pHEMA makes it a challenging task to develop
pHEMA-based biomedical devices, including a cardiac patch
that is capable of successfully delivering agents like ROS
scavengers against MI.
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3D Printing Technology for Cardiac Patch Development
3D printing can be used to create patient-specific devices, such
as organ implants and tissue models that mimic human
physiology. 3D printing can generate surgical planning models
and reduce the need for animal testing. 3D printing can be used
to create personalized medicines and their delivery systems that
specifically adapt to each patient’s genetic makeup [105].

There are numerous methods, including electrospinning, solvent
evaporation, and decellularization, used for the development of
patches [106]. Each of these methods has its own challenges,
such as material selectivity, limitations in complex shapes, and
cost and time efficiency [107]. Additionally, 3D printing has
emerged as a low-cost and fast method to develop patches
produced from a vast range of materials with the utmost efficacy.

As previously mentioned, a novel patch based on biocompatible
pHEMA polymers was developed with the aid of direct-light
3D printing technology. Stereolithography-based 3D printing,
where the ink is placed on a platform, was successfully used to
prepare 3D-printed acellular cardiac patches or cardiovascular
stents [21]. In 3D-printed systems, the immunosuppressive drug,
like sirolimus, dispersed within the patch matrix will be released
when the linker, like an ROS-responsive thioketal linker, that
connects the polymers is cleaved [108]. The ratio of the polymer
and crosslinker can be customized to achieve controllable drug
release.

3D- or 4D-Printable Smart Devices for CVD
3D printing provides geometric flexibility, which has been
explored to produce metal or polymer-embedded 3D construct
microsystems with high flexibility [23,109]. 3D-printed systems
or smart devices use advanced materials with characteristics
such as thermal and electrical conductivity and piezo-resistivity
[110]. Electric units or components, including resistors,
capacitors, inductors, circuits, and passive wireless sensors and
batteries, have been incorporated into 3D-printed products for
potential practical applications.

3D tactile sensors capable of detection and differentiation of
human movements, including pulse monitoring and finger
motions via detection of endogenous compounds, were
fabricated using multimaterial, multiscale, and multifunctional
approaches under ambient conditions conformally onto freeform
surfaces [111]. As lactate levels have been associated with heart
failure as well as diabetes, the portable luminometer, a
disposable minicartridge produced by 3D printing and stored
in cell phones, was used to detect chemiluminescence from
enzyme-coupled reactions [112]. Lactate oxidase was coupled
with horseradish peroxidase to noninvasively detect the lactate
levels within 5 minutes at a detection limit of 0.5 mM/L and
0.1 mM/L in oral fluids and sweat, respectively.

By adapting AI to additive manufacturing, 3D designers can
optimize cardiovascular biosensors or implants to be more
efficient and robust. AI-mediated 3D printing tools can
synchronize with high-quality imaging data, such as computed
tomography and magnetic resonance imaging scans, and
generate personalized designs, enabling thorough control over
the otherwise unavoidably complicated, time-consuming, and
exhaustive process [3].

An optimal combination of 3D printing based on novel or hybrid
3D printing methods and AI can achieve the next generation of
cardiovascular systems [113]. Subsequently, advanced 3D or
4D printing, once nearly overcoming the cost and scalability
barriers, could lead to more effective and targeted treatments
against CVD, accomplishing improved treatment outcomes and
enhanced health care delivery [67].

Advanced Cardiovascular Stents for CVD

Gene-Eluting Stents
Advanced biomedical gene carriers have been intensively
explored in vascular cell biology and CVD treatment. The
identification of critical regulators, such as noncoding RNAs,
including microRNA, long noncoding RNA, and circular RNA
presence in such cell types as vascular smooth muscle cells,
endothelial cells, and macrophages, has served as an efficient
therapeutic target in the field of CVD.

Among biomedical carriers, multifunctional gene-loaded stents
and integrated stents equipped with self-reporting sensors are
often explored as promising technologies against CVD,
including atherosclerosis and MI [114,115]. Cardiovascular
stents keep the vessel open and prevent it from re-occluding
(ie, restenosis), but vessel injury by stent struts leads to the
activation of platelets and mural thrombus formation, leading
to the activation of circulating neutrophils and tissue
macrophages [116-118]. As the cardiovascular stent produces
late-stage restenosis [119,120], people with stents are at risk of
high blood pressure. Therefore, it is integral to find a more
advanced and sensitive stent capable of real-time monitoring
of blood flow.

Gene-loaded stents coated with synthetic and natural polymers
such as polylactic-polyglycolic acid (PLGA), collagen,
hydroxyapatite, and matrix metalloproteins can overcome major
limitations of cardiovascular gene therapy, including insufficient
cell-vector interactions, a lack of delivery mechanisms, and
insufficient gene propagation [121]. Gene-loaded stents also
allow for maintaining a curative gene, serving as a carrier to
convey the gene and administer the vector and avoiding immune
responses [62].

The first successful in vivo transfection of green fluorescent
protein plasmid DNA loaded in a DNA-PLGA coated stent was
efficiently expressed in cell cultures (7.9%, SD 0.7% vs 0.6%,
SD 0.2% control; P<.001) of rat aortic smooth muscle cells
[122]. In addition, PLGA nanoparticle-coated stents
encapsulated with vascular endothelial growth factor and
paclitaxel [123] or Ang-1 proteins [124] were developed as an
alternative therapy, reducing in-stent restenosis and
accomplishing complete re-endothelialization. In addition, an
Akt1 small interfering RNA–embedded stent alleviated
restenosis, reducing cell growth via muting RNA [125,126].
Furthermore, bare-metal stents with a synthetic complex for
reversible vector binding produced prominent green fluorescent
protein positivity in A10 cells proximal to the strut after 72
hours in culture [127].

A collagen-coated stent covalently coupled with anti-DNA
immunoglobulin M antibody and loaded with plasmid DNA
was efficiently developed for localized gene delivery to smooth
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muscle cells in an artery, accomplishing high-level protein
production through reporter gene expression [125]. In addition,
a stent coated with biomimetic hyaluronic acid and deposited
with DNA/polyethylenimine polyplexes was explored to deliver
plasmid DNA to the artery, exerting its efficacy in alleviating
restenosis with a higher neointimal transfection rate while
maintaining structural stability [128].

Stents Equipped With Cardiovascular Self-Reporting
Sensors
Continuous blood flow surveillance can serve as screening,
advanced detection, and alert for cardiovascular health using
noninvasive technology that can be placed in the coronary
arteries [129]. Remote monitoring of patient progress is feasible
by creating an application-specific integrated circuit that features
a voltage regulator and radio frequency power element loaded
in biomedical devices, including cardiovascular stents.

For instance, a remote monitoring stent was combined with a
tiny heart pressure sensor as well as a wireless transmitter that
continuously monitors vascular conditions and the status of
implanted devices. To minimize the number of antenna
components for the conservation of space, the stent was used
as an inductive antenna to create a wireless network [130,131],
transmitting quantified solubilization to the immediate
neighborhood via a wireless telemetry transmitter [132].
Reviewing the admittance of an antenna close to the implant
component and connected to it via electromagnetic coupling
will enable this function [133]. A radio frequency–powering
component was implanted on the chip in the finished device as
an ideal power distribution feature. Microelectromechanical

modules were crammed with an application-specific integrated
circuit for data collection [134].

As shown in Figure 3, a blood flow sensor enclosed in
graphene-embedded silicon rings subsequently equipped with
a digital wireless transmission microchip was developed as a
unit of the smart theranostic cardiovascular stent (Figure 3C).
Numerous commercial devices, including pressure sensors, use
the piezoresistive effect of silicon, whose gauge factors can be
2 orders of magnitude larger than those observed in most metals
[135,136]. Thus, a flow sensor enclosed in the stent was able
to continuously monitor real-time blood flow with high
inductance and pressure resolution and transmit corresponding
data to a cardiologist outside the body. In addition to superior
moisture barrier property, the high thermal conductivity of
graphene (which has a negative thermal expansion coefficient

[−8.0 × 10–6/K] between 0 and 700 K) guaranteed dimensional
stability upon exposure to body temperature and continuous
blood flow.

The pressure sensors and the microchip were mounted on the
rectangular areas of the stent structure, as shown in Figure 3C.
The pressure sensors bound to the steel stent [137,138] were
molded into graphene-embedded silicone rings, and the pattern
was cut on a thin stainless-steel foil. These digital transmission
techniques reduced the power radiated by the external reader,
thus minimizing the patient’s exposure to electromagnetic fields.

In electromagnetic coupling, a continuous electromagnetic wave
with relatively large power is radiated by the reader, and the
microchip modulates the impedance of the antenna by
connecting or disconnecting a load to it according to the data
to be transmitted [130].

Figure 3. (1) stent and rings, (2) dimension and size of rings (A: Ring inner diameter (i.e., same as stent outer diameter); B: Stent inner diameter), (3)
3-Dimentional Stent (C: Stent length; D: Ring outer diameter) and (4) application of external electromagnetic stimuli.

Conclusion

Biotechnologies play an important role in cardiovascular repair
and regeneration. Genetic variables in CVD, currently available
technology, and biomaterials for organ-independent
cardiovascular repair systems were updated in this article in a
timely manner. Advanced biotechnologies aimed at
target-specific therapeutics are designed for customized and
personalized cardiac treatment strategies with one or multiple
administration routes whose methods should be further improved
to enhance targeting and treatment efficacy.

The goal of gene therapy for cardiac repair and regeneration is
to achieve cardiac transfection outcomes via the selection of
proper gene vectors and modifying a gene or genetic pathways.
Moreover, 3D bioprinting technology has been widely used in
cardiac repair by integrating biomaterials with various
manufacturing processes to customize cardiac conditions. 3D
scaffolds with varying cell types have demonstrated better
biocompatibility, delivery efficiency, and low immunogenicity.
In the future, screening and designing of viral vectors through
structure evolution mediated by 3D printing would enhance
cardiac gene therapy.
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To overcome the current obstacles in cardiac repair and
regeneration and achieve successful therapeutic applications,
future interdisciplinary collaborative work should be integral.
Advanced new material and cell biology, along with AI-based
telehealth, will be essential to create efficient implantable

biomedical devices, including cardiovascular stents. Advanced
innovative bioengineering, gene delivery, and cell biology
technologies will continuously revolutionize medical devices
for cardiovascular repair and regeneration in the future.
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Abstract

Background: The use of acoustic biomarkers derived from speech signals is a promising non-invasive technique for diagnosing
type 2 diabetes mellitus (T2DM). Despite its potential, there remains a critical gap in knowledge regarding the optimal number
of voice recordings and recording schedule necessary to achieve effective diagnostic accuracy.

Objective: This study aimed to determine the optimal number of voice samples and the ideal recording schedule (frequency
and timing), required to maintain the T2DM diagnostic efficacy while reducing patient burden.

Methods: We analyzed voice recordings from 78 adults (22 women), including 39 individuals diagnosed with T2DM. Participants
had a mean (SD) age of 45.26 (10.63) years and mean (SD) BMI of 28.07 (4.59) kg/m². In total, 5035 voice recordings were
collected, with a mean (SD) of 4.91 (1.45) recordings per day; higher adherence was observed among women (5.13 [1.38] vs
4.82 [1.46] in men). We evaluated the diagnostic accuracy of a previously developed voice-based model under different recording
conditions. Segmented linear regression analysis was used to assess model accuracy across varying numbers of voice recordings,
and the Kendall tau correlation was used to measure the relationship between recording settings and accuracy. A significance
threshold of P<.05 was applied.

Results: Our results showed that including up to 6 voice recordings notably improved the model accuracy for T2DM compared
to using only one recording, with accuracy increasing from 59.61 to 65.02 for men and from 65.55 to 69.43 for women. Additionally,
the day on which voice recordings were collected did not significantly affect model accuracy (P>.05). However, adhering to
recording within a single day demonstrated higher accuracy, with accuracy of 73.95% for women and 85.48% for men when all
recordings were from the first and second days.

Conclusions: This study underscores the optimal voice recording settings to reduce patient burden while maintaining diagnostic
efficacy.

(JMIR Biomed Eng 2025;10:e64357)   doi:10.2196/64357

KEYWORDS

vocal biomarker; acoustic biomarker; voice analysis; type 2 diabetes; diagnostics; digital phenotyping; voice data

Introduction

Diabetes mellitus is a chronic metabolic disorder characterized
by persistent elevated blood glucose levels due to inadequate
or impaired insulin production or utilization. It affects 10.5%
of the worldwide population (536.6 million people) [1], with
type 2 diabetes mellitus (T2DM) accounting for 90% of cases
[2]. Uncontrolled diabetes is a major contributors to
cardiovascular disorders, blindness, renal failure, and lower
limb amputation [2].

Traditional diagnostic methods of fasting plasma glucose and
oral glucose tolerance tests involve blood sampling, which can
cause inconvenience or discomfort to patients owing to frequent
monitoring. Moreover, the lack of a glucometer and the time
spent for self-testing are barriers in the self-management of
diabetes [3,4]. In response to these challenges, acoustic

biomarkers from speech signals have emerged as promising
non-invasive alternatives, offering a convenient solution for
diagnosing and monitoring diabetes, especially for individuals
in remote areas with restricted health care accessibility.

Sustained periods of high blood glucose and the detrimental
effects of peripheral neuropathy and myopathy in individuals
with T2DM impact the elastic properties of the vocal folds [5],
weaken the laryngeal muscles, and induce respiratory changes
[6]. These physiological changes can affect voice parameters,
leading to voice disorders like hoarseness [7] and dysphagia
[8]. Consequently, compared to those without T2DM,
individuals with the condition exhibit significant vocal
differences, quantified by phonation time, fundamental
frequency, jitters, and shimmers [6], highlighting the importance
of investigating vocal variations as potential markers of T2DM
[9-13].
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Our group previously assessed the feasibility of using voice
recordings from mobile applications to detect T2DM [14]. Our
results demonstrated that voice biomarkers—specifically pitch,
jitters, and shimmers—combined with age and BMI could
predict T2DM with an accuracy of 0.89 for women and 0.86
for men [14]. However, requiring participants to record their
voices at least 6 times daily over a 2-week period posed
challenges related to participant burden and recording
consistency.

Therefore, this study aims to optimize the voice sampling
process by determining (1) the minimum number of voice
samples required, and (2) the optimal recording schedule
(frequency and timing) needed to maintain diagnostic accuracy
while reducing participant burden. We hypothesize that a more
streamlined voice sampling protocol can achieve comparable
predictive performance to prior studies while improving
feasibility for long-term diabetes monitoring.

Methods

Study Design
To address the objectives of this project, we designed a
retrospective study based on our previously developed model

and the same dataset that yielded the highest balanced accuracy
[14]. The original data collection took place between August
30, 2021, and June 30, 2022 in India [14]. In total, 505
participants (mean [SD] age 41.03 [13.29] years, 336 male
participants) were recruited and instructed to record a short
English phrase (“Hello. How are you? What is my glucose level
right now?”) up to 6 times daily using their smartphone for 14
consecutive days.

Participants and Measurements
A balanced subset of the original dataset was used for this
analysis and included 78 participants (aged >18 years old, 22
women), with 39 diagnosed with T2DM [14]. Participants in
the T2DM and non-T2DM groups were matched for age and
BMI to minimize the demographic impact on voice recordings
(Table 1). A T2DM diagnosis was confirmed by a physician
according to the American Diabetes Association guidelines
[15]. All participants were nonsmokers, had no diagnosed
neurological or speech impairments, and signed the consent
forms.

Table . Patient demographic characteristics.

T2DM groupNon-T2DMa groupTotalVariable

39 (50.0)39 (50.0)78 (100.0)N (%)

11 (50.0)11 (50.0)22 (28.21)Women

28 (50.0)28 (50.0)56 (71.79)Men

45.03 (10.58)45.49 (10.8)45.26 (10.63)Age (years), mean (SD)

45.73 (10.47)45.91 (10.85)45.82 (10.4)Women

44.75 (10.8)45.32 (10.98)45.04 (10.8)Men

27.36 (4.06)28.77 (5.01)28.07 (4.59)BMI (kg/m2), mean (SD)

29.09 (5.29)31.41 (5.4)30.25 (5.35)Women

26.68 (3.34)27.74 (4.53)27.21 (3.98)Men

aT2DM: type 2 diabetes mellitus.

As part of the study protocol, participants recorded their voice
at least 6 times per day over a 2-week period using a custom
mobile application installed on their personal cell phones. These
recordings took place either at home or in a quiet environment
with minimal background noise [12]. To establish a consistent
starting point, a participant’s first day (d01) was defined as the
day they recorded at least 2 voice samples. Voice samples
recorded prior to d01 were excluded from the analysis.

Optimizing Voice Recording Quantity and Settings for
Enhanced Model Accuracy
To analyze the collected voice recordings, 14 acoustic features
were extracted to characterize key parameters related to pitch,
intensity, harmonic noise ratio, shimmers, and jitters [14].
Features that were significantly different between the T2DM
and non-T2DM groups (P<.05, Cohen d >0.02) were included
in he model development pipeline, with separate models for
women and men. For women, the key features were pitch SD,

mean pitch, RAP jitter, and apq3 shimmer, while for men, mean
intensity, apq11 shimmer, intensity SD, and ppq5 jitter were
used. A 5-fold cross-validation was performed for feature
selection, threshold determination, and model optimization
based on the best predictive balanced accuracy [14]. The optimal
model for women was a logistic regression model (threshold of
0.3) with BMI and 3 voice features: mean pitch, pitch SD, and
RAP jitter. For men, the optimal model was a naive Bayes
classifier (threshold of 0.215) with age, BMI, and 2 voice
features: mean intensity and apq11 shimmer.

The analysis pipeline included (1) indicating the optimal number
of voice recordings for effective T2DM classification based on
changes in model accuracy across varying quantities of voice
samples, and (2) studying the effect of voice recording
configurations on predictive performance (Multimedia Appendix
1).
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To study the changes in the model’s accuracy trend across
varying number of voice samples, we employed segmented
linear regression by fitting two distinct linear models to the data
before and after the n voice samples breakpoint. The Kendall
tau measure of correlation was used to investigate the strength
and direction of the relationship between ordinal variables (such
as days) and model accuracy. P values of .05 were considered
statistically significant.

Ethical Considerations
The protocol (ID MGCTS107) received ethics approval by
Saanvi Ethical Research LLP (No. MGCTS/20/107 V01), all
participants provided informed consent, and data were stored
in a secure cloud database with no identifying information.

Participants were compensated for their time; each participant
received US $56.

Results

Participants and Measurements
The mean (SD) age and mean (SD) BMI of participants were

45.26 (10.63) years and 28.07 (4.59) kg/m2, respectively (Table
1). In total, 5035 recordings were included in the analysis, and
2620 from participants with T2DM (Table 2). The mean (SD)
number of daily recordings for all participants was 4.91 (1.45)
with women more adherent to the protocol than men (5.13 [1.38]
vs 4.82 [1.46], Multimedia Appendix 2, Figure 1).

Table . Voice recording data.

T2DM groupNon-T2DMa groupTotalVariable

2620 (52)2415 (48)5035 (100)N (%)

826 (53.7)713 (46.3)1539 (30.6)Women, n (%)

1794 (51.3)1702 (48.7)3496 (69.4)Men, n (%)

67.18 (17)61.92 (21.67)64.55 (19.53)Number of recordings per partici-
pant, mean (SD)

75.09 (11.45)64.82 (19.12)69.95 (16.26)Women

64.07 (17.97)60.79 (22.82)62.43 (20.42)Men

aT2DM: type 2 diabetes mellitus.

Figure 1. The accuracy of the model using different number of voice recordings. The lines present the average accuracy for men (blue) and women
(red). The shaded area shows the confidence interval. The numbers in the figure show the number of participants whose data were included in the
analysis per day.

Optimizing Voice Recording Quantity and Settings for
Enhanced Model Accuracy
Both in men and women, the model accuracy improved with
the inclusion of up to 6 voice samples, after which it stabilized
with no significant improvement (Figure 1). The changes in the
slope of the linear fit were −1.15 for men and −0.65 for women,
indicating a faster accuracy improvement in men than in women
with the addition of initial voice samples.

Considering 6 voice samples for effective T2DM diagnosis, the
highest model accuracy was achieved with recordings from day
1 in men, while for women, the peak accuracy was observed
with recordings from day 10 (Figure 2). However, the variations
in model accuracy across different days were not significant,
and no statistically discernible trend was observed (P=.23 for
men, P=.27 for women). The model accuracy was generally
higher for women than for men on most days, although the
difference was not statistically significant, as indicated by the
overlapping confidence intervals.
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Figure 2. The accuracy of the model using 6 voice recordings per day. d: day.

Moreover, we observed that the model accuracy was higher in
men than in women when the majority of recordings were from
the first day (Figure 3). As the distribution of recordings were
balanced between the first and second days, the accuracy gap
between men and women narrowed. Finally, when the majority
of recordings were from the second day, the model accuracy
was slightly higher for women than for men, with the differences

in accuracy levels becoming less pronounced. Our statistical
test indicated no significant trend in the model accuracy for
men when using 6 recordings across 2 days (P>.99). For women,
there was a significant increasing trend in the model accuracy
when the majority of recordings were taken on the second day
(P=.03), suggesting that consistent participation in women can
improve the model performance.

Figure 3. The accuracy of the model using total 6 voice recordings from day 1 and day 2. D1: day 1, D2: day 2, N: number of samples from the day.

Discussion

Principal Findings
This research, to our knowledge, is the first to investigate the
optimal balance between the number and settings of voice
recordings for effective T2DM diagnosis, with the goal of
reducing patient burden. Our findings indicated that 6 voice
recordings are sufficient to maintain diagnostic accuracy,
improving patient compliance and accessibility for T2DM
screening. No significant differences in model accuracy were
observed across different days while adherence to recording in
a single day showed higher accuracy. This study lays the

groundwork for future research and clinical applications focused
on optimizing health care delivery for T2DM.

Comparison to Prior Works
Previous studies have shown that an increased burden from the
treatment and self-management of chronic health conditions
such as T2DM is associated with higher levels of distress, lower
adherence to self-care routines, decreased satisfaction with
medications, reduced quality of life, poorer physical and mental
health, and greater risk of complications and deaths [4,16-18].
In alignment with these, our study demonstrated that up to 6
voice recordings are sufficient to effectively diagnose T2DM,
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thereby reducing patient burden while maintaining diagnostic
accuracy.

There are conflicting reports on self-management among men
and women. While Zhou et al [19] observed that women
exhibited greater compliance in self-care than men did, Mogre
et al [20] reported higher self-monitoring of blood glucose in
men. In our study, despite the lower number of women
participants than men, women showed a higher adherence to
the voice recording protocol. This higher adherence among
women may explain the observed increase in model accuracy,
as recordings were distributed across 2 days, suggesting that
consistent participation enhances the model performance.

Prior research has reported no significant day-to-day variability
in voice recordings while there exists a significant time-of-day
influence on acoustics with voice quality enhanced with
increased voice use [21,22]. In alignment with these findings,
our results showed that both in men and in women, the model
accuracy was not significantly different between days while
there was an increase in accuracy when the majority of the
recordings were from a single day. Due to the limited

distribution of samples across different times of the day, we
were unable to assess the time-of-day variability.

Strengths and Limitations
This study provides important insights into optimizing
voice-based T2DM diagnostics while minimizing participant
burden. However, several limitations should be considered.
First, there was a limited sample size of women. The smaller
number of women participants may reduce the generalizability
of our findings, particularly regarding sex-specific effects.
Future studies with larger, more balanced datasets are needed
to validate these observations. Second, our relatively small
dataset limited the use of more advanced machine learning
techniques, such as neural networks. While these models may
offer further improvements in the diagnostic accuracy and
insight into optimal data collection strategies, future studies
with larger datasets are required to fully explore their potential.
Third, due to uneven distribution of recordings across different
times of the day, we could not assess how the time-of-day
influences voice-based diagnostics. Future studies should
implement controlled recording schedules to systematically
examine these effects.
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Abstract

Background: Implantable medical devices (IMDs), such as pacemakers, increasingly communicate wirelessly with external
devices. To secure this wireless communication channel, a pairing process is needed to bootstrap a secret key between the devices.
Previous work has proposed pairing approaches that often adopt a “seamless” design and render the pairing process imperceptible
to patients. This lack of user perception can significantly compromise security and pose threats to patients.

Objective: The study aimed to explore the use of highly perceptible vibrations for pairing with IMDs and aim to propose a
novel technique that leverages the natural randomness in human motor behavior as a shared source of entropy for pairing,
potentially deployable to current IMD products.

Methods: A proof of concept was developed to demonstrate the proposed technique. A wearable prototype was built to simulate
an individual acting as an IMD patient (real patients were not involved to avoid potential risks), and signal processing algorithms
were devised to use accelerometer readings for facilitating secure pairing with an IMD. The technique was thoroughly evaluated
in terms of accuracy, security, and usability through a lab study involving 24 participants.

Results: Our proposed pairing technique achieves high pairing accuracy, with a zero false acceptance rate (indicating low risks
from adversaries) and a false rejection rate of only 0.6% (1/192; suggesting that legitimate users will likely experience very few
failures). Our approach also offers robust security, which passes the National Institute of Standards and Technology statistical
tests (with all P values >.01). Moreover, our technique has high usability, evidenced by an average System Usability Scale
questionnaire score of 73.6 (surpassing the standard benchmark of 68 for “good usability”) and insights gathered from the
interviews. Furthermore, the entire pairing process can be efficiently completed within 5 seconds.

Conclusions: Vibration can be used to realize secure, usable, and deployable pairing in the context of IMDs. Our method also
exhibits advantages over previous approaches, for example, lenient requirements on the sensing capabilities of IMDs and the
synchronization between the IMD and the external device.

(JMIR Biomed Eng 2025;10:e57091)   doi:10.2196/57091

KEYWORDS

implantable medical device; pairing; vibration; security; usability

Introduction

Background
Implantable medical devices (IMDs), such as pacemakers,
implantable cardioverter defibrillators, or insulin pumps are
widely deployed and evolving at a rapid pace [1]. Modern IMDs
typically rely on a wireless interface to communicate with
external devices. For instance, doctors use programmer devices
to reprogram the patient’s IMD (eg, to change the patient’s

therapy) and gather telemetry data. Such wireless connectivity
can bring about much convenience to patients and doctors.
However, it also poses new security and privacy threats, such
as eavesdropping on sensitive medical data or hijacking
life-critical functions. The consequences of such attacks can be
severe because they can cause serious injuries or even death.
However, these risks have often been overlooked. While no
real-world attack against an IMD has been confirmed to date,
previous research has demonstrated that many IMDs available
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on the market today severely lack effective security mechanisms,
and that attacks on patients would be practically possible [2-6].

To protect wireless communication links, it is essential for the
IMD and external device to undergo a pairing process. This
process aims to exchange a cryptographic key between them,
which can then be used to secure the wireless channel using
standard protocols [7]. However, implementing such a key
exchange in a secure manner is challenging because IMDs are
resource-constrained with limited memory, computational
power, and nonrechargeable and nonreplaceable batteries.
Moreover, IMDs do not have physically accessible input or
output interfaces, such as a keyboard or a screen once they are
implanted. This obstructs traditional pairing methods used in
technologies like Bluetooth, where manually typing a 4-digit
PIN code on the devices is a standard procedure [8].
Furthermore, network connections with these devices can be
ad-hoc. For instance, in an emergency (eg, patients with cardiac
implants can experience syncope symptoms and become
unconscious [9]), a doctor may quickly have to use a new
programmer device to connect to the patient’s IMD. Due to
these limitations of IMDs, conventional pairing techniques (such
as the ones based on symmetric or public keys [10]) are often
not a viable option [5,11].

Previous work has proposed a variety of pairing techniques to
overcome this challenge [12]. Rasmussen et al [13] propose an
approach where the IMD and external device send ultrasound
to each other to verify each other’s legitimacy and exchange a
key. Marin et al [5] and Tomlinson et al [14] propose a pairing
method by transmitting a low alternating current through the
patient’s skin and tissue. Denning et al [15] and Gollakota et al
[16] propose to delegate security to a proxy device that the
patient can carry around (such as a bracelet). [17-20] propose

a pairing process by the IMD and external device synchronously
and simultaneously measuring a human physiological signal
(such as heartbeats).

Across those previous approaches, a crucial aspect has been
systematically overlooked: user perception. We observe that
previous work has attempted to follow a “seamless” design
approach that makes the IMD pairing as unobtrusive as possible
to the patient, rendering the pairing process almost imperceptible
at the same time. This can prevent patients from detecting
unexpected pairing attempts made by adversaries in proximity,
thereby hindering their ability to appropriately respond to such
security threats, for example, by seeking assistance or fleeing
the scene. Although the “seamless” design principle is common
in everyday security systems [21], we question its suitability in
the IMD context, where the device is part of the patient, and its
security is life-critical.

To address this issue, a pairing protocol needs to incorporate a
perceivable and robust (ie, cannot be hidden or canceled by an
adversary) signal. This leads us to consider vibration as an
out-of-band (OOB) channel (ie, a communication channel other
than a wireless channel) for pairing (Figure 1). Vibrations are
highly perceivable and have been widely used in smart consumer
devices for notification services [22]. In addition,
accelerometers, the primary type of vibration receiver used in
previous approaches, are already present in state-of-the-art IMDs
for medical purposes [23-25]. Another advantage of using
vibration is its limited range of reliable reception. In the IMD
context, this implies that if an external device intends to transmit
a vibration to an IMD, it must be physically attached to the
patient’s skin for a while [26]. If an adversary overpowers the
signal with a very strong vibration from a distance, the patient
can easily notice this.

Figure 1. IMD and external device. The vibration channel is used to exchange a key that subsequently secures the wireless channel. IMD: implantable
medical device.
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Related Work

Vibration-Based Secret Transmission in Ad-Hoc
Networks
Previous work has proposed vibration as an OOB channel for
transmitting secrets between 2 devices that physically contact
each other [26-32]. Table 1 summarizes their application

scenarios and hardware setups. Most are designed for wearables
and Internet of Things (IoT) devices that are not implanted in
the human body. As a common setup, the transmitter (such as
a smartphone) is equipped with a vibration motor and the
receiver contains a sensor to detect the vibrations, such as an
accelerometer [26,27,29-31], gyroscope [32] or microphone
[28].

Table . Setup for previous vibration-based secret transmission. The application context refers to the intended receiver device.

Sampling rate (Hz)Receiver sensor typeApplication contextTechnique

Not reportedAccelerometerRFID tagVibrate-to-Unlock [30]

1600AccelerometerWearableSYNCVIBE [27]

3200AccelerometerIMDaSecureVibe [26]

32000GyroscopeIoTb deviceVibroComm [32]

1600AccelerometerMobile deviceRipple [29]

48000MicrophoneMobile deviceRipple II [28]

250AccelerometerWristband deviceTouch-And-Guard [31]

aIMD: implantable medical device.
bIoT: Internet of Things.

Previous work predominantly directly embeds the secret within
the vibration signal itself [26-30,32]: the transmitter encodes
the secret into vibration using specific modulation methods (eg,
on-off keying [26,27,33]), and the receiver picks up this
vibration with a sensor and decodes the secret. Another strategy
leverages vibration to “amplify” the secret from humans: Wei
et al [31] propose an approach that pairs an IoT device with a
wristband device. When the user (who wears the wristband)
touches the IoT device, the IoT device emits a vibration that
sweeps through a range of frequencies. Contrary to the above
methods, the vibration here does not carry the secret and remains
consistent across different sessions. Instead, the secret comes
from the (to some extent random) resonant properties of the
user’s hand-arm area, which can be derived from the devices’
accelerometer readings.

However, we argue that most work (in their current form) is not
deployable in existing IMD products because they have stringent
requirements on the receiver sensor. Microphones do not exist
in IMDs, while inertial sensors (ie, accelerometer and
gyroscope) often require sampling rates in several thousands of
Hz or higher. Such high-performance sensors are rare in IMDs
[34-36] and are too energy-consuming for IMDs’ limited battery
capacity [37]. Future studies could certainly explore if previous
work remains effective at reduced sensor sampling rates such
as a few hundred Hz. Nevertheless, this is likely to significantly
impact the performance because vibration signal demodulation
often requires sensor data with high resolution [29].

Overall, we find that only [31] demands a lower sampling rate
of 250 Hz. This is because the secret relies on the resonant
frequencies of the user’s hand-arm region, which are situated
in the low-frequency domain ranging from several to a few
hundred Hz [38,39]. Nonetheless, its practicality was only
validated for wristbands but has not been tested in other
deployment environments or with different hardware setups.

Suitable Protocols for OOB Channel-Based Pairing
Previous work has extensively proposed using an OOB channel
for pairing with resource-constrained devices, including IMDs
[5,19,26,40,41]. Typically, the ultimate objective of such pairing
is to establish a 128-bit cryptographic key between 2 devices
for data encryption [7]. However, these works commonly
propose to directly exchange the entire key through the OOB
channel, which raises several concerns.

First, OOB channels often have much lower data throughput
compared to conventional wireless channels. For instance, the
data throughput of the aforementioned vibration-based method
[31] is only 7.15 bits per second. As a result, a 128-bit key
bootstrap would require at least 18 seconds, potentially posing
issues of usability and safety in emergencies. Second, OOB
channels face threats from advanced side-channel eavesdropping
attacks. For example, a vibration channel might be compromised
using microphones in proximity due to acoustic leakage, leading
to severe consequences.

To mitigate these concerns, prior work has suggested using a
password-authenticated key agreement (PAKE) method
[19,42,43], such as Diffie-Hellman Encrypted Key Exchange
[44]. PAKE is a cryptographic protocol aiming at exchanging
a high-entropy cryptographic key between parties who have
previously shared a short and low-entropy secret. This approach
allows 2 devices to initially exchange a short bitstring, after
which they execute a PAKE to further exchange a 128-bit key.
The latter step can be fast and thus largely reduce the impact of
the low data rate of OOB channels. In addition, PAKE provides
forward secrecy and rules out offline brute-force attacks. This
is the approach that we adopt in our work, and therefore we
consider that vibration is only to be used to exchange an
ephemeral and low-entropy secret between the IMD and the
external device.
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Objectives
The objective of this paper is to explore the potential of using
vibration for pairing with resource-constrained IMDs. This
study aimed to (1) propose a novel technique that leverages
vibration to extract secrets from the naturally random human
motor behavior for pairing, (2) develop a prototype as a
proof-of-concept to demonstrate our technique, and (3) evaluate
our prototype’s accuracy, security, and usability in a lab study
involving 24 participants.

Methods

Pairing Technique
The pairing process requires the user (patient or doctor) to
repeatedly attach the external device to the patient’s body (near
the IMD’s location) for a few times. In this work, each repetition
was referred to as a cycle, and the complete pairing process
(including several cycles) was defined as a run. Each cycle
comprises three main steps:

1. Device attachment: the user attaches the external device to
the body and holds it steadily.

2. Vibration broadcast: the external device emits a vibration
signal for a short period. The signal is always the same and
does not serve as the secret. Both the IMD and external
device take a measurement of the acceleration. The user
releases the external device when the vibration stops.

3. Randomness extraction: both devices process the sensed
acceleration signal and derive a shared secret from it.

The security of pairing relies on the randomness of the shared
secret, which originates from the diverse physiological
characteristics of the human body as well as the inherent
variability of human behavior (eg, the varying attachment
position and the grip strength) [45]. The vibration signal itself
remains constant in each cycle and is not a source of

randomness. Instead, it serves as a “catalyst” that allows the
randomness of body and motion to be reflected in the
accelerometer measurements.

Obtaining a Shared Secret From Humans
The design of vibration strategy in each cycle—namely, the
control of the motor to vibrate at a certain frequency for a certain
time frame—is crucial. The feasibility of the aforementioned
work [31] was first explored in the context of IMDs. The exact
same experimental settings were replicated using our prototype
that simulates the human body environment (elaborated in the
following sections): the accelerometer sampling rates of the
external device and IMD are set as 250 Hz. In each cycle, the
motor is programmed to sweep between 20 Hz to 125 Hz within
1.75 seconds. During this period, 2 devices measure the z-axis
acceleration data (aligning with the user’s sagittal plane) and
subsequently generate the frequency spectrum by doing fast
Fourier transform (FFT) [46].

One researcher of the team performs 100 cycles as a preliminary
test. The results are shown in Figure 2 (the locations of the
resonant frequency peaks shared by both devices were regarded
as secrets in [31]). Among all, 72 cycles show one stable peak;
17 cycles have 2 common peaks; 2 possess 3 peaks; in 9 cycles,
the data is too noisy to capture any shared peaks. The results
differ significantly from [31] where an average of 4‐8 peaks
can be obtained per cycle. In addition, the peaks in [31] are
somehow uniformly distributed over the whole 20‐125 Hz
range, while ours are almost always in the range of 80‐110
Hz. Our interpretation for the discrepancy in the performance
of this strategy is the presence of the plastic board and shell in
our prototype setup, which “masks” the resonant frequencies
of the human body. Unfortunately, in the context of IMD
pairing, the existence of such components (eg, a plastic or metal
device housing) is inevitable.
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Figure 2. Performance of the preliminary test (A) with 1 peak (72%), (B) with 2 peaks (17%), (C) with 3 peaks (2%), and (D) the noisy data (9%).
IMD: implantable medical device.

Nevertheless, the above test implies the natural randomness
inherent in the user attachment motions. Intuitively, we want
to test if a constant-frequency vibration is a viable option. We
program the motor to emit a 50 Hz vibration for 1 s per cycle,
and the same researcher executes 100 cycles using our prototype.
For each cycle, we collect z-axis acceleration data from both
devices and generate the frequency spectrum using FFT. Figure
3 shows an example of the frequency spectrum in one cycle. It
was observed that 2 devices can obtain very similar data,
especially for a prominent amplitude peak. Figure 4 illustrates

the spectrum change of the IMD over ten consecutive cycles.
Each row in this figure corresponds to a frequency spectrum
obtained in 1 cycle, and the bright spots indicate the prominent
peaks on the curve. We observe that the peak locations vary
around 50 Hz, suggesting the presence of a degree of
randomness. These findings indicate that providing an
excitement of a constant-frequency vibration, the prominent
peak location in the frequency domain is a potentially qualified
shared entropy source between the IMD and the external device,
which can be used for pairing purposes.

Figure 3. Frequency spectrum given a constant vibration (50 Hz, 1 s) in one cycle. IMD: implantable medical device.
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Figure 4. Frequency spectrum of IMD, given a constant vibration (50 Hz, 1 s) in 10 consecutive cycles. IMD: implantable medical device.

Signal Processing Workflow
Figure 5 shows the workflow of our pairing technique (assuming
the IMD is a pacemaker). In each cycle, the patient holds the

external device and attaches it on their chest. During the
attachment, the motor vibrates, and both the IMD and the
external device measure a pair of z-axis acceleration data.

Figure 5. An overview of our pairing technique. acc: accelerometer; FFT: fast Fourier transform; PAKE: password-authenticated key agreement.

To remove the noise of the direct current component, each
device subtracts the acceleration data with its mean value. In
addition, when the vibration motor is switched on from standstill
or switched off, the generated vibration signal is not amplified
or attenuated immediately but with a slow and damped response
[26,27]. This means that the transition parts (ie, 2 ends) of a
vibration signal segment are often noisy. This is addressed by
applying a Hanning window on the data.

Subsequently, each device applies FFT on the acceleration signal
to obtain the frequency spectrum. The frequency range of 0 to
20 Hz is then excluded to avoid the effects of noisy motion
artifacts like human breathing movements, as well as ambient
vibrations present in the patient’s environment [47]. As
mentioned, there is a prominent amplitude peak in the frequency
spectrum. In order to detect the location of this peak, each device
simply traverses the frequency domain to find the frequency
value corresponding to the maximum amplitude.

Based on the above procedure, after the user completes a pairing
(ie, a run) by repeating the attachment for several times, each
of the 2 devices will possess a sequence of peak locations.
However, these sequences may not be exactly the same due to
the measurement noise and human error (eg, hand wobbles).
To resolve this, the peak locations are encoded into binary
format using Gray code [48]. This coding method ensures

minimal bit mismatches if the discrepant peak locations are
very close on 2 devices, which is the case of our technique.
Then, we use a cryptographic algorithm known as a fuzzy
extractor [11,49] to reconcile any remaining bit differences
between the 2 bitstrings without revealing the secret itself. If
the rate of bit mismatches falls within the error-correcting
capability of the fuzzy extractor, the IMD and the external
device agree on an identical bitstring as a shared secret.

Adversary Model
Given our review of relevant literature about IMD pairing
techniques [3,12,13,16,19,40,50], we assume a sophisticated
adversary following the Dolev-Yao model [51] who has full
knowledge of our pairing protocol, has full control over the
wireless communication channels, and can be a
man-in-the-middle (MITM) attacker by intercepting legitimate
devices’ signals and sending their own messages instead. In
particular, the adversary can launch the following attacks
relevant in the context of our pairing technique: (1)
impersonation attack: the adversary uses a sequence of peak
locations in an attempt to impersonate a legitimate device. They
could succeed if their sequence closely matches the one
measured by the IMD or external device. (2) Brute-Force attack:
the adversary brute-forces possible peak location sequences and
launches MITM attacks to decipher and manipulate the
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communication between legitimate devices. The brute force can
be done online, that is, during the pairing process, the adversary
tries every possible sequence until they hit a correct one.
Alternatively, this can be done offline, where the adversary
records the pairing traffic and performs offline analysis to crack
the secret after pairing. (3) Acoustic eavesdropping: The
adversary may also attempt to eavesdrop on the vibration signals
using a microphone near the patient to reveal the secret.

Experimental Setup
The proposed pairing technique was validated through the design
and testing of the prototype in a user study. It was assumed that

the IMD is a pacemaker implanted beneath the chest and
considered the external handheld device to resemble a
smartphone with a plastic casing. Moreover, both devices
contain an accelerometer, and the external device is equipped
with a vibration motor.

Prototype Implementation
We show an overview of our prototype in Figure 6A. The
prototype consists of three main parts:

Figure 6. Experiment setup. (A) Prototype overview. (B) Hardware setup. (C) Chest simulator. (D) Participant in user study.

IMD
We use an InvenSense triaxial MPU-6050 accelerometer [52]
to simulate a pacemaker and house it inside a 3D-printed case
(Acc2 in Figure 6B). An Arduino Nano 33 BLE board interfaces
with the sensor, which contains a 32-bit Cortex-M
microcontroller and closely resembles the capabilities of an
IMD [53]. The sampling rate of the accelerometer is set at 250
Hz, the same as in previous work [31].

External Device (the Vibration Transmitter)
We do not directly use a smartphone as the external device
because the most common operating systems on mobile
devices—Android and iOS systems do not provide an API
interface for direct control of the vibration motor frequency.

Instead, we use an eccentric rotating mass type vibration motor
[54], along with another MPU-6050 sensor (Acc1 in Figure 6B)
to simulate an external device. These components are mounted
on an 11 cm × 7 cm × 0.5 cm plastic cuboid board, replicating
the size and shape of a typical smartphone.

We use a separate Arduino Nano 33 BLE board to control both
the vibration motor and the accelerometer. Particularly, this
Arduino board connects to the vibration motor and supplies
voltage to it. By using the pulse width modulation technique
[31], the board can adjust the driving voltage, allowing the
vibration motor’s frequency to be altered accordingly. In
addition, the accelerometer is set to a sampling rate of 250 Hz.
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Chest Environment
Given that pacemakers are embedded inside the body, it is
important for our experiments to mimic an environment that
resembles the human chest. We adopt the design in previous
research [5,26,40] and use 1 cm layer of bacon and 2 cm layer
of lean ground beef to replicate the chest’s physical properties
(see Figure 6C). The 1 cm depth is a standard depth for
pacemaker implantation [55]. In our study, we embed our
pacemaker simulator within the meat layers, which are kept
inside a food storage bag at room temperature. This bag of meat
is subsequently placed in a pocket stitched onto an elastic chest
band, positioned around an area corresponding to the human
heart’s location (see Figure 6B). Participants were asked to wear
the chest strap throughout the user study to mimic the conditions
of pacemaker users.

Participant Recruitment
We first conducted a pilot study with 6 individuals (ages 22 to
32 years, 4 females and 2 males) to identify and resolve any
problems with our experimental setup. Subsequently, we
recruited 24 participants for the main study, including 11 males
and 13 females of ages ranging from 18 to 52.

Moreover, given that patients who carry IMDs are often seniors
[56], we also conducted a co-design workshop with 2 senior
individuals who had intimate knowledge and experience with
pacemakers: (1) a 74-year-old female cardiology doctor and (2)
a 79-year-old male pacemaker patient.

Experiment Procedure
In total, 2 essential vibration settings, frequency, and duration,
were manipulated to measure the effect on pairing performance.
Based on experiences gained from our pilot study, we set
vibration motor frequencies to 50 Hz, 75 Hz, and 100 Hz, and
vibration durations to 400 ms, 700 ms, and 1000 ms. The 9
frequency–duration combinations enabled successful pairing
and avoided excessive participant workload.

During the user study, participants were instructed to wear our
prototype and sit on a chair. Then they need to grasp the external
device simulator and repeatedly attach it to the black pocket
area of the chest strap, as shown in Figure 6D. They were
advised to attach the device in a random manner (such as to
random positions), and (in each cycle) stay attached until the
vibration had completely ceased. Before starting the data
collection, participants were asked to acquaint themselves with
the prototype to understand the pairing process. This
introductory process took under a minute for all participants.
Subsequently, for each of the 9 vibration conditions, participants
were asked to conduct the attachment for 5 consecutive cycles
as one run and complete 4 such runs in total. The order in which
participants used different vibration frequencies was
counterbalanced.

At the end of the user study, participants were requested to fill
out a standard system usability scale (SUS) questionnaire [57]
to assess the usability of the pairing method. We then conducted
an interview with them to gather further insights. Full details
of the questionnaire and interview are given in Multimedia
Appendix 1.

During the co-design workshop, we asked the two senior
participants to try our prototype for only 6 runs (considering
their physical conditions) and provide their opinions and advice.

Evaluation Metrics
Our study focuses on certain metrics to evaluate the pairing
performance.

Accuracy
The accuracy of a pairing system is typically measured by false
rejection rate (FRR) and false acceptance rate (FAR) [43,58,59].
FRR is the frequency at which the pairing between legitimate
devices is incorrectly rejected. FAR indicates the frequency that
a pair of illegitimate devices (such as the IMD and a malicious
external device) is mistakenly authorized and gauges the
resilience of pairing against impersonation attacks. A high FRR
and FAR could lead to poor usability and security, respectively.
These 2 metrics are calculated as follows:

FRR=Number of rejected pairing between legitmate devicesAll pairing attempts between legitmate devices

FAR=Number of authorized pairing between illegitmate devicesAll pairing attempts between illegitmate devices

During the pairing process, there is often a mismatch (denoted
by d) between the readings of the IMD and the external device
due to inherent noises. As aforementioned, we use a fuzzy
extractor scheme to correct the mismatch. At the core of this
method is the selection of a threshold (denoted by Thr): the
mismatch can be rectified (and thus the pairing is accepted) if
d≤Thr; otherwise, the pairing is rejected. As such, one can
balance FRR and FAR by adjusting Thr. Because security is of
utmost importance for the IMDs, we set a smaller Thr to ensure
FAR=0 and use the corresponding lowest FRR to represent
accuracy.

Security
The FAR metric evaluates the system’s security against
impersonation attacks. The resilience against brute-force attacks
is determined by the randomness level of the attachment
motions, which can be measured in two primary ways: (1) By
the National Institute of Standards and Technology (NIST)
statistical test suite [60] that provides a comprehensive
randomness assessment of a random number generator, a method
widely recognized within the cybersecurity community
[19,31,43]. (2) By measuring Shannon entropy, which quantifies
the amount of information contained in each motion event
[17,31,61,62].

Usability
Usability is assessed based on the results from our SUS
questionnaires and interviews.

Ethical Considerations
This study involved human participants and underwent thorough
ethical review, particularly given the potential involvement of
older participants. Ethics approval was obtained from the
relevant institutions prior to participant recruitment and user
study, in accordance with institutional regulations (the
University of Melbourne: approved by the Human Ethics
Committee, application number: 2022-24851-31088-3; the
University of Birmingham: approved by the Science,
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Technology, Engineering and Mathematics Ethics Committee,
application number: ERN_2022‐0255).

Participants were recruited via online advertisements and were
offered US $30 for their time. All participants provided informed
consent prior to participation. The data collected during the user
study were specifically processed to ensure anonymity and
untraceability of identity and were securely stored in the
University of Melbourne’s data center. All participant data were
anonymized by removing personally identifiable information
before analysis, and participants were assigned unique
identification codes to ensure confidentiality. The entire user
study process was overseen by a departmental delegate of the
university’s ethics committee, with all study details reported to
them on a weekly basis.

Results

Performance of the Pairing Technique
Figure 7 shows the distribution of all peak locations (ie, the
secret) collected by the IMD from 24 participants. We observe
that for a specific vibration frequency, such as 50 Hz, the peak
locations range between 30 and 70 Hz and generally
approximate a normal distribution centered by the motor’s
frequency, suggesting a certain degree of randomness from the
user. Additionally, it appears that the distribution is slightly
flatter (thereby the level of randomness increases) with an
increase in vibration frequency. Notably, the possible options
for peak locations in the frequency domain are not continuous
due to the sample-based nature of the time domain acceleration
data.

Figure 7. Distribution of peak location measured by the IMD among 24 participants. The black dashed lines indicate frequencies of the vibration motor.
IMD: implantable medical device.

Mismatch is calculated by subtracting peak location values
between the IMD and the external device and represents the
level of noise and error. The mismatch distribution for our
prototype, as illustrated in Figure 8A, resembles a normal
distribution centered around a mean near zero and with a
standard deviation of 2.8 Hz. This implies that user-induced
errors and sensor noise are limited. Note that this result considers
situations where participants did not strictly follow our pairing

norms during the study. For instance, there were a number of
occasions when participants released the external device while
it was still vibrating. Such cases were not excluded from our
dataset as they present a more realistic use scenario; otherwise,
we expect that the mismatch levels would be even lower. On
the other hand, Figure 8B and C show that the degree of
mismatch does not have a straightforward correlation with either
the vibration frequency or the duration.

Figure 8. Mismatch between the IMD and the external device. (A) Mismatch of all data among participants. (B) Mismatch with vibration frequency.
(C) Mismatch with vibration time. IMD: implantable medical device.
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Experimental Evaluation

Accuracy Assessment
For each of the 9 vibration conditions, we build two sets to
measure accuracy:

Set I comprises 96 (=24 × 4) pairs of peak locations, each with
a length of 5 (since we collected 5 cycles per run). All the pairs
in Set I come from legitimate pairings of an IMD and an external
device. This set calculates the FRR metric as aforementioned.

Set II has 96 pairs of peak locations (the same size as Set I),
where each pair is created by randomly mixing data from
illegitimate device pairings. This set calculates the FAR metric
as aforementioned.

An effective pairing technique should maximize the acceptance
of pairs from Set I (ie, low FRR), while minimizing the
acceptance of pairs from Set II (ie, low FAR). Note that not all
five motions are necessarily needed, ie, we can vary the length
of runs ranging from 1 to 5, by truncating the initial elements.

The following figures show the accuracy of our prototype across
various numbers of attachment motions performed. FAR is 0
in all cases, and we consider that an FRR below 5% signifies
good usability [43,61]. As expected, increasing the number of
motions consistently improves the accuracy of the pairing.
Moreover, given a specific vibration frequency, longer vibration
duration leads to higher accuracy, which will be further
discussed in the coming sections. An additional observation is
that with a fixed vibration duration and number of motions, the
FRR tends to drop as the vibration frequency rises.

Overall, the red circles in the above figures indicate the 5 out
of 9 vibration conditions that offer acceptable accuracy levels
(with FAR=0 and FRR <5%). For example, a vibration condition
of 50 Hz for 1000 ms per cycle requires the user to execute five
attachments to achieve pairing with FAR=0 and FRR=3.7%
(see Figure 9A). Note that for other vibration conditions, more
than five motions are likely to also yield satisfactory accuracy.
However, this would demand more effort from the user, which
could harm usability and even safety in emergencies.

Figure 9. FRR versus number of attachments under different vibration frequencies: (A) 50 Hz, (B) 75 Hz, and (C) 100 Hz. FRR: false rejection rate.

Security Assessment
We refer to previous work [19,31,43] to assess the randomness
of the secret generated by our technique: For each of the
vibration conditions, we take the floor of the (fractional) entropy
value for that specific setting (refer to Table 2) and extract that
number of least significant bits from each peak location value.
Subsequently, we combine these bitstrings from all vibration
conditions (following the order in our user study) as a single

8.6 kbits string and evaluate its randomness using the NIST
statistical test suite [60]. The full results are given in Table 3.
The outputs of the NIST tests are P values that represent the
probability the data is generated by an eligible random number
generator. If a P value is smaller than a threshold (usually .01
[19,31,43]), the randomness hypothesis is rejected. Table 3
shows that all P values are larger than .01 and hence pass the
NIST tests.

Table . Entropy of each attachment motion (unit is bit).

100 Hz75 Hz50 Hz

3.873.122.61400 ms

4.153.863.03700 ms

4.484.013.151000 ms
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Table . NIST statistical test results for attachment motions.

P valueTestP valueTest

.14Block frequency.88Frequency

.10Longest runs.11Runs

.62FFTa.17Binary matrix rank

.38Overlapping template.16Non-overlap template

.72Linear complexity.64Serial (P value1)

.18Approximate entropy.68Serial (P value2)

.22Random excursions.19Cumulative sums (forward)

.40Random excursions var..26Cumulative sums (reverse)

aFFT: fast Fourier transform.

Table 2 shows the entropy value contained in each motion across
different vibration conditions. Overall, a single motion in our
study carries an entropy from 2.61 to 4.48 bits. For a certain
vibration frequency, the entropy grows with higher vibration
durations. This is because extended measurements yield larger
sample size and frequency resolution, enabling more possible
peak locations and thus higher entropy. Furthermore, for a given
vibration duration, the entropy value rises with an increase in
vibration frequency. We leave the study of this phenomenon to
future work. Nevertheless, the choice of vibration frequency is
often limited by the capability of the motor and accelerometer
in practice.

It is noteworthy that some entropy is sacrificed when rectifying
mismatches between the 2 devices. Here, we make a preliminary
estimation of the entropy loss: Using the encoding method in
[43] on our dataset, the maximum bit mismatch rates (ie,
percentage of different bits between two devices) for our
prototype vary between 0.7% and 3.0% for different vibration
conditions. This can be addressed by a fuzzy extractor with (31,
29) Reed-Solomon code that has a 3.23% error tolerance [11,63],
potentially leading to an entropy loss of 6.5%.

Usability Assessment
The average SUS score for our pairing technique is 73.6 (SD
18.14), which generally passes the typical benchmark value of
68 for “good usability” [57]. It is important to note that the SUS
questionnaires were completed after an extensive data collection
process including a repetition of 180 attachment motions. We
expect that users carrying out a more realistic task would report
even higher usability scores.

We gained further insights into usability from the interviews.
Over half of the participants (15 out of 24) explicitly indicated
that our technique was easy to use. For example, one participant
(p8) commented, “The attachment doesn’t require me to think.
This is an advantage. I don’t know what is happening here, but
I prefer it as it requires less effort,” and another participant (p13)
remarked, “It’s easy. You don’t really have to move that much,
and you can do it while you’re sitting as well.” Some
participants expressed their preference for the vibrational
feedback. One participant (p1) said, “The vibration is good
feedback, and I don’t have to visually see anything,” and another
participant (p22) noted, “The process is like listen to my heart.”

In addition, some participants conveyed that they found the
pairing process to be enjoyable and fun. For example, 3
participants described the vibration as a hand massage and 2
compared the pairing activity to using a stethoscope.

Most participants (18 out of 24) experienced no discomfort
during the study. Nonetheless, the rest of the 6 people did report
some discomfort at the end of the study. In total, 4 participants
noted that the intensity of the vibrations was excessive; for
example, one participant (p4) stated, “I feel like my entire chest
is vibrating, and I don’t like the feeling.” This concern might
be resolved by selecting a vibration motor with lower amplitude.
In addition, 4 participants reported feeling fatigued after the
data collection process, but also noted this was due to the
repetition of 180 attachments and that less motions will alleviate
this issue. Furthermore, one participant (p3) criticized the
prototype design and mentioned that the external device
simulator was too big. We leave the refinement of our prototype
as future work.

Valuable insights were also gathered from the co-design
workshop. Both participants initially found the vibration-based
pairing technique interesting and somewhat surprising, but they
quickly became accustomed to it and could easily complete the
remaining required motions. They both explicitly noted that the
pairing operations were easy to learn and perform. The
cardiology doctor described the pairing operation as “using a
stethoscope” and confirmed that the vibration signal in the
experiment would pose minimal risks to patients with IMDs.
Both participants also appreciated the tactile feedback from the
vibrations. The doctor commented, “The vibration tells you if
you’re on track,” while the pacemaker patient added, “The
vibration encourages me towards the end of pairing.” However,
both participants pointed out that the prototype used in the study
was bulky and heavy—an improvement we leave for future
work. Overall, both participants found the pairing experience
acceptable and expressed willingness to use it in real-world
scenarios if required.

Optimal Setups
Based on our analysis so far, we summarize all pairing
configurations that (1) exhibit high accuracy with zero FAR
and FRR under 5%, and (2) generate a level of entropy
surpassing a standard four-digit PIN code (with an entropy of
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13.3 bits), which is commonly used in pairing of Bluetooth
technologies and other security systems [8]. All viable settings
that meet these requirements (with minimum required number
of motions) are shown in Table 4. Note that the time values
include both the vibration duration and an additional
“preparation time” necessary for a user to detach and then

reattach the external device to their body; in our study, this
interval was 0.5 seconds.

In summary, we find that with a vibration configuration set at
100 Hz and 700 ms, a user can carry out 4 attachment motions
to enable the exchange of a secret with (FAR, FRR)=(0, 0.6%)
and entropy of 15.5 bits. This process can be completed in a
mere 4.8 seconds.

Table . Summary of well-performing pairing configurations.

Time (s)EntropyFARa, FRRb (%)Motion, nVibration condition

7.514.70, 3.7550 Hz, 1000 ms

618.00, 2.2575 Hz, 700 ms

615.00, 3.5475 Hz, 1000 ms

4.815.50, 0.64100 Hz, 700 ms

616.80, 0.64100 Hz, 1000 ms

aFAR: false acceptance rate.
bFRR: false rejection rate.

Discussion

Principal Findings
Our work introduces a new and reliable vibration-based pairing
approach for IMDs, which only requires a low sampling rate
accelerometer and relies on the natural randomness inherent in
human behavior. We empirically validate the feasibility of our
technique through a user study. Overall, we find that the
workload required to bootstrap a secure pairing is minimal, and
we estimate that it requires the user to attach a device to the
body only 4 times in roughly 5 s. With an FAR of 0 and an FRR
of 0.6%, the risk posed by adversaries is low, and legitimate
users will likely experience very few failures.

As mentioned in the related work section, the use of a PAKE
eliminates offline brute-force attacks. In addition, it also restricts
the number of online MITM attempts. Typically, the adversary
has a very limited period to obtain the secret and usually only
one chance for a MITM attack [44]. As an estimate, 4 motions
with 15.5 bits entropy reduce the adversary’s success probability
on online brute-force attacks to 0.002% [42] (assuming the
adversary is limited to guessing only). Therefore, we believe
these motions serve as adequate input for a PAKE. If needed,
higher entropy can be easily achieved by performing more
motions.

Our user study confirmed the high usability of our pairing
method. Participants found it straightforward to understand,
learn, and perform. The process of attaching the device is very
intuitive, like using a stethoscope as described by the
participants. Our technique also brings about certain
entertainment to users, being both relaxing and enjoyable (such
as described as hand massage). This could be advantageous in
certain therapeutic treatments, where physical interaction can
enhance memory, concentration, and mental health [64].
Moreover, it is worth noting that for patients who are unable
(eg, due to disabilities or unconsciousness in emergencies) or
unwilling to execute the motions, our pairing allows medical
practitioners or caregivers (who have received appropriate

training) to execute the motions on the patient’s body on their
behalf.

Our proposed method only requires an accelerometer, a
component already present in the latest generation IMDs
[23-25]. The signal processing and other cryptographic
algorithms for the IMD are computationally lightweight and
work efficiently on 32-bit Cortex-M microcontrollers, which
closely resemble IMDs’ capabilities [11,43,53]. Our approach
solely depends on vibration at a constant frequency, which can
be easily implemented on readily available consumer devices
such as smartphones and tablets. This is beneficial considering
that medical device companies already equip the IMDs with
the ability to connect to personal mobile devices [65]. Moreover,
while our work assumes that the IMD is a pacemaker, we argue
that the technique can be easily transferred to other types of
IMDs or even external wearables. Furthermore, our proposed
pairing technique incurs minimal costs. In our prototype
implementation, the combined cost of the vibration motor and
accelerometer was under $30, and this cost could be further
reduced during mass production.

Comparison With Prior Vibration-Based Work
Our pairing technique significantly relaxes the demands on the
IMD’s sampling capability. We use an accelerometer operating
at 250 Hz, in contrast to previous work that often relies on
sampling rates of several thousand Hz or more. In particular,
the sampling rate can be further decreased by using lower
vibration frequencies. For example, with a 50 Hz vibration, the
frequency domain peaks cluster between 30 and 70 Hz (see
Figure 7), indicating that an accelerometer with a 140 Hz
maximum is adequate.

Conventional approaches typically try to avoid user-generated
noise. For instance, the user needs to ensure stable contact
between devices during data transmission. Conversely, our
method harnesses user noise and benefits from it as a source of
entropy. Indeed, our dataset includes many instances with
significant user error, like when a participant releases the
external device before the vibration completely stops. In such
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scenarios, the IMD only captures a portion of the vibration
within its measurement window. Despite this, our technique
maintains high reliability.

Furthermore, previous work that encodes secrets into vibrations
often demands precise time synchronization in milliseconds
between devices, which itself is a challenging task for
resource-constrained devices [66]. In contrast, our approach
allows for more lenient synchronization—as long as the two
devices capture similar vibration signals within most of their
measurement windows, the peak locations effectively match.
This aspect greatly enhances the feasibility of our technique for
IMDs.

Notably, our data throughput is significantly lower than
[26,27,29,32] and is comparable with [31,33]. Considering the
scenario of transmitting a 4-digit PIN code for use in a PAKE,
previous work [26,27,29,32] only needs 0.0004 to 0.665 s, which
is much faster than the 4.8 seconds required by our method.
However, this rapid transmission, while advantageous in many
daily applications, may not be suitable for IMD pairing contexts,
where the vibration serves not only for secret exchange but also
as a crucial cue for patients to be aware of the pairing process.
In contrast, we argue that a duration of 4.8 s strikes a balance:
it is long enough to be noticeable, yet short enough to maintain
usability and safety in emergencies.

Considerations of Health Implications With Vibrations
Our proposed pairing technique incorporates vibration, a feature
that naturally raises concerns regarding the potential long-term
health impacts on patients. However, current research indicates
that only long-term and excessive exposure to vibrations is
linked to adverse effects on mental and physical health [67,68].
In contrast, our method involves brief vibrational interactions,
which last less than 5 seconds and may not occur every day.
This limited exposure could reduce the likelihood of the negative
health consequences.

Resilience to Acoustic Eavesdropping Attacks
Vibration is essentially a low-frequency audio signal, which
inevitably emits acoustic side-channel information that might
be eavesdropped using a microphone. This is particularly
threatening for methods that encode secrets within vibration
signals. For example, Halevi and Saxena [69] found that secrets
transmitted this way could be severely compromised using an

off-the-shelf microphone from a few meters away. To mitigate
this, Kim et al [26] and Anand and Saxena [70,71] proposed
using Gaussian white noise or masking signals to obscure the
acoustic leaks. These approaches have shown promise in
reducing side-channel vulnerabilities against advanced
eavesdropping attacks.

In comparison, as shown in [31], the risks associated with
eavesdropping are significantly reduced when the vibration is
not the carrier of the secret. Our research aligns with this
guideline, using a constant vibration signal across sessions to
minimize acoustic leakage. In addition, existing countermeasures
[26,70,71] are also applicable to our method.

Limitations
Our work has certain limitations. Our experiments did not
explicitly recruit participants who were IMD patients (mainly
due to ethics constraints of the institutions where the user study
was conducted). Further validation of our approach with these
patient groups is necessary.

We designed our prototype in line with previous work in the
IMD security community [5,26,40]. However, there is room for
enhancement, particularly in its size and weight. Future research
should develop more skin-conformable and miniaturized
prototypes.

Another aspect of future work is to empirically evaluate the
susceptibility of our pairing technique against microphone-based
eavesdropping attacks at a distance.

Conclusion
In this paper, we explore the potential of leveraging vibration
to pair with an IMD. We propose a novel technique that uses a
straightforward constant-frequency vibration to extract secrets
from natural and random human motor behavior for device
pairing. We implement and validate our technique through a
user study. Overall, we show that it is feasible to establish a
cryptographic key in 5 s with high usability, based only on
standard vibration motors and accelerometers with low sampling
capabilities. The ubiquity of accelerometers in today’s
commercial smart devices and IMDs maximizes the chance of
acceptance of our design. In general, we hope that our work
will serve as a reference for pairing with resource-constrained
devices using vibrations in body area networks.
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Abstract

Background: Photoplethysmography (PPG) signals captured by wearable devices can provide vascular age information and
support pervasive and long-term monitoring of personal health condition.

Objective: In this study, we aimed to estimate brachial-ankle pulse wave velocity (baPWV) from wrist PPG and
electrocardiography (ECG) from smartwatch.

Methods: A total of 914 wrist PPG and ECG sequences and 278 baPWV measurements were collected via the smartwatch from
80 men and 82 women with average age of 63.4 (SD 13.4) and 64.3 (SD 11.6) years. Feature extraction and weighted pulse
decomposition were applied to identify morphological characteristics regarding blood volume change and component waves in
preprocessed PPG and ECG signals. A systematic strategy of feature combination was performed. The hierarchical regression
method based on the random forest for classification and extreme gradient boosting (XGBoost) algorithms for regression was
used, which first classified the data into subdivisions. The respective regression model for the subdivision was constructed with
an overlapping zone.

Results: By using 914 sets of wrist PPG and ECG signals for baPWV estimation, the hierarchical regression model with 2
subdivisions and an overlapping zone of 400 cm per second achieved root-mean-square error of 145.0 cm per second and 141.4
cm per second for 24 men and 26 women, respectively, which is better than the general XGBoost regression model and the
multivariable regression model (all P<.001).

Conclusions: We for the first time demonstrated that baPWV could be reliably estimated by the wrist PPG and ECG signals
measured by the wearable device. Whether our algorithm could be applied clinically needs further verification.

(JMIR Biomed Eng 2025;10:e58756)   doi:10.2196/58756

KEYWORDS

photoplethysmography; PPG; pulse wave velocity; brachial-ankle pulse wave velocity; XGBoost; electrocardiography; signal
processing; random forest

Introduction

Cardiovascular disease (CVD) is a major cause of death and
disability globally. Hemodynamic parameters are essential to
the assessment of CVD risks. Arterial compliance is defined as
the change of arterial blood volume for a given change in
pressure and reflects the extent of arterial stiffness. Pulse wave
velocity (PWV) describes the propagation of pulsatile activity
due to ventricular ejection of blood and its interaction with
arterial compliance [1]. Carotid-femoral PWV (cfPWV) and

brachial-ankle PWV (baPWV) are associated with future CVD
risk and commonly measured for clinic use. Compared with
cfPWV, baPWV can be easily obtained by the oscillometric
method with cuffs on the 4 limbs and is more widely used [2].

Owing to the advance of technology, wearable devices with
automatic or self-assisted monitoring have been recognized as
a promising tool to facilitate the assessment and management
of CVD risks. Photoplethysmography (PPG) [3,4],
ballistocardiography [5,6], electrical bioimpedance [7], or
tonometry [8] has been widely studied for these purposes. Due
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to the ease of implementation, the optical PPG module is more
often integrated into the wearable devices. The potential of
estimation of BP [9,10] and PWV [11-13] from PPG signals
attracts much attention.

Various approaches have been investigated to estimate PWV
from PPG signals of different measurement sites [14]. The
contour of PPG and its associated time interval features have
been used to estimate either baPWV or cfPWV by approaches
including multiple regression, artificial neural network, and
support vector machine [15,16]. Most of the prior works used
finger PPG signals for PWV estimation because of its clear
contour and ease of feature extraction, compared with wrist
PPG [17,18]. However, with the growing popularity of
smartwatches as wearable health care devices, the use of
wrist-based PPG in biomedical applications has attracted
considerable attention. In this study, we aimed to estimate
baPWV from wrist PPG and electrocardiography (ECG).

Methods

Methods and statistical analysis are briefly summarized in this
section. Further details are provided in the Supplementary
Section.

Data Collection
Figure 1 shows the measurement flow. Each volunteer wore a
SENSIO smartwatch recording wrist PPG and ECG during the
experimental period. For volunteers in the health management
center, 3 rounds of measurements were conducted. For
volunteers in the outpatient clinic, 5 rounds of measurements
were made. In each round, the participants maintained the sitting
position, and ECG was measured in the first minute. Blood
pressures were then measured by the sphygmomanometer on
the other arm (not wearing the smartwatch) with the cuff aligned
at the heart level. A one-minute rest was reserved between 2
adjacent rounds. The wrist PPG signals were continuously
recorded throughout the course. In the end, baPWV was
measured by the OMRON noninvasive vascular screening
device, with the cuffs on 4 limbs in the supine position.

Figure 1. Measurement flow. baPWV: brachial-ankle pulse wave velocity; ECG: electrocardiography; PPG: photoplethysmography.

Ethical Considerations
The experiment was approved by the research ethics committee
of National Taiwan University Hospital (number
201902087RIPA). All data were collected in accordance with
the approved protocol. Importantly, the dataset used in this study
did not contain any personally identifiable information, and all
records were fully anonymized prior to analysis. Informed
consent was obtained from all participants, and the study was
conducted in compliance with the ethical standards set forth in
the Declaration of Helsinki and relevant national regulations.

Processing Flow
The signal-processing flow is indicated in Figure 2. The PPG
and ECG, sampled at 256 Hz, were extracted from the first
minute of each round in the synchronization phase (Figures S1
A and S1 B in Multimedia Appendix 1). In the preprocessing
phase, baseline wandering of signals was corrected by the
discrete wavelet transform, and the 60-Hz power interference
was suppressed by the notch filter. The amplitude of the whole
signal segment was then normalized to [−1, +1]. The R peak of
ECG and the valley of PPG signals were detected to calculate
cycle length (Figures S1 C and S1 D in Multimedia Appendix
1). The skewness and variation of ECG and PPG cycle lengths
were adopted to establish the signal quality index to exclude
suboptimal ECG or PPG cycles for feature extraction. The

first-order derivative PPG (FDPPG) and the second-order
derivative PPG (SDPPG) signals were calculated. The systolic
peak, notch, and diastolic peak were marked by the algorithm
[19] for each PPG cycle (Figure 3A). The maximal slope (max
slope) of the ascending systolic pulse, corresponding to the
maximal rate of blood volume change, was identified by the
first local maximum in FDPPG (Figure 3B) [20]. The local
extrema of the SDPPG in systole are defined as a, b, c, and d
points, where points a and c are local maxima and points b and
d are local minima (Figure 3C) [21]. Point e is the local
maximum around the boundary of systole and diastole in
SDPPG. Point f is the first local minimum after point e.

The PPG pulse is regarded as a summation of several component
waves, including the forward waves by left ventricular
contraction and the distally reflected waves due to aortic
elasticity and reservoir property [22]. The pulse decomposition
analysis helps segregate the component waves [23]. With proper
weighting, the variation of component waves can be reduced
[24]. Five Gaussian waves are used for synthesizing the PPG
pulse. Given θi=αi,βi,γi corresponding to pulse amplitude, pulse
position, and pulse width of the component wave i, and
Θ={θ1, θ2, …,θ5}, the summation of the Gaussian waves takes
the form of

(1)G(t|θ)=∑i=15g(t|θi)

with
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(2)g(t|θi)=αie(t−βiTs)22(γiTs)2

Denote Gi as the component wave described by g(t|θi). Given
the boundary constraints, Lαi≤αi≤Uαi, Lβi≤βi≤Uβi, and
Lγi≤γi≤Uγi [24], the interior-point method is used to solve the
following optimization problem,

(3)Θ^=arg minΘ1M∑n=1Mw(n)[s(n)−G(nTs|Θ)],

where w(n) is the weight to emphasize the informative portion
of the PPG pulse sn with length M and is given by

(4)w(n)={ωna≤n≤nf1else

Variables na and nf refer to the position of points a and f. The
weight ω is set to 80 for stabilizing the variation of component

waves in the sequence with acceptable mean square error
between the synthesized waveform and original waveform.

Once the component waves are acquired, the forward wave is
generated by combining G1 and G2. The systolic wave and
diastolic wave are derived by combining G1 to G3 and G4 to G5,
respectively. The respective peaks of the synthesized forward
wave, systolic wave, and diastolic wave are named as pf, ps,
and pd. In the following, the amplitude and position of feature
x in the PPG pulse are indicated by Ax and nx, respectively.
The amplitude of feature x in the ith-order derivative PPG is
represented byAx(i). The result of decomposed component
waves by weighted pulse decomposition (WPD) is shown in
Figure 4.

Figure 2. Signal-processing flow. ECG: electrocardiography; PPG: photoplethysmography; SQI: signal quality index; WPD: weighted pulse decomposition.
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Figure 3. Photoplethysmography, first-order derivative photoplethysmography, and second-order derivative photoplethysmography waveforms and
features in 1 cardiac cycle (from A to C). FDPPG: first-order derivative photoplethysmography; PPG: photoplethysmography; SDPPG: second-order
derivative photoplethysmography.
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Figure 4. Component waves after weighted pulse decomposition. G1: Gaussian component wave 1; G2: Gaussian component wave 2; G3: Gaussian
component wave 3; G4: Gaussian component wave 4; G5: Gaussian component wave 5; WPD: weighted pulse decomposition.

To assess the quality of WPD, WPD signal quality index, which
was defined as mean square error between the PPG pulse, s(n),
and the synthesized pulse, G(nTs|Θ), of >2×10-3, was
implemented to remove disqualified pulses.

A total of 22 features were derived from the PPG pulse, FDPPG,
and SDPPG (Table S1 A in Multimedia Appendix 2). The age
index, which has been shown to be correlated with the
augmentation index of aortic pressure [21,25],

(5)Ab(2)−Ac(2)−Ad(2)−Ae(2)Aa(2)

and its related variant combining only highly correlated
components,

(6)Ab(2)−Ac(2)−Ad(2)Aa(2)

were also used. There were 27 features derived from WPD
(Table S1 B in Multimedia Appendix 2). The stiffness index
(SI) is defined as the time interval between the peaks of systolic
and diastolic waves [23] and is denoted by npd-nps. The time
intervals of the third or fourth component wave to the forward
wave were also calculated. Note that nps and npd were obtained
from synthesized systolic wave peak ps and diastolic wave peak
pd of WPD as shown in Figure 4 while nsys and ndia were
marked as the positions of systolic peak and diastolic peak in
PPG as shown in Figure 3.

The ECG-related features were also adopted (Table S1 C in
Multimedia Appendix 2). The R peak and T peak of the ECG
waveform were identified and marked as nR and nT. Since the

R peak occurs earlier than the PPG valley of the same heartbeat,
nR is negative in number. The pulse arrival time (PAT) measures
the time span between R peak and PPG valley, denoted by -nR.

PAT2 and Height2/PAT2 were included since either linear or
nonlinear relationship between BP and pulse transit time has
been shown [26]. The time span from R peak to maximum slope,
peak of systolic wave, or component wave 2 was also
considered.

Basic information (Table S1 D in Multimedia Appendix 2)
contains age, height (H), weight, BMI, and lengths from arm
to wrist (Law) and finger (Laf). The lengths from heart to
brachium (Lb) and from heart to ankle (La) can be approximated
by [27]

(7)La=0.8219H+12.328

(8)Lb=0.2195H−2.073.

The length difference between ankle and brachium could be
expressed by La-Lb.

Feature normalization is often adopted since the relative change
of 2 features could provide additional information than each
feature alone. To systematically derive the normalization results,
we generate combined features by dividing the value of feature
u by value of feature v. The combined features contain not only
magnitude-normalized or time-normalized features but also
basic information features.
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Estimation Approach

Multivariable Regression
Linear regression and multivariable regression had been applied
for baPWV estimation [12,28]. The time difference between
the systolic peak to diastolic peak has been used and normalized
by the Fridericia formula [28] while the systolic peak to the
next onset (P2O), M-nsys (feature 1 in Table S1 A in
Multimedia Appendix 2), of the PPG signal normalized by the
PPG pulse length was also examined for PWV estimation [12].
These 2 variables were selected from the finger PPG features
by the authors due to their high correlation to baPWV reported
in the literature. The wrist PPG was used in this study for
baPWV estimation. Because diastolic peak often vanished in
wrist PPG pulses, we used SI (feature 51 in Table S1 B in
Multimedia Appendix 2), which denotes the time span between
peaks of decomposed systolic wave and diastolic wave
according to WPD, and its normalized form with the Friderician
formula is given by SI/M1/3. The multivariable linear equations
are described by [12,28]

(9)PWV=C1Age+C2SIM1/3+C3

and

(10)PWV=C1Age+C2P2OM+C3.

Hierarchical Regression
The linear estimation regarding the correlations between PPG
features and PWV, as used in multivariable regression analysis,
may oversimplify the vascular hemodynamic state. The machine
learning algorithms have been prosperously developed and used
for biomedical applications, such as neural network and decision
tree regression for estimation of vascular age [29] and gradient
boosting decision tree regression for estimation of blood
pressure [30]. We herein developed the hierarchical regression
model based on the random forest and extreme gradient boosting
(XGBoost) algorithms. A general regression model by XGBoost
was also implemented for comparison.

The random forest and XGBoost algorithms of high scalability
have been shown to achieve excellent performance in many
fields [31]. In the random forest algorithm, a large number of
decision trees are constructed. A different subset of the data and
a random selection of features are used for each decision tree
to prevent overfitting in the training process. The final
classification is often made by taking the majority vote. On the
other hand, inherited from gradient boosting, XGBoost adds
the new regression tree in each iteration to improve the previous
prediction and to approach the target. The XGBoost introduces
the regularization term that considers the complexity of the tree
so as to avoid overfitting. In addition, the second-order gradient
statistics are used for accelerating the computation.

The concept of hierarchical regression can be described as
classification by random forest algorithm and then regression
by XGBoost algorithm (Multimedia Appendix 3). The whole
PWV range is partitioned into several subdivisions. Thus, a
global classifier handles the entire PWV range, and several local
regressors are in charge of the respective subdivisions. First, an
outcome regarding the possible baPWV subdivision is generated
by the global classifier. Then, the estimation result is calculated

by the associated local regressor. Because it is possible that the
data around the subdivision boundary are erroneously classified,
the adjacent regressors are designed to have an overlapping
zone to extend the respective coverages. Owing to the data
quantity, 2 subdivisions were adopted and the boundary
threshold was set at 1600 cm per second. The widths of the
overlapping zone were set as 200 cm per second, 400 cm per
second, and 600 cm per second.

Statistical Analysis
The differences between the estimated results v^j and the
measured PWV vj of the jth measurement are shown by the
mean absolute error, mean error, SD, and root-mean-square
error (RMSE), which are defined as follows.

(11)ej=vj−vj^

(12)MAE=E{|ej|}

(13)ME=e−=E{ej}

(14)SD=1N−1∑j=1N(ej−e−)2

(15)RMSE=E{ej2}.

The correlation coefficients together with P values are also
provided. Since some participants have more than 1
measurement, to avoid unbalanced weighting, averaged PWV
estimation and averaged PWV measurement are used for the
statistical results per participant.

Results

In this study, 80 male participants and 82 female participants
were recruited. Their demographic characteristics are shown in
Table 1. The averaged PWV value of left baPWV and right
baPWV was used. The PWV values of male participants and
female participants were 1591 (SD 266) cm per second and
1613 (SD 321) cm per second. Among total participants, 39
male participants and 23 female participants had more than 1
PWV values due to their multiple visits. A total of 914 PPG as
well as ECG sequences were collected from the smartwatch,
corresponding to 278 PWV values. On average, 1 male
participant has 3.5 PPG and ECG sequences associated with 1
PWV measurement while 1 female participant has 3.1 PPG and
ECG sequences for 1 PWV measurement. Among 278 PWV
measurements, there are 123 PWV measurements from
participants taking antihypertensive medications on the same
day.

The medians of the respective combined features in the 528 and
386 sequences were used for computing correlation coefficients
for men and women. The correlation coefficients of combined
features defined by the X and Y indices are often higher than
the original one (Multimedia Appendix 4). For example, the
correlation coefficients of the age and maximum slope time
(nms) to baPWV are 0.334 and −0.281, whereas the correlation
coefficient of the combined feature Age/nms becomes 0.491
(Multimedia Appendix 5). The correlation coefficients of SI
corrected by Friderician’s formula and the time interval between
systolic peak to the onset of next PPG (P2O) normalized by
pulse length from the wrist PPG versus baPWV are −0.271
(P<.001), −0.036 (P=.413) and −.370 (P<.001), −0.070 (P=.171)
for men and women, respectively.
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The reproducibility of the measured baPWV was also checked.
The PWVs of 31 participants were measured twice by the same
OMRON noninvasive vascular screening device with 1-minute
separation. The maximal differences of left baPWV and right
baPWV of these participants were 276 cm per second and 210
cm per second, respectively. The maximal difference of
averaged baPWV from left baPWV and right baPWV was 196.5
cm per second. The RMSEs of 2 consecutively measured left
baPWV and right baPWV were 83.4 cm per second and 62.0
cm per second, respectively. The RMSE of consecutive averaged
baPWV was 68.8 cm per second.

For multivariable regression, 39 and 34 PWV measurements
from 24 male participants and 26 female participants,

respectively, were reserved as the testing dataset. The medians
of the respective features from the sequences associated with
the same PWV measurement were averaged. The testing dataset
was selected to approach uniform distribution in the range
between 1000 cm per second and 2100 cm per second. The
mean and SD of the male and female PWV values in the testing
dataset were 1538 (SD 237) cm per second and 1638 (SD 283)
cm per second. The training dataset for deriving the coefficients
contained 114 PWV measurements with 391 PPG per ECG
sequences from 56 male participants and 91 PWV measurements
with 291 sequences from 56 female participants. The
participant-split criterion is obeyed. The baPWV estimation
results by multivariable regression are shown in Table 2 for
men and women, respectively.

Table . Demographic summary.a

Female participants, mean (SD; n)Male participants, mean (SD; n)Characteristics

64.3 (11.6; 82)63.4 (13.4; 80)Age (years)

71.0 (8.2; 386)73.9 (12.7; 528)Heart rate (bps)

125.9 (17.9; 386)126.0 (15.7; 528)SBPb (mm Hg)

77.0 (12.0; 386)79.4 (10.6; 528)DBPc (mm Hg)

1613 (321; 125)1591 (266; 153)PWVd (cm per second)

aAmong a total of 278 pulse wave velocity measurements, 123 measurements were obtained from participants taking antihypertensive medications on
the same day.
bSBP: systolic blood pressure.
cDBP: diastolic blood pressure.
dPWV: pulse wave velocity.

Table . Estimation results from multivariate regressiona.

Correlation coeffi-
cient (P value)

RMSEd (cm per
second)

SD (cm per second)MEc (cm per sec-
ond)

MAEb (cm per sec-
ond)

NMethods

Men

0.44 (.006)217.2214.3−49.0179.139 roundsPWV=C1Age+C2SIM1/3+C3

[28e,f] 0.55 (.006)195.8195.7−40.4160.424 participants

0.37 (.02)224.6219.8−57.7189.039 roundsPWV=C1Age+C2P2OM+C3[12g]

0.43 (.04)209.1207.8−48.1176.124 participants

Women

0.66 (<.001)208.6211.71.8165.234 roundsPWV=C1Age+C2SIM1/3+C3[28]

0.72 (<.001)194.0197.4−12.1157.426 participants

0.62 (<.001)229.8233.010.0196.034 roundsPWV=C1Age+C2P2OM+C3[12]

0.67 (<.001)217.6221.88.6188.826 participants

aThe testing set contained 39 and 34 pulse wave velocity measurements from 24 male participants and 26 female participants, respectively.
bMAE: mean absolute error.
cME: mean error.
dRMSE: root-mean-square error.
ePWV indicates pulse wave velocity.
fSI: stiffness index.
gP2O: systolic peak to the next onset.

For hierarchical regression, the same training and testing datasets
as those in multivariable regression were used to keep

participants split. The training dataset was oversampled to make
the distribution balanced in each interval of 100 cm per second.
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Several parameters, such as the shrinkage factor, tree depth,
and column subsampling, are required for the random forest
and XGBoost algorithms. Hence, a validation set split from the
training dataset was used for parameter settings. Because the
number of PWV measurements of extreme high and low values
was not sufficiently large, leave-one-out validation was used
to ensure that the model for validation is similar to that for
training. For the general model, the male validation set contained
23 participants and 33 PWV measurements, while the female
validation set had 22 participants and 39 PWV measurements.
The validation set consisted of more than one-third of
participants in the training dataset and kept uniformly distributed
in the range from 1000 cm per second to 2100 cm per second.
During leave-one-out validation, all the PPG or ECG sequences
associated with the PWV measurements of 1 validation
participant were removed from the training dataset to avoid data
leak. For each submodel of the local regressor, the validation
dataset in each subdivision includes those with the PWV
measurements in the overlapping zone. Given the overlapping
zone of 400 cm per second, there were 24 PWV measurements
from 13 male participants and 26 PWV measurements from 12
female participants in the high submodel for validation from
1400 cm per second. On the other hand, 25 PWV measurements
from 13 male participants and 25 PWV measurements from 16
female participants were used in the low submodel for validation
up to 1800 cm per second.

Table 3 lists the estimation results from the general and
hierarchical regression models by the random forest
classification and XGBoost regression algorithms with different
settings of the width of the overlapping zones. First, the RMSE
results from the hierarchical regression models are better than
those from the multivariable linear regression model. The
hierarchical regression model also outperforms the general
regression model. Figures 5 and 6 show the Bland-Altman and
scatter plots of regression results by the hierarchical regression

model with overlapping zone of 400 cm per second for men
and women participants. Their participant numbers are indicated
in the legend. Good estimation was obtained for this setting.
The left subfigures indicate the Bland-Altman plot. The scatter
plots in the right subfigures provide the final estimation results.
The classification accuracies of total rounds from male
participants and female participants are 76.9% and 91.2%,
respectively. The estimation of erroneously classified data close
to the boundary got improved with the introduction of an
overlapping zone. The best estimation results achieve RMSE
of 145.0 cm per second and 141.4 cm per second for men and
women, respectively. In the random forest classifier for male
participants, the number of estimators is 100 and the maximum
tree depth is 20. As to the random forest for female participants,
the number of estimators is 250 and the maximum tree depth
is 9. In both cases, the minimum samples for tree split should
be larger than 2 and the minimum number of samples in leaf
nodes is 1. As to the XGBoost regressors, the number of
estimators is 200; the fraction of features sampled for each tree
is 0.7; and the minimum loss reduction for further partition is
0. The maximum depth of the low submodel for male
participants is 5 and is set to 3 for the remaining submodels.

The XGBoost algorithm performs tree splitting by evaluating
structure scores to accumulate gradient statistics according to
the sorted feature values while the random forest algorithm can
assess the impact on pureness of the leaves from a feature.
Hence, both can report the feature importance. Given the
overlapping zone of 400 cm per second in the hierarchical
regression model, besides PAT (nR), PAT square (nR2), and
age, PPG features and WPD features were also frequently used
(Multimedia Appendix 6). Local regression models used features
different from those used in global classification models.
Features from component wave, points a, b, c, and d of SDPPG
were often adopted.
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Table . Hierarchical regression results for men and for women are listed.

Correlation coef-
ficient (P value)

RMSEc

(cm per second)

SD

(cm per second)
MEb

(cm per second)

MAEa

(cm per second)

NOverlapping
zone

(cm per second)

Method

Men

0.61 (<.001)185.3187.0−16.5157.439 rounds—d    General regres-
sion

0.66 (<.001)169.7173.1−8.4141.724 participants—    General regres-
sion

0.64 (<.001)183.9185.3−19.4156.039 rounds200    Hierarchical
regression

0.63 (.001)182.6185.6−18.4152.124 participants200    Hierarchical
regression

0.74 (<.001)158.3160.1−8.1133.639 rounds400    Hierarchical
regression

0.77e (<.001)145.0 e147.8−8.9126.524 participants400    Hierarchical
regression

0.63 (<.001)180.5182.9−2.3153.639 rounds600    Hierarchical
regression

0.70 (<.001)162.1165.013.7143.624 participants600    Hierarchical
regression

Women

0.67 (<.001)216.8217.0−36.0174.334 rounds—    General regres-
sion

0.66 (<.001)214.7217.8−22.4177.726 participants—    General regres-
sion

0.80 (<.001)169.7171.0−20.7141.534 rounds200    Hierarchical
regression

0.83 (<.001)157.0157.4−29.2131.426 participants200    Hierarchical
regression

0.83 (<.001)154.5156.7−3.5127.334 rounds400    Hierarchical
regression

0.86e (<.001)141.4 e144.1−6.0116.726 participants400    Hierarchical
regression

0.79 (<.001)173.0173.924.2144.334 rounds600    Hierarchical
regression

0.79 (<.001)171.8173.524.0141.226 participants600    Hierarchical
regression

aMAE:mean absolute error.
bME: mean error.
cRMSE: root-mean-square error.
dNot applicable.
eValues in italics indicate best estimation result with acceptable accuracy set by the ARTERY Society.
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Figure 5. (A) Bland-Altman plot and (B) scatter plot of pulse wave velocity regression by the hierarchical regression model with 2 submodels and
overlapping zone of 400 cm per second for 24 men. PWV: pulse wave velocity.

Figure 6. (A) Bland-Altman plot and (B) scatter plot of pulse wave velocity regression by the hierarchical regression model with 2 submodels and
overlapping zone of 400 cm per second for 26 women. PWV: pulse wave velocity.

Discussion

Principal Findings
In this study, we used wrist PPG and ECG signals to estimate
baPWV. The morphology of wrist PPG signals is quite different
from that of finger PPG signals. The conventional approach
that used finger PPG morphology features may encounter the
problem of feature missing due to much fewer identifiable
features of wrist PPG signals. In addition, the multivariable
regression model used in prior works may be too simple to
describe the complicated hemodynamic state in the vessels.
Hence, we resorted to the machine learning algorithm to deal
with the estimation. Although the wrist PPG and ECG signals

were acquired before the baPWV measurement, they are still
related to the vessel condition and stiffness. To further improve
and refine the estimation results, hierarchical regression was
adopted to shrink the range handled in the submodel. The
achieved RMSE and SD by our hierarchical regression models
for both men and women are lower than the threshold (150 cm
per second) of acceptable accuracy for PWV estimation set by
the ARTERY Society [32].

Comparison With Prior Work
With the WPD and feature imputation techniques developed by
us, more than 98% of all ambiguous and missing features of
wrist PPG can be identified [19]. From the correlation results
(Multimedia Appendix 4), besides age (feature 23) and age
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square (feature 63), correlation related to SDPPG amplitude of
point c (feature 18), point d (feature 19), and point e (feature
20) are still obvious as what has been mentioned in finger PPG
[25]. In addition, SI (npd-nps; feature 51), which are often
missing in the original wrist PPG pulses, can be computed
through the synthesized systolic and diastolic waves in
decomposed wrist PPG. According to the feature importance
(Multimedia Appendix 6), it still plays an important role for
PWV estimation.

The multivariable regression uses only a few features. If
significantly high correlations of those features to baPWV do
not appear, the performance of estimation will be degraded.
However, the machine learning algorithm can help exploit more
linear or nonlinear information embedded in the PPG waveform
or its component waves and thus is suitable for these
applications. Furthermore, the combined features from PPG
and ECG morphology, WPD, and basic information supplied
more feature information sources that can be selected by the
model.

Hierarchical Model Insights
The concept of hierarchical regression is to introduce different
models to refine the estimation results. However, the global
classifier or regressor must provide sufficiently correct
classification to avoid model mismatch. From the hierarchical
regression results, it is clear that the inclusion of overlapping
zone in local regressors indeed improved the estimation results,
as reflected in the improved correlation coefficients (Table 2).
However, the determination of optimal range of overlapping
zone is still controversial. If the overlapping zone is too wide,
the hierarchical regression model would become similar to the
general regression model. On the other hand, if the overlapping
zone is too narrow, the misclassified data cannot be properly
handled. In this study, we recommend the overlapping zone of
400 cm per second of 2 subdivision models because the
misclassified data are near the boundary due to good capability
of the global classifier and can be appropriately covered by the
submodel. We conducted further analysis on the features that
were misclassified for those samples not near the decision
boundary. The results showed no significant outliers.
Additionally, the vote counts for 2 classes across the entire

forest were close, indicating low confidence among the trees.
The latent properties beyond the observed features should be
further studied. On the other hand, we also applied a Kernel
Density Estimation–based mutual information analysis [33] to
assess the relevance of individual features in male and female
datasets. The mutual information values from male features
were lower than those from female features, which can also
explain the lower classification accuracy in male participants
of our dataset.

Limitations and Future Directions
This study has limitations, which point to the directions for
future research. First, the sample size remained small and more
older adult people were recruited in the study, which might limit
its applicability in younger populations. While the current
dataset demonstrates feasibility in estimating PWV using wrist
PPG in older individuals, the skewed dataset toward older
individuals may have influenced the performance due to
age-related vascular characteristics. In future work, we plan to
expand the study population by actively recruiting more young
participants. The inclusion of younger participants will help
balance the age distribution and allow for more robust
assessment of the model performance across different age
groups. This extension will not only improve the generalizability
of the model but also enable a more comprehensive evaluation
of age-related vascular changes. Second, the current model
adopts machine learning algorithms to exploit linear and
nonlinear features within the scope of this dataset. As the dataset
grows in size and diversity, other deep learning algorithms, such
as Bayesian neural networks or multilayer perceptrons, can be
applied, which may offer better uncertainty quantification or
modeling capabilities. Third, the feature space used in the
current model is relatively high-dimensional, which may hinder
its practical deployment on wearable or edge devices with
limited computational resources. Feature compression or
dimensionality reduction techniques can be considered to
decrease model complexity in the future. This optimization will
help make the system more suitable for real-time, low-power
applications in wearable health care settings. Together, these
improvements aim to enhance both the robustness and the
applicability of the proposed approach, facilitating its transition
toward practical use in diverse and real-world scenarios.

 

Acknowledgments
The authors would like to acknowledge Mr Bowen Ku of Mediatek Inc for his design experience feedback about wearable devices
in biomedical applications. This work is supported by Mediatek Inc (grant numbers MTKC-2021‐0477 and MTKC-2023‐1363).

Authors' Contributions
P-YT, C-HH, and Y-CL contributed to conceptualization; P-YT contributed to methodology; C-IH, C-HY, C-HH, Y-CL, and
J-WG contributed to software; C-IH, C-HY, and Y-CL participated in validation; T-DW and H-JL contributed to resources; P-YT
participated in writing—original draft preparation; T-DW participated in writing—review and editing; and T-DW, P-YT, and
H-JL participated in supervision. All authors have read and agreed to the published version of the manuscript.

Conflicts of Interest
PYT has received research grants (grant numbers MTKC-2021‐0477 and MTKC-2023‐1363) from Mediatek Company. All
other authors have no relevant relationships to disclose.

JMIR Biomed Eng 2025 | vol. 10 | e58756 | p.50https://biomedeng.jmir.org/2025/1/e58756
(page number not for citation purposes)

Ho et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Multimedia Appendix 1
(A) Electrocardiography before preprocessing, (B) photoplethysmography before preprocessing, (C) electrocardiography with R
peak after preprocessing, and (D) photoplethysmography with valley after preprocessing.
[PNG File, 97 KB - biomedeng_v10i1e58756_app1.png ]

Multimedia Appendix 2
List of extracted features: (A) photoplethysmography features, (B) weighted pulse decomposition features, (C) electrocardiography
features, and (D) basic information.
[DOCX File, 23 KB - biomedeng_v10i1e58756_app2.docx ]

Multimedia Appendix 3
Concept of hierarchical regression.
[PNG File, 251 KB - biomedeng_v10i1e58756_app3.png ]

Multimedia Appendix 4
Heat map of correlation coefficients of combined features (defined in Tables S1 A, S1 B, S1 C, and S1 D in Multimedia Appendix
2) versus brachial-ankle pulse wave velocity for (A) 80 male participants and (B) 82 female participants with 528 and 386 data,
respectively. The diagonal elements are the correlation coefficients of original features. The off-diagonal elements are the
correlation coefficients of combined features.
[PNG File, 71 KB - biomedeng_v10i1e58756_app4.png ]

Multimedia Appendix 5
The distributions of brachial-ankle pulse wave velocity versus (A) age, (B) nms, and (C) Age/nms for 386 female data.
[PNG File, 79 KB - biomedeng_v10i1e58756_app5.png ]

Multimedia Appendix 6
Top 10 important features of classification and local regression for (A) men and (B) women.
[DOCX File, 24 KB - biomedeng_v10i1e58756_app6.docx ]
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baPWC: brachial-ankle pulse wave velocity
cfPWV: carotid-femoral pulse wave velocity
CVD: cardiovascular disease
ECG: electrocardiography
FDPPG: first-order derivative photoplethysmography
PAT: pulse arrival time
PPG: photoplethysmography
P2O: peak to the next onset
PWV: pulse wave velocity
RMSE: root-mean-square error
SDPPG: second-order derivative photoplethysmography
SI: stiffness index
WPD: weighted pulse decomposition
XGBoost: extreme gradient boosting
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Abstract

Background: Accurately assessing pain severity is essential for effective pain treatment and desirable patient outcomes. In
clinical settings, pain intensity assessment relies on self-reporting methods, which are subjective to individuals and impractical
for noncommunicative or critically ill patients. Previous studies have attempted to measure pain objectively using physiological
responses to an external pain stimulus, assuming that the participant is free of internal body pain. However, this approach does
not reflect the situation in a clinical setting, where a patient subjected to an external pain stimulus may already be experiencing
internal body pain.

Objective: This study investigates the hypothesis that an individual’s physiological response to external pain varies in the
presence of preexisting pain.

Methods: We recruited 39 healthy participants aged 22‐37 years, including 23 female and 16 male participants. Physiological
signals, electrodermal activity, and electromyography were recorded while participants were subject to a combination of preexisting
heat pain and cold pain stimuli. Feature engineering methods were applied to extract time-series features, and statistical analysis
using ANOVA was conducted to assess significance.

Results: We found that the preexisting pain influences the body’s physiological responses to an external pain stimulus. Several
features—particularly those related to temporal statistics, successive differences, and distributions—showed statistically significant
variation across varying preexisting pain conditions, with P values <.05 depending on the feature and stimulus.

Conclusions: Our findings suggest that preexisting pain alters the body’s physiological response to new pain stimuli, highlighting
the importance of considering pain history in objective pain assessment models.

(JMIR Biomed Eng 2025;10:e70938)   doi:10.2196/70938

KEYWORDS

pain measurement; sensors; physiological signals; hypothesis testing; pain assessment; ANOVA

Introduction

Accurate pain assessment is vital for ensuring proper treatment
and helping patients receive the necessary care to reduce
discomfort and prevent complications. Yet, current pain
assessment tools and methods, which rely on patients’
description of their pain using scales or descriptive measures,
often fall short of clinical expectations [1]. These methods are
ineffective for noncommunicative patients, such as infants or
critically ill patients under sedation or mechanical ventilation.
They are also inherently subjective, as pain perception varies
widely between individuals [2-5]. These limitations increase
the risk of misdiagnosis and mistreatment, highlighting the need
for more objective and reliable pain assessment methods [6,7].

To address the limitations of self-reported pain assessments,
physiological signals offer a promising alternative. Signals such
as skin conductance, heart rate, and muscle activity provide
objective data that can reflect the body’s response to pain.

Unlike self-reporting, physiological signals do not depend on
a patient’s ability to communicate, making them particularly
suitable for critically ill or noncommunicative patients. By
monitoring these signals in real-time, health care providers can
gain an accurate and continuous understanding of a patient’s
pain levels, paving the way for timely and appropriate
interventions. This shift toward objective, data-driven pain
assessment can help reduce the variability and inaccuracies
associated with traditional methods, enhancing health care
providers’ assessments [8,9].

Several studies have explored data-driven approaches for
assessing pain through physiological signals [10-12]. These
studies primarily collected data such as skin conductance,
electromyography (EMG), electrocardiography, and
electroencephalography during controlled pain stimuli
experiments [9,13-15]. The BioVid Heat Pain Database is one
of the most well-known, aiming to differentiate between various
pain levels by analyzing physiological responses to heat pain
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[9]. Other studies, like Rojas et al [16] and Lin et al [14], also
gathered data from participants exposed to heat or cold stimuli,
applying machine learning techniques to classify pain levels.
These studies have demonstrated the potential of physiological
signals for objective pain assessment and established valuable
datasets for pain assessment research [9,14,17,18].

While the aforementioned studies provide promising results,
they mainly focus on healthy participants responding to a single
type of externally induced pain stimulus. One crucial factor that
remains underexplored is the impact of preexisting conditions,
such as chronic pain, postsurgical pain, or injury pain, that a
patient is experiencing when the patient is administered an
external pain stimulus. A few studies have investigated different
patient populations, such as patients with chronic pain (back
pain and shoulder pain) [11,19-22], patients in postsurgery [23],
patients who are injured [24], patients with orthopedic trauma
[25], patients with musculoskeletal trauma [26], and patients
with cancer (eg, breast cancer [27]). These studies have provided
insights into pain assessment in these populations, but they have
not fully explored how preexisting pain interacts with new pain
stimuli in terms of physiological responses.

Although the literature has begun exploring objective pain
assessment for a single source of external pain stimuli, insights
from medical research reveal that preexisting pain influences
responses to new pain stimuli, underscoring the importance of
considering preexisting pain. Sacco et al [20] found that
individuals without chronic pain (without preexisting pain)
exhibit an adaptive response to acute pain (new pain) by
activating internal pain regulation mechanisms, including the
release of natural painkillers and an increase in blood pressure,
which temporarily reduces sensitivity. However, in patients
with chronic pain, this adaptive mechanism can become
disrupted, leading to heightened sensitivity to both acute and
chronic pain. Similarly, Moscato et al [22] found that the
autonomic signals of patients with chronic low back pain show
differences compared to those of healthy individuals, both at
rest and when subjected to a noxious stimulus, as evaluated
through a set of physiological indicators. Lee et al [26] showed
that preexisting pain can impact specific biomarkers, such as
IL−1β, affecting how the body processes musculoskeletal trauma
as a new pain. Raza et al [27] also found that women with
chronic breast pain experienced more severe postoperative pain,
highlighting preexisting pain as a predictor of adverse pain
outcomes. In patients with trauma, Fetzh et al [24] observed
that preexisting pain serves as a significant predictor for
long-term pain following severe injury, emphasizing the
complex interaction between pain history and physiological
responses.

Although chronic pain is often referenced in the literature, the
goal of this study is neither to simulate nor to assess chronic
pain specifically. Instead, we use “preexisting pain” as a broader
effect that can include various types of ongoing pain, such as
postsurgical pain, injury-related pain, or other chronic and
nonchronic conditions. Our aim is to investigate how any form
of preexisting pain—regardless of origin—might influence the
physiological response to a new external pain stimulus.

Our hypothesis is that preexisting pain significantly alters
physiological responses to new pain stimuli. For instance,
patients with chronic pain or postsurgical pain may show distinct
physiological signals—such as changes in skin conductance or
EMG—compared to healthy individuals when encountering
new pain. To test this hypothesis, we conducted an experimental
study examining how different levels of preexisting pain
influence physiological responses to new pain stimuli.
Understanding these responses could lead to accurate and
personalized pain assessments.

In our experiments, we designated “heat pain” as a form of
preexisting pain and “cold pain” as a new external stimulus.
Heat pain and cold pain were studied at 3 levels: zero, low, and
high. We conducted experiments with 9 combinations of
no-heat, low-heat, high-heat, no-cold, low-cold, and high-cold
pain. We recorded electrodermal activity (EDA) and EMG as
time series data during these experimental conditions. Following
data collection, we used feature engineering methods to extract
features from these time series. We identified distributions,
simple temporal statistics, linear and nonlinear autocorrelation,
successive differences, and fluctuation analysis as pain-sensitive
features. Next, we applied an ANOVA test to investigate
whether physiological responses to cold pain stimuli exhibit
statistical differences across three levels of preexisting heat
pain. By analyzing variations in EDA and EMG features across
different pain exposure levels, we aim to gain insights into how
preexisting pain modulates the body’s response to new pain.

The aim of this study is to investigate how varying levels of
preexisting heat pain affect the physiological response to new
cold pain stimuli, using EDA and EMG signals as objective
markers.

To our knowledge, this work represents the first experimental
study that explores the EDA and EMG features that exhibit
statistically significant differences across varying preexisting
heat pain levels in response to an external stimulus.

Methods

Ethical Considerations
The research protocol was approved by the Northeastern
University Institutional Review Board (IRB #22-11-06). The
methods for this study adhered to the guidelines outlined in the
Belmont Report. Northeastern University holds a Federal Wide
Assurance with the US Department of Health & Human
Services, ensuring our compliance with the principles of the
Common Rule, 45 CFR 46. Before the experiment, the
researcher orally explained the experimental procedure to each
participant, the participant’s role, and other relevant information.
In addition, the researcher presented each participant with a
written consent form to read. The researcher obtained written
informed consent from each participant before commencing the
experiment. The research team kept participants’ data
confidential and anonymized, securely storing all data with
access limited to the research team only. No identifying
information was included in the manuscript or any related
materials. Participants were compensated with a gift card.
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Participants
In total, 39 participants were recruited, with 31 completing the
experiments. The remaining 8 participants chose not to continue
the experiment due to discomfort from the heat pain. The study
included 23 female and 16 male participants, with ages ranging
from 22 to 37 years, with an average age of 26.1 (SD 3.57)
years. All participants were healthy, and none reported
experiencing pain before the experiment.

Inclusion and Exclusion Criteria
Participants were recruited from the Northeastern University
community, including students, faculty, and staff. Inclusion
criteria required participants to be between 18 and 50 years of
age, in good general health, and not currently experiencing
chronic pain or other medical conditions that could interfere
with physiological responses. Only English-speaking individuals
were included to ensure clear communication and understanding
of study procedures. Pregnant individuals were excluded from
participation to ensure their comfort and to avoid the
introduction of additional physiological variability. There were
no exclusion criteria related to gender, race or ethnicity,
socioeconomic status, or literacy level.

Measured Physiological Signals
This study examined two physiological signals, EDA and EMG,
to capture responses to pain stimuli.

Electrodermal Activity (EDA)
EDA serves as an indicator of neurocognitive stress through
changes in the skin’s electrical conductance [28]. Closely linked
to the sympathetic branch of the autonomic nervous system,
EDA can sense and transmit information about environmental
changes, including temperature, pressure, and pain [29-31].
Consequently, EDA reflects emotional and cognitive states,
making it a valuable physiological marker across various
applications [32].

During emotional arousal or cognitive stress, sweat gland
stimulation induces fluctuations in skin conductance, measured
by EDA. These changes, largely beyond conscious control,
capture subconscious physiological responses to emotions and
stress, providing an objective means of assessing an individual’s
state [33].

In pain assessment, EDA plays a crucial role by offering a
quantitative and objective measure of physiological responses
to pain. It provides valuable insights into pain intensity,
complementing self-reporting to enhance pain assessment
accuracy in research and clinical settings [28,34]. EDA
encompasses data related to both slow shifts (tonic component)
and the signal’s rapid alterations (phasic changes). Our analysis
focused on gathering information from the tonic component,
specifically skin conductance level.

Electromyography (EMG)
EMG is the electrical signal produced by skeletal muscle
activity. These signals originate from motor neurons, which are
integral components of the central nervous system. Since EMG
signals are a reflection of neuromuscular activity, they find
application in the diagnosis of conditions such as muscle
injuries, nerve damage, and muscle dysfunction arising from
neurological and muscular disorders [35-37]. EMG is an
excellent choice for developing an objective pain assessment
tool because of its unique ability to measure muscle activity
directly. It allows real-time monitoring of muscle responses to
understand pain intensity, location, and characteristics
[14,38,39].

Design of the Experiment
The physiological data were collected using the BIOPAC
MP160 data acquisition and analysis systems with
AcqKnowledge software (BIOPAC Systems, Inc). Smart
amplifiers recorded EMG and EDA. Heat stimulation was
delivered using OCOOPA Hand Warmers, which offered two
temperature settings: 37 and 45 °C. These temperatures were
measured and monitored using a BIOPAC SKT (Skin
Temperature) Smart Amplifier. Cold stimulation was provided
through iced water, with the temperature continuously monitored
using a thermometer. In these experiments, heat pain acts as
preexisting pain, while cold pain acts as a new pain stimulus.

Using temperature-based modalities for both preexisting (heat)
and new (cold) pain stimuli allowed us to design a consistent,
safe, and replicable experimental setup. Temperature stimuli
are well-established in pain research and offer practical
advantages regarding ecological validity and participant safety.
Moreover, the thermal approach enabled controlled comparisons
of physiological responses across different pain levels while
minimizing variability introduced by mechanical or electrical
alternatives.

EDA data were collected using the BIOPAC EDA Smart
Amplifier attached to the ring and index fingers of the
participant’s nondominant hand. Before attaching the sensors
to the fingers, the skin was cleaned with wet wipes, and
GEL101A was applied to the electrodes to improve conductivity,
enhance signal quality, and reduce impedance. EMG data were
acquired using the BIOPAC EMG Smart Amplifier, with three
electrodes attached to the participant’s nondominant forearm.
The skin in the sensor placement area was prepared by cleaning
it with wet wipes, followed by abrasion and application of
ELPREP. GEL100 was applied to the electrodes to improve
contact. To minimize motion artifacts, all cables were secured
with medical tape. Hand warmers were fastened to the
participant’s dominant forearm using a strap. Figure 1A shows
the picture of the placement of the electrodes.
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Figure 1. Data acquisition setup and experimental setup for pain stimuli. (A) EDA data were gathered from the ring and index fingers of the participant’s
nondominant hand, while EMG data were recorded using three electrodes positioned on the participant’s nondominant forearm. (B,C) Hand warmers,
serving as heat pain stimuli, were fastened to the participant’s dominant forearm using a strap. Cold pain stimuli were induced by iced water when
participants placed their fingers or hands in the iced water, depending on the stimulus level the participant is expected to receive in the design of
experiments: for low-level cold pain stimulus, participants placed fingers in the iced water, and for high-level cold pain stimulus, participants placed
the hand in the iced water.

The experiment consisted of two types of pain stimuli: (1) heat
pain caused by attaching hand warmers to the forearm and (2)
cold pain induced by placing fingers or hands in ice water. Each
type of pain had low and high levels. The heat and cold pain
stimuli were applied to the dominant hand, while physiological
signals were collected from the nondominant hand. At the end
of each step, participants were asked to report their pain levels
on a scale of 0 to 10. The participants are given a 4-minute
relaxation break at the beginning of each data collection session.

We collected baseline data from each participant without
inducing any type of pain stimulus. The rest of the experimental
procedure consisted of two phases. In the first phase, we
collected data from four steps; in Step 1, only the low-level cold
pain was applied; in Step 2, only the high-level cold was applied;
in Step 3, only low-level heat pain was applied; and in Step 4,
only high-level heat pain was applied. In the second phase of
the experiments, we applied a different combination of heat and
cold pain levels to examine their combined effect in Steps 5
through 8.

The experimental procedures for the first phase involved four
steps. First, the participant placed their fingers in iced water
and held them there for 8 seconds, representing low-level cold
pain. In the second step, they placed their dominant hand in
iced water for 8 seconds, representing high-level cold pain. In
the third step, using a hand warmer attached to the participant’s
dominant forearm, they were subjected to 37 °C heat for 1.5
minutes, which caused low-level preexisting heat pain. In the
final step of the first phase, using a hand warmer attached to
the participant’s dominant forearm, they were subjected to 45
°C heat for 1.5 minutes, which caused high-level preexisting
heat pain.

The second phase of the experiment involved four additional
steps. In the fifth step of the experiment, the participant wore
a hand warmer on their nondominant forearm, experiencing a
temperature of 37 °C for 1.5 minutes. After 80 seconds into the
heat pain stimulus, the participant placed their fingers in iced
water for 8 seconds. This scenario represents the simultaneous
application of low preexisting heat pain and new low cold pain.
In the sixth step, the participant repeated Step 5 with the hand
warmer on their nondominant forearm, but at a temperature of
45 °C. Again, after 80 seconds, they placed their fingers in iced
water for 8 seconds. This scenario represents the simultaneous
application of high preexisting heat pain and new low cold pain.
In the seventh step, the participant wore the hand warmer on
their nondominant forearm at 37 °C for 1.5 minutes. After 80
seconds had elapsed, they immersed their dominant hand in
iced water for 8 seconds. This scenario represents the
simultaneous application of low preexisting heat pain and new
high cold pain. In the eighth and final step, the participant
repeated Step 7 with the hand warmer on their nondominant
forearm at 45 °C for 1.5 minutes. After 80 seconds, they
immersed their dominant hand in iced water for 8 seconds. This
scenario represents the simultaneous application of high
preexisting heat pain and new high cold pain.

Figure 1B,C illustrates how the hand warmer is positioned on
the forearm and how the fingers or hand are placed in the ice
water.

Signal Processing
Both EDA and EMG signals were recorded at a data acquisition
rate of 2000 samples per second (2 kHz). For EDA, a low-pass
filter with a 1.0 Hz frequency cutoff was used to eliminate
high-frequency noise [30,40].
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We processed EMG signals through a comb bandstop
transformation to eliminate interference from the power line
frequency (50 Hz) [41]. The comb bandstop transformation
aims to effectively suppress or eliminate interference originating
from the power line frequency (50 Hz), ensuring a relatively
noise-free EMG signal for analysis and interpretation.
Subsequently, a finite impulse response bandpass filter was
applied, specifying a low-frequency cutoff at 28 Hz and a
high-frequency cutoff at 500 Hz [42]. This step was
implemented to filter out both high and low artifacts, such as
motion artifacts, and to focus on the EMG signal within the
frequency range of 28 to 500 Hz.

Recognizing that the EMG signal centers around 0, a rectified
version was generated by averaging samples in sets of 100. This
approach makes analysis easy by eliminating negative values
and retaining the magnitude of the signal.

To analyze EMG further, the root mean square (RMS) was
calculated using a window size of 100 samples. This

measurement meaningfully represents the signal’s characteristics
because EMG is centered around 0.

Feature Extraction
In this study, we derived features from EDA and EMG using
the “Canonical Time-series Characteristics” outlined by Lubba
et al [43]. These features encompass fundamental statistical
metrics of time-series data, stationarity measures, entropy, linear
correlations, nonlinear time-series analysis techniques, linear
and nonlinear model parameters, predictive capabilities, and
fits. Specifically, we identified the subset of 22 features
highlighted as the most informative by Lubba et al [43]. These
features are listed in Table 1. Following all the data processing
and extraction steps, we obtained 22 features from EDA, EMG,
rectified EMG, and RMS of EMG signals; this resulted in a
total of 22×4=88 features. Then, we applied z-transformation
to normalize all features for each participant, using the
participant-specific mean and SD.

Table . Time-series feature categories and descriptions using the “Canonical Time-series Characteristics” defined by Lubba et al [43].

FeaturesFeature category

Distribution • Mode of z-scored distribution (5-bin histogram)
• Mode of z-scored distribution (10-bin histogram)

Simple temporal statistics • The longest period of consecutive values above the mean
• Time intervals between successive extreme events above the mean
• Time intervals between successive extreme events below the mean

Linear autocorrelation • The first 1/e crossing of the autocorrelation function
• The first minimum of the autocorrelation function
• Total power in the lowest fifth of frequencies in the Fourier power

spectrum
• Centroid of the Fourier power spectrum
• Mean error from a rolling 3-sample mean forecasting

Nonlinear autocorrelation • Time-reversibility statistic,  (xt+1−xt)
3 t

• Auto mutual information, m=2, τ=5
• The first minimum of the auto-mutual information function

Successive differences • Proportion of successive differences exceeding 0.04 σ (Mietus et al
[44])

• The longest period of successive incremental decreases
• Shannon entropy of two successive letters in equiprobable 3-letter

symbolization
• Change in correlation length after iterative differencing
• Exponential fit to successive distances in 2D embedding space

Fluctuation analysis • The proportion of slower timescale fluctuations that scale with DFAa

(50% sampling)
• The proportion of slower timescale fluctuations that scale with linearly

rescaled range fits

Others • Trace of covariance of the transition matrix between symbols in the
3-letter alphabet

• Periodicity measure (Wang et al [45])

aDFA: detrended fluctuation analysis.

Statistical Testing
The initial analysis aims to identify statistically significant
features for class differentiation. This includes using the

ANOVA test, which assesses variations among the means of
various groups. It is applied in various situations to ascertain
whether there are any significant differences between the means
of the groups [46,47]. The null hypothesis asserts that the means
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of the groups are the same, while the alternative hypothesis
posits that the means are not equal.

(1)H0:μ1=μ2H1:μ1≠μ2

We reject the null hypothesis if the calculated P value is less
than the chosen significance level, say, .05.

We used ANOVA to assess the statistical differences in the
means of extracted time series features derived from
physiological signals. The sample comprises 31 observations.
The normality of data, which is a requisite for ANOVA, is
confirmed through the Kolmogorov-Smirnov Test for normality
of data and examination of quantile-quantile plots (Q-Q plots)
for each individual feature. A significance level of .05 is set for
the ANOVA test, which is conducted as a 2-tailed analysis.

Results

The following sections present the results of statistical
comparisons of EMG and EDA signal features across different
combinations of heat and cold pain levels.

Significant Features in the Presence and Absence of
Pre-existing Pain
Table 2 summarizes the statistically significant differences
(P<.05) in EMG and EDA features across experimental groups.
Each row corresponds to a specific hypothesis involving two
groups. For example, the first row compares Group 1
(participants who experienced low-level cold pain without
preexisting heat pain) with Group 2 (participants who
experienced the same low-level cold pain while also
experiencing mild preexisting heat pain). This comparison
examines feature-level differences across EMG and EDA signals
under these two conditions.

Table . Statistically significant feature categories and the average P values of features within each category for different hypotheses, aiming to study
the influence of the presence or absence of pre-existing pain on external pain stimuli between symbols in the 3-letter set.

EDA,c (P value)Rectified EMG, (P value)RMSb of EMG, (P value)EMG,a (P value)Groups

••••• Statistics (.02)Linear autocorrelation
(.003)

Linear autocorrelation
(.004)

Linear autocorrelation
(<.001)

Group 1: low-level
cold pain without any
pre-existing pain •• Successive differences

(.001)
Successive differences
(.002) • Successive differences

(.01)
• Group 2: low-level

cold pain with mild
pre-existing heat pain

• Distribution (.02)
• Others (.006)
• Statistics (.02)

••••• Statistics (.02)Linear autocorrelation
(.02)

Linear autocorrelation
(.02)

Linear autocorrelation
(.004)

Group 1: low-level
cold pain without any
pre-existing pain

• Others (.04)
•• Successive differences

(.03)
Successive differences
(.005)• Group 2: low-level

cold pain with severe
pre-existing heat pain

• Others (.02)
• Statistics (.02)

••••• Successive differences
(.03)

No significant featuresNo significant featuresNo significant featuresGroup 1: high-level
cold pain without any
pre-existing pain

• Group 2: high-level
cold pain with mild
pre-existing heat pain

••••• Others (.03)Successive differences
(.03)

No significant featuresNo significant featuresGroup 1: high-level
cold pain without any
pre-existing pain

• Group 2: high-level
cold pain with severe
pre-existing heat pain

aEMG: electromyography.
bRMS: root mean square.
cEDA: electrodermal activity.

For low-level cold pain without any pre-existing pain (Group
1) versus low-level cold pain with mild pre-existing heat pain
(Group 2), significant differences were observed in EMG
features related to linear autocorrelation, including the “first
minimum and the first 1/e crossing of the autocorrelation
function.” In the EDA signal, temporal statistics, specifically

“time intervals between successive extreme events,” showed
statistically significant differences.

For low-level cold pain without any pre-existing pain (Group
1) versus low-level cold pain with severe pre-existing heat pain
(Group 2), EMG features related to linear autocorrelation, such
as the first minimum and 1/e crossing of the autocorrelation
function, were significantly different. The EDA features that

JMIR Biomed Eng 2025 | vol. 10 | e70938 | p.59https://biomedeng.jmir.org/2025/1/e70938
(page number not for citation purposes)

Ozek et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


showed the differences included “time intervals between
successive extreme events” and the “longest period of
consecutive values above the mean.”

For high-level cold pain without any pre-existing pain (Group
1) versus high-level cold pain with mild pre-existing heat pain
(Group 2), the distinguishing features were found in the EDA
signal’s successive differences, particularly the “longest period
of successive incremental decreases.”

For high-level cold pain without any pre-existing pain (Group
1) versus high-level cold pain with severe pre-existing heat pain
(Group 2), statistically significant differences were observed in
the rectified EMG signal for features related to successive
differences, including the “change in correlation length after
iterative differencing” and the “longest period of successive
incremental decreases.” In the EDA signal, differences were
observed in the “trace of covariance of the transition matrix
between symbols in the 3-letter set.”

Significant Features in the Mild and Severe Cases of
Pre-existing Pain
Table 3 presents the signals and their respective features that
exhibit statistically significant differences (P<.05) among the
groups. In this section, two hypotheses are investigated. The
first hypothesis aims to compare physiological signals to assess
the influence of mild and severe pre-existing pain in Groups 1
and 2; Group 1 includes signals from participants subjected to
low-level cold pain while already experiencing mild pre-existing
heat pain; Group 2 includes signals from participants subjected
to low-level cold pain while already experiencing severe
pre-existing heat pain. The second hypothesis involves
comparing the groups to assess the impact of mild and severe
pre-existing heat pain on participants when they are subjected
to high-level cold pain. Figure 2 visually illustrates the
distribution of the most statistically significant features for each
of the two hypotheses.
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Table . Statistically significant feature categories and individual features for distinguishing the influence of varying levels of pre-existing pain on the
response to low and high levels of cold pain.

Feature (P value)Feature categoryHypotheses and signal

Group 1: low-level cold pain with mild pre-existing heat pain; Group 2: low-level cold pain with severe pre-existing heat pain

Mode of z-scored distribution

(10-bin histogram; .03)

Distribution    EMGa

Longest period of successive incre-
mental decreases (.01)

Successive

differences
    RMSb of EMG

Longest period of consecutive val-
ues above the mean

(.03)

Statistics    RMS of EMG

Group 1: high-level cold pain with mild pre-existing heat pain; Group 2: high-level cold pain with severe pre-existing heat pain

Longest period of successive incre-
mental decreases (.007)

Successive

differences

    Rectified EMG

Longest period of consecutive val-
ues above the mean

(.01)

Statistics    Rectified EMG

Mode of z-scored distribution

(10-bin histogram; .03)

Distribution    EMG

Time intervals between successive
extreme events below the mean
(.04)

Statistics    EMG

Time intervals between successive
extreme events below the mean
(.005)

Statistics    RMS of EMG

Time intervals between successive
extreme events above the mean
(.009)

Statistics    RMS of EMG

Time intervals between successive
extreme events below the mean
(.01)

Statistics    Rectified EMG

Time intervals between successive
extreme events above the mean (.01)

Statistics    Rectified EMG

Change in correlation length after
iterative differencing (.03)

Successive

differences

    Rectified EMG

Time intervals between successive
extreme events below the mean
(.01)

Statistics    EDAc

Trace of covariance of transition
matrix (.02)

Others    EDA

aEMG: electromyography.
bRMS: root mean square.
cEDA: electrodermal activity.
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Figure 2. Distribution of features with the influence of pre-existing heat pain: (A,B) Illustrate the probability density of two significant EMG features
under low- and high-level cold pain conditions. (C,D) Present the corresponding boxplots for each feature, comparing the mild and severe pre-existing
pain conditions. EMG: electromyography; RMS: root mean square.

Hypothesis 1 examines the influence of mild and severe
pre-existing heat pain on the body’s response to low-level cold
pain. Significant differences were observed in the EMG signal’s
“mode of z-scored distribution.” RMS of EMG showed
variations in successive differences and statistics, specifically
related to “the longest period of incremental decreases” and
“the longest period of consecutive values above the mean.”
Similar patterns were found in the rectified EMG signal.

Hypothesis 2 investigates the influence of mild and severe
pre-existing heat pain on the body’s response to high-level cold
pain. The “mode of z-scored distribution” of EMG exhibited
significant differences across the groups. RMS of EMG also
showed variations in statistics related to “time intervals between
successive extreme events below and above the mean.” Rectified
EMG signals differed in features pertaining to successive

differences and statistics. Additionally, EDA signals showed
significant differences in the “trace of covariance of the
transition matrix.”

Heat and Cold Pain Interactions
This section presents a response surface analysis using marginal
mean plots and surface plots. It examines how varying levels
of heat and cold pain affect two statistically significant features:
the rectified EMG’s “longest period of successive incremental
decreases” and the RMS of EMG’s “time intervals between
successive extreme events below the mean.” Figure 3A and C
show the rectified EMG response values, while Figure 3B and
D display the RMS of EMG response values. The analysis
includes pain levels coded as 0 (no pain), 1 (mild pain), and 2
(severe pain).
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Figure 3. Interaction effects of pre-existing heat pain and new cold pain on EMG features. (A,B) Marginal means plots illustrating how rectified EMG
and RMS values vary across different levels of heat pain (0, 1, 2) and cold pain (0, 1, 2). (C,D) Surface plots depicting the variation in responses under
various combinations of heat and cold pain levels. EMG: electromyography; RMS: root mean square.

Discussion

Principal Findings
This study was guided by the hypotheses that (1) pre-existing
body pain alters the physiological response to a new pain
stimulus relative to the physiological response in the absence
of pre-existing pain, and (2) pre-existing pain of different
intensities produces distinguishably different physiological
patterns in response to a new pain stimulus. The use of
multimodal physiological signals, EDA, and EMG provides
insight into the underlying mechanisms and supports the
potential for objective, signal-based pain assessment in complex
pain scenarios.

This study found that pre-existing heat pain significantly
influences physiological responses to new cold pain stimuli, as
indicated by features from EDA and EMG, particularly
successive differences, temporal statistics, and distribution
features, demonstrating noticeable sensitivity to varying pain
combinations.

Comparative Analysis: Features Sensitive to the
Presence and Absence of Pre-existing Pain
This section evaluates how the presence or absence of
pre-existing heat pain influences physiological responses when

the body encounters a cold pain stimulus. EMG signals exhibit
significant variation across groups, particularly in features such
as “linear autocorrelation” and “successive differences,” while
EDA signals indicate differences through statistical features.

When an external low-level cold pain is applied, the pre-existing
heat pain, mild or severe, consistently leads to marked changes
in both EMG and EDA signals. In the EMG signal, features
such as the “first minimum and the first 1/e crossing of the
autocorrelation function” capture distinct temporal
characteristics of muscle activity. The first minimum identifies
a key point of dissimilarity, while the 1/e crossing reflects the
timescale at which the signal’s autocorrelation declines to
approximately 36.8% of its peak. In the EDA signal, the “time
intervals between successive extreme events” and the “longest
period of consecutive values above the mean” emerge as
distinguishing features. These results indicate that low-level
cold pain elicits prominently different physiological features in
the presence and absence of pre-existing heat pain.

When a high-level cold pain stimulus is applied, the EDA
signal’s sensitivity to successive differences, particularly the
“longest period of successive incremental decreases,” emerges
as a distinguishing feature. This feature identifies continuous
patterns where EDA consistently decreases from one point to
the next and the trace of covariance of the “transition matrix
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between symbols in the 3-letter set.” This method involves
encoding and simplifying the EDA signal into sequences,
allowing for the analysis of how these sequences change and
relate to each other over time, highlighting its utility in capturing
autonomic dynamics influenced by layered pain conditions.
Similarly, rectified EMG features tied to successive differences
are important: the “change in correlation length after iterative
differencing” and the “longest period of successive incremental
decreases” further underscore the complementary roles of
multimodal physiological measurements.

High-intensity cold pain appears to overshadow the
physiological responses associated with pre-existing heat pain.
Under these conditions, significant differences are limited and
primarily observed in EDA and rectified EMG signals. The
overwhelming nature of high-level cold pain reduces the
detectability of pre-existing pain effects, making it difficult to
distinguish their individual contributions to the physiological
response. Despite this, certain features remain sensitive. In the
EDA signal, successive differences, particularly the “longest
period of successive incremental decreases,” identify continuous
patterns where EDA consistently decreases from one point to
the next. Additionally, the “trace of covariance of the transition
matrix between symbols in the 3-letter” set captures how
patterns evolve over time, offering insights into autonomic
dynamics under layered pain conditions. Similarly, rectified
EMG features related to successive differences, including the
“change in correlation length after iterative differencing” and
the “longest period of successive decreases,” emphasize the
value of combining multimodal physiological measurements to
capture subtle effects that may persist despite dominant pain
stimuli.

Together, these findings suggest that the influence of
pre-existing heat pain on the body’s physiological response is
more discernible when cold pain is mild, particularly through
EMG and EDA signals. In contrast, high-intensity cold pain
may mask these effects, making it difficult to detect the
physiological changes due to pre-existing pain. Understanding
these interactions between physiological responses due to
external and pre-existing pains is essential for interpreting pain
states in complex and overlapping pain scenarios. The presence
of statistically significant and diverse features supports the
notion that pre-existing heat pain has a measurable impact on
physiological responses.

Comparative Analysis: Significant Features in the Mild
and Severe Cases of Pre-existing Pain
This section examines how the severity of pre-existing heat
pain, ranging from mild to severe, influences the body’s
physiological response when exposed to a new cold pain
stimulus. The findings reveal distinct alterations in EMG and
EDA signals that differentiate these pain intensities.

When participants experience low-level cold pain while the
body is already encountering varying degrees of pre-existing
heat pain, the physiological responses captured through EMG
are particularly sensitive to the severity of pre-existing heat
pain. Features like “mode of z-score distribution,” which refers
to the value or range of values that occur most frequently,
indicate shifts in the most dominant muscle activity patterns.

Additionally, the RMS of EMG shows differences in features
related to successive differences and statistics, specifically the
“longest period of incremental decreases” and the “longest
period of consecutive values above the mean.” The first feature
refers to the duration in the time series where the EMG signal’s
RMS consistently decreases incrementally. In simpler terms, it
identifies the most extended continuous period during which
the RMS values decrease step by step. The second feature
pertains to the time series duration in which the EMG signal’s
RMS values remain consistently above the mean. This duration
captures the longest continuous segment where the RMS values
are consistently higher than the average. These features are
further supported by similar patterns observed in the rectified
EMG signal, reinforcing the robustness of these distinctions.

In the high-level cold pain condition, EMG signals continue to
reveal statistically significant differences across pre-existing
pain intensities. The “mode of the z-scored distribution” emerges
as an important marker, indicating distinctive patterns in muscle
activity under mild and severe pre-existing heat pain conditions.
Analysis of the RMS of EMG signals unveils notable variations
in statistics involving “time intervals between successive
extreme events above or below the mean.” This observation
highlights the complex temporal dynamics associated with the
interaction of high-level cold pain and the severity of
pre-existing pain. The distribution of rectified EMG signals
further reinforces these findings, highlighting distinct patterns
in successive differences and statistics, which contribute to the
differentiation of the influence of different pre-existing pain
conditions. Beyond EMG, EDA signals also contribute to this
differentiation. The “trace of the covariance of the transition
matrix” emerges as a key feature. This reveals variation in how
these patterns evolve over time under different pre-existing pain
conditions. The inclusion of EDA signals in our analysis deepens
our understanding of physiological responses to the influence
of varying pre-existing pain intensities.

The results of this study highlight that the body exhibits distinct
responses to cold pain stimuli when experiencing mild versus
severe pre-existing heat pain. These findings highlight the
intricate relationship between pain conditions and physiological
responses. The identified features within EMG and EDA signals
offer valuable insights into the body’s mechanisms, highlighting
the influence of pre-existing pain on physiological signals.

Analysis of Heat and Cold Pain Interactions
Response surface analysis provides comprehensive insight into
how varying levels of pre-existing heat pain and externally
introduced cold pain interact to influence physiological
responses.

Figure 3A displays the marginal means plot of the rectified
EMG response. Marginal means plots illustrate the responses
by considering only the level of one type of pain, independent
of the levels of any other type of pain. For example, the response
is the strongest when the heat pain is mild. Similarly, when
considering only cold pain, the response peaks again at the
mildest level of pain. The surface plot represents the interactions
between the two types of pain and their effects on the response.
The surface plot in Figure 3Creveals a convex shape with a
peak, indicating that the rectified EMG responses reach their
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highest values when both heat and cold pain are at a mild level.
The plot shows that the response is low when there is no heat
pain and mild cold pain, and similarly low under severe heat
pain with no accompanying cold pain.

Figure 3B presents a marginal mean plot of the RMS of EMG
responses. Here, it is evident that mild cold levels yield the
highest response values. Both “no heat” pain and “mild heat”
pain conditions result in high response values, while severe heat
pain significantly reduces the RMS of EMG responses. In Figure
3D, surface plots of the RMS of EMG responses are displayed.

Notably, as heat pain increases, the RMS value decreases,
reaching its peak when heat pain is absent or mild. Conversely,
instances of mild heat paired with no cold pain result in the
lowest RMS of EMG response values.

These patterns underscore the importance of considering
multidimensional pain contexts, as overlapping pain experiences
can interact in nonintuitive ways that meaningfully alter
physiological signatures.

Limitations
The relatively small and homogeneous sample size, consisting
of 31 healthy young adults aged 22 to 37 years, is one of the
shortcomings of this study. This may limit the generalizability
of the findings to broader and clinically relevant populations.
Additionally, the study was conducted in a controlled laboratory
environment, which may not fully replicate real-world clinical
settings, thus limiting its ecological validity. While the use of
fixed-intensity heat and cold stimuli was effective for controlled
experimental design, it may not capture the full complexity of
pre-existing pain conditions and individual pain thresholds.
Furthermore, the fixed-intensity nature of these stimuli does
not account for interindividual variability in pain sensitivity,
which could influence physiological responses. The devices
used in this study did not support personalized stimulus
calibration, which we recognize as a limitation.

Future Directions
Future work is open to expanding the sample population to
include individuals from diverse age groups and clinical
backgrounds, particularly those experiencing chronic or
postsurgical pain, to improve the generalizability of findings.
Validation in real-world clinical environments is also crucial
for enhancing ecological validity. To better reflect the
complexity of pain experiences, future studies should explore
alternative or multimodal pain induction methods beyond heat
and cold stimuli and incorporate personalized calibration to
account for individual pain thresholds. Additionally, expanding
the range of physiological signals—such as heart rate variability,
electroencephalography, and functional neuroimaging—may
offer a more comprehensive understanding of the neural and
autonomic correlates of pain.

This study used statistical analysis to examine the significance
of physiological differences across pain conditions. In future
work, we will further explore machine learning models to
analyze physiological responses to new external pain stimuli.
This approach will enable us to assess the intensity of
pre-existing pain caused by chronic conditions, injuries, or

surgeries. By integrating machine learning, we aim to develop
predictive models that can objectively assess pain intensity and
support personalized, effective pain management, particularly
in clinical settings where patients are unable to verbally
communicate their pain levels.

Conclusions
Accurate pain assessment is crucial for the correct diagnosis
and effective treatment of many diseases. While existing
literature has developed tools for estimating pain levels based
on physiological responses, these studies often focus on healthy
individuals experiencing acute pain, overlooking the potential
influence of pre-existing conditions, such as postsurgical pain,
chronic pain, and physical discomfort, on the physiological
signals triggered by acute pain. Acknowledging this factor is
essential, as individuals may respond differently to new pain
stimuli depending on the intensity of their pre-existing pain.

This study examined the impact of pre-existing heat pain through
experimental research when participants were exposed to cold
pain stimuli. We used heat pain as the pre-existing pain
condition, cold pain as the new pain stimulus, and EMG and
EDA as physiological signals. By using statistical tests, we
observed significant differences in specific EDA and EMG
signal features across varying levels of pre-existing heat pain
and new cold pain combinations. Notably, simple temporal
statistics (the most extended period of consecutive values, time
intervals between successive extreme events), successive
differences (change in correlation length after iterative
differencing), distribution (mode of z-scored distribution), and
autocorrelation (the first 1/e crossing of the autocorrelation
function) emerged as primary feature categories that
significantly varied across pre-existing heat pain and new cold
pain intensity combinations.

Our investigation into the differences in EMG and EDA signals
in the presence of different levels of pre-existing heat pain has
revealed valuable insights. The distinction between the absence
of pre-existing pain and the presence of mild or severe
pre-existing heat pain, particularly when stimulated with new
low-level cold pain, highlighted statistically significant
differences in both EMG and EDA signals. Notably, when we
switched to high-level cold pain, EDA emerged as a more
reliable indicator of variation in pre-existing pain than EMG.
During high-level cold pain, the time series features of
“successive differences” proved to be effective indicators of
the level of the pre-existing pain. Furthermore, our analysis of
mild and severe pre-existing heat pain scenarios revealed that
EMG exhibited statistically significant differences, particularly
in response to the new low-level cold pain, whereas EDA
remained relatively unchanged. However, when we switched
to high-level cold pain, both EMG and EDA signal features
exhibited statistically significant differences. Successive
difference, temporal statistics, and distribution features of time
series emerged as reliable indicators of the pre-existing heat
pain in these cases. These findings shed light on the changes in
EMG and EDA signals across different levels of pre-existing
pain, advancing our understanding of physiological responses
in pain assessment.
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Abstract

This study analyzed the capability of GPT-4o to properly identify knee osteoarthritis and found that the model had good sensitivity
but poor specificity in identifying knee osteoarthritis; patients and clinicians should practice caution when using GPT-4o for
image analysis in knee osteoarthritis.

(JMIR Biomed Eng 2025;10:e67481)   doi:10.2196/67481
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Introduction

Osteoarthritis often affects the knee, causing pain and disability,
and is typically diagnosed by X-ray [1]. Advancements in
artificial intelligence (AI) offer potential to automate image
analysis, reducing diagnostic burden [2]. Given its widespread
availability, tools like ChatGPT have potential as point-of-care
diagnostic aids. AI has already been incorporated on the
physician side through clinical decision support systems and
robotic surgery. On the patient side, AI is used in applications
such as virtual health assistants [3].

Orthopedic surgeons, radiologists, and primary care physicians
can use AI tools to streamline their workflows and reduce errors
while analyzing imaging for pathologies like osteoarthritis.
Moreover, patients use ChatGPT to analyze their imaging to
further understand their condition [4]. The ability of AI to read
other radiological images (eg, computed tomography
angiograms) has been shown to be subpar [5]. However, studies
have shown that AI can perform well with X-rays [6]. As such,
it is increasingly important for physicians to understand AI’s

strengths and limitations to assess its use in imaging and guide
patients using AI for self-diagnosis.

Methods

We queried ChatGPT (using the GPT-4o version) and assessed
its performance in classifying 500 X-ray images of normal knees
and 500 images of knees with osteoarthritis from a publicly
available Kaggle database [7]. Images were verified based on
consensus among radiologists. A single standardized prompt
was used: “This is an x-ray image found on examination, the
multiple-choice question is as follows. Based on the x-ray image,
does the patient have A) no osteoarthritis, B) osteoarthritis.”
Key metrics included accuracy, sensitivity, and specificity. No
images were rejected by ChatGPT. The code used for statistical
analysis is included in Multimedia Appendix 1.

Results

The model’s performance in distinguishing osteoarthritis from
nonosteoarthritis knee X-rays was mixed. The high recall (0.950,
95% CI 0.964-0.943) suggests that the model was sensitive in
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identifying arthritis cases, while the low specificity (0.114, 95%
CI 0.134-0.104) indicated a poor ability to correctly identify
nonosteoarthritis cases. The F1-score (0.670, 95% CI
0.699-0.655) balanced precision and recall, showing moderate
effectiveness, but the precision (0.517, 95% CI 0.548-0.501)
reflected that about half the predicted osteoarthritis cases were
correct. Accuracy was 0.532 (95% CI 0.563-0.516). Figure 1
shows sensitivity and specificity.

The binomial test, where the null hypothesis assumed the
model’s accuracy was 50% or less, indicated that the model was
statistically better than random chance (P=.02). Additionally,

the χ2 test (P<.001) indicated a strong dependence between the
model’s predictions and the actual labels, demonstrating that
its classifications were not purely random. However, the
significance of this test should be interpreted with caution, as
it does not necessarily reflect high accuracy or clinical
reliability.

Figure 1. Sensitivity and specificity of Chat-GPT4o in analyzing knee osteoarthritis X-rays.

Discussion

The model had difficulty distinguishing between “not arthritis”
and “arthritis.” While the recall for arthritis was high (0.950),
indicating strong performance in identifying true arthritis cases,
the low specificity (0.114) reflects a significant number of false
positives, with many nonarthritis cases misclassified as arthritis.
This bias toward predicting arthritis lowered precision (0.517)
and accuracy (0.532); similar misclassification issues have been
reported in other ChatGPT studies [8].

Limitations include, first, that the prompt was binary. A binary
prompt was used because it would have been difficult to analyze
data obtained with an open-ended prompt. Second, the dataset
was small; a larger dataset would have yielded more robust
conclusions.

Even with its limitations, this study presents important data on
GPT4o’s use in imaging for diagnosing osteoarthritis. This is
vital, as our understanding of tools like this in health care
contexts is limited. These results suggest a need for better class

balance and improved feature differentiation. Similar
misclassification patterns have been noted in previous studies,
where overlapping features led to false positives [9]. A
higher-resolution, more comprehensively annotated osteoarthritis
dataset could improve model training, enhancing overall
accuracy, sensitivity, and specificity. Thus, future work should
focus on analyzing larger datasets and refining the model to
handle more nuanced cases more effectively, improving
performance statistics. Using image preprocessing techniques,
such as contrast enhancement and noise reduction, and including
metadata like medical history and clinical presentation could
also help distinguish osteoarthritis from anatomical variations.

Our results suggest that clinicians should use ChatGPT
cautiously and as a screening tool prior to their own validation
to help mitigate misclassification. Clinicians should also educate
patients about the risks of using AI for self-diagnosis of
osteoarthritis based on X-rays. Despite its shortcomings, AI has
potential for developing more reliable diagnostic models for
osteoarthritis.
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