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(JMIR Biomed Eng 2025;10:e82980)   doi:10.2196/82980

In “Can Artificial Intelligence Diagnose Knee Osteoarthritis?”
(JMIR Biomed Eng 2025;10:e67481), the authors made two
corrections.

In the originally published version, Figure 1 displayed two of
the Y-axis labels incorrectly. The label “Arthritis” was placed
next to the row representing X-rays without arthritis, and the
label “No Arthritis” was placed next to the row representing
X-rays with arthritis.
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Figure 1. Sensitivity and specificity of Chat-GPT4o in analyzing knee osteoarthritis X-rays.

The text in Figure 1 has been corrected so that the Y-axis labels
align with the data:

• The top row is labeled “No Arthritis”, representing X-rays
of knees without arthritis.

• The bottom row is labeled “Arthritis”, representing X-rays
of knees with arthritis.

The X-axis label, “GPT-4o Prediction of Absence or Presence
of Arthritis” and the Y-axis label, “True Presence or Absence
of Arthritis”, have been reformatted to span the entire length
of the figure rather than being stacked to improve both
readability and overall appearance.

Additionally, an Authors’ Contributions section has been
added to the manuscript using the CREdiT taxonomy format:

Conceptualization: NC (lead), MT (equal), KS (equal)

Data curation: AM (lead), MT (equal), SS
(supporting), SV (supporting), JC (supporting)

Formal analysis: JC (lead), JS (supporting), MC
(supporting), SV (supporting), AM (supporting)

Funding acquisition: KS (lead)

Investigation: SS (lead), KS (equal), BZ (supporting),
SV (supporting)

Methodology: MT (lead), NC (equal), KS (equal), AM
(supporting)

Resources: SV (lead), JC (supporting)

Software: JC (lead), AM (supporting)

Supervision: KS (lead), MT (equal), NC (equal)

Validation: JS (lead), JC (equal), MC (equal)

Visualization: MT (lead), MC (equal), SS (supporting)

Writing – original draft: MT (lead), NC (equal), BZ
(supporting), SS (supporting), AM (supporting)

Writing – review & editing: JS (lead), SV (equal), JC
(equal), MC (supporting), KS (supporting)

The correction will appear in the online version of the paper on
the JMIR Publications website together with the publication of
this correction notice. Because this was made after submission
to PubMed, PubMed Central, and other full-text repositories,
the corrected article has also been resubmitted to those
repositories.
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Abstract

Background: Brain-computer interface (BCI) closed-loop systems have emerged as a promising tool in health care and wellness
monitoring, particularly in neurorehabilitation and cognitive assessment. With the increasing burden of neurological disorders,
including Alzheimer disease and related dementias (AD/ADRD), there is a critical need for real-time, noninvasive monitoring
technologies. BCIs enable direct communication between the brain and external devices, leveraging artificial intelligence (AI)
and machine learning (ML) to interpret neural signals. However, challenges such as signal noise, data processing limitations, and
privacy concerns hinder widespread implementation.

Objective: The primary objective of this study is to investigate the role of ML and AI in enhancing BCI closed-loop systems
for health care applications. Specifically, we aim to analyze the methods and parameters used in these systems, assess the
effectiveness of different AI and ML techniques, identify key challenges in their development and implementation, and propose
a framework for using BCIs in the longitudinal monitoring of AD/ADRD patients. By addressing these aspects, this study seeks
to provide a comprehensive overview of the potential and limitations of AI-driven BCIs in neurological health care.

Methods: A systematic literature review was conducted following PRISMA (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses) guidelines, focusing on studies published between 2019 and 2024. We sourced research articles from PubMed,
IEEE, ACM, and Scopus using predefined keywords related to BCIs, AI, and AD/ADRD. A total of 220 papers were initially
identified, with 18 meeting the final inclusion criteria. Data extraction followed a structured matrix approach, categorizing studies
based on methods, ML algorithms, limitations, and proposed solutions. A comparative analysis was performed to synthesize key
findings and trends in AI-enhanced BCI systems for neurorehabilitation and cognitive monitoring.

Results: The review identified several ML techniques, including transfer learning (TL), support vector machines (SVMs), and
convolutional neural networks (CNNs), that enhance BCI closed-loop performance. These methods improve signal classification,
feature extraction, and real-time adaptability, enabling accurate monitoring of cognitive states. However, challenges such as long
calibration sessions, computational costs, data security risks, and variability in neural signals were also highlighted. To address
these issues, emerging solutions such as improved sensor technology, efficient calibration protocols, and advanced AI-driven
decoding models are being explored. In addition, BCIs show potential for real-time alert systems that support caregivers in
managing AD/ADRD patients.

Conclusions: BCI closed-loop systems, when integrated with AI and ML, offer significant advancements in neurological health
care, particularly in AD/ADRD monitoring and neurorehabilitation. Despite their potential, challenges related to data accuracy,
security, and scalability must be addressed for widespread clinical adoption. Future research should focus on refining AI models,
improving real-time data processing, and enhancing user accessibility. With continued advancements, AI-powered BCIs can
revolutionize personalized health care by providing continuous, adaptive monitoring and intervention for patients with neurological
disorders.

(JMIR Biomed Eng 2025;10:e72218)   doi:10.2196/72218
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Introduction

The adoption of technology in health care and wellness
monitoring has grown significantly in recent years [1,2]. As of
2024, more than 1.3 billion people worldwide relied on digital
health tools such as fitness trackers, smartwatches, and virtual
doctor consultations. In the United States alone, 43% of the
population actively used health apps [3,4]. This surge in digital
health adoption is further reflected in the health care IT market,
which is projected to expand from US$360 billion in 2024 to
over US$730 billion by 2029 [5]. A recent survey revealed that
80% of Americans own at least one such device, including blood
pressure monitors (45%), electric toothbrushes (39%), and
fitness trackers or pedometers (24%) [6]. These devices play a
crucial role in early detection and management of health
conditions; notably, 28% of users reported receiving alerts about
potential health issues from their devices, leading to successful
diagnoses after consulting with health care professionals [6].

As technological advancements continue to reshape health care,
their role in the early detection and management of Alzheimer
disease and related dementias (AD/ADRD) is becoming
increasingly critical [7]. AD is known as a neurological disorder
characterized by memory loss, cognitive decline, and impaired
motor skills [8]. It damages brain cells responsible for important
mental functions and enables the cells themselves to degenerate
and die. The degeneration begins from cognitive impairments,
with motor functions still intact. Gradually, over time, this
progresses into neuronal degeneration in several areas of the
brain, including the hippocampus and mediotemporal cortex
[9]. The disease is most commonly found in older adult
populations; the prevalence of all dementias is known to increase
for people aged 60‐90 years, making aging the biggest risk
factor for AD [10]. While the disease is irreversible and has no
cure, early detection and continuous monitoring can significantly
improve patient outcomes. However, up to a third of dementia
cases remain undiagnosed, and existing diagnostic methods are
often slow and inaccurate [11]. The integration of
technology—through wearable devices, advanced diagnostic
tests, and AI-driven analysis—enables continuous monitoring
and early identification of cognitive decline.

A promising innovation in this landscape is brain-computer
interfaces (BCIs), which have the potential to revolutionize the
diagnosis and management of neurodegenerative diseases like
AD/ADRD [12,13]. BCIs have been the subject of significant
research due to their correlation to decoding neural activity and
use by people with disabilities. The BCI closed-loop system
directly connects the human brain and the outside environment
[14], allowing for direct communication between a person and
a computer. It enables users the ability to operate external
devices through their brain activity and translate brain signals,
strictly produced by the central nervous system, into commands
that carry out a desired action [15]. The “closed-loop” aspect
allows for the use of real-time data to monitor and adjust updates
based on the patient’s condition. In particular, BCI applications

have been initially designed to help people with disabilities and
enhance neuroplasticity, characterized as the capacity of the
brain to change or adapt its morphology in response to
experiences [16]. The system may also help in rehabilitation
for people with strokes, head trauma, and other disorders [15].
Broadly, a BCI system consists of 4 standard, sequential
components: signal acquisition, feature extraction, feature
translation, and device output [15]. Within each component,
there exist several methods and techniques that have been
reviewed that effectively execute the goal of detecting and
qualifying features of brain signals. There are many parameters
that the BCI closed-loop system seeks to measure, with the
intention of collecting large and diverse datasets; performance
metrics heavily influence the quality of BCI research, which
several methods of BCI closed-loop systems depend on.

BCIs facilitate direct communication between the brain and
external devices, allowing real-time monitoring of neural activity
and cognitive function. This technology is particularly valuable
for detecting early neurophysiological changes that precede
noticeable cognitive decline, offering a more objective and
continuous assessment than traditional diagnostic methods
[17,18]. By integrating BCIs with artificial intelligence (AI)
and machine learning (ML), researchers can analyze brain
signals to identify patterns associated with Alzheimer
progression, potentially enabling earlier and more accurate
diagnoses. Furthermore, BCIs hold promise for enhancing
cognitive rehabilitation and assistive communication for patients
in later stages of the disease. As the demand for advanced
neurological monitoring grows, BCIs represent a critical step
toward personalized and proactive dementia care, bridging the
gap between early intervention and improved patient outcomes
[19-21]. Therefore, in the context of neuroscience and AI, the
BCI is a proposed solution for identifying and providing
neurorehabilitation methods through decoding
electroencephalogram (EEG) signals. This can prove to be of
great significance for the detection and diagnosis of several
neurological disorders, such as Alzheimer disease, through
exploiting the use of neuron devices and stimulating biological
sensory neurons [22]. The ultimate motivation is to integrate
AI models and BCI systems in order to allow for personalized
treatment plans and contribute greatly to breakthroughs in health
care.

However, many limitations are associated with BCI-based
closed-loop systems that can hinder the systems’ performance
and efficacy. For instance, BCI applications must recalibrate
the system in order to account for each user/participant due to
the high variability in brain signals [23].

The model must be trained from scratch each time there is a
new subject. This contributes to significant financial expenses.
Furthermore, the limited size of datasets can lead to overfitting,
which occurs when a model fits too closely to its training data
rather than including new data [23]. When using an EEG to
capture brain signals, several limitations exist with using the
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method. EEG-based BCI systems measure the average activity
of neurons with electrodes located on the surface of the brain
[23]. These generally produce a low signal-to-noise ratio (SNR);
a low SNR indicates that the signal is corrupted by noise and
therefore makes it difficult to interpret brain signals. This review
analyzes several solutions to these challenges with the use of
machine learning algorithms and networks that can easily decode
complex brain data. However, this field of research is not limited
to current knowledge and there is still more to explore regarding
the use of machine learning and deep learning in BCI
closed-loop systems.

In the exploration of BCI systems and artificial intelligence
algorithms, our research aims to address a range of critical
questions and topics that are integral to advancing this field, as
shown in Figure 1. By investigating the following research
questions, we will gain a comprehensive understanding of the
real-world applications of BCIs, uncovering insights that could
lead to innovative opportunities and improvements in the
monitoring of AD/ADRD patients.

RQ 1. What specific methods and parameters are used in the
BCI closed-loop system?

RQ 2. How effective are the different ML and AI algorithms
used in the BCI closed-loop system?

RQ 3. How can we critically investigate the limitations in the
development and implementation of the BCI closed-loop
system?

RQ 4. How can we design a BCI closed-loop system-based
framework for longitudinal monitoring of AD/ADRD patients?

The remainder of the paper is organized into 5 key sections.
Section 2 outlines the methodology, comprising three
subsections that detail the scoping criteria, literature search
strategy, and data analysis procedures. Sections 3, 4, 5, and 6
address the 4 research questions in depth. Finally, Section 7
concludes the literature review, summarizing the key findings
and their implications.

Figure 1. Brain-computer interface closed-loop systems overview in health care and wellness monitoring. AD/ADRD: Alzheimer disease/Alzheimer
disease and related dementias; AI: artificial intelligence; BCI: brain-computer interface; ML: machine learning;

Methods

Overview
Our research approach centered on a comprehensive evaluation
of the literature exploring the integration of AI—particularly
its subset, ML—within BCI closed-loop systems in health care.
The goal was to synthesize current knowledge on the
methodologies, algorithms, outcomes, limitations, and emerging
directions that define this interdisciplinary field. To achieve
this, we developed a targeted search strategy using relevant
keywords and Boolean operators, enabling us to identify both
theoretical advancements and real-world applications of AI-
and ML-enhanced BCIs. This method allowed for a focused
analysis of how these technologies are transforming neurological
monitoring, cognitive rehabilitation, and personalized patient
care.

Scoping Criteria
Our scoping criteria focused on the specific domain of BCI
closed-loop systems integrated with ML and AI in health care.
We prioritized studies published between 2019‐2024 to ensure
the relevance and timeliness of our findings. Our approach
included not only technological advancements but also practical
challenges and developments in BCI closed-loop systems in
health care. Specifically, we reviewed studies that examined
the various methods and parameters collected in BCI closed-loop
systems (RQ1), ensuring a comprehensive understanding of
data acquisition, preprocessing, and real-time feedback
mechanisms. We also investigated the ML and AI algorithms
used, and the outcomes obtained (RQ2), identifying the overall
effectiveness of these algorithms in clinical and experimental
settings. In addition, we focused on studies discussing the
limitations encountered in current BCI closed-loop systems and
proposed future research directions (RQ3), aiming to understand
the barriers to implementation, ethical considerations, and
technological limitations (RQ4). Exclusion variables from some
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papers were added, as through our search, we filtered out papers
that were not relevant to our goals, any research conducted on
animals and not humans, and a lack of focus on Machine
Learning.

Systematic Literature Search
Our systematic approach involved gathering, critical assessing,
integrating, and presenting findings from various research papers
on BCI closed-loop systems integrated with ML and AI in health
care. We followed a detailed procedure to conduct and report
systematic literature reviews, ensuring a rigorous selection
process. Initially, we developed a carefully crafted search query
to refine our search effectively, using terms such as “BCI OR
brain computer interface,” “AND Machine Learning OR AI OR
algorithm,” “AND Alzheimer OR Dementia.” Boolean operators
like “AND” and “OR” were used strategically to narrow our
search. This search spanned 4 major databases: PubMed, IEEE,
ACM (Association for Computing Machinery), and Scopus.
From these databases, we identified a total of 220 papers: 43
from PubMed, 22 from IEEE, 114 from ACM, and 41 from
Scopus. After removing 8 duplicate records, 212 unique records
were screened. During the screening phase, 179 records were
excluded for reasons such as being out of context (n=84), not
relevant to the research questions (n=94), or inaccessible (n=1).
Subsequently, the titles and abstracts of the 212 screened records
were assessed for eligibility, resulting in 33 full-text articles
being reviewed. Of these, 15 reports were excluded due to being
theses or books (n=9), report articles (n=4), or of poor quality
(n=2). Ultimately, 18 studies met all inclusion criteria and were
included in the final review. These papers were selected based
on their focus on BCI closed-loop systems in health care, the
integration of ML and AI, and their relevance to our study. We
prioritized papers displaying rigorous methodologies, including
empirical studies, surveys, case studies, experiments, and
systematic literature reviews, showcasing innovative approaches,
novel insights, or significant findings. In addition to the primary
search, we cross-referenced each article’s citations to identify
other pertinent papers, ultimately including any that fit our
criteria.

Results

Study Selection and Characteristics
Our selection process, guided by PRISMA (Preferred Reporting
Items for Systematic Reviews and Meta-Analyses) [24,25]
guidelines as shown in Figure 2, allowed for a comprehensive
understanding of the current state and future potential of BCI
closed-loop systems in health care. We evaluated sources based
on their methodology, innovation, significant findings, and
overall relevance.

Our data analysis approach used a systematic data extraction
method to rigorously analyze literature focused on BCI
closed-loop systems integrated with ML and AI. This approach
covered essential aspects such as the methods and parameters
used in BCI systems, the ML algorithms used, challenges
encountered, proposed solutions, and future research directions.
Initially, we conducted an extensive literature review to identify
pertinent studies. From this review, we developed a structured
extraction matrix aimed at comprehensively capturing thematic
elements critical to our study. The matrix included categories
such as Title, Methods, Parameters, Machine Learning
Algorithms, Challenges/Limitations, Proposed Solutions, Future
Research Directions, and Title and Abstract Screening Score
(0‐3). These scores would be averaged out among a panel of
3 researchers with a 2 being a “Yes” to our paper list. To
validate our methodology, we conducted several validation
steps. First, we pilot-tested the matrix with a small sample of
10 papers to ensure it effectively captured relevant information
while excluding irrelevant details. Second, we aligned the matrix
variable with our research questions to ensure clarity in data
extraction. The finalized matrix, formatted in Microsoft Excel,
allowed for a smooth, systematic, and comparative analysis
across selected papers, including Full Text Screening Score
(0‐3). This methodical approach enabled us to extract and
synthesize data methodically, allowing anomalies and patterns
to naturally emerge. Our synthesis and evaluation of articles
were guided by their direct relevance to our study’s focus areas.
This systematic approach ensured a robust analysis and provided
a solid foundation for our literature review, as reflected in Table
1.
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Figure 2. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram.
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Table . Key algorithms and techniques commonly used in brain-computer interfaces.

ReferencesAdvantagesKey applicationsRole in BCIsaAlgorithm/technique

Shanechi [26]Improves robustness and
accuracy

Data alignment, spatial filter-
ing

Feature extractionTransfer learning (TL)

Gu et al [27]High performance in high-
dimensional space

EEGc signal classificationClassificationSVMb

Gu et al [27]Computational simplicity,
good performance

EEG signal classificationClassificationLDAd

Tsai et al [28]Isolates artifact components
from neural signals

Artifact removalPreprocessingICAe

Mughal et al [29]High accuracy in classifying
brain activities

Emotion recognition, work-
load estimation

Feature extractionCNNf

Shin et al [30]Effective in high-dimension-
al data

Neural activity classificationFeature extraction, classifica-
tion

TSNNg

Wang et al [31]Learns underlying data
structures

Mental state recognitionDimensionality reductionRBMh

Wu et al [32]Handles uncertainty and im-
precision

EEG pattern classificationClassificationFuzzy models

Tsai et al [28]Increases data robustness
and accuracy

Augmented data generationData augmentationGANsi

aBCI: brain-computer interface.
bSVM: support vector machine.
cEEG: electroencephalography.
dLDA: linear discriminant analysis.
eICA: independent component analysis.
fCNN: convolutional neural network.
gTSNN: tree-structured neural network.
hRBM: restricted Boltzmann machine.
iGAN: generative adversarial network.

Methods and Parameters Used in the BCI Closed Loop
System (RQ1)
Many studies have explored BCIs with closed-loop systems,
but a comprehensive survey focusing on the challenges
associated with methods and parameters used in these systems
is still lacking. This section addresses this gap by reviewing
various preprocessing techniques and the parameters used in
BCI closed-loop systems, highlighting their implications for
neural activity monitoring and intervention.

Preprocessing Techniques
The review identifies several effective methods and parameters
that have demonstrated significant potential, as summarized in
Figure 3. For instance, object detection is the paradigm for
recognizing patterns using convolutional neural networks (CNN)
[31], where it learns from more than a million images and can
classify downstream objects in an image with high accuracy.
This approach improves the ability to intermittently support
real-time detection of nuanced neural activity and thus
intervention. Likewise, Restricted Boltzmann Machines (RBMs)
have been used to extract features for large-scale datasets [31].
Recurrent neural network (RNN) is a class of artificial neural
network models that produce more accurate predictions than
preferred direction and other systems like neuron-level readout

methods including Poisson Process Velocity Tuning or
generalized linear models (GLM). RNN can generate realistic
simulations [33]. Support Vector Machines (SVMs) have been
successfully used in small datasets, but their improvement to a
larger accuracy level may be enhanced with Particle Swarm
Optimization, particularly on the understanding of brain signals
by means of EEG. BCI technology has been further refined by
the categorization of different brain errors with SVMs. Motor
Imagery (MI) is a mental process. MI starts from the thought
of the movement of a body part. This activates different areas
of the motor cortex and is commonly adopted for EEG-based
BCIs. MI tasks performed by the users are sensed as EEG
signals. TL makes use of source domain data to improve
calibration in the target domain, which is a well-established
technique used for improving MI-based BCIs [34]. In addition,
offline binary classification is used to classify trials from target
subjects. Currently, deep brain stimulation (DBS) is established
as an effective treatment for conditions such as tremors,
dystonia, and Parkinson disease. DBS also has shown promise
in treating certain other types of chronic pain and psychiatric
conditions, including neuropsychological tribulations. DBS is
also being looked at as a possible pathway to the infusion of
memory circuits and treatment avenues for dementia and
Alzheimer disease.

JMIR Biomed Eng 2025 | vol. 10 | e72218 | p.11https://biomedeng.jmir.org/2025/1/e72218
(page number not for citation purposes)

Williams et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 3. Different methods and parameters in the brain-computer interface closed-loop system. CNN: convolutional neural network; DBS: deep brain
stimulation; DoS: denial of service; EEG: electroencephalography; MI: motor imagery; ML: machine learning; RNN: recurrent neural network; SVM:
Support Vector Machine; TL: transfer learning;

Security Challenges
These technologies, hereafter referred to as potential
neuromodulatory treatments for symptoms, have been
demonstrated to be capable of driving neural signals. In fact,
BCIs have a high risk of sniffing attacks, where an attacker can
eavesdrop on network channels and preview unencrypted data.
This vulnerability can be used to affect denial-of-service attacks,
which, in the case of implanted BCIs, target battery depletion
[35]. Poisoning attacks alter the behavior of a BCI machine
learning system by providing it with malicious input. These
inputs are generated to lead the respective outputs of a system
into misleading neural signaling patterns. These types of attacks
have catastrophic consequences, such as failing to trigger an
alarm for a seizure. The resolution of these security challenges
is paramount in ensuring the safe and efficient roll-out of BCIs.
Further research and development are needed to improve the
privacy/security properties of these systems so people with
neurological conditions would be able to heavily rely on them.

Effectiveness of the ML and AI Algorithms Used in
the BCI Closed-Loop System (RQ2)
The effectiveness of ML and AI algorithms in BCI closed-loop
systems is crucial for enhancing patient outcomes, particularly
in applications related to neurorehabilitation and cognitive
monitoring. These algorithms play a pivotal role in accurately
interpreting neural signals, enabling real-time feedback and
adaptive responses tailored to individual user needs. Their ability
to analyze complex patterns in brain activity allows for improved
signal classification and feature extraction, which are essential

for ensuring reliable communication between the brain and
external devices. Furthermore, the integration of effective ML
and AI algorithms facilitates continuous learning and adaptation,
ensuring that the BCI system evolves alongside the user’s
cognitive state. This adaptability not only enhances the overall
user experience but also promotes better engagement and
efficacy in therapeutic interventions, making the technology a
powerful tool in managing neurological disorders.

Figure 4 illustrates the key machine learning techniques used
in BCI closed-loop systems. It categorizes these techniques into
preprocessing (eg, Independent Component Analysis [ICA] for
noise reduction), data augmentation (eg, generative adversarial
networks [GANs] for expanding training data diversity), feature
extraction (eg, CNN and transfer learning [TL] for identifying
critical signal patterns), and classification (eg, SSVMs and linear
discriminant analysis [LDA] for categorizing neural signals).
These methods collectively improve the system’s effectiveness
by refining the input data, enhancing model training with more
varied data, extracting meaningful features, and accurately
classifying neural patterns. This multistep approach enables
closed-loop BCIs to achieve reliable real-time monitoring and
intervention, making them more effective for health care and
wellness applications.

In addition, Table 1 outlines the key algorithms and techniques
commonly used in BCI systems, while Table 2 offers a detailed
comparative evaluation of these machine learning approaches
in closed-loop frameworks, emphasizing their applications,
adaptability to neurological conditions, performance metrics,
and computational complexity, supported by relevant literature.
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Figure 4. Machine learning techniques in brain-computer interface closed-loop systems [27,28,30-35]. BCI: brain-computer interface; LDA: Linear
Discriminant Analysis; SVM: Support Vector Machine; TSNN: tree-structured neural network;
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Table . Comparative performance of machine learning techniques in brain-computer interface closed-loop systems.

Reference(s)Processing time / com-
plexity

Avg accuracy / error
Rate

Adaptability to neuro-
logical conditions

Key use cases in BCIa

systems

Algorithm/ technique

Gu et al, Tsai et al
[27,28]

Fast on small datasets;
efficient for real-time
binary tasks

78%‐90% (low error
in MI classification)

Moderate adaptability;
sensitive to intersubject
variability

Motor imagery (MI),
emotion recognition,

EEGc classification

SVMb

Mughal et al, Liang
and Kao [29,33]

High processing cost;
~300‐500 ms latency
unless optimized

>90% for work-
load/emotion tasks

High adaptability
across subjects/ses-
sions; handles complex
patterns

Emotion detection,
mental workload,

EEG-fNIRSe hybrid
classification

CNNd

Shanechi, Belkacem et
al [26,34]

Moderate training cost;
speeds up cross-subject
adaptation

Reduces error up to
15% across domains

Highly adaptable; ideal
for changing patient
conditions (eg,

ADg/ADRDh)

MI classification,
cross-session calibra-
tion, cognitive decline
monitoring

TLf

Gu et al [27]Very low latency
(<100 ms); lightweight

~75%‐85% in EEG
classification

Suitable for real-time
low-power systems

Basic EEG classifica-
tion, passive BCI

LDAi

Gu et al, Tsai et al
[27,28]

Fast artifact removal;
boosts downstream
model accuracy

Preprocessing only (not
classifier)

Improves SNRj, crucial
for low-signal patients
(eg, dementia)

Noise reduction, prepro-
cessing EEG/fNIRS

ICAk

Wang et al, Golshan et
al [31,36]

Medium complexity;
good for dimensionali-
ty reduction

~80% in unsupervised
tasks

Good for poorly la-
beled, noisy data (com-
mon in AD/ADRD)

Mental state recogni-
tion, feature learning

RBMl

Wu et al [32]Low to medium; inter-
pretable rule-based
outputs

70%‐85% (context
dependent)

Handles uncertainty
well; ideal for impre-
cise EEG from late-
stage dementia

EEG pattern classifica-
tion, aBCIs

Fuzzy models

Tsai et al [28]High training time; not
used in real-time infer-
ence

Indirectly improves
downstream model ac-
curacy

Improves performance
in data-scarce or imbal-
anced domains

Data augmentation for
EEG/BCI model train-
ing

GANm

Shin et al [30]Moderate-to-high, but
hierarchical structure
improves learning

~88%‐92% in neural
activity classification

Effective in high-di-
mensional, complex
datasets

Neurological disorder
detection, adaptive BCI

TSNNn

Liang and Kao [33]Computationally inten-
sive; not ideal for all
real-time apps

~85%‐90% (task de-
pendent)

Well-suited for time-
series EEG signal
modeling

Cognitive state predic-
tion, BCI simulations

RNNo

aBCI: brain-computer interface.
bSVM: support vector machine.
cEEG: electroencephalography.
dCNN: convolutional neural network.
efNIRS: functional near-infrared spectroscopy.
fTL: transfer learning.
gAD: Alzheimer disease
hADRD: Alzheimer disease and related dementia
iLDA: linear discriminant analysis.
jSNR: signal-to-noise ratio.
kICA: independent component analysis.
lRBM: restricted Boltzmann machine.
mGAN: generative adversarial network.
nTSNN: tree-structured neural network.
oRNN: recurrent neural network.

Different ML Techniques in BCI Closed-Loop Systems
Machine learning algorithms have significantly enhanced the
performance of BCIs. In that respect, one of the most influential
techniques would be TL, which borrows knowledge from a

source domain to perform better in a target domain. This is of
particular importance to BCI, as the collection of data across
sessions and subjects is often limited or variable [26]. TL has
been successfully applied to data alignment, spatial filtering,
feature selection, and classification tasks, dramatically
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improving the robustness and accuracy of BCIs across different
conditions and subjects.

Complementing TL, SVMs have turned out to perform very
well in high-dimensional spaces and have performed both linear
and nonlinear classification using the kernel trick on data
transformation [27]. SVMs have found wide applications in
BCI applications, more specifically in classifying EEG signals.
The SVM finds the optimal hyperplane that allows separation
of different classes, thus always showing good performance in
most BCI tasks, such as motor imagery classification and
emotion recognition [28].

On the other side, LDA finds out the best separation between
several classes by maximizing such a separation by choosing
an appropriate linear combination of features. LDA has a nice
balance between computational simplicity and performance for
BCIs [27].

The role of ICA is paramount in preprocessing methods. ICA
is one of the key tools that attempt to separate multivariate
signals into additive, independent components [27]. Especially
with BCIs, it is very good at isolating artifact components from
the neural signals, hence improving the quality of data used for
subsequent classification tasks. This step in preprocessing
appreciably improves the accuracy of a number of BCI
applications.

Moving to more complex models, CNNs have been very
triumphant in visual and spatial data, including EEG and
functional near-infrared spectroscopy (fNIRS) signals. CNNs
are known for their emotional ability to build hybrid brain
images that classify the activities taking place in the brain in a
very accurate manner for the detection and interpretation of any
complex neural pattern [29]. This is critical in applications like
mental workload estimation and emotion recognition, where a
spatial hierarchy in neural data may be critical for appropriate
classification and analysis [33] .

Tree-structured neural networks (TSNN) combine decision trees
and neural networks to provide the possibility of hierarchical
feature extraction and classification. More importantly, these
networks work quite effectively in relation to data: complex
and high-dimensional. TSNNs are therefore able to yield
promising results on the classification of neural activities and
detecting symptoms of neurological disorders with a rich set of
neural biomarkers [30]. This fills a gap in the field by providing
an optimal balance between accuracy and computational
efficiency, needed for real-time BCI applications.

RBMs have made some very great contributions to unsupervised
scenes, where instances of the objective are to learn underlying
structures of data [31]. In this case, RBMs learn with effective
features and reduce dimensionality to improve the performance
of classifiers on mental state recognition and motor imagery
classification tasks [36].

On the other side, fuzzy models represent the uncertainty and
imprecision of EEG data using fuzzy logic. Such models
generate rules that are much closer to those resulting from
human reasoning and hence are very suitable for processing
nonlinear and nonstationary signals. Fuzzy models applied in
BCIs include the so-called fuzzy inference systems (FIS) and
fuzzy neural networks (FNNs) for classifying EEG patterns,
offering both accuracy and interpretability [32].

Another extension to the toolkit of BCIs is GANs. It consists
of two neural networks: a generator and a discriminator. These
networks counteract in a framework, and each has an opposite
goal in a zero-sum game setup. GANs’ application in BCIs is
in augmented data generation for improving classifier training,
more so when there is not enough data, as GANs increase the
robustness, hence the accuracy, of BCI systems by bringing
forth more training data. Improvements in these machine
learning algorithms have increased the potential of BCIs not
only on grounds of performance but also by opening new
avenues for possible clinical and practical applications [28].

Table 1 outlines key methods used in BCIs, detailing their roles,
applications, and benefits. Techniques like TL, SVM, LDA,
and ICA enhance data preprocessing and classification,
improving signal quality and performance. CNNs and TSNNs
excel in feature extraction and classification of complex neural
data, while RBMs and Fuzzy Models handle dimensionality
reduction and uncertainty in EEG signals. GANs support data
augmentation, boosting robustness and accuracy. These methods
collectively optimize the processing of neural signals in
closed-loop BCI systems.

TL, SVM, LDA, ICA, CNN, TSNN, RBMs, fuzzy models, and
GAN techniques have helped in making BCIs effective and
reliable. These algorithms help improve the capability of BCIs
to better handle the user’s requirements, reduce calibration time,
and realize more accurate and robust control of artificial limbs
and other devices.

Limitations in the Development and Implementation
of the BCI Closed-Loop System (RQ3)
Some of the limitations facing BCIs’ development and
implementation can be summarized as ranging from decoding
algorithms through neural and behavioral measurements to
computational constraints, as shown in Table 3. The table
outlines various challenges associated with BCI technology and
proposes corresponding solutions to address these issues. It
covers aspects like improving neural signal decoding, enhancing
sensor accuracy, and increasing the precision of behavioral
measurements. These limitations show requirements for further
research in terms of target setting and orientation of work for
increasing effectiveness. Further explanations about these are
as follows:
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Table . Challenges and solutions in brain-computer interface development.

Proposed solutionsAssociated problemsReferences

Develop sophisticated algorithmsNeural signal decodingBryan et al [37]

Advanced sensor technologiesAccurate neural measurementsJiang et al [38]

Improve granularity and precisionBehavioral measurementsJiang et al [38]

Optimize algorithms and hardwareComputational costGu et al [27]

Develop efficient calibration methodsLong calibration sessionsGu et al [27]

Enhance ergonomic and reliable designsElectrode designMerk et al [39]

Standardize methodologiesDecoding and encoding algorithm heterogeneityYue et al [35]

Conduct long-term validation studiesLack of long-term studiesWu et al [32]

Develop scalable hardwareHardware limitationsMughal et al [29]

Ensure models generalize to closed-loop condi-
tions

Model generalizationGolshan et al [36]

Implement robust security measuresPrivacy and securityXavier et al [40]

Neural Signal Decoding
The challenging part of BCIs is the neural signal decoding into
meaningful commands. This is due to the large array of neural
signals requiring high accuracy; this becomes very challenging,
especially in scenarios where they are either too noisy or highly
variable across different cognitive states. This variability calls
for sophisticated algorithms that can adapt to these changes and
guarantee real-time performance [37]. Successful BCIs require
accurate neural measurements; conventional methods generally
have spatial and temporal resolution that is inadequate.

Behavioral Measurements
Behavioral measurements correlated with specific neural
activities often experience imprecision and lack the fine detail
necessary for comprehensive analysis. This limitation stems
from the complexity of human behavior and the intricate
relationship between neural processes and external actions.
Standard measurement techniques may fail to capture the
subtleties of these interactions, resulting in a loss of crucial
information that could deepen our understanding of
brain-behavior dynamics. Compounding this issue is the
challenge posed by the time scale of behavioral dynamics; neural
activities can change rapidly, often within milliseconds, while
corresponding behavioral responses may take longer to manifest.
This discrepancy makes it difficult to capture and analyze
real-time correlations, as a sudden shift in brain activity may
not immediately lead to observable changes in behavior, creating
potential misalignments in data interpretation [38].
Consequently, the inability to accurately synchronize these
fast-changing neural activities with their associated behaviors
can hinder our understanding of cognitive processes and impair
the effectiveness of interventions in areas like
neurorehabilitation and BCIs. Addressing these challenges
necessitates the development of advanced measurement
techniques and analytical frameworks capable of capturing the
nuances of both neural dynamics and behavioral responses.

Computational Cost
The high computational cost associated with processing and
analyzing neural data presents a significant challenge in the
development and implementation of brain-computer interface
systems. TL techniques, when integrated with active BCIs, can
incur substantial computational expenses due to the
high-dimensional nature of neural data and the complexity of
the models involved. This complexity poses a considerable
burden on the real-time applicability of BCI systems, limiting
their responsiveness and efficiency in practical scenarios.
Furthermore, the current applications of TL in BCI research
have primarily focused on binary MI classification problems,
which restrict the versatility and scope of TL methods in broader
contexts. As a result, the limitations of TL not only affect the
computational feasibility of BCIs but also hinder their potential
for more complex tasks, such as multi-class classification or
real-time adaptive learning.

Long Calibration Sessions
One significant challenge associated with most MI-based BCIs
is the extensive calibration sessions required before they can
operate effectively. These lengthy calibration processes diminish
the overall usability and practicality of BCIs, particularly in
real-world applications where quick deployment is essential.
To enhance the applicability of TL in everyday situations, it is
crucial to develop more efficient calibration methods that can
streamline the setup process and reduce the time commitment
for users [27].

Electrode Design
An integral aspect of neural signal acquisition in BCIs is the
design and fabrication of electrodes. Current electrode designs
face significant challenges related to mechanical and electrical
reliability, flexibility, and the speed at which they can
accommodate various configurations. These issues can hinder
the overall performance of BCIs, as unreliable electrodes may
lead to inconsistent signal quality and compromised data
accuracy. In addition, the pressure exerted by BCI headsets on
the user’s head can result in discomfort during prolonged use,
underscoring the need for improved ergonomic designs.
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Enhanced ergonomic considerations not only promote user
comfort but also facilitate longer monitoring sessions, which
are crucial for effective neural signal acquisition. By addressing
these challenges in electrode design and headset ergonomics,
researchers can significantly improve the functionality and user
experience of BCIs, ultimately expanding their applications in
clinical settings and enhancing the quality of life for individuals
who rely on this technology [39].

Decoding and Encoding Algorithm Heterogeneity
The heterogeneity of decoding and encoding algorithms used
in BCIs represents a significant challenge in the field. This
diversity complicates comparisons across different closed-loop
BCIs, as variations in purpose, methodology, and outcomes
hinder the establishment of standardized benchmarks and best
practices. Furthermore, the majority of existing studies tend to
focus narrowly on cognitive neural features, often neglecting
affective aspects of BCIs. This limited scope underscores the
pressing need for larger, more comprehensive studies that
encompass a broader range of neural activities and scenarios.
By addressing the issues of algorithmic heterogeneity and
expanding the research focus, the BCI community can enhance
the comparability of findings, foster innovation, and ultimately
improve the effectiveness and applicability of BCIs across
various domains [35]. This will facilitate a deeper understanding
of how different neural signals can be decoded and encoded,
paving the way for more nuanced applications in both cognitive
and affective realms.

Lack of Long-Term Studies
The absence of long-term studies significantly undermines the
effectiveness of training BCI systems. Establishing a robust
definition of a reinforcement signal is crucial, yet it raises ethical
concerns, particularly when involving human participants. To
mitigate these ethical dilemmas, it may be more appropriate to
conduct initial experiments in nonhuman models, thereby
sidestepping potential ethical issues. In addition, there is no
assurance that human participants will interpret the feedback
provided to them as a reward, complicating the training process
further. This variability in interpretation can lead to inconsistent
learning outcomes, making it challenging to develop reliable
and effective BCI systems. Therefore, conducting
comprehensive long-term studies is essential for refining training
protocols, ensuring ethical compliance, and ultimately enhancing
the overall effectiveness and applicability of BCIs in real-world
scenarios [32].

Hardware Limitations
Hardware limitations pose significant challenges to the
therapeutic effectiveness of BCIs, primarily through the need
for higher channel counts and improved scalability. These
requirements can result in the loss of critical information due
to downsampling and channel selection processes, which may
eliminate relevant neural signals necessary for accurate
interpretation. In addition, there is often a considerable disparity
between the sampling rate and the number of channels in EEG
and fNIRS data, complicating the data analysis process. While
proposed methodologies to address these issues aim to enhance
data integrity, they frequently come with high computational

costs and complexities that hinder their applicability in
real-world settings. Consequently, overcoming these hardware
limitations is crucial for advancing BCI technology, ensuring
that it can deliver reliable and effective therapeutic outcomes
for users [29].

Model Generalization
Another significant challenge in the development of BCIs is
ensuring that models trained on open-loop data can effectively
generalize to closed-loop conditions. The experiments necessary
for this validation are often prohibitively expensive and
time-consuming, which limits their widespread implementation.
This highlights the critical need for real-time applicability of
these models to facilitate the validation of adaptive deep brain
stimulation (aDBS) systems [36]. Without the ability to
efficiently transfer knowledge gained from open-loop scenarios
to real-time closed-loop environments, the effectiveness and
reliability of BCIs in practical applications remain in question.
Thus, enhancing model generalization is essential for advancing
BCI technology and ensuring its successful integration into
therapeutic settings.

Privacy and Security
The issues surrounding privacy, security, and ethics are of
paramount importance in the context of BCIs [41-44]. These
systems are susceptible to various data breaches and
cyberattacks, including cryptographic attacks, denial-of-service
attacks, and sniffing attacks, which can compromise sensitive
neural data and user information. Such vulnerabilities underscore
the urgent need for robust privacy protection and comprehensive
security measures to safeguard both the integrity of the data and
the users’ personal information. In addition, ethical
considerations surrounding the use of BCIs are critical,
particularly regarding user privacy and informed consent. It is
essential that users are fully aware of how their data will be
used and are able to provide consent without coercion.
Addressing these privacy, security, and ethical concerns is vital
for the responsible development and deployment of BCI
technologies, ensuring that they benefit users while minimizing
potential risks and harms [40].

Ongoing collaborative research efforts are actively addressing
the critical limitations identified in current BCI closed-loop
systems. Among the most promising directions is the
development of more sophisticated decoding algorithms capable
of accommodating the inherent variability in neural signals
across individuals and cognitive states. Improvements in neural
and behavioral measurement precision—through advanced
sensor technologies, multimodal signal integration, and robust
signal processing methods—are also contributing to more
accurate and responsive BCI systems. A key advancement
involves the integration of TL with active BCIs beyond
traditional binary classification, allowing systems to adapt across
sessions and users while minimizing lengthy calibration times.
In parallel, the design of more comfortable and reliable
electrodes, alongside expanded studies into cognitive and
affective dimensions of brain activity, is broadening the
applicability of BCIs in both clinical and non-clinical
environments. Furthermore, enhancing hardware scalability and
addressing data loss due to downsampling remain essential for
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the therapeutic efficacy and widespread deployment of these
systems. Ethical implementation, including user-informed
consent and privacy-preserving frameworks, must be embedded
into system design to ensure trust and adoption.

Recent advancements underscore how these challenges are being
met through innovative and applied research. For instance,
studies using TL and One-Shot Learning demonstrate that
calibration requirements can be drastically reduced by reusing
training data across users and sessions, enabling more efficient
deployment in real-world environments [26,28]. In addressing
cybersecurity concerns, researchers have proposed advanced
encryption protocols and privacy-preserving neural computation
strategies to mitigate sniffing, poisoning, and denial-of-service
attacks—ensuring the confidentiality and integrity of neural
data [35,40]. Notably, real-world applications such as
Neuralink’s adaptive BCI and Tsai et al’s [28] secure
closed-loop brain-machine interface exemplify successful
responses to these challenges. These platforms leverage online
tuning algorithms, secure data pipelines, and adaptive feedback
systems to maintain robust performance while safeguarding
patient data in both clinical and home care settings [35,45].
Together, these advancements highlight the growing maturity
of BCI technologies and point toward a future in which
user-friendly, secure, and scalable BCI systems are a practical
reality.

BCI Closed-Loop System-Based Framework for
Longitudinal Monitoring of AD/ADRD Patients (RQ4)
AD/ADRD is a progressive neurological disorder, and one of
the major causes of death among the older adults [46,47].

Therefore, it is important to acquire new solutions that can
enhance the quality of life of patients and their caregivers as
the number of people affected increases yearly. The use of BCI
technology is considered one of the most promising approaches
to this challenge, using state-of-the-art neuroimaging techniques
and machine learning algorithms for continuous monitoring and
diagnosis.

The proposed framework shown in Figure 5 overcomes the
complexity of decoding neural activity in AD/ADRD patients,
who often lack the cognitive control normally required by
conventional BCIs. It illustrates a closed-loop BCI framework
for longitudinal monitoring of AD/ADRD patients, beginning
with the acquisition of brain activity through neuroimaging
techniques to capture critical neural signals. The collected data
undergoes preprocessing, where noise is reduced using artifact
detection and removal algorithms, ensuring high-quality signals.
Ethical and security concerns are addressed by implementing
robust data protection measures to safeguard sensitive patient
information. Machine learning algorithms classify the neural
signals, accurately distinguishing between various mental states,
while feature extraction and domain-specific calibration improve
the system’s precision. Electrode calibration ensures reliable
signal acquisition, enhancing system performance. Real-time
alerts integrate closed-loop monitoring for continuous
observation, enabling timely interventions. Ultimately, this
framework aims to improve Alzheimer patient care by
leveraging Neuralink’s BCI technology [45] for better
monitoring and intervention strategies. The different stages are
further elaborated below:
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Figure 5. Closed-loop brain-computer interface framework for longitudinal monitoring of Alzheimer disease and related dementias patients.

Data Acquisition and Processing
The proposed framework is empowered for the correct
interpretation of neural signals through sophisticated classifiers
such as SVMs and LDA; it thus helps in the achievement of
reliable monitoring and communication. Once brain activity
data is collected through neuroimaging techniques like fMRI
and EEG, preprocessing steps are crucial for artifact detection
and noise reduction [48]. Advanced algorithms are used to filter
out irrelevant data, ensuring that the subsequent analysis focuses
on meaningful neural patterns.

Classification, Feature Extraction, and Electrode
Calibration
In the classification phase, machine learning algorithms improve
the deciphering of neural signals. In doing so, SVMs and LDA
techniques can be used to classify the different mental states,
giving insights into the patient responses and cognitive
conditions. In this step, it is important to distinguish different
neural activities and their behaviors. Feature extraction works
on refining the accuracy and reliability of the classifications.
These domain-specific calibration methods enable the tuning
of the analysis so that the system learns the characteristics of
the individual’s needs and variations in neural activity [48,49].
At this stage, electrode calibration is crucial for ensuring BCI
system reliability. Optimized placement and configuration of
electrodes ensures consistent data acquisition, reducing errors
and thus enhancing the system’s overall performance.

Real-Time Alert
Real-time alerting of caregivers is another important factor in
the framework. Data from both AD patients can be used to
develop the alert system, ensuring that it can accurately identify
deviations from normal neural activity. For instance, the
classification accuracy reported in [48] indicates that the system
can reliably distinguish between different mental states, which
is crucial for triggering real-time alerts. Thus, this feature serves
significantly in terms of preventing accidents or ensuring timely
assistance from a medical point of view. This framework is
aimed at enhancing the care of Alzheimer disease by integrating
Neuralink’s BCI technology. The framework offers a strong
and trustworthy tool for the betterment of the patient outcome
and elongation of time that patients can spend with their loved
ones by addressing the challenges of neural signal decoding,
data security, and real-time monitoring.

Ethical and Security Concern
After analyzing data, references indicate the most prominent
symptoms of AD are severe deficits in communication, cognitive
decline, and behavioral changes. Traditional BCIs require active
participation; hence, they cannot be used with AD patients. For
example, in [48] the authors highlight that traditional BCIs,
requiring active control, are not suitable for AD patients due to
their cognitive impairments. Instead, the study emphasizes the
use of passive BCIs, which leverage preserved affective
responses to facilitate basic communication and continuous
monitoring [48]. This method makes use of detailed
neuroimaging and machine learning components for cognitive
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and behavioral changes in order to provide such monitoring.
Such continual assessment allows for early diagnosis and timely
intervention that are crucial in managing AD progression [49].
In that respect, the BCI systems are vulnerable to data breaches
and ethical misuses. The security aspects are core parts of the
proposed BCI framework, evident in the position of ethical and
security considerations at the very center of the framework
diagram in Figure 5 [50]. This framework would hardwire strong
measures for security against breaches and ethical misuse of
information related to a patient. This involves encryption
methods, secure storage, and tight access control that ensures
only authorized personnel can view sensitive information.
Despite technical possibilities, data protection and ethical
guidelines are argued to exist, whereas BCI systems are weak
in cryptographic, denial-of-service, and sniffing cyber-attacks

[50]. Therefore, strong protection measures must be
implemented. Implantable BCI devices give real-time data,
thereby allowing caregivers to receive instant alerts on a
patient’s condition. This approach will improve the quality of
care and prevent emergencies.

The envisioned BCI framework addresses the most critical
challenges of caring for the patient experiencing Alzheimer
disease by efficiently combining advanced neuroimaging
techniques with machine learning algorithms as shown in Table
4. In this regard, this approach is relevant for improving patient
clinical outcomes while assisting caregivers in handling the
complexities of Alzheimer disease management by enhancing
neural signal classification, guaranteeing data security, and
real-time monitoring [50].

Table . Mapping of framework components to challenges and supporting literature.

Supporting literatureDescriptionChallenge addressedFramework component

Gu et al, Liberati et al [27,48]Uses EEG and fMRI for high-reso-
lution brain activity monitoring; re-
quires preprocessing for noise

Low signal-to-noise ratio (SNR);
variability across sessions

Neural Signal Acquisition

(EEGa/fMRIb)

Gu et al, Tsai et al [27,28]Independent Component Analysis
(ICA) removes artifacts to improve
signal clarity

Artifact contamination; real-time
signal distortion

Preprocessing (eg, ICA)

Shanechi, Gu et al [26,27]SVM and LDA used to classify
neural patterns for real-time state
detection

Inaccurate decoding of mental statesFeature extraction and classification

(SVMc, LDA)d

Shanechi, Belkacem et al [26,34]Reduces setup time by leveraging
previously trained models from
similar domains

Lengthy calibration sessions; cross-
user variability

Transfer learning (TL)

Shanechi, Liberati et al [26,48]Fine-tunes BCIe parameters to indi-
vidual characteristics

Adaptability to individual neural
profiles

Domain-specific calibration

Pisarchik et al, Liberati et al [45,49]Monitors patient state continuously
and sends alerts to caregivers during
anomalies

Lack of timely caregiver interven-
tion

Real-time alert system

Liberati et al, Liberati et al [48,49]Enables nonintrusive monitoring
based on implicit neural responses

Limited cognitive engagement in

ADf/ADRDg patients

Passive BCI design

Yue et al, Xavier Fidêncio et al
[35,40]

Implements encryption, access con-
trol, and ethical safeguards for neu-
ral data

Privacy risks; cyber threats; in-
formed consent

Security and ethical framework

Mughal et al, Merk et al [29,39]Incorporates ergonomic, wearable
sensors for home and clinical envi-
ronments

Usability and long-term deploymentScalable hardware integration

aEEG: electroencephalography.
bfMRI: functional magnetic resonance imaging.
cSVM: support vector machine.
dLDA: linear discriminant analysis.
eBCI: brain-computer interface.
fAD: Alzheimer disease.
gADRD: Alzheimer disease and related dementia.

Discussion

Principal Findings
This systematic review synthesized the current evidence from
18 studies on the integration of AI and ML within BCI
closed-loop systems for neurorehabilitation, with a specific

focus on AD/ADRD. The findings indicate that ML techniques
such as TL, CNNs, and SVMs significantly enhance the
performance of BCI systems by improving real-time signal
classification, feature extraction, and cross-session adaptability.
However, the translation of these technological advancements
into widespread clinical practice is hampered by significant
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challenges, including signal variability, computational demands,
lengthy calibration, and profound privacy concerns. The
proposed framework for longitudinal AD/ADRD monitoring
represents a promising, patient-centric application that leverages
passive BCI paradigms to circumvent the cognitive demands
of traditional systems.

General Interpretation in the Context of Existing
Evidence
Our findings on the efficacy of ML algorithms like CNNs and
TL in BCI systems are strongly supported by the broader
literature on AI in digital health. The high accuracy (>90%) of
CNNs in classifying complex neural patterns for mental
workload and emotion recognition aligns with their proven
success in other pattern recognition domains, such as medical
imaging. Similarly, the utility of TL in reducing calibration time
and improving cross-subject generalization addresses a
well-documented bottleneck in BCI research, echoing its
successful application in other fields where data scarcity and
individual variability are concerns. The review’s identification
of passive BCIs as a solution for AD/ADRD patients is
particularly insightful. This approach is consistent with a
growing trend in digital biomarkers, which seeks to leverage
implicit, continuous data from wearables and other sensors for
early disease detection and monitoring, moving beyond active
user participation. Furthermore, the emphasis on real-time,
closed-loop feedback for neurorehabilitation is supported by
neuroscientific principles of neuroplasticity. The ability of
AI-enhanced BCIs to provide immediate, adaptive intervention
is theorized to strengthen neural pathways more effectively than
open-loop systems, a hypothesis that is gaining traction in stroke
and spinal cord injury rehabilitation. Thus, the results of this
review are not isolated but are part of a convergent evolution
across AI, neuroscience, and clinical medicine toward more
adaptive, data-driven therapeutic interventions.

Limitations of the Included Evidence
While the reviewed studies demonstrate significant promise,
the evidence base has several important limitations that temper
the immediate readiness of these technologies for clinical
deployment. The majority of included studies were small-scale,
laboratory-based demonstrations. They often involved healthy
participants or highly controlled patient groups, lacking the
diversity and complexity of real-world clinical environments.
This limits the generalizability of the reported high accuracy
rates. In addition, as highlighted in the review, there is a
pronounced heterogeneity in decoding algorithms, performance
metrics, and experimental protocols across studies. The absence
of standardized benchmarks makes it difficult to directly
compare the performance of different ML models or BCI
systems, hindering the identification of optimal approaches.
Furthermore, there is a critical gap in long-term longitudinal
studies. It remains largely unknown how these systems perform
over months or years, how they adapt to disease progression,
and whether improvements in signal classification accuracy
translate into meaningful clinical outcomes, such as slowed
cognitive decline or improved quality of life.

Limitations of the Review Process
This review itself is subject to certain methodological limitations
that should be acknowledged. Limiting the search to studies
published between 2019 and 2024, while ensuring timeliness,
may have excluded foundational or highly relevant older studies.
Furthermore, while major databases were consulted, the
exclusion of other potential sources may have led to the
omission of pertinent research. Next, the review likely reflects
a positive publication bias, as studies with null or negative
results are less frequently published. This may create an
over-optimistic picture of the current capabilities and reliability
of AI-driven BCIs.

Despite following PRISMA guidelines and using a panel of
researchers, the processes of screening titles/abstracts and
extracting data into a matrix involve a degree of subjective
judgment, which could have influenced the final selection and
synthesis of the studies.

Implications for Practice, Policy, and Future Research
The findings of this review have several critical implications
across different domains:

For clinical practice: in the short term, AI-enhanced BCIs are
most likely to find application as sophisticated diagnostic and
monitoring tools in specialized neurology centers, aiding in the
early and objective detection of cognitive impairment. The
proposed framework for AD/ADRD provides a blueprint for
developing caregiver alert systems, which could significantly
reduce burden and improve patient safety in home-care settings.
Clinicians should be aware of these emerging technologies to
guide future patient care and manage expectations.

For policy and regulation: the security vulnerabilities and ethical
dilemmas identified (eg, data privacy, informed consent for
cognitively impaired users) demand urgent attention from
policymakers and regulatory bodies like the FDA and EMA.
New frameworks are needed to govern the security of neural
data, which is arguably the most personal of all health
information. Policies must be established to ensure equitable
access and prevent misuse, defining clear guidelines for the
ethical development and clinical validation of BCI technologies.

For future research: future work must transition from
proof-of-concept to robust, clinically focused research. Key
priorities should include rigorous, long-term trials with diverse
AD/ADRD populations that are essential to validate efficacy
and establish clinical utility. In addition, the BCI research
community should collaborate to establish common data
formats, reporting standards, and performance benchmarks to
enable meaningful comparisons. Moreover, research must focus
on developing more ergonomic, user-friendly, and low-power
hardware that is suitable for prolonged use outside the lab.
Creating interpretable ML models will be crucial for building
trust among clinicians and patients, allowing them to understand
the basis for the system’s classifications and decisions.

Conclusion
This review systematically explored the role of BCI closed-loop
systems in health care, with a specific focus on their potential
to enhance neurological disorder detection and management
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through advanced ML and AI techniques. Addressing RQ1, we
analyzed various methods and parameters used in BCI
closed-loop systems, including signal acquisition, feature
extraction, classification, and device output. Key preprocessing
techniques such as ICA and TL were identified as crucial for
reducing noise and improving signal quality. DBS was also
highlighted as a promising intervention for neuropsychological
disorders like AD and ADRD.

In evaluating RQ2, we examined the effectiveness of ML and
AI algorithms in BCI systems. Techniques like Support SVM,
CNN, and RNN demonstrated significant improvements in
decoding neural activity, enabling more accurate classification
of cognitive states. TL, in particular, showed promise in
reducing calibration time, making BCI systems more adaptive
to individual users. In addition, BCIs have expanded beyond
disease detection, playing a pivotal role in cognitive
enhancement, neurofeedback training, and assistive
communication.

Despite these advancements, RQ3 highlighted several challenges
in the development and implementation of BCI closed-loop
systems. Key limitations include high computational costs, long
calibration sessions, signal variability across individuals, and
security risks such as Poisoning Attacks that could compromise
neural signal integrity. Ethical concerns surrounding data
privacy and the potential misuse of BCIs also remain pressing
issues. Addressing these challenges requires advancements in
real-time signal processing, improved sensor technology, and
robust cybersecurity frameworks to protect patient data.

To answer RQ4, we proposed a BCI-based framework for
longitudinal monitoring of AD/ADRD patients, integrating

real-time neural signal acquisition, feature extraction, and
ML-based classification for early cognitive decline detection.
This framework incorporates real-time alert systems to assist
caregivers in proactive intervention, enhancing patient outcomes.
In addition, passive BCIs were identified as a viable alternative
for patients with severe cognitive impairments, enabling
continuous monitoring without requiring active user
engagement.

To answer RQ4, we proposed a BCI-based framework for
longitudinal monitoring of AD/ADRD patients, integrating
real-time neural signal acquisition, feature extraction, and
ML-based classification for early cognitive decline detection.
This framework incorporates real-time alert systems to assist
caregivers in proactive intervention, enhancing patient outcomes.
In addition, passive BCIs were identified as a viable alternative
for patients with severe cognitive impairments, enabling
continuous monitoring without requiring active user
engagement.

Building on these advancements, future research should
prioritize the refinement of machine learning algorithms to
better support real-time signal processing and adaptive learning
in dynamic environments. Ethical considerations—such as user
consent, data ownership, and secure data handling—must remain
central to system design. Continued progress in these areas will
be essential for creating scalable, secure, and user-friendly BCI
systems that integrate seamlessly into daily life. Ultimately,
these innovations will position AI-powered BCIs as
transformative tools in improving care, independence, and
quality of life for individuals with neurological disorders,
particularly those living with AD/ADRD.
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Abstract

Background: Bioacoustics classification plays a crucial role in ecological surveillance and neonatal health monitoring. Infant
cry analysis can aid early health diagnostics, while ecological acoustics informs conservation. However, the presence of
environmental noise, signal variability, and limited annotated datasets often hinders model reliability and deployment. Robust
feature extraction and denoising techniques have become critical for improving model robustness, enabling more accurate
interpretation of acoustic events across diverse bioacoustic domains under real-world conditions.

Objective: This review systematically evaluates advancements in noise-resilient feature extraction and denoising techniques
for bioacoustics classification. Specifically, it explores methodological trends, model types, cross-domain transferability between
clinical and ecological applications, and evidence for real-world deployment.

Methods: A systematic review was conducted by searching 8 electronic databases, including IEEE Xplore, ScienceDirect, Web
of Science, ACM Digital Library, and Scopus, through December 2024. Eligible studies entailed audio-based classification models
and applied empirical or computational evaluations of bioacoustics classification using machine learning or deep learning methods.
In addition, studies also included explicit or implicit consideration of noise. Two reviewers independently screened studies,
extracted data, and assessed quality. Risk of bias was assessed using a customized tool, and reporting quality was evaluated using
the TRIPOD (Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis) checklist.

Results: Of the 5462 records, 132 studies met the eligibility criteria. The majority (112/132, 84.8%) of studies focused on model
innovation, with deep learning and hybrid approaches being the most dominant. Feature extraction played a critical role, with
96.2% (127/132) of studies clearly demonstrating feature extraction. Mel frequency cepstral coefficients, spectrograms, and filter
bank-based representations were the most common feature representations. Nearly half (62/132, 47%) of the studies incorporated
noise-resilient methods, such as adaptive deep models, wavelet transforms, and spectral filtering. However, only 14.4% (19/132)
demonstrated real-world deployment across neonatal care and ecological field settings.

Conclusions: The integration of noise-resilient techniques has significantly improved classification performance, but real-world
deployment and proper use of denoising strategies in various datasets remain limited. Cross-domain synthesis reveals shared
challenges, including dataset heterogeneity, inconsistent reporting, and reliance on synthetic noise. Future work should prioritize
harmonized benchmarks, cross-domain generalization, and deployment, as well as opportunities for transferability.

(JMIR Biomed Eng 2025;10:e80089)   doi:10.2196/80089

KEYWORDS

bioacoustics classification; noise robustness; feature extraction; denoising techniques; audio signal processing; machine learning;
deep learning; real-world deployment

Introduction

Background
Bioacoustics, the study of sound produced by biological
organisms, has become an essential tool for understanding
ecological dynamics, monitoring biodiversity, and health
diagnostics and monitoring [1]. Bioacoustics signals, for

instance, birdcalls, marine mammal sounds, human sounds, and
infant cries, provide information about species behavior,
ecosystem health, and human well-being [2]. In neonatal care,
infant cry analysis is explored as a noninvasive marker of health
and a potential tool for early diagnostics and caregiver decision
support. In ecological monitoring, passive acoustic sensors are
increasingly deployed for biodiversity surveillance, species
identification, and environmental assessment. Passive acoustic
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monitoring has been significant in tracking population dynamics
and detecting anomalies in biological sound patterns [3].

Bioacoustics signals are also used in health care as noninvasive
markers for diagnosing respiratory conditions, neurological
disorders, and infections such as sepsis [4]. These signals are
increasingly becoming central to digital health. Infant cry
analysis is one of the emerging core areas in digital health. It
is a practical avenue for early risk triage, remote monitoring,
and real-time decision support in neonatal care [5]. Other
pathological audio domains, such as lung sound classification
for respiratory disease diagnosis, have also been systematically
reviewed [6-8]. These reviews reinforce the importance of robust
audio pipelines in clinical monitoring. Similarly, acoustic
monitoring is crucial for species identification and biodiversity
assessments, particularly in remote or inaccessible regions, and
is focal to wildlife conservation [9]. Despite rapid progress,
both clinical and ecological bioacoustics applications are
constrained by one fundamental limitation, noise interference,
which undermines the reliability and interpretability of
classification models in real-world deployments.

The most persistent challenge in bioacoustics analysis is
environmental noise contamination, which degrades signal
quality and reduces classification accuracy. Noise arising from
human activity, equipment artifacts, and overlapping acoustic
sources complicates the extraction of meaningful features.
Clinical environments are also acoustically challenged by
alarms, caregiver speech, ventilation, and room reverberation.
These factors reduce signal quality, thereby limiting the
effectiveness of machine learning-based audio classification
models [10]. Feature extraction forms the critical interface
between raw bioacoustics waveforms and downstream
classifiers. While traditional feature extraction techniques remain
fundamental in audio classification, they exhibit high noise
sensitivity, leading to feature distortion and reduced
classification accuracy [11]. Numerous noise-resilient techniques
such as wavelet filtering, adaptive spectral subtraction, and
hybrid deep neural embeddings have been proposed to tackle
these challenges. However, their evaluation remains fragmented
and inconsistent across domains. No consensus exists regarding
the most effective denoising or feature extraction strategies for
bioacoustic classification, nor how these choices influence
model deployment or interpretability under realistic noise
conditions [10,12].

Persistent research gaps remain in evaluating the effectiveness
and generalizability of noise-resilient feature extraction methods
across domains. Many studies rely on controlled or synthetic
noise settings, limiting ecological and clinical applicability.
Benchmark initiatives such as Stowell’s roadmap and the
BirdSet dataset have advanced standardization in ecoacoustics
but do not yet address cross-domain noise resilience or
deployment metrics. Reporting of noise protocols and
preprocessing remains inconsistent, and evidence of real-world
deployment—especially in neonatal and field settings—is scarce.
To bridge these gaps, this systematic review aims to (1) map
methodological trends in noise-resilient feature extraction and
denoising; (2) quantitatively evaluate their impact on
classification performance under varying noise conditions; (3)
examine evidence for real-world deployment and cross-domain

generalization; and (4) identify limitations and future research
priorities to advance robust, interpretable, and deployable
bioacoustic systems.

Persistent research gaps remain in evaluating the effectiveness
of noise-resilient feature extraction methods across different
bioacoustics applications [13,14]. Many studies assess models
in controlled or synthetic noise conditions, limiting ecological
and clinical applicability as models fail to reflect the complexity
of real-world acoustic environments [15]. Benchmark initiatives
such as Stowell’s roadmap explicitly call for community
standards and comparable benchmarks in bioacoustics deep
learning [13]. “The Benchmark of Animal Sounds,” proposed
by Hagiwara and colleagues to standardize evaluation across
multiple animal-sound datasets [14], and a large-scale dataset
for audio classification in avian bioacoustics, “BirdSet,” were
also created to address dataset fragmentation in avian tasks [16].
However, these efforts remain largely species-specific with no
noise protocols, denoising baselines, or clinical (neonatal
intensive care unit [NICU]) deployment metrics, underscoring
the need for a minimal evaluation to enhance transition to
deployment. Existing reviews largely focus on ecoacoustic
pipelines and tasks rather than cross-domain noise robustness
or deployment in clinical settings [17,18].

Related Work
In addition, reporting of noise protocols and preprocessing is
inconsistent, limiting comparability in domains. Evidence on
deployment is scarce, with only a minority of studies tested in
neonatal or ecological field settings. Finally, little cross-domain
synthesis exists to establish whether techniques effective in
infant cry analysis generalize to ecological monitoring, and vice
versa. To address these gaps, this systematic review focused on
four objectives: (1) mapping methodological trends in feature
extraction, denoising, and model development; (2) evaluating
classification performance under noisy conditions; (3) assessing
evidence for deployment and cross-domain transferability; and
(4) synthesizing limitations and future priorities to guide the
development of robust, scalable bioacoustics systems.

Bioacoustic recordings across domains are degraded by
environmental and clinical noise, limiting the reliability of
feature extraction and classification techniques [19]. Noise
interference remains a major obstacle in bioacoustics research,
stemming from natural background sounds, overlapping
vocalizations, human-induced disturbances, and
equipment-related artifacts [20]. Low signal-to-noise ratios
(SNRs) degrade the clarity of acoustic signals, making it difficult
to extract meaningful features [21]. In urban environments,
background noise from traffic, industrial activity, and human
movement significantly reduces the accuracy of automated
species identification. Similarly, in neonatal health care settings,
excessive ambient noise negatively affects infant cry-based
medical diagnostics, leading to misclassification and reduced
sensitivity [22]. This section summarizes literature on feature
extraction and denoising techniques to benchmark the gaps for
data synthesis.

Feature extraction is a vital phase in bioacoustics classification;
it transforms signals into meaningful representations for machine
learning and deep learning models. Traditional methods such
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as Mel frequency cepstral coefficients (MFCCs), spectrograms,
and linear predictive cepstral coefficients (LPCCs) have been
widely used due to their effectiveness in capturing essential
acoustic properties. MFCCs, in particular, have been extensively
applied in speech and sound classification tasks due to their
ability to model human auditory perception [23].
Spectrogram-based methods provide time-frequency
representations, enabling the visualization and analysis of
complex vocalization patterns [24]. LPCCs have been used in
general acoustics research for feature extraction due to their
capacity to model the vocal tract system in speech signals [25].
However, these feature techniques perform well in controlled
environments but struggle with real-world noise.

High classification error rates arise when extracted features are
distorted by background interference, reverberation, and
overlapping signals [10]. These limitations necessitate
continuous development of advanced noise-resilient feature
extraction techniques as bioacoustics moves toward more
complex field applications. Research is moving toward
noise-resilient feature extraction methods that integrate signal
processing, machine learning, and deep learning–based methods.
These methods are objective in feature robustness enhancement,
mitigation of noise artifacts, and improving classification
accuracy in dynamic environments.

Denoising techniques have been used before feature extraction
to enhance signal quality and after feature extraction to enhance
model performance. Several techniques have been used
extensively; among them, spectral subtraction, Wiener filtering,
and wavelet-based denoising are used extensively. Spectral
subtraction reduces stationary background noise by estimating
the noise spectrum during nonvocalization periods and
subtracting it from the noisy signal [26]. However, spectral
subtraction can introduce artifacts such as musical noise, which
may distort classification results, making it less effective for
nonstationary noise [27]. Wiener filtering reduces the mean
square error between the estimated clean signal and the observed
noisy input, adapting to local SNRs [28]. It has been used
successfully in bioacoustics monitoring and medical diagnostics,
where background noise levels vary dynamically [4].

Wavelet-based denoising uses wavelet transforms to decompose
data into distinct frequency bands. This technique reduces
high-frequency noise while maintaining salient biological
acoustic properties by selectively attenuating noise components
at particular scales [21]. Marine bioacoustics has effectively
used wavelet denoising to enhance the detection of
low-frequency vocalizations, such as whale sounds, in noisy
underwater environments [29]. Adaptive filtering dynamically
adjusts its parameters in response to changing noise conditions,
making it particularly effective for field-based bioacoustics
monitoring [30]. Adaptive filtering has been used in avian
bioacoustics, where real-time adjustments help maintain signal
clarity despite weather fluctuations and overlapping birdcalls
[3].

Advanced neural network architectures have shown significant
improvements over conventional techniques for managing noisy
bioacoustics data. Recurrent neural networks (RNNs) and
convolutional neural networks (CNNs) have been essential in

this development. RNNs are well suited to modelling time-based
relationships in sequential data, and CNNs excel at extracting
spatial characteristics from spectrogram representations of audio
signals. These networks improve classification accuracy in
diverse acoustic situations by learning noise-invariant
representations [31,32]. Hybrid models and their variants have
improved classification accuracy in diverse noisy environments.
Convolutional recurrent neural networks (CRNNs) combine the
advantages of RNNs and CNNs by integrating temporal
sequence modeling and spatial feature extraction, enabling
CRNNs to efficiently identify intricate patterns in bioacoustics
data, even in noisy environments [33].

Generative adversarial networks (GANs) have been used to
improve model robustness by generating synthetic training data
that simulate real-world noise conditions [34]. GANs allow
models to learn from an additional, diverse set of scenarios,
refining their generalization capabilities. Additionally, training
datasets have been expanded through data augmentation
techniques and contextual noise to improve classification
performance [35]. Finally, incorporating noise-adaptive attention
mechanisms into audio classification models allows selective
focus on signal components that are less affected by noise,
thereby enhancing classification performance. While these
approaches often improve accuracy under noise, latency
demands can hinder on-device or field deployment without
model compression or edge-aware design.

Evaluation protocols vary widely, with some studies using
synthetic overlays with fixed SNR grids while others use in situ
recordings with uncontrolled noise. The evaluation metrics and
reporting details differ substantially. Underreporting of noise
types and inconsistent disclosure of denoising complicate
cross-study comparisons and can inflate perceived robustness.
Community efforts such as multidataset animal-sound
benchmarks and large avian corpora have improved scale and
comparability but rarely prescribe explicit noise protocols or
denoising baselines [14,16]. Furthermore, there are no
NICU-specific deployment metrics. These gaps motivate a tiered
evidence strategy, core noise-resilient versus comparator
pipelines, and a structured synthesis.

This systematic review aims to summarize existing literature,
pinpoint performance patterns, and draw attention to research
gaps in the development of classification models for
noise-resilient bioacoustics. In order to guide future research
toward more scalable, generalizable, and noise-resilient
bioacoustics systems, this study attempts to address these issues
and offer an organized overview of the topic. Furthermore, we
synthesize the effect direction, transferability, and deployment
evidence across infant-cry and ecological settings.

Objectives
The core objective of this study is to systematically review and
synthesize advancements in noise-resilient bioacoustics feature
extraction methods, evaluating their implications on audio
classification performance in real-world noise. Specifically, we
(1) map methodological trends (features, denoisers, models,
and study designs); (2) quantify performance under noisy
conditions relative to clean baselines; (3) assess cross-domain
transferability and evidence of deployment (clinical, field, or
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edge); and (4) identify limitations and priorities to guide future
research and implementation of robust, scalable bioacoustics
classification systems.

To operationalize this objective aim, the review pursued four
specific objectives: (1) identify methodological trends in feature
extraction, denoising, and machine learning models applied to
bioacoustics classification under noise; (2) evaluate performance
outcomes reported across studies, including accuracy, precision,
recall, and F1-score, with attention to differences between
clinical and ecological domains; (3) assess deployment evidence
by analyzing whether and how methods have been tested or
implemented in real-world conditions, and to what extent they
demonstrate cross-domain robustness; and (4) synthesize
limitations and future priorities, highlighting dataset challenges,
methodological gaps, and opportunities for advancing
noise-resilient bioacoustics analysis.

By integrating findings from multiple studies, the review seeks
to provide practical recommendations for both academic
research and real-world implementations, ensuring the
development of more robust, scalable, and adaptive bioacoustics
classification systems. Based on these objectives, the following
review questions (RQs) were formulated to align closely with
the study’s scope and focus:

• RQ 1.1: What feature extraction, denoising or enhancement,
and machine learning model approaches are used to achieve
noise-resilient bioacoustics classification? This question
synthesizes traditional signal-processing methods (eg,
MFCC, LPCC, and per-channel energy normalization
[PCEN]), denoisers (eg, spectral subtraction, Wiener,
wavelet, and deep denoisers), and model classes (eg, CNN,
RNN, CRNN, and transformers) and documents prevailing
study designs.

• RQ 1.2: How do these pipelines perform under noisy
conditions compared with clean baselines, and what metrics
and noise protocols are reported? This question extracts
accuracy, precision, recall, and F1-score (and area under
the receiver operating characteristic curve [AUC] where
available); summarizes effect direction (Δ vs clean); and
notes noise protocol transparency (type, SNR grids, and
synthetic vs in situ).

• RQ 1.3: To what extent have these methods been deployed
or prospectively evaluated in real-world settings, and how
transferable are they across clinical (infant-cry) and
ecological (wildlife) domains? This question examines
model evaluation in ward, field, and edge environments;
considers scalability and latency constraints; and assesses
cross-domain robustness and generalizability.

• RQ 1.4: What limitations and risks of bias recur across
studies, and what priorities should guide future work? This
question identifies dataset imbalance, synthetic-only noise,
reporting gaps (noise type, SNR, and denoising details),
and distills priorities such as standardized noise protocols,
benchmark design, and real-time or self- or
federated-learning approaches.

Methods

Methodological Approach
This study follows a systematic review approach to analyze
advancements in noise-resilient bioacoustics feature extraction
methods and their implications on audio classification
performance. To ensure transparency, reproducibility, and
methodological rigor, this review followed the PRISMA
(Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) 2020 guidelines for systematic reporting
[36,37]. The Methodological Expectations of Cochrane
Intervention Reviews (MECIR) standards were also used for
study selection and evaluation [38]. The search and analysis
were tailored using the PICO (population, intervention,
comparison, outcome) framework to focus on studies relevant
to the review objectives.

Search Strategy

Information Sources
A comprehensive search was executed across 8 electronic
databases—IEEE Xplore, ScienceDirect, Google Scholar, Web
of Science Core Collection, ACM Digital Library, Scientific
Electronic Library Online, China National Knowledge
Infrastructure, and Scopus—yielding 5462 records. The search
targeted peer-reviewed journal and conference papers published
through 2024, in English and selected non-English (Spanish,
Portuguese, Chinese, and French) languages. The search terms
were developed based on the PICO framework in Multimedia
Appendix 1, ensuring precision and relevance to the study’s
scope.

Population (P)
Terms targeting bioacoustics audio data, such as “bioacoustics,”
“animal vocalizations,” “bird calls,” “marine mammal sounds,”
“infant cries,” and "biological acoustic signals.”

Intervention (I)
Keywords related to noise-resilient feature extraction methods,
including “noise-resilient feature extraction,” “denoising
techniques,” “MFCC,” “spectrogram,” “convolutional neural
networks (CNNs),” “recurrent neural networks (RNNs),”
“hybrid models,” and “attention mechanisms.”

Comparison (C)
Keywords related to evaluating the performance of different
noise-handling techniques, such as “spectral subtraction,”
“adaptive filtering,” “augmentation,” and “attention
mechanisms,” against baseline approaches.

Outcome (O)
Keywords emphasizing classification performance and
robustness, such as “classification accuracy,” “precision and
recall,” “robustness to noise,” “scalability,” and “real-world
applications.”

To cater to the non-English studies, the search terms were
inadvertently translated into each target language, combined
with controlled‐vocabulary headings where available. This
multilingual strategy ensured maximal coverage of relevant
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noise-resilient bioacoustics classification studies. In addition
to translation, filters were set to yield non-English relevant
languages in the specific languages. Boolean operators (AND,
OR) were used to combine and refine terms, and search strings
were adapted for each database. For instance, the search query
for Google Scholar was “bioacoustics” OR “infant cry
classification” AND “animal vocalization recognition” AND
“feature extraction” AND (“MFCC” OR “spectrogram” OR
“wavelet”) AND “classification model” AND (“denoising” OR
“noise robust” OR “signal enhancement”). The full search query
syntax used for each database is provided in Multimedia
Appendix 2.

Eligibility Criteria
Inclusion and exclusion criteria were clearly defined to ensure
methodological consistency and relevance to the objectives of
this review. Studies were considered eligible for inclusion in
the review if they involved the classification of bioacoustics
signals, such as those from animals, birds, marine mammals,
or human infants, using feature extraction methods or denoising
techniques in real-world or noisy environments.

To preserve both comprehensiveness and focus, we defined 2
tiers of evidence. Tier A entails all noise-resilient evidence from
studies explicitly implementing or evaluating noise-resilient or
denoising approaches (eg, spectral subtraction, Wiener filtering,
wavelet filtering denoising, and deep learning–based
enhancement), and it forms the primary evidence base for
assessing robustness. Tier B entails comparator evidence from
studies using standard or non–noise-resilient feature extraction
techniques (eg, MFCCs and spectrograms) without explicit
denoising. These were included to provide baseline comparisons
and to highlight the gap since many bioacoustics studies still
rely on such methods despite operating under noisy conditions.

Eligible studies had to present empirical or computational results
using machine learning or deep learning–based classification
models and report at least one standard performance metric such
as accuracy, precision, robustness, or generalizability. In
addition, the review included both primary and secondary
data-based studies, as long as they provided sufficient
methodological details regarding feature extraction and
classification pipelines.

Studies were excluded if they did not involve biological acoustic
signals or if they focused solely on speech or music processing
unrelated to ecological or health contexts. Review articles,
theoretical discussions without implementation or evaluation,
and non–peer-reviewed sources such as preprints, editorials, or
technical reports were also excluded. Finally, studies that failed
to describe their dataset, feature extraction process, or
performance evaluation methods in sufficient detail to permit
meaningful analysis were omitted.

Protocol and Registration
The review was registered as required by PRISMA 2020
guidelines in the Open Science Framework (OSF) to enhance
transparency. The review protocol was registered on August
16, 2025 (registration ID JKD5Y). The OSF record includes
the prespecified objectives, eligibility criteria, data items, and
the quantitative synthesis plan. Following peer-review feedback,

certain objectives and research questions were refined to reduce
overlap and improve clarity. These refinements did not alter the
eligibility criteria, search strategy, or dataset. A deviation log
has been added to the OSF record to transparently document
these revisions without altering the original aims.

Study Selection
The study selection process followed the PRISMA guidelines
to ensure transparency, reproducibility, and rigor. All retrieved
records from the systematic search were imported into a
reference management system, where duplicates were identified
and removed. The non-English studies were machine-translated
using Google Translate to support screening. Both reviewers
independently cross-verified the translations against the original
texts to minimize misinterpretation. There was also keen
attention to the selected studies to ensure that the original papers
were not later published in English to avoid omissions and
double entries. The studies underwent a multistage screening
process. In the initial stage, two independent reviewers
performed a title and abstract screening to assess initial
relevance. Any differences were resolved amicably through
discussion, resulting in a consensus mutually agreed upon by
both reviewers, with escalation to a third reviewer if required.
Studies that clearly failed to meet the inclusion criteria were
excluded at this stage, and reasons were recorded.

In the subsequent stage, potentially eligible studies underwent
a full-text review. Each study was assessed for methodological
clarity, relevance to bioacoustics classification, use of feature
extraction techniques, and evaluation in noisy or real-world
conditions. Interrater reliability was assessed using Cohen κ at
both screening stages. During the title and abstract screening,
the reviewers achieved an observed agreement of 90.9%,
corresponding to κ=0.79. At the full-text screening stage, the
observed agreement was 94.7%, indicating almost perfect
agreement with κ=0.89. Discrepancies at both stages were
resolved through consensus. Of the 5462 records retrieved, 132
studies met the eligibility criteria and were selected for full
review. The study selection process is summarized in a PRISMA
flow diagram in the Results section. There are clear details on
the screening process from the retrieved studies to the final
selection of the sample of 132 studies for inclusion.

Data Extraction
We used a structured data extraction process to ensure reliability
and comprehensiveness in capturing relevant study
characteristics. A standardized Microsoft Excel spreadsheet was
developed to systematically extract key information from each
included study. The extraction form was designed to align with
the objectives and review questions, capturing both
methodological details and performance-related data. Data
extracted for each study include:

1. Bibliographic details: authors, title, and year containing
basic bibliographic information to uniquely identify and
reference the studies.

2. Study design and setting: Including whether the study was
experimental, comparative, or simulation-based, together
with the domain (clinical infant cry versus ecological) and
the context (NICU, field, or lab).
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3. Dataset information: whether the dataset used was primary
or secondary and its size, class distribution, and description.

4. Feature extraction techniques: Specific methods such as
MFCCs, spectrograms, wavelets, and LPCCs, and advanced
hybrid approaches, together with their key parameters.

5. Denoising techniques: information on whether denoising
was applied and which methods were used, such as spectral
subtraction, Wiener filtering, wavelet denoising, and other
advanced methods.

6. Models and training: the classifier models used were also
identified, such as machine learning, statistical, neural
networks, and deep learning models.

7. Performance metrics and contrasts: key performance metrics
such as classification accuracy, precision, and F1-score,
together with CIs or statistical tests if reported.

8. Application domain: the area of implementation, such as
wildlife monitoring, health care, infant cry analysis, marine
mammal detection, or smart sensing.

9. Deployment context: document real-world use, simulation,
or proof-of-concept, and also reported challenges such as
noise variability, data imbalance, or model generalizability
where documented.

10. Where available, each study’s future direction or proposed
improvements were also extracted to identify research gaps
and emerging priorities in noise-resilient bioacoustics
analysis.

The extraction was conducted independently by 2 reviewers,
with cross-validation to ensure reliability. Missing or unclear
information was noted, and where necessary, corresponding
authors were contacted for clarification. This structured
approach enabled comprehensive synthesis and comparison
across studies with diverse methodologies and application
contexts.

Data Synthesis and Analysis
The extracted data were analyzed both qualitatively and
quantitatively. Qualitative synthesis entailed identification of
trends in noise-resilient methods, recurring challenges, emerging
technologies, and synthesis of study findings to highlight
advancements. On the other hand, quantitative summaries
reported frequencies and distributions for classifier model
classes, feature families, denoising techniques, deployment
contexts, and performance metrics. Given heterogeneity in
datasets, noise protocols, and outcomes, formal meta-analysis
was not appropriate. We used a structured narrative approach:
(1) group studies by feature, denoising family, model class, and
domain (clinical vs ecological); (2) contrast performance under
noise against baselines when available; (3) examine
transferability and deployment evidence; and (4) integrate
risk-of-bias and reporting-quality signals into interpretation.

To ensure methodological rigor and transparency, a dual quality
assessment approach was adopted, combining both reporting
quality and methodological bias evaluation. While the quality
rating did not dictate the inclusion of studies, it aimed to present
an outline of the reliability and transparency of the selected
research. The TRIPOD (Transparent Reporting of a
Multivariable Prediction Model for Individual Prognosis or
Diagnosis) checklist was used to assess the intelligibility,

completeness, and reproducibility of reporting in each study.
Five key TRIPOD components were evaluated: title and abstract,
introduction, methods, results, and discussion. Each component
was scored as either compliant (1) or noncompliant (0), yielding
a maximum possible score of 5.

The risk of bias across the studies was assessed to identify
potential sources of bias in the reviewed studies. Given the
machine learning focus of this review, domain-specific risk of
bias criteria was applied to five core areas: (1) bias in data
sources and sampling to check whether the data were
representative, balanced, and appropriately selected; (2) bias in
labeling and ground truth to check whether labels were accurate,
consistent, and validated; (3) bias in feature extraction and
preprocessing to check whether preprocessing and feature
engineering introduced potential artifacts or limitations; (4) bias
in model training and evaluation to check whether the
training-validation-test split, metrics, and evaluation protocols
were appropriately implemented; and (5) bias in reporting and
interpretation of results to check whether performance was
selectively reported or overly generalized. Each domain was
rated as “low,” “moderate,” or “high” risk of bias. The overall
risk of bias was then derived from these domain-level
assessments, with a deliberate distribution.

All assessments were conducted independently by 2 reviewers
with consensus resolution. Importantly, neither TRIPOD nor
risk of bias ratings determined study inclusion; rather, they
informed interpretation by highlighting areas of greater or lesser
methodological confidence. The numerical results of TRIPOD
and risk of bias assessments are reported in the Results section.
By combining the TRIPOD framework appraisal with
domain-specific risk of bias, the quality assessment provided a
robust evaluation of the selected studies’validity and reliability.
This comprehensive approach ensured that the findings of this
systematic review were built on a foundation of transparent,
high-quality research.

Results

Study Selection
This review synthesized 132 studies (Multimedia Appendix 3)
published between 2003 and 2024, spanning two primary
application domains: ecological monitoring studies (n=80,
60.6%) and clinical infant cry studies (n=52, 39.4%). The study
selection process is summarized in a PRISMA flowchart in
Figure 1. Studies were further stratified into tier A, comprising
noise-resilient pipelines with explicit denoising or robustness
testing strategies, 47% (n=62) of studies, and tier B, comprising
comparator pipelines without explicit denoising, 53% (n=70)
of studies. This distribution highlights both the predominance
of ecological applications and the substantial proportion of
studies still relying on non–noise-resilient baselines. To establish
the reliability of the evidence base, we first summarize the
outcomes of the reporting quality (TRIPOD) and risk of bias
assessments. Findings are then presented in 5 sections: research
focus, methodological trends, performance outcomes,
deployment and cross-domain transferability, and limitations
with future priorities.
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Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flowchart.

Reporting Quality and Risk of Bias
The TRIPOD checklist revealed that all reviewed studies
(n=132) demonstrated excellent reporting standards, achieving

a perfect compliance score (5/5, 100%). This clearly indicates
that titles and abstracts, introductions, methods, results, and
discussions were consistently reported in line with transparency
standards. This reflects a strong cultural shift in the bioacoustics
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and audio classification community toward structured and
reproducible reporting practices. While TRIPOD compliance
was universal, a high score largely captures surface-level
reporting standards (eg, presence of sections and completeness
of description) rather than deeper methodological rigor. In
practice, studies varied in how clearly they justified feature
extraction choices, described preprocessing, or documented
evaluation protocols. This suggests that, although reporting has

become standardized, interpretive caution is still required when
assessing methodological robustness.

The risk of bias evaluation across all included studies revealed
strong methodological rigor overall, with most domains rated
as low risk. However, a small proportion of studies exhibited
moderate or high risks in specific areas. The risk of bias
assessment results across the studies in each domain are
presented in Table 1.

Table . Risk of bias values across various domains.

HighModerateLowRisk of bias

23127Bias in data sources and sampling

23127Bias in labeling and ground truth

42126Bias in feature extraction and prepro-
cessing

25125Bias in model training and evalua-
tion

20130Bias in reporting and interpretation
of results

610116Overall risk of bias

Bias in data sources and sampling was rated low in 96.2%
(127/132) of the studies, indicating that the studies used clearly
documented datasets with appropriate sampling strategies.
However, 2.3% (3/132) [39-41] and 1.5% (2/132) [42,43] were
rated as moderate and high variability due to a lack of clear
discussion on sample size and sample selection strategies.

Bias in labeling and ground truth was rated low in 96.2%
(127/132) of the studies, reflecting strong adherence to
consistent annotation practices. Bias in feature extraction and
preprocessing was rated low in 95.5% (126/132) of the studies,
suggesting a high degree of transparency in preprocessing
protocols. However, 1.5% (2/132) [44,45] and 3.4% (4/132)
[12,46-48] were rated as moderate and high, largely due to a
lack of justification for chosen features and unclear
preprocessing steps.

Bias in model training and evaluation was rated low in 94.7%
(125/132) of the studies, demonstrating widespread adoption
of sound training practices. A small proportion (5/132, 3.8%)
[49-53] were rated as moderate, while 1.5% (2/132) [35,54]
were rated as high, due to improper validation schemes and
related design weaknesses.

Bias in reporting and interpretation was rated low in 98.5%
(130/132) of the studies, indicating that most studies provided
transparent and well-supported results. However, 1.5% (2/132)
[55,56] were rated high, mainly due to lack of clarity in reporting
key results.

Overall risk of bias was rated low in 87.9% (116/132) of the
studies, highlighting the generally high methodological rigor
across the reviewed literature. A notable proportion of 7.6%
(10/132) [40-44,50-52,57,58] were rated as moderate, while
4.5% (6/132) [12,35,48,54-56] were rated as high, often due to
cumulative concerns across multiple bias domains. Detailed
per-study risk of bias ratings can be found in Multimedia
Appendix 4. Although the corpus is predominantly low risk of
bias, the small cluster of moderate or high ratings concentrates
in preprocessing justification and evaluation rigor. In subsequent
results, we interpret performance and robustness claims with
greater weight placed on low-risk studies and flag results from
studies with methodological gaps where relevant.

Trends and Research Focus
Research in noise-resilient bioacoustics has expanded rapidly
since 2019, with most contributions centered on model
innovation, while noise robustness and deployment remain
underrepresented. The reviewed studies reflect a growing
momentum in the field of noise-resilient bioacoustics,
demonstrated by a pronounced upward trend in publications
over the past decade. The annual trend distribution in Figure 2
illustrates steady growth, with a notable increase in the number
of publications from 2019 onward, peaking in 2024 with 14.4%
(19/132). This surge coincides with the uptake of deep learning
and larger annotated datasets.

JMIR Biomed Eng 2025 | vol. 10 | e80089 | p.33https://biomedeng.jmir.org/2025/1/e80089
(page number not for citation purposes)

Owino & ShibwaboJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 2. Trend of the number of publications per year.

Overall, 65.2% (86/132) were published between 2019 and
2024, highlighting a recent surge in research activity motivated
by advancements in machine learning, particularly deep learning
architectures, and an increased availability of publicly
accessible, annotated acoustic datasets. This rapid expansion
underscores the field’s responsiveness to technological
innovation and its potential for addressing practical challenges.
The field is shifting adeptly from merely experimental
exploration to a mainstream research agenda in ecological
monitoring, wildlife conservation, and infant cry monitoring.

In terms of contribution types, the vast majority of studies
(112/132, 84.8%) focused on model innovation, primarily
through the design of novel architectures and algorithms for
bioacoustics classification. These included deep learning
approaches such as CNNs, RNNs, CRNNs, and
transformer-based models. Hybrid frameworks combined
traditional signal processing techniques, for example, MFCCs
and spectral features, with neural networks. Within this category,
some studies emphasized architectural novelty, for example,
attention mechanisms and temporal-context modeling, while
others explored optimization strategies such as regularization,
hyperparameter tuning, or multimodal feature fusion. Feature
selection and engineering were addressed in 43.9% (58/132) of
studies, emphasizing the role of extracting relevant and
informative features to improve classification accuracy.

Noise robustness and generalization were explicitly explored
in 28.8% (38/132) of studies, which incorporated denoising
techniques, noise-aware training, and evaluation across diverse
acoustic environments to improve real-world performance.
Finally, only 14.4% (19/132) of studies reported
deployment-focused applications, demonstrating
implementations in wildlife conservation zones, smart farming,
NICUs, and edge-based monitoring systems.

The field remains heavily weighted toward architectural
innovation, with robustness testing and deployment
underrepresented. This imbalance highlights a translational
gap—methodological advances are plentiful—but their practical
application in real-world bioacoustics is still emerging.

Methodological Landscape
The methodological landscape across the reviewed studies
showcases a strong emphasis on empirical evaluation, consistent
with the practical and performance-driven nature of
noise-resilient bioacoustics research. Every study was
categorized as experimental, involving the development,
training, and testing of machine learning and signal processing
models on bioacoustics datasets. The models were carefully
developed, and their performance was evaluated to assess model
generalization. In addition to an experimental foundation, 36.4%
(48/132) were comparative studies, systematically benchmarking
multiple models or feature extraction pipelines under controlled
noise conditions. These studies were instrumental in
benchmarking traditional versus advanced techniques and
identifying optimal configurations for noisy environments.

A small subset (20/132, 15.2%) of studies were also descriptive,
providing detailed explanations of the models they implemented
alongside empirical evaluations. This is vital for the growing
research and learning era. New researchers are able to learn
from what has already been done to implement improvements.
Across all methodological types, studies demonstrated a
commitment to reproducibility, with datasets and detailed
parameter settings provided. However, the lack of standardized
evaluation frameworks and consistent reporting practices
remains a limitation, hindering comparability across studies. It
is therefore evident that empirical research has matured broadly,
but there is a continuing need for standardized methodologies
to enhance comparability and real-world applicability.
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Feature Extraction Techniques
Feature extraction was nearly universal across 96.2% (127/132)
of studies, with cepstral features forming the foundation of most
bioacoustic classification pipelines. Spectral, temporal, and
wavelet-based features served complementary roles. The

distribution of the feature extraction methods across the studies
per domain is presented in Table 2. The percentage distribution
of each feature category in relation to the domain, as well as
the tier category, is also presented to show relative variation
between the domains.

Table . Distribution of feature extraction methods across the studies per domain (N=132).

Number of studies, n (%)

TotalEcologyInfant cryTier BTier AFeature type

73 (55.3)34 (25.8)39 (29.5)37 (28)36 (27.3)Cepstral features

34 (25.8)57 (43.2)8 (6.1)29 (22)36 (27.3)Filter bank and spectral
representations

41 (31.1)30 (22.7)11 (8.3)15 (11.4)26 (19.7)Spectral features

38 (28.8)17 (12.9)21 (15.9)21 (15.9)17 (12.9)Temporal or time do-
main features

16 (12.1)11 (8.3)5 (3.8)8 (6.1)8 (6.1)Prosodic features

10 (7.6)6 (4.5)4 (3)1 (0.8)9 (6.8)Wavelet features

Cepstral features were the predominant category used (73/132,
55.3%), with MFCCs alone appearing in 50.8% (67/132) of
studies. These features were widely favored for their ability to
capture perceptually relevant sound components, closely aligned
with human auditory perception. Variants such as LPCCs,
constant-Q cepstral coefficients, and gammatone cepstral
coefficients, often enhanced with derivatives (Δ, ΔΔ) and feature
fusion strategies, were also used. Of the 132 studies, infant cry
consisted of 39 (29.5%) studies, while ecology consisted of 34
(25.8%) studies. The distribution was nearly equal, indicating
that the use of cepstral features in both domains was broadly
comparable across applications and tiers.

Filter bank and spectral representations were also common,
being used in 34 (25.8%) of the 132 studies. However, the use
of these features was skewed toward the ecological domain,
showing that ecological studies used these presentations in their
modeling. Spectral features (38/132, 28.8%), including spectral
centroid, roll-off, and entropy, quantified frequency energy
distributions and were valuable for detecting anomalies in
vocalizations. Similarly, the use of spectral features was skewed
toward ecological application. Temporal features (41/132,
31.2%), such as zero-crossing rate, root mean square energy,
and voicedness, captured time-domain behaviors and proved
particularly useful in infant cry analysis for identifying cry
phases and sharp transitions. Prosodic features (16/132, 12.1%)
focused on pitch and intonation contours, offering insights into
emotional or health-related states. Wavelet-based features
(10/132, 7.6%), derived from transformations such as the
discrete wavelet transform or the wavelet packet transform,
were used to capture transient and nonstationary characteristics,
particularly enhancing noise robustness in ecological monitoring
tasks.

A small subset (n=5) [27,56,59-61] of the studies did not
explicitly report a predefined feature extraction step but instead
relied on the model architecture itself to learn and extract
relevant features directly from the raw waveform. These
approaches typically use end-to-end deep learning models, such
as raw waveform CNNs, which are designed to learn spectral

and temporal representations directly from the audio signal
during training. These techniques are essential when developing
a fully automated pipeline. However, end-to-end waveform
learning without explicit feature extraction raises concerns
regarding interpretability, computational cost, and data
requirements.

When comparing domains, infant cry studies leaned heavily on
cepstral and prosodic features, reflecting the speech-like and
emotionally driven nature of cries. MFCCs and intonation
contours were most frequently used to capture subtle variations
in vocal tone linked to health or emotional states. In contrast,
ecological monitoring studies applied a broader mix of spectral,
temporal, and wavelet features to represent the diversity of
animal calls and environmental soundscapes. These choices
highlight the domain-driven adaptation of feature extraction. It
was evident that studies in tier A concentrate on filter bank, log
mel, and spectral descriptors. These feature families align
perfectly with denoising applications. Tier B studies, however,
inflate cepstral feature use since there was no explicit denoising.

Feature extraction emerged as a cornerstone of noise-resilient
bioacoustics classification. Cepstral features dominate current
practice, while spectral, temporal, and prosodic features provide
complementary insights. Wavelets offer noise-robust
representations, and end-to-end models mark an emerging
direction toward automation. Together, these approaches
illustrate a balance between established feature engineering and
exploratory deep learning–based representation learning.

Denoising Techniques
Nearly half (62/132, 47%) of the reviewed studies presented
denoising application in the modeling pipeline tier A, and more
than half (76/132, 57.6%) of the studies presented use of a
noise-resilient metric to assess model robustness. While
traditional signal processing methods remain common, advanced
deep learning–based denoising is gaining traction, though still
underrepresented. A visual representation of the distribution of
these methods is presented in Figure 3.
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Figure 3. Distribution of noise-resilient metrics and denoising application across the studies. AUC: area under the receiver operating characteristic
curve; GAN: generative adversarial network; SNR: signal-to-noise ratio.

Darker shading indicates higher study counts. Adaptive deep
models and GAN-based enhancement were most frequently
paired with robust evaluation metrics such as F1-score and SNR
degradation, while classical approaches (eg, pre-emphasis and
spectral filtering) relied more on accuracy and AUC alone.
Studies omitting denoising often reported only accuracy,
highlighting a reporting gap between baseline pipelines and
noise-resilient methods.

Traditional denoising approaches rooted in classical signal
processing were used in 25% (33/132) of studies. These
techniques included pre-emphasis filters to suppress
low-frequency noise, spectral subtraction, Butterworth high-pass
filters, and windowing techniques. Adobe Audition and
WavePad Sound Editor were also used for manual noise
reduction and audio cleanup. Transformations such as the fast
Fourier transform, discrete wavelet transform, and wavelet
packet transform were leveraged to enhance feature robustness
against noise, together with energy-based descriptors like root
mean square energy, zero-crossing rate, and segmentation
techniques that also supported noise minimization.

Advanced deep learning–based denoising techniques were used
in 16.7% (22/132) of the studies, marking a shift toward more
adaptive and context-aware noise handling. These approaches
included the use of stage-wise GANs for structured denoising
[62], PCEN for real-time noise suppression [3], and deep CNNs
trained with a pretext to enhance resilience [63]. A portion of
the studies used contextual metadata-aware CNNs [56],
dimensionality reduction via YAMME [50], or custom neural
denoisers like DS-Denoiser [63] and Burn Layer noise injection
strategies [48].

In 12.9% (17/132) of studies, noise resilience was achieved
indirectly through strategic feature design and training
methodologies rather than explicit denoising. These included
data augmentation with controlled noise injection [64],

spectrogram normalization [65], entropy-based descriptors, and
frame-based segmentation to reduce the impact of transient
background noise [66]. Several studies introduced false-positive
distractors during training to improve model discrimination
[35,55], while others used SNR-aware evaluation metrics [35,67]
and principal component analysis to filter out irrelevant variation
[68].

Noise-resilient metrics included standard evaluation tools such
as AUC, F1-score, precision, recall, and accuracy, often reported
across multiple SNR levels (eg, 100 dB, 3 dB, 0 dB, and −3 dB)
to capture degradation effects [35,69,70]. Some studies used
equal error rate or Earth Mover’s Distance to assess alignment
between predictions and ground truth under distortion [65].
Studies also introduced custom fitness metrics that weighted
false positives caused by noise more heavily or used
domain-specific indicators like perceptual evaluation of speech
quality and false alarm rates [56]. These metrics were crucial
for evaluating not just raw classification accuracy, but also how
robustly the models maintained performance in realistic and
adverse audio conditions.

Denoising strategies also diverged across domains. Infant cry
studies often applied classical noise-reduction methods such as
spectral subtraction and Wiener filtering to handle consistent
background noise in hospitals or home environments. More
recent works explored denoising autoencoders to improve
robustness in clinical deployment. Ecological monitoring, by
contrast, dealt with far more heterogeneous noise sources,
including overlapping species, wind, and rain. As a result,
adaptive filtering and multiband denoising approaches were
common, enabling resilience to highly variable outdoor acoustic
conditions. The ecological field has gone into extreme detail to
ensure features for model development are not affected by
environmental noise.
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It is evident that the clinical field is heavily dependent on
classical denoising and occasionally AUC and F1-score metrics,
while robustness testing was less frequent. However, in ecology,
there is greater use of deep or indirect denoising and systematic
evaluation across SNR levels, reflecting highly variable outdoor
noise. Noise-resilient evaluation was largely confined to tier A
pipelines. Studies that skipped denoising (tier B) also rarely
reported robustness metrics, inflating apparent performance.
Infant cry pipelines showed limited robustness testing, while

ecology studies drove innovation in both denoising and
noise-resilient evaluation frameworks.

Classifier Architectures and Performance
A diverse range of classification models was used across the
reviewed studies, reflecting both the evolution of machine
learning techniques and the complexity of bioacoustics data.
The distribution of classifier architectures is presented in Table
3.

Table . Distribution of classifier architectures per domain (N=132).

Number of studies, n (%)

TotalEcologyInfant cryTier BTier AModel family

47 (35.6)24 (18.2)23 (17.4)20 (15.1)27 (20.5)Traditional machine
learning

39 (29.5)32 (24.2)7 (5.3)21 (15.9)18 (13.6)CNNa

4 (3)2 (1.5)2 (1.5)2 (1.5)2 (1.5)CRNNb or hybrid

26 (19.7)19 (14.4)7 (5.3)13 (9.8)13 (9.8)Deep neural network

12 (9.1)1 (0.8)11 (8.3)10 (7.6)2 (1.5)Classical neural net-
work

1 (0.8)1 (0.8)0 (0)1 (0.8)0 (0)Transformer

aCNN: convolutional neural network.
bCRNN: convolutional recurrent neural network.

Traditional machine learning architectures dominated the
reviewed literature in both ecological monitoring and infant cry
analysis. More than half of the studies (70/132, 53%) reported
accuracies ≥90%, with CNN-based approaches most frequently
associated with high performance. Traditional models such as
support vector machines (SVMs), k-nearest neighbors, decision
trees, Gaussian mixture models, and Naive Bayes were used in
48.5% (64/132) of the studies, with SVMs being used in 24.2%
(32/132) of the reviewed studies. These models typically relied
on handcrafted features like MFCCs and LPCCs and showed
decent performance under low-noise or controlled conditions
but often struggled in the presence of complex noise or
overlapping signals.

In contrast, deep learning models appeared in 53% (70/132) of
the studies and formed the dominant category. CNNs, RNNs,
long short-term memory, and their hybrids (eg, CRNNs) were
frequently used since they can automatically learn features from
raw data. Advanced models—ResNet, EfficientNet, and
DenseNet—offered high performance with transfer learning
advantages. The CNN model was used in 42.4% (56/132) of
the studies.

Classical neural networks, including multilayer perceptrons,
time-delay neural networks, and probabilistic neural networks,
were seen in 22.7% (30/132) of studies, while 24.2% (32/132)
used hybrid or ensemble models, such as CNN + RNN
architectures or transformer-based pipelines. These advanced
approaches were particularly suited for handling real-world
noise, variability in signal patterns, and generalizing across
datasets, making them ideal for deployment in bioacoustics
monitoring systems.

The performance of these models was centered on classification
accuracy, with several studies also reporting precision, recall,
and F1-score. Most studies (96/132, 72.7%) reported
classification accuracies exceeding 85%, with 53% (70/132)
achieving 90% or higher. High-accuracy models were typically
based on deep learning architectures, particularly CNNs,
CRNNs, and transformer variants. Accuracy was generally
enhanced when models incorporated noise-aware training,
denoising preprocessing, or attention mechanisms.

Models using traditional machine learning techniques (eg, SVMs
and decision trees) tended to report lower accuracies, often in
the 70%‐85% range, especially when tested under real-world
acoustic conditions. However, in low-noise or synthetic
scenarios, these models performed comparably well. In studies
that evaluated precision and recall, scores were typically
balanced, often above 0.8, especially in binary classification
tasks. However, multiclass classification scenarios showed
slightly reduced precision in species-rich datasets, often due to
class imbalance or overlapping vocalizations.

Studies leveraging ensemble methods or hybrid networks
showed some of the best overall performance, with AUC values
as high as 0.96 and accuracy consistently above 92% when
evaluated on diverse and noisy bioacoustics datasets. Notably,
some studies used post hoc statistical analysis such as the
Nemenyi test, ANOVA, or CIs to validate model significance
across different noise conditions or experimental configurations.

A forest plot of the best-reported accuracies in Figure 4
illustrates the performance clustering of the majority between
95% and 100%. This reflects the strong classification potential
of modern bioacoustics models across domains. The clustering
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near 99% indicates a ceiling effect in reported results. Most of
these values originate from tier B pipelines evaluated under
clean or synthetic conditions, while tier A pipelines tested under
noisy ecological conditions reported more variable results

(approximately 75%‐95%). This discrepancy highlights that
reported best-case accuracies often reflect optimized conditions
rather than real-world robustness.

Figure 4. Forest plot of best-reported accuracies reporting the top 30 studies [27,51,58,64,66-91].

Infant cry studies often reported >95% accuracies under
controlled conditions, while wildlife monitoring required more
extensive preprocessing or noise-handling strategies to achieve
comparable results. These findings highlight both the promise
of bioacoustics classification and the need for standardized
reporting of performance variability across noise levels and
datasets.

Figure 5 compares the best-reported accuracies across feature
families. Cepstral, spectrogram-based, and mixed feature sets
clustered above 90%, confirming their central role in
bioacoustics classification. However, tier A pipelines achieved

these results under noisy conditions when using spectrogram
or log-mel representations, while tier B pipelines often reported
inflated accuracies from cepstral-only inputs under clean
settings. Temporal features produced moderately strong
outcomes but showed greater variance, particularly in infant
cry studies. Wavelet-based features exhibited the greatest spread
(0%‐80%), reflecting their experimental use in ecological tier
A pipelines for transient, nonstationary noise. These results
suggest that while cepstral and spectrogram-based features
remain the most reliable overall, robustness under realistic noise
depends on whether the pipeline incorporates explicit tier A
resilience strategies.
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Figure 5. Distribution of accuracy against feature family.

In tier A pipelines, deep learning models dominated, particularly
CNNs and CRNNs, which together accounted for nearly
two-thirds of ecological studies. These were typically paired
with noise-resilient features such as log-mel spectrograms or
PCEN, enhancing robustness across variable acoustic conditions.
By contrast, tier B pipelines were skewed toward traditional
machine learning, and classical neural networks were most often
applied with MFCCs. These models frequently reported strong
results in clean or synthetic conditions, but robustness to
real-world noise was rarely evaluated.

In domain comparison, infant cry studies leaned heavily on
interpretable and computationally efficient approaches, with
traditional machine learning used in 44.2% (23/52) of pipelines
and classical neural networks in 21.2% (11/52), while CNNs
were fewer, at 13.5% (7/52). Most of these pipelines were tier
B baselines, reflecting a focus on clinical interpretability and
resource efficiency over robustness. Ecological studies, in
contrast, showed stronger adoption of CNNs, used in 40%
(32/80) of pipelines, and deep neural networks, used in 23.8%
(19/80), particularly within tier A pipelines. Transformers were
rare and appeared only in ecology and tier B pipelines in 1.25%
(1/80), reflecting early experimentation with sequence models.
It is therefore evident that robust tier A ecological pipelines
favored deep CNN and CRNN models with noise-resilient
features, while infant cry pipelines remained anchored in tier
B baselines combining MFCCs with traditional machine learning
or classical neural networks. This contrast highlights a trade-off
between robustness and interpretability across domains.

Performance reporting was dominated by classification accuracy,
though many studies supplemented it with F1-score, precision,
recall, or AUC. Most studies (96/132, 72.7%) reported
accuracies ≥85%, with more than half (70/132, 53%) ≥90%.
High-performing models were typically deep learning

architectures (CNNs, CRNNs, and transformers). Tier A
pipelines consistently tested performance under noisy conditions
and reported smaller accuracy drops across SNR levels (typically
5%‐10%). Tier B pipelines rarely incorporated noise protocols
and often reported inflated best-case accuracies (>95%),
reflecting performance under clean or synthetic conditions rather
than realistic robustness.

Infant cry studies frequently reported very high accuracies
(>95%), but these were predominantly from tier B baselines
using MFCC + traditional machine learning or CNN in
controlled NICU or home environments. Few infant cry studies
tested performance in truly noisy or cross-population conditions,
limiting confidence in their generalizability. Ecological studies,
by contrast, showed a wider performance spread (approximately
75%‐95%), reflecting more diverse datasets, taxa, and
recording environments. Tier A ecological pipelines that
incorporated denoising and spectrogram or PCEN features
frequently exceeded 90% accuracy, but results were more
variable due to dataset complexity and nonstationary noise. It
is evident that reported accuracies cluster near ceiling values,
but these reflect tier B clean-condition pipelines more than tier
A robustness evidence. Infant cry studies appear stronger on
paper but are less often validated under noise, whereas
ecological tier A pipelines, though more variable, provide the
most convincing demonstrations of resilience under realistic
acoustic conditions.

Quantitative Analysis of Performance
Of the 132 included studies, 82.6% (n=109) reported
classification accuracy, while 21.2% (n=28) reported F1-scores.
Accuracy was the dominant performance indicator, particularly
in traditional and early deep learning approaches, whereas
F1-score appeared more often in recent studies emphasizing
class balance in imbalanced datasets. Across all studies, the
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mean accuracy was 89.47% (SD 30.82%) with a median of
93.64%, ranging from 2% to 343%, while the mean F1-score
was 93.04% (SD 7.86%) with a median of 95.88%, spanning
71%‐100%. These results indicate generally high predictive

capability across bioacoustic classification models, though the
wide variation in accuracy reflects methodological diversity in
dataset size, preprocessing techniques, and evaluation strategies.
The overall distribution of quantitative findings is presented in
Table 4.

Table . Summary of performance metrics across tier A and tier B studies.

P value (ver-
sus tier A)

95% CI
(lower-up-
per)

MaxMinSDMedian, %Mean, %Studies, nTierMetric

Reference77.6‐89.7100222.5190.583.6452AAccuracy

.0485.3‐104.33432036.199494.7957BAccuracy

Reference89.1‐97.8100875.3592.693.499AF1-score

.6788.6‐97.1100718.939892.8319BF1-score

Statistical comparison revealed a significant difference in
accuracy between the 2 tiers (P=.04), confirming that tier B
models achieve superior accuracy overall. However, no
significant difference was observed in F1-scores (P=.67),
suggesting that while denoising enhances general classification
accuracy, it does not consistently alter the precision-recall
trade-off.

Tier A models achieved a higher mean accuracy (94.79%)
compared to tier B (83.64%), suggesting the benefit of
integrating denoising and noise-resilient feature extraction
methods. However, tier B exhibited greater variability (SD
36.19) than tier A (SD 22.51), indicating that while

noise-resilient models often achieve superior results, their
performance may depend heavily on implementation quality
and dataset characteristics. The F1-scores of both tiers were
relatively consistent, averaging 93.49% for tier A and 92.83%
for tier B, implying that noise handling primarily improves
robustness rather than precision-recall balance. The comparative
distribution of performance metrics across tiers A and B is
illustrated in Figure 6. The box plot summarizes the spread and
central tendency of both accuracy and F1-score values,
highlighting that denoising generally elevates overall
performance yet increases score variability. The clear clustering
of F1-scores around the upper quartile further confirms the
stability of the precision-recall balance across studies.

Figure 6. Distribution of model accuracy and F1-score across tier A and tier B studies.

In domain-specific comparison, infant cry research reported a
higher overall mean accuracy of 92.8% and a mean F1-score of
94.6%, with relatively low variability, reflecting the controlled
recording settings, smaller class counts, and limited background
interference characteristic of clinical datasets. In contrast,
ecological studies exhibited broader score dispersion, with
accuracy values ranging from 70% to 95% and F1-scores
between 80% and 96%, indicating greater heterogeneity due to
environmental noise, overlapping species vocalizations, and
larger taxonomic class sets. Tier B (noise-resilient) ecological

studies achieved modest gains in mean accuracy (+4.2%)
compared to tier A, though with higher standard deviation,
underscoring the impact of denoising complexity in natural
soundscapes. Conversely, infant cry models benefited less from
denoising interventions, maintaining stable performance even
under tier A configurations.

Deployment and Application Domains
A small number of studies (19/132, 14.3%) discussed the
potential deployment of models in real-world environments.
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Figure 7 shows how these studies were deployed in various
bioacoustic domains. It shows that infant cry deployments were
primarily smartphone-based caregiver tools, whereas ecological
applications emphasized the Internet of Things (IoT) and sensor

networks for biodiversity monitoring. Bioacoustic surveillance
deployments were rare. Importantly, almost all deployment
cases arose from tier A studies, underscoring that robustness
evidence is a prerequisite for translation.

Figure 7. Distribution of deployment across various bioacoustic domains. IoT: Internet of Things.

A significant portion (7/132, 5.3%) involved tool-based
deployments, including Android apps [92,93], web interfaces
[64,88], and user-friendly platforms for real-time monitoring
and human verification [13,71,94,95]. IoT and embedded
systems were featured in 4.5% (6/132) of studies, leveraging
low-power devices [27,49,96,97], sensor networks [3,72], and
mobile hardware for field applications. Open-source software
[98] solutions such as DeepSqueak [63] and ORCA-SPOT [99]
were used in 2.3% (3/132) of studies, and 1.5% (2/132) of
studies used limited offline toolkits such as MATLAB’s Neural
Network Toolbox [100,101]. The deployed studies were
distributed across the various applications of bioacoustics
classification technologies. Infant monitoring systems (5/132,
3.8%) focused on detecting cries associated with health
conditions or needs, supporting early diagnosis and caregiver
response.

Animal vocalization monitoring (2/132, 1.5%) aimed to detect
and classify specific species calls, contributing to behavioral
and ecological research. Biodiversity monitoring (9/132, 6.8%)
represented the largest category, with deployments targeting
broad-scale species tracking, conservation efforts, and habitat
assessment in diverse ecosystems. Lastly, bioacoustics
surveillance (3/132, 1.7%) focused on monitoring environmental
soundscapes for human-induced or unusual acoustic events,
supporting real-time situational awareness and management in
protected or sensitive areas.

Infant cry deployments (5/132, 3.8%) focused on caregiver and
clinical support, such as smartphone apps and hospital
monitoring tools. These pipelines emphasized real-time cry
detection for diagnosis and caregiver response but were limited
by data privacy, ethical constraints, and the need for

interpretability. Ecological deployments (14/132, 10.6%)
concentrated on scalability, leveraging IoT and embedded
systems for biodiversity monitoring, conservation surveillance,
and edge-based species detection. Tools such as DeepSqueak
and ORCA-SPOT exemplified open-source tier A systems
tailored to diverse and noisy outdoor environments.

Deployment patterns further underline the distinct priorities of
each domain. Infant cry research emphasized caregiver support
through hospital tools and smartphone apps, focusing on
real-time cry detection and monitoring for clinical or home use.
Ecological monitoring prioritized scalability, leveraging IoT
sensor networks, embedded low-power devices, and open-source
tools such as ORCA-SPOT for biodiversity tracking. Whereas
infant cry deployments aim for individualized, human-centered
decision support, ecological deployments are oriented toward
large-scale, automated monitoring across ecosystems. It was
also evident that deployed studies are a portion of tier A,
underscoring that noise robustness is a precondition for
real-world deployment. Deployment in the real world is directly
related to denoising, and studies with no implicit denoising did
not translate to deployment.

Despite these promising efforts, a primary limitation reported
across studies was the lack of large, high-quality, standardized
datasets for both clinical and ecological domains. This gap
restricted generalization, with most deployments validated in
narrow or pilot settings. Failures and constraints were often tied
to dataset variability, hardware limitations, and energy efficiency
trade-offs, underscoring the need for more robust field trials,
benchmark datasets, and harmonized evaluation protocols to
achieve sustainable real-world applicability.
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Beyond technical feasibility, deployment in sensitive domains
requires attention to ethical, interpretability, and infrastructural
concerns. In neonatal care, noise-resilient models must safeguard
patient privacy and provide transparent outputs that clinicians
and caregivers can trust. Similarly, ecological monitoring
systems need explainable decisions to ensure transparency in
conservation policy and sustainability of automated surveillance.
These considerations highlight that deployment success depends
not only on accuracy but also on responsible integration into
clinical and environmental workflows.

Challenges and Future Direction
Despite significant advancements in noise-resilient bioacoustics
classification, several recurring challenges continue to hinder
progress. A primary limitation reported across studies was the
lack of large, high-quality, and standardized datasets, mentioned
in 34.8% (46/132) of studies. Researchers relied on small
datasets, which limited the generalizability of findings and the
ability to compare models across studies. Diverse audio samples
were unavailable for various species in varying recording
environments, therefore restricting models from performing
reliably in real-world scenarios. In addition to the limited data
available, datasets were small and imbalanced, which
contributed greatly to biased and overfit models.

Noise interference and acoustic variability were mentioned as
a challenge in 20.5% (27/132) of studies. Studies highlighted
the difficulty of extracting clean signals in field conditions,
especially with background noise from human activity,
equipment, or other animals. Despite some attempts using
denoising and noise-aware training, many models struggled to
maintain robustness under nonstationary and low signal-to-noise
conditions. Additionally, inconsistencies in labeling arising
from semisupervised annotations introduced noise into ground
truth data, reducing model reliability.

Several deep learning approaches, especially CNNs and hybrid
models, required high-performance computing resources, posing
a challenge for real-time deployment. High computational costs
and dependence on platform-specific tools also posed barriers
to scalable and accessible deployment. Deployment was
observed in very few studies despite the advancements in
technology. This is due to hindrances by a lack of platform
compatibility, difficulty integrating models into systems, and
challenges related to real-time processing, energy efficiency,
concerns over hardware requirements, and user-friendliness.

A portion of the studies (11/132, 8.3%) reported cases of
overfitting, especially due to limited data for complex models,
while 6.1% (8/132) reported inconsistencies in data due to
variability in signal quality by recording instruments. Other
challenges reported were domain transfer challenges with
models trained on one species, lack of open set recognition, and
false positives in some models.

Infant cry studies were constrained by small, private datasets
due to ethical and privacy concerns, limiting cross-population
generalizability. Ecological monitoring faced challenges with
data imbalance, as rare species were underrepresented, and
annotation required expert input. Both domains therefore
underscore the urgent need for larger, standardized, and openly

available datasets, but with differing solutions: ethical
data-sharing frameworks for infant cries versus coordinated
biodiversity databases for ecological monitoring.

Looking forward, many studies have emphasized the need to
expand datasets across taxa, habitats, and call types, especially
for underrepresented classes such as infant cries from
pathological conditions to rare animal vocalizations
[13,102,103]. Researchers also recommend developing
semisupervised and unsupervised labeling strategies to reduce
annotation burden, improving noise robustness through signal
enhancement modules [73,104]. In addition, transfer learning,
domain adaptation, and transformer-based architectures were
proposed for better generalization [74,75]. Several studies
proposed real-time deployment strategies, calling for
lightweight, energy-efficient models suitable for edge computing
environments [55,63].

Finally, researchers highlighted the importance of open-set
recognition, anomaly detection in dynamic acoustic
environments, and model interpretability, especially in health
care or conservation settings. Incorporating animal-independent
denoising mechanisms, optimizing data augmentation for
species-specific acoustics, and refining clustering techniques
for individual or dialect-level recognition were among the key
future directions. Together, these efforts aim to make
bioacoustics systems more scalable, reliable, and ecologically
meaningful, ultimately enabling widespread deployment in
biodiversity monitoring, pest detection, and early diagnosis of
health conditions.

Discussion

Principal Findings
This systematic review synthesizes evidence from 132 studies
on noise-resilient bioacoustics classification and provides an
integrated perspective across methodologies, performance
outcomes, and deployment contexts. The central finding is that
high reported accuracies do not necessarily equate to robustness.
Instead, robustness emerges from tier A pipelines—those
combining explicit denoising or resilience testing with modern
feature representations and architectures. By contrast, tier B
pipelines, though numerous, often reported near-perfect
accuracies under clean conditions but rarely progressed toward
real-world deployment. This distinction frames our interpretation
of the evidence against the review objectives.

Methodological Advances
Recent years have seen a shift from handcrafted features and
statistical classifiers toward deep architectures capable of
capturing temporal and spectral dependencies. CRNNs, CNNs,
and in some cases, transformers consistently outperformed
classical machine learning under noise [76,105], echoing trends
in both ecoacoustics [17] and audio enhancement research [10].
However, our synthesis shows that the real methodological gap
lies not in model availability but in evaluation design. Tier B
pipelines often prioritized architectural novelty but omitted
robustness testing, inflating performance claims. Tier A studies,
while fewer, demonstrated that rigorous evaluation across SNR
levels or noise-injected datasets yields more credible, if variable,
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results [106]. This confirms that methodological progress in
bioacoustics must be judged not only by model choice but also
by the framework of validation.

Feature Extraction and Denoising
Feature use reflected domain priorities: infant cry pipelines
emphasized cepstral and prosodic features for speech-like cues
[107], while ecological pipelines favored spectrogram, filter
bank, and wavelet features to capture diverse soundscapes [77].
Importantly, our review shows that feature choice alone was
insufficient as robustness depended on pairing features with
denoising or noise-aware training. Classical filters, for example,
Wiener and spectral subtraction, were common in infant cry
studies [108], while ecology led the adoption of deep denoisers,
augmentation strategies, and PCEN [3,21]. These practices align
with broader advances in audio processing [10] but remain
inconsistently applied. The insight here is that robustness is not
feature-intrinsic but emerges from the integration of features,
denoising, and evaluation metrics.

Performance Outcomes
Reported accuracies clustered around 95%‐100%, creating
the impression of ceiling-level performance. Yet, these results
were largely driven by tier B pipelines tested in clean conditions,
especially in infant cry datasets [47,109]. Tier A studies,
particularly in ecological monitoring, reported more variable
accuracies (approximately 75%‐95%) because they were
evaluated under realistic noise conditions [64,104]. This variance
is not a weakness but evidence of genuine robustness testing.
It highlights the risk of publication bias: inflated best-case results
dominate the literature, while average-case resilience is
underreported. Interpreting these outcomes, therefore, requires
caution. The broader implication is that progress in bioacoustics
cannot be judged by peak accuracy alone, but by the consistency
of performance under noise.

Deployment and Translation
Deployment was reported in only 14.3% (19/132) of studies,
nearly all from tier A pipelines. Infant cry applications
emphasized mobile apps and caregiver support tools [110,111],
prioritizing interpretability and immediacy but facing constraints
around data privacy and ethics. Ecological deployments
leveraged IoT networks, sensors, and open-source platforms to
enable scalable biodiversity monitoring [61,98,112].
Bioacoustics surveillance deployments were rare. The absence
of tier B baselines in deployment confirms that robustness is a
prerequisite for translation. Domain-specific contrasts are clear:
neonatal pipelines must prioritize ethical safeguards and
clinician trust, while ecological pipelines require scalability,
automation, and energy efficiency.

Limitations and Future Direction
Limited standardized, high-quality datasets in both clinical and
ecological domains restricted comparability. Although we
included non-English studies, reliance on automated translation
may have introduced subtle interpretive inaccuracies, though
independent reviewer checks mitigated this risk. The inclusion

of these non-English studies did not change the direction of
findings, as their reported outcomes were consistent with the
broader evidence base.

To advance sustainable integration, bioacoustics research should
(1) standardize evaluation by adopting shared benchmarks,
harmonized SNR protocols, and open datasets across taxa and
infant populations [13,14]; (2) strengthen robustness methods,
extending lightweight denoisers, augmentation strategies, and
federated learning to support real-world generalization [77]; (3)
tailor deployment strategies, interpretability, and
privacy-preserving approaches for neonatal monitoring [78,113];
and (4) foster cross-domain transfer: ecological augmentation
strategies can inform infant cry robustness, while clinical
interpretability standards can guide ecological applications
[64,98].

The translational relevance of these findings extends beyond
research. In clinical contexts, robust infant cry classification
could support early diagnostics and caregiver decision-making.
In ecology, noise-resilient monitoring systems can enhance
biodiversity surveillance and conservation policy [98,112].
Future studies should explicitly bridge domains, evaluating not
only technical performance but also usability, interpretability,
and sustainability in deployment.

Conclusions
This review demonstrates that progress in bioacoustics
classification is shaped less by the abundance of models than
by the rigor of robustness evaluation. Tier A pipelines that
incorporated explicit denoising and resilience testing provided
the most credible evidence of real-world applicability, while
tier B baselines, though often reporting high accuracies, rarely
translated into deployment. Domain-specific contrasts further
underscore that infant cry pipelines must prioritize
interpretability and privacy, whereas ecological systems require
scalable, energy-efficient designs.

Looking ahead, 3 levels of priority emerge. Immediate priorities
include the creation of standardized, noise-augmented
benchmark datasets and consistent reporting of preprocessing
and denoising protocols. Short-term goals involve systematic
evaluation of feature-model pairings across infant cry and
ecological applications, coupled with pilot deployment studies
in neonatal and field monitoring settings. Longer-term priorities
focus on scaling deployment through cross-domain
generalization methods (eg, transfer learning and federated
learning), the development of lightweight edge-ready models,
and the integration of interpretability and privacy safeguards
for sustainable adoption.

By integrating insights on feature extraction, denoising, model
architectures, and deployment, this review advances a
cross-domain understanding of noise-resilient bioacoustics and
provides a roadmap for future research. Moving beyond peak
accuracies toward consistent robustness across diverse acoustic
conditions will be key to translating methodological advances
into reliable digital health and biodiversity conservation tools,
with noise resilience as the cornerstone of sustainable impact.
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Abstract

Background: Cardiovascular diseases (CVDs) are the leading cause of death globally, and almost one-half of all adults in the
United States have at least one form of heart disease. This review focused on advanced technologies, genetic variables in CVD,
and biomaterials used for organ-independent cardiovascular repair systems.

Objective: A variety of implantable and wearable devices, including biosensor-equipped cardiovascular stents and biocompatible
cardiac patches, have been developed and evaluated. The incorporation of those strategies will hold a bright future in the
management of CVD in advanced clinical practice.

Methods: This study employed widely used academic search systems, such as Google Scholar, PubMed, and Web of Science.
Recent progress in diagnostic and treatment methods against CVD, as described in the content, are extensively examined. The
innovative bioengineering, gene delivery, cell biology, and artificial intelligence–based technologies that will continuously
revolutionize biomedical devices for cardiovascular repair and regeneration are also discussed. The novel, balanced, contemporary,
query-based method adapted in this manuscript defined the extent to which an updated literature review could efficiently provide
research on the evidence-based, comprehensive applicability of cardiovascular devices for clinical treatment against CVD.

Results: Advanced technologies along with artificial intelligence–based telehealth will be essential to create efficient implantable
biomedical devices, including cardiovascular stents. The proper statistical approaches along with results from clinical studies
including model-based risk probability prediction from genetic and physiological variables are integral for monitoring and
treatment of CVD risk.

Conclusions: To overcome the current obstacles in cardiac repair and regeneration and achieve successful therapeutic applications,
future interdisciplinary collaborative work is essential. Novel cardiovascular devices and their targeted treatments will accomplish
enhanced health care delivery and improved therapeutic efficacy against CVD. As the review articles contain comprehensive
sources for state-of-the-art evidence for clinicians, these high-quality reviews will serve as a first outline of the updated progress
on cardiovascular devices before undertaking clinical studies.

(JMIR Biomed Eng 2025;10:e65366)   doi:10.2196/65366

KEYWORDS
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Introduction

Cardiovascular diseases (CVDs) are the leading cause of death
globally, accounting for an estimated 17.9 million deaths in
2019 according to a report from the World Health
Organization. Almost one-half of all adults in the United States
have at least one form of heart disease [1]. Myocardial infarction
(MI) is caused by ischemia in the coronary artery, primarily due
to blocked arteries resulting from atherosclerosis [2]. This
blockage damages the myocardium, reducing its contractile
capacity, which leads to a decreased ejection fraction and,
ultimately, heart failure [3]. In the United States, one healthy
heart becomes infarcted every 40 seconds [4].

Preserving tissue and cellular function is crucial for maintaining
heart functionality. Numerous signaling pathways and genetic
factors associated with MI survival have been periodically
reviewed [5-7]. There is a growing emphasis on understanding
the mechanisms involved in myocardial repair and regeneration
[8]. Reports from organizations such as the Transnational
Alliance for Regenerative Therapies in Cardiovascular
Syndromes highlight the importance of these mechanisms. Key
principles affecting reparative and regenerative potential include
survival and protection, cell-cell communication, angiogenesis
and vascularization, cardiomyogenesis, molecular regulation
of the cell cycle and proliferation, inflammation reduction, and
cardiac aging [7,9].

An increase in reactive oxygen species (ROS) is a hallmark of
ischemic cardiomyopathy [10]. ROS, such as hydrogen peroxide
(H2O2) and hydroxyl radicals, play a significant role in MI and
can be considered ideal regulators for patients post-MI [11].
The concentration of H2O2 in healthy cells is about 0.02 mM,
whereas intracellular concentrations above 0.1 mM induce
oxidative stress and cell death [12,13]. Given that extracellular
H2O2 concentrations can be 10 to 100 times higher than
intracellular levels [14], careful monitoring of H2O2 levels in
cells is essential for prevention and treatment. As ROS play an

integral role in platelet aggregation and vasodilation, inhibitors
of vasodilation and platelet aggregation are commonly adapted
as a therapeutic means against MI [15].

Regarding the treatment methods against CVD, organ transplant
has been the most efficient strategy. Despite the preference for
organ donor replacement in treating CVD, the shortage of organ
donors has driven significant research into human-scale
cardiovascular organs and functional tissue substitutes [16,17].
Challenges such as complex fabrication processes [18], poor
mechanical properties [19], and biocompatibility and
immunogenic issues [20] remain unresolved.

Designing prostheses requires fabricating matrix constructs with
complex shapes and sizes for clinical applications [21].
Prostheses and implantable devices have varying requirements
that are categorized into chemical, mechanical, electrical, and
thermal characteristics [22]. Additionally, these devices must
be biocompatible, be nonimmunogenic, and maintain functional
capabilities within the body’s biological environment [23].
Although serious infections or side effects from cardiovascular
prostheses are rare, infected prostheses can be fatal [24].

Hydrogels, which are hydrophilic polymeric scaffolds with
unique 3-dimensional structures, can absorb large amounts of
water or biological fluids, making them potential candidates for
cardiovascular tissue engineering [23]. Various synthetic and
natural polymers are used in implantable hydrogels, with natural
polymers like collagen offering higher immunity and
biodegradable properties over synthetic ones.

This review focused on genetic variables in CVD, advanced
technologies, and biomaterials for organ-independent
cardiovascular repair systems (Figure 1). A variety of
implantable and wearable devices, including biosensor-equipped
cardiovascular stents and biocompatible cardiac patches, have
been developed and evaluated. Finally, future research directions
in the rapidly evolving fields of 3D-printed biomedical devices,
artificial intelligence (AI), and multifunctional sensing devices
are discussed.

Figure 1. Cardiac repair and regeneration via advanced technologies and gene therapy.

Advanced Assessment Technologies for
Cardiac Image and Genetic Factors

Image Features Extracted From Imaging Modalities
Risk variables used for the classification of CVD progression
include radiological imaging features and genetic factors. The
complex nature of cardiovascular structures makes stenosis

assessment from image modalities a serious challenge. In
general, imaging features are considered radiomic-based
biomarkers or indicators rather than pathological symptoms.
An assessment of imaging features can serve as a quantitative
index extractable from such imaging modalities as magnetic
resonance imaging, computed tomography angiography (CTA),
and optical coherence tomography [25]. Even though a
semiquantitative estimation of coronary stenosis is feasible via
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a thorough assessment of image features over an extended
period, this process requires advanced technology expertise and
labor-intensive effort.

In particular, coronary CTA, a noninvasive examination
technique, plays an integral role in the evaluation and treatment
of coronary artery disease (CAD) [26]. For instance, dual-source
CTA allows for improved resolutions of implantable devices,
including intrinsically higher-density stents, whose adversities
are due to distortion reduction stemming from thick strut slices
[27]. This approach makes it possible to conduct advanced
cardiac imaging analysis, even though its invasive nature
sometimes yields a high risk of fatality and complications
[28-30].

As the number of images exponentially grows, the lack of ability
to accurately label those images causes intrinsic limitations in
the interpretation of the data [31]. A recent surge of AI
techniques could serve as an ideal solution, enhancing the
accuracy of a quantitative assessment of segmented features,
including intima-media thickness ascertained by such computed
algorithms as convolutional neural networks, UNet, UNet+, and
DenseNet [32]. AI techniques and associated programmed
models are for accurate identification of patterns, abnormalities,
and defects in images, leading to enhanced efficiency and a
reduction in errors inherent in human inspection [33].

Evolving Gene Therapy Against CVD

Genetic Factors in the Assessment of CVD Risk
Genes are involved in most cardiovascular functions, starting
with the robustness of blood vessels to the way cells interact.
People with a family history of heart disease could share
common environmental factors, such as the intake habits of
drinking water and daily food and exposure to chemicals,
including carbon monoxide, in the air. As most cardiac
disorders, including arrhythmias, congenital heart disease,
cardiomyopathy, and high blood cholesterol, can be inherited
[34], assessing genetic variants or biomarkers to identify at-risk
individuals is integral to the prevention and treatment of CVD
[35].

Genetic variations acquired by children from parents in the
DNA of the eggs and sperm can influence every cell of a child’s
body, not only in the development process but also in the onset
of heart disease [36]. An 8-year follow-up study found that CVD
risk increased by 75% with a paternal history and about 60%
with a maternal history of premature CVD, implying that certain
genes can significantly enhance the risk of heart disease [37].
In the same study, a 16-year follow-up investigation found that
a family history of premature CAD (age <50 years) marked a
44% higher risk of CVD mortality.

The pooled cohort equations for risk classification have been
adapted based on genetic variants and medication decisions,
including statins [38]. On the other hand, polygenic risk score
(PRS) generation based on the relationships between the amount
and frequency of genetic variants and the onset of specific
diseases [39-41] has been explored for the assessment of genetic
risk and extrapolation of individual outcomes [42]. The PRS
could be accompanied by family history, lifestyle, and
environmental factors [43,44] and fortified with emerging

technologies, including proteomics, when determining an
individual’s genetic predisposition to CVD [45,46]. PRS mostly
outperforms traditional risk scores in the prediction of individual
outcomes, and additional AI-based transfer learning could
further upgrade the relatively less accurate performance on
translating PRS from ancestry to different ethnicities that are
mostly unknown and unvalidated [47].

Genes that could reduce the development of plaque around
infected regions would prevent neointimal formation [48]. The
primary CVD endogenous biological variants include C-reactive
protein, a liver protein released in response to inflammation
[8,49], and plasma levels of low-density lipoprotein cholesterol
[50], a seminal risk factor for the development of coronary heart
disease. In addition, pro-inflammatory CD4+ cells with CD28
expression [49,51], cardiac troponin I [52], and the number of
regulatory T lymphocytes [53] are frequently examined as
specific biomarkers for the diagnosis of acute MI. Also, specific
genes (eg, APOB, LDLR, and PCSK9 genes for familial
hypercholesterolemia and BAG3, LMNA, MYH7, PLN,
RBM20, SCN5A, TTN, TNNC1, TNNI3, TNNT2, and TPM1
genes for dilated cardiomyopathy) were recommended by the
American Heart Association to be tested for the diagnosis of
monogenic CVDs [54].

Along with those biological variants, pathological genetic factors
or symptoms assessed for CVD include carotid intima thickness
[55,56] and vascular function (which occur in the early stage
of familial hypercholesterolemia) [57,58]. Detection of those
genetic markers as part of familial cascade screening programs
in familial hypercholesterolemia can lead to preventive effects,
where subsequent medical therapy can lower long-term CVD
risk [55,59]. A combined application of various genetic factors
based on each patient’s genetic profile may guarantee an
efficient treatment strategy against CVD [35].

Even though genetic factors play a significant role in developing
conditions of CVD, the screening processes including a health
DNA test can only reveal certain genetic mutations that increase
the risk and responses [60]. Subsequently, the relationship
between genetic factors and risk scores is sometimes poor due
to the fact that those having the genetic mutation do not
necessarily have the same lifestyle factors, including basic health
measures. Therefore, proper statistical approaches along with
the results from clinical studies including model-based risk
probability prediction from each or combined genetic variables
are integral for genetic-based prediction of the CVD risk [61].

AI for Cardiovascular Gene Therapy
Genes (DNA, small interfering RNA, and microRNA) that could
interfere with the development of plaque around infected regions
are conjugated on biomedical devices like cardiovascular stents
to prevent neointimal formation. An advanced monitoring
process of genetic data and clinical data from electronic health
records could lead to a fast and precise clinical decision and
achieve customized treatment, eventually alleviating CVD via
the detection of CVD symptoms at an early stage. However,
the efficiency of cardiovascular gene therapy has been hampered
by some obstacles, such as insufficient gene propagation, a lack
of delivery mechanisms, and insufficient cell-vector interactions
[62]. Moreover, health care providers may negatively influence
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clinical outcomes due to the lack of discipline in the treatment
algorithms and the absence of established regulations to handle
early-onset data [63,64].

Combined AI models will address highly complicated
cardiovascular clinical genetics [65]. AI profoundly apprehends
complex patterns in imaging profiles and offers quantitative
assessments of radiographic properties, serving as a valuable
tool for enhancing imaging postprocessing. For instance, a
combined convolutional neural network and recurrent neural
network has achieved enhanced accuracy in predicting stenosis
(≥50%) upon examining genetic variables grouped into training
and testing samples [32,66]. This approach has obtained similar
outcomes in the quantitative assessment of the growing number
of segmented image features, including intima-media thickness
for CVD [31,32].

In general, the advanced technology involved with AI is
revolutionizing the method that ensures the accuracy,
completeness, consistency, and validity of clinically applicable
gene data [67]. In parallel, researchers should follow established
guidance on using information from the digital world, as several
guidelines have already been issued by institutional review
boards to properly maintain genetic data integrity [68]. As a
result of the increase in genetic testing and the fear of privacy
breaches by health providers, employers, and society, the
disciplines of ethics, public health, and genetics have also
emerged. The health professional should make a compromise
between providing proper arrangements for patient care and
protecting personal privacy. In the near future, the adaptation
of AI in radiomics will lead to precise and automated analysis
of genetic variables involved with disease onset and progress.

Telehealth Genetic Counseling Between Patients and
Genetic Counselors
To improve the efficacy of the diagnosis and assessment of
CVD risk, the prediction tools, including telehealth systems,
should assess endogenous genetic compounds involved with

heart failure, atherosclerosis, and CAD [67,69]. Telehealth
genetic counseling, including videoconferencing and telephone
counseling, was compared with in-person genetic counseling
for the degree of outcomes specific to patient experiences and
accessibility to various treatment methods. The patients
expressed the highest satisfaction with genetic counseling
provided by media devices, such as telephone and video [70-72].
Moreover, telehealth genetic counseling is considered equitable
to in-person genetic counseling across numerous domains, even
though those studies were conducted with telehealth systems
that were less robust and accurate than what is available today.

The benefits and limitations of telehealth from the perspectives
of the patients and genetic counselors have been thoroughly
examined to resolve potential uncertainty in the analysis
processes [73-75]. Those limitations include technical
challenges, difficulty in rapport and the subsequent psychosocial
issues, and lack of clinical complement [74,76]. There needs to
be some conceptual changes in the current status of telehealth
approaches over time, providing continuous advancement in
involved technologies [76,77].

Mobile Sensors for Cardiovascular Information
Systems
Remote monitoring is considered the ambulatory tracing of vital
signs and other medical indicators of a patient’s health and
recovery status via a telemedicine system without the patient
meeting doctors or being present in the clinic (Figure 2) [78].
The Food and Drug Administration has recognized the
importance of devices such as continuous temperature
monitoring or continuous glucose monitoring devices that allow
health care providers to remotely monitor patients, including
those that measure body temperature, respiratory rate, heart
rate, and blood pressure. In addition, a new approach based on
advanced technologies for various physiological variables and
biomarkers has performed continuous in-time monitoring as
well as subsequent customized treatment strategies.

Figure 2. Schematic Representation of Remote Monitoring System of Biosensor/Cardiac Implantable Electronic Device.
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The current roles of mobile sensors explored in telehealth
technologies and further challenges in CVD will specifically
emphasize (1) accurate assessment and diagnosis of vital signs
or biomarkers from CVDs, (2) reliable and reproducible sensing
systems to monitor the progress of a patient’s disease status,
and (3) wearable devices with maintenance of battery life and
restoration of interaction sensitivity capable of assessing
cardiovascular information of patients at risk [79-81].

The problem arises when analyzing data from mobile sensors
due to a lack of normalization and implementation of proprietary
interfaces to the respective device or platform. In daily life,
numerous portals provided by each sensor manufacturer should
be simultaneously traced and aggregated into the existing
database for each cardiovascular patient [82]. Thus, the
integration of data obtained from patients with heart failure or
implantable cardiac devices needs to be properly conducted to
store data in a structured and interoperable way for timely
clinical and scientific evaluations [83,84].

Advanced Systems Currently Available
for CVD

Biomaterials for Organ-Independent Cardiovascular
Repair Systems

Required Properties for Organ-Independent
Cardiovascular Repair Systems
The highly ordered myocardium capacity for electrical integrity
and electrical conduction between healthy and infarcted cells
starts to diminish as the relatively disordered fibrous scar tissue
disposition increases in the myocardium, leading to systolic and
diastolic dysfunction and cardiac arrhythmia [85]. As heart
transplantation is limited due to a shortage of organ donors,
organ-independent systems, including cardiac patches, grafts,
and scaffolds, play an essential role in cardiac repair and
treatment of MI [86].

Biomaterial systems function like normal cardiac tissues,
providing excellent electrical conductivity, mechanical strength,
and biological activities to infarcted heart tissues [87]. Novel
biomaterial-based systems offer self-renewal and regeneration
in the damaged heart, serving as various resources for cardiac
tissue repair for those with CVD. For instance, cardiac patches
provide mechanical support to the myocardial wall and passively
prevent the infarcted myocardium following MI by reducing
myocardial wall stress and preventing left ventricular dilation
and remodeling [88].

Hydrogels for Organ-Independent Cardiovascular Repair
Systems
Hydrogels are soft and moist injectable biomaterials with
properties similar to those of human soft tissues. They are
minimally invasive and serve as a vehicle for the delivery of
therapeutic agents in situ [89,90]. Conductive hydrogel systems
based on low-dimensional inorganic nanomaterials, such as
carbon nanotubes and graphene derivatives [23], and
simultaneously loaded with stem cells, growth factors, cytokines,
or oligonucleotides, are found to alleviate cardiac casualties by

promoting angiogenesis and cardiomyocyte proliferation and
reducing fibrosis and apoptosis.

In addition, a complex hydrogel patch is produced by principles

of fabrication via Fe+3-induced ionic coordination between a
homogeneous network of dopamine-gelatin conjugates and
dopamine-functionalized polypyrrole [91]. The Schiff base
reaction between oxidized sodium hyaluronic acid and
hydrazided hyaluronic acid was explored to form an injectable
hydrogel patch. Added bioactive peptides, a 7-amino acid
peptide, loaded in collagen-based hydrogel reduced cell
apoptosis, enhanced Sca-1+ recruitment and differentiation of
stem cells, and enhanced neovascularization formation, which
resulted in improved heart function in a mouse MI model [90].

Cardiac Patch

Therapeutic Patch as an Effective Strategy
All the delivery methods for MI recovery drugs, primarily via
the oral route but occasionally via an intravenous route, direct
injection to the heart, and drug-eluting stents, have their own
limitations in resolving MI-induced loss of cardiomyocytes
[92]. Advanced formulations, including cardiac patches, have
demonstrated their efficiencies in functional recovery for drug
carriers with targeted and local delivery of cardiovascular drugs,
nutrients, and cells. Moreover, patches not only are capable of
providing necessary mediators in multiple therapies to recover
the affected area but also strengthen the damaged area with
induced cell attachment and proliferation [93].

Types of Patches and Their Applications for MI Recovery
Therapeutic patches are divided into two types based on the
presence or absence of cells: cell-based patches and acellular
patches. As there is a lack of regeneration of cardiomyocytes,
cells such as human-induced pluripotent stem cells,
mesenchymal stem cells, and skeletal myoblasts are often
introduced to restore cardiac function [94].

Newly introduced cells can lead to enhanced angiogenesis,
lowered fibrosis, and apoptosis of cardiomyocytes [2]. Due to
the inefficiency of generating new heart tissue from
cardiomyocytes, acellular cardiac patches, which might include
paracrine factors such as proteins, RNA, growth factors, or small
molecules, are occasionally explored to accomplish
cardioprotective effects [95].

The biocompatibility of the source biomaterial often entails a
serious challenge in designing any implantable patches [96].
Moreover, the biomaterial should be similar to that of host
tissues from the perspectives of biochemical, mechanical, and
topographical properties [97,98]. For instance,
poly(hydroxyethyl) methacrylate (pHEMA) polymer has
demonstrated biocompatibility and has been used for biomedical
applications, including drug delivery [99,100], contact lenses
[101,102], and tissue engineering [103,104]. However, the low
viscous nature of pHEMA makes it a challenging task to develop
pHEMA-based biomedical devices, including a cardiac patch
that is capable of successfully delivering agents like ROS
scavengers against MI.
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3D Printing Technology for Cardiac Patch Development
3D printing can be used to create patient-specific devices, such
as organ implants and tissue models that mimic human
physiology. 3D printing can generate surgical planning models
and reduce the need for animal testing. 3D printing can be used
to create personalized medicines and their delivery systems that
specifically adapt to each patient’s genetic makeup [105].

There are numerous methods, including electrospinning, solvent
evaporation, and decellularization, used for the development of
patches [106]. Each of these methods has its own challenges,
such as material selectivity, limitations in complex shapes, and
cost and time efficiency [107]. Additionally, 3D printing has
emerged as a low-cost and fast method to develop patches
produced from a vast range of materials with the utmost efficacy.

As previously mentioned, a novel patch based on biocompatible
pHEMA polymers was developed with the aid of direct-light
3D printing technology. Stereolithography-based 3D printing,
where the ink is placed on a platform, was successfully used to
prepare 3D-printed acellular cardiac patches or cardiovascular
stents [21]. In 3D-printed systems, the immunosuppressive drug,
like sirolimus, dispersed within the patch matrix will be released
when the linker, like an ROS-responsive thioketal linker, that
connects the polymers is cleaved [108]. The ratio of the polymer
and crosslinker can be customized to achieve controllable drug
release.

3D- or 4D-Printable Smart Devices for CVD
3D printing provides geometric flexibility, which has been
explored to produce metal or polymer-embedded 3D construct
microsystems with high flexibility [23,109]. 3D-printed systems
or smart devices use advanced materials with characteristics
such as thermal and electrical conductivity and piezo-resistivity
[110]. Electric units or components, including resistors,
capacitors, inductors, circuits, and passive wireless sensors and
batteries, have been incorporated into 3D-printed products for
potential practical applications.

3D tactile sensors capable of detection and differentiation of
human movements, including pulse monitoring and finger
motions via detection of endogenous compounds, were
fabricated using multimaterial, multiscale, and multifunctional
approaches under ambient conditions conformally onto freeform
surfaces [111]. As lactate levels have been associated with heart
failure as well as diabetes, the portable luminometer, a
disposable minicartridge produced by 3D printing and stored
in cell phones, was used to detect chemiluminescence from
enzyme-coupled reactions [112]. Lactate oxidase was coupled
with horseradish peroxidase to noninvasively detect the lactate
levels within 5 minutes at a detection limit of 0.5 mM/L and
0.1 mM/L in oral fluids and sweat, respectively.

By adapting AI to additive manufacturing, 3D designers can
optimize cardiovascular biosensors or implants to be more
efficient and robust. AI-mediated 3D printing tools can
synchronize with high-quality imaging data, such as computed
tomography and magnetic resonance imaging scans, and
generate personalized designs, enabling thorough control over
the otherwise unavoidably complicated, time-consuming, and
exhaustive process [3].

An optimal combination of 3D printing based on novel or hybrid
3D printing methods and AI can achieve the next generation of
cardiovascular systems [113]. Subsequently, advanced 3D or
4D printing, once nearly overcoming the cost and scalability
barriers, could lead to more effective and targeted treatments
against CVD, accomplishing improved treatment outcomes and
enhanced health care delivery [67].

Advanced Cardiovascular Stents for CVD

Gene-Eluting Stents
Advanced biomedical gene carriers have been intensively
explored in vascular cell biology and CVD treatment. The
identification of critical regulators, such as noncoding RNAs,
including microRNA, long noncoding RNA, and circular RNA
presence in such cell types as vascular smooth muscle cells,
endothelial cells, and macrophages, has served as an efficient
therapeutic target in the field of CVD.

Among biomedical carriers, multifunctional gene-loaded stents
and integrated stents equipped with self-reporting sensors are
often explored as promising technologies against CVD,
including atherosclerosis and MI [114,115]. Cardiovascular
stents keep the vessel open and prevent it from re-occluding
(ie, restenosis), but vessel injury by stent struts leads to the
activation of platelets and mural thrombus formation, leading
to the activation of circulating neutrophils and tissue
macrophages [116-118]. As the cardiovascular stent produces
late-stage restenosis [119,120], people with stents are at risk of
high blood pressure. Therefore, it is integral to find a more
advanced and sensitive stent capable of real-time monitoring
of blood flow.

Gene-loaded stents coated with synthetic and natural polymers
such as polylactic-polyglycolic acid (PLGA), collagen,
hydroxyapatite, and matrix metalloproteins can overcome major
limitations of cardiovascular gene therapy, including insufficient
cell-vector interactions, a lack of delivery mechanisms, and
insufficient gene propagation [121]. Gene-loaded stents also
allow for maintaining a curative gene, serving as a carrier to
convey the gene and administer the vector and avoiding immune
responses [62].

The first successful in vivo transfection of green fluorescent
protein plasmid DNA loaded in a DNA-PLGA coated stent was
efficiently expressed in cell cultures (7.9%, SD 0.7% vs 0.6%,
SD 0.2% control; P<.001) of rat aortic smooth muscle cells
[122]. In addition, PLGA nanoparticle-coated stents
encapsulated with vascular endothelial growth factor and
paclitaxel [123] or Ang-1 proteins [124] were developed as an
alternative therapy, reducing in-stent restenosis and
accomplishing complete re-endothelialization. In addition, an
Akt1 small interfering RNA–embedded stent alleviated
restenosis, reducing cell growth via muting RNA [125,126].
Furthermore, bare-metal stents with a synthetic complex for
reversible vector binding produced prominent green fluorescent
protein positivity in A10 cells proximal to the strut after 72
hours in culture [127].

A collagen-coated stent covalently coupled with anti-DNA
immunoglobulin M antibody and loaded with plasmid DNA
was efficiently developed for localized gene delivery to smooth
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muscle cells in an artery, accomplishing high-level protein
production through reporter gene expression [125]. In addition,
a stent coated with biomimetic hyaluronic acid and deposited
with DNA/polyethylenimine polyplexes was explored to deliver
plasmid DNA to the artery, exerting its efficacy in alleviating
restenosis with a higher neointimal transfection rate while
maintaining structural stability [128].

Stents Equipped With Cardiovascular Self-Reporting
Sensors
Continuous blood flow surveillance can serve as screening,
advanced detection, and alert for cardiovascular health using
noninvasive technology that can be placed in the coronary
arteries [129]. Remote monitoring of patient progress is feasible
by creating an application-specific integrated circuit that features
a voltage regulator and radio frequency power element loaded
in biomedical devices, including cardiovascular stents.

For instance, a remote monitoring stent was combined with a
tiny heart pressure sensor as well as a wireless transmitter that
continuously monitors vascular conditions and the status of
implanted devices. To minimize the number of antenna
components for the conservation of space, the stent was used
as an inductive antenna to create a wireless network [130,131],
transmitting quantified solubilization to the immediate
neighborhood via a wireless telemetry transmitter [132].
Reviewing the admittance of an antenna close to the implant
component and connected to it via electromagnetic coupling
will enable this function [133]. A radio frequency–powering
component was implanted on the chip in the finished device as
an ideal power distribution feature. Microelectromechanical

modules were crammed with an application-specific integrated
circuit for data collection [134].

As shown in Figure 3, a blood flow sensor enclosed in
graphene-embedded silicon rings subsequently equipped with
a digital wireless transmission microchip was developed as a
unit of the smart theranostic cardiovascular stent (Figure 3C).
Numerous commercial devices, including pressure sensors, use
the piezoresistive effect of silicon, whose gauge factors can be
2 orders of magnitude larger than those observed in most metals
[135,136]. Thus, a flow sensor enclosed in the stent was able
to continuously monitor real-time blood flow with high
inductance and pressure resolution and transmit corresponding
data to a cardiologist outside the body. In addition to superior
moisture barrier property, the high thermal conductivity of
graphene (which has a negative thermal expansion coefficient

[−8.0 × 10–6/K] between 0 and 700 K) guaranteed dimensional
stability upon exposure to body temperature and continuous
blood flow.

The pressure sensors and the microchip were mounted on the
rectangular areas of the stent structure, as shown in Figure 3C.
The pressure sensors bound to the steel stent [137,138] were
molded into graphene-embedded silicone rings, and the pattern
was cut on a thin stainless-steel foil. These digital transmission
techniques reduced the power radiated by the external reader,
thus minimizing the patient’s exposure to electromagnetic fields.

In electromagnetic coupling, a continuous electromagnetic wave
with relatively large power is radiated by the reader, and the
microchip modulates the impedance of the antenna by
connecting or disconnecting a load to it according to the data
to be transmitted [130].

Figure 3. (1) stent and rings, (2) dimension and size of rings (A: Ring inner diameter (i.e., same as stent outer diameter); B: Stent inner diameter), (3)
3-Dimentional Stent (C: Stent length; D: Ring outer diameter) and (4) application of external electromagnetic stimuli.

Conclusion

Biotechnologies play an important role in cardiovascular repair
and regeneration. Genetic variables in CVD, currently available
technology, and biomaterials for organ-independent
cardiovascular repair systems were updated in this article in a
timely manner. Advanced biotechnologies aimed at
target-specific therapeutics are designed for customized and
personalized cardiac treatment strategies with one or multiple
administration routes whose methods should be further improved
to enhance targeting and treatment efficacy.

The goal of gene therapy for cardiac repair and regeneration is
to achieve cardiac transfection outcomes via the selection of
proper gene vectors and modifying a gene or genetic pathways.
Moreover, 3D bioprinting technology has been widely used in
cardiac repair by integrating biomaterials with various
manufacturing processes to customize cardiac conditions. 3D
scaffolds with varying cell types have demonstrated better
biocompatibility, delivery efficiency, and low immunogenicity.
In the future, screening and designing of viral vectors through
structure evolution mediated by 3D printing would enhance
cardiac gene therapy.
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To overcome the current obstacles in cardiac repair and
regeneration and achieve successful therapeutic applications,
future interdisciplinary collaborative work should be integral.
Advanced new material and cell biology, along with AI-based
telehealth, will be essential to create efficient implantable

biomedical devices, including cardiovascular stents. Advanced
innovative bioengineering, gene delivery, and cell biology
technologies will continuously revolutionize medical devices
for cardiovascular repair and regeneration in the future.
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Abstract

Background: The use of acoustic biomarkers derived from speech signals is a promising non-invasive technique for diagnosing
type 2 diabetes mellitus (T2DM). Despite its potential, there remains a critical gap in knowledge regarding the optimal number
of voice recordings and recording schedule necessary to achieve effective diagnostic accuracy.

Objective: This study aimed to determine the optimal number of voice samples and the ideal recording schedule (frequency
and timing), required to maintain the T2DM diagnostic efficacy while reducing patient burden.

Methods: We analyzed voice recordings from 78 adults (22 women), including 39 individuals diagnosed with T2DM. Participants
had a mean (SD) age of 45.26 (10.63) years and mean (SD) BMI of 28.07 (4.59) kg/m². In total, 5035 voice recordings were
collected, with a mean (SD) of 4.91 (1.45) recordings per day; higher adherence was observed among women (5.13 [1.38] vs
4.82 [1.46] in men). We evaluated the diagnostic accuracy of a previously developed voice-based model under different recording
conditions. Segmented linear regression analysis was used to assess model accuracy across varying numbers of voice recordings,
and the Kendall tau correlation was used to measure the relationship between recording settings and accuracy. A significance
threshold of P<.05 was applied.

Results: Our results showed that including up to 6 voice recordings notably improved the model accuracy for T2DM compared
to using only one recording, with accuracy increasing from 59.61 to 65.02 for men and from 65.55 to 69.43 for women. Additionally,
the day on which voice recordings were collected did not significantly affect model accuracy (P>.05). However, adhering to
recording within a single day demonstrated higher accuracy, with accuracy of 73.95% for women and 85.48% for men when all
recordings were from the first and second days.

Conclusions: This study underscores the optimal voice recording settings to reduce patient burden while maintaining diagnostic
efficacy.

(JMIR Biomed Eng 2025;10:e64357)   doi:10.2196/64357

KEYWORDS

vocal biomarker; acoustic biomarker; voice analysis; type 2 diabetes; diagnostics; digital phenotyping; voice data

Introduction

Diabetes mellitus is a chronic metabolic disorder characterized
by persistent elevated blood glucose levels due to inadequate
or impaired insulin production or utilization. It affects 10.5%
of the worldwide population (536.6 million people) [1], with
type 2 diabetes mellitus (T2DM) accounting for 90% of cases
[2]. Uncontrolled diabetes is a major contributors to
cardiovascular disorders, blindness, renal failure, and lower
limb amputation [2].

Traditional diagnostic methods of fasting plasma glucose and
oral glucose tolerance tests involve blood sampling, which can
cause inconvenience or discomfort to patients owing to frequent
monitoring. Moreover, the lack of a glucometer and the time
spent for self-testing are barriers in the self-management of
diabetes [3,4]. In response to these challenges, acoustic

biomarkers from speech signals have emerged as promising
non-invasive alternatives, offering a convenient solution for
diagnosing and monitoring diabetes, especially for individuals
in remote areas with restricted health care accessibility.

Sustained periods of high blood glucose and the detrimental
effects of peripheral neuropathy and myopathy in individuals
with T2DM impact the elastic properties of the vocal folds [5],
weaken the laryngeal muscles, and induce respiratory changes
[6]. These physiological changes can affect voice parameters,
leading to voice disorders like hoarseness [7] and dysphagia
[8]. Consequently, compared to those without T2DM,
individuals with the condition exhibit significant vocal
differences, quantified by phonation time, fundamental
frequency, jitters, and shimmers [6], highlighting the importance
of investigating vocal variations as potential markers of T2DM
[9-13].
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Our group previously assessed the feasibility of using voice
recordings from mobile applications to detect T2DM [14]. Our
results demonstrated that voice biomarkers—specifically pitch,
jitters, and shimmers—combined with age and BMI could
predict T2DM with an accuracy of 0.89 for women and 0.86
for men [14]. However, requiring participants to record their
voices at least 6 times daily over a 2-week period posed
challenges related to participant burden and recording
consistency.

Therefore, this study aims to optimize the voice sampling
process by determining (1) the minimum number of voice
samples required, and (2) the optimal recording schedule
(frequency and timing) needed to maintain diagnostic accuracy
while reducing participant burden. We hypothesize that a more
streamlined voice sampling protocol can achieve comparable
predictive performance to prior studies while improving
feasibility for long-term diabetes monitoring.

Methods

Study Design
To address the objectives of this project, we designed a
retrospective study based on our previously developed model

and the same dataset that yielded the highest balanced accuracy
[14]. The original data collection took place between August
30, 2021, and June 30, 2022 in India [14]. In total, 505
participants (mean [SD] age 41.03 [13.29] years, 336 male
participants) were recruited and instructed to record a short
English phrase (“Hello. How are you? What is my glucose level
right now?”) up to 6 times daily using their smartphone for 14
consecutive days.

Participants and Measurements
A balanced subset of the original dataset was used for this
analysis and included 78 participants (aged >18 years old, 22
women), with 39 diagnosed with T2DM [14]. Participants in
the T2DM and non-T2DM groups were matched for age and
BMI to minimize the demographic impact on voice recordings
(Table 1). A T2DM diagnosis was confirmed by a physician
according to the American Diabetes Association guidelines
[15]. All participants were nonsmokers, had no diagnosed
neurological or speech impairments, and signed the consent
forms.

Table . Patient demographic characteristics.

T2DM groupNon-T2DMa groupTotalVariable

39 (50.0)39 (50.0)78 (100.0)N (%)

11 (50.0)11 (50.0)22 (28.21)Women

28 (50.0)28 (50.0)56 (71.79)Men

45.03 (10.58)45.49 (10.8)45.26 (10.63)Age (years), mean (SD)

45.73 (10.47)45.91 (10.85)45.82 (10.4)Women

44.75 (10.8)45.32 (10.98)45.04 (10.8)Men

27.36 (4.06)28.77 (5.01)28.07 (4.59)BMI (kg/m2), mean (SD)

29.09 (5.29)31.41 (5.4)30.25 (5.35)Women

26.68 (3.34)27.74 (4.53)27.21 (3.98)Men

aT2DM: type 2 diabetes mellitus.

As part of the study protocol, participants recorded their voice
at least 6 times per day over a 2-week period using a custom
mobile application installed on their personal cell phones. These
recordings took place either at home or in a quiet environment
with minimal background noise [12]. To establish a consistent
starting point, a participant’s first day (d01) was defined as the
day they recorded at least 2 voice samples. Voice samples
recorded prior to d01 were excluded from the analysis.

Optimizing Voice Recording Quantity and Settings for
Enhanced Model Accuracy
To analyze the collected voice recordings, 14 acoustic features
were extracted to characterize key parameters related to pitch,
intensity, harmonic noise ratio, shimmers, and jitters [14].
Features that were significantly different between the T2DM
and non-T2DM groups (P<.05, Cohen d >0.02) were included
in he model development pipeline, with separate models for
women and men. For women, the key features were pitch SD,

mean pitch, RAP jitter, and apq3 shimmer, while for men, mean
intensity, apq11 shimmer, intensity SD, and ppq5 jitter were
used. A 5-fold cross-validation was performed for feature
selection, threshold determination, and model optimization
based on the best predictive balanced accuracy [14]. The optimal
model for women was a logistic regression model (threshold of
0.3) with BMI and 3 voice features: mean pitch, pitch SD, and
RAP jitter. For men, the optimal model was a naive Bayes
classifier (threshold of 0.215) with age, BMI, and 2 voice
features: mean intensity and apq11 shimmer.

The analysis pipeline included (1) indicating the optimal number
of voice recordings for effective T2DM classification based on
changes in model accuracy across varying quantities of voice
samples, and (2) studying the effect of voice recording
configurations on predictive performance (Multimedia Appendix
1).
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To study the changes in the model’s accuracy trend across
varying number of voice samples, we employed segmented
linear regression by fitting two distinct linear models to the data
before and after the n voice samples breakpoint. The Kendall
tau measure of correlation was used to investigate the strength
and direction of the relationship between ordinal variables (such
as days) and model accuracy. P values of .05 were considered
statistically significant.

Ethical Considerations
The protocol (ID MGCTS107) received ethics approval by
Saanvi Ethical Research LLP (No. MGCTS/20/107 V01), all
participants provided informed consent, and data were stored
in a secure cloud database with no identifying information.

Participants were compensated for their time; each participant
received US $56.

Results

Participants and Measurements
The mean (SD) age and mean (SD) BMI of participants were

45.26 (10.63) years and 28.07 (4.59) kg/m2, respectively (Table
1). In total, 5035 recordings were included in the analysis, and
2620 from participants with T2DM (Table 2). The mean (SD)
number of daily recordings for all participants was 4.91 (1.45)
with women more adherent to the protocol than men (5.13 [1.38]
vs 4.82 [1.46], Multimedia Appendix 2, Figure 1).

Table . Voice recording data.

T2DM groupNon-T2DMa groupTotalVariable

2620 (52)2415 (48)5035 (100)N (%)

826 (53.7)713 (46.3)1539 (30.6)Women, n (%)

1794 (51.3)1702 (48.7)3496 (69.4)Men, n (%)

67.18 (17)61.92 (21.67)64.55 (19.53)Number of recordings per partici-
pant, mean (SD)

75.09 (11.45)64.82 (19.12)69.95 (16.26)Women

64.07 (17.97)60.79 (22.82)62.43 (20.42)Men

aT2DM: type 2 diabetes mellitus.

Figure 1. The accuracy of the model using different number of voice recordings. The lines present the average accuracy for men (blue) and women
(red). The shaded area shows the confidence interval. The numbers in the figure show the number of participants whose data were included in the
analysis per day.

Optimizing Voice Recording Quantity and Settings for
Enhanced Model Accuracy
Both in men and women, the model accuracy improved with
the inclusion of up to 6 voice samples, after which it stabilized
with no significant improvement (Figure 1). The changes in the
slope of the linear fit were −1.15 for men and −0.65 for women,
indicating a faster accuracy improvement in men than in women
with the addition of initial voice samples.

Considering 6 voice samples for effective T2DM diagnosis, the
highest model accuracy was achieved with recordings from day
1 in men, while for women, the peak accuracy was observed
with recordings from day 10 (Figure 2). However, the variations
in model accuracy across different days were not significant,
and no statistically discernible trend was observed (P=.23 for
men, P=.27 for women). The model accuracy was generally
higher for women than for men on most days, although the
difference was not statistically significant, as indicated by the
overlapping confidence intervals.
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Figure 2. The accuracy of the model using 6 voice recordings per day. d: day.

Moreover, we observed that the model accuracy was higher in
men than in women when the majority of recordings were from
the first day (Figure 3). As the distribution of recordings were
balanced between the first and second days, the accuracy gap
between men and women narrowed. Finally, when the majority
of recordings were from the second day, the model accuracy
was slightly higher for women than for men, with the differences

in accuracy levels becoming less pronounced. Our statistical
test indicated no significant trend in the model accuracy for
men when using 6 recordings across 2 days (P>.99). For women,
there was a significant increasing trend in the model accuracy
when the majority of recordings were taken on the second day
(P=.03), suggesting that consistent participation in women can
improve the model performance.

Figure 3. The accuracy of the model using total 6 voice recordings from day 1 and day 2. D1: day 1, D2: day 2, N: number of samples from the day.

Discussion

Principal Findings
This research, to our knowledge, is the first to investigate the
optimal balance between the number and settings of voice
recordings for effective T2DM diagnosis, with the goal of
reducing patient burden. Our findings indicated that 6 voice
recordings are sufficient to maintain diagnostic accuracy,
improving patient compliance and accessibility for T2DM
screening. No significant differences in model accuracy were
observed across different days while adherence to recording in
a single day showed higher accuracy. This study lays the

groundwork for future research and clinical applications focused
on optimizing health care delivery for T2DM.

Comparison to Prior Works
Previous studies have shown that an increased burden from the
treatment and self-management of chronic health conditions
such as T2DM is associated with higher levels of distress, lower
adherence to self-care routines, decreased satisfaction with
medications, reduced quality of life, poorer physical and mental
health, and greater risk of complications and deaths [4,16-18].
In alignment with these, our study demonstrated that up to 6
voice recordings are sufficient to effectively diagnose T2DM,
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thereby reducing patient burden while maintaining diagnostic
accuracy.

There are conflicting reports on self-management among men
and women. While Zhou et al [19] observed that women
exhibited greater compliance in self-care than men did, Mogre
et al [20] reported higher self-monitoring of blood glucose in
men. In our study, despite the lower number of women
participants than men, women showed a higher adherence to
the voice recording protocol. This higher adherence among
women may explain the observed increase in model accuracy,
as recordings were distributed across 2 days, suggesting that
consistent participation enhances the model performance.

Prior research has reported no significant day-to-day variability
in voice recordings while there exists a significant time-of-day
influence on acoustics with voice quality enhanced with
increased voice use [21,22]. In alignment with these findings,
our results showed that both in men and in women, the model
accuracy was not significantly different between days while
there was an increase in accuracy when the majority of the
recordings were from a single day. Due to the limited

distribution of samples across different times of the day, we
were unable to assess the time-of-day variability.

Strengths and Limitations
This study provides important insights into optimizing
voice-based T2DM diagnostics while minimizing participant
burden. However, several limitations should be considered.
First, there was a limited sample size of women. The smaller
number of women participants may reduce the generalizability
of our findings, particularly regarding sex-specific effects.
Future studies with larger, more balanced datasets are needed
to validate these observations. Second, our relatively small
dataset limited the use of more advanced machine learning
techniques, such as neural networks. While these models may
offer further improvements in the diagnostic accuracy and
insight into optimal data collection strategies, future studies
with larger datasets are required to fully explore their potential.
Third, due to uneven distribution of recordings across different
times of the day, we could not assess how the time-of-day
influences voice-based diagnostics. Future studies should
implement controlled recording schedules to systematically
examine these effects.
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Abstract

Background: Implantable medical devices (IMDs), such as pacemakers, increasingly communicate wirelessly with external
devices. To secure this wireless communication channel, a pairing process is needed to bootstrap a secret key between the devices.
Previous work has proposed pairing approaches that often adopt a “seamless” design and render the pairing process imperceptible
to patients. This lack of user perception can significantly compromise security and pose threats to patients.

Objective: The study aimed to explore the use of highly perceptible vibrations for pairing with IMDs and aim to propose a
novel technique that leverages the natural randomness in human motor behavior as a shared source of entropy for pairing,
potentially deployable to current IMD products.

Methods: A proof of concept was developed to demonstrate the proposed technique. A wearable prototype was built to simulate
an individual acting as an IMD patient (real patients were not involved to avoid potential risks), and signal processing algorithms
were devised to use accelerometer readings for facilitating secure pairing with an IMD. The technique was thoroughly evaluated
in terms of accuracy, security, and usability through a lab study involving 24 participants.

Results: Our proposed pairing technique achieves high pairing accuracy, with a zero false acceptance rate (indicating low risks
from adversaries) and a false rejection rate of only 0.6% (1/192; suggesting that legitimate users will likely experience very few
failures). Our approach also offers robust security, which passes the National Institute of Standards and Technology statistical
tests (with all P values >.01). Moreover, our technique has high usability, evidenced by an average System Usability Scale
questionnaire score of 73.6 (surpassing the standard benchmark of 68 for “good usability”) and insights gathered from the
interviews. Furthermore, the entire pairing process can be efficiently completed within 5 seconds.

Conclusions: Vibration can be used to realize secure, usable, and deployable pairing in the context of IMDs. Our method also
exhibits advantages over previous approaches, for example, lenient requirements on the sensing capabilities of IMDs and the
synchronization between the IMD and the external device.

(JMIR Biomed Eng 2025;10:e57091)   doi:10.2196/57091

KEYWORDS

implantable medical device; pairing; vibration; security; usability

Introduction

Background
Implantable medical devices (IMDs), such as pacemakers,
implantable cardioverter defibrillators, or insulin pumps are
widely deployed and evolving at a rapid pace [1]. Modern IMDs
typically rely on a wireless interface to communicate with
external devices. For instance, doctors use programmer devices
to reprogram the patient’s IMD (eg, to change the patient’s

therapy) and gather telemetry data. Such wireless connectivity
can bring about much convenience to patients and doctors.
However, it also poses new security and privacy threats, such
as eavesdropping on sensitive medical data or hijacking
life-critical functions. The consequences of such attacks can be
severe because they can cause serious injuries or even death.
However, these risks have often been overlooked. While no
real-world attack against an IMD has been confirmed to date,
previous research has demonstrated that many IMDs available
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on the market today severely lack effective security mechanisms,
and that attacks on patients would be practically possible [2-6].

To protect wireless communication links, it is essential for the
IMD and external device to undergo a pairing process. This
process aims to exchange a cryptographic key between them,
which can then be used to secure the wireless channel using
standard protocols [7]. However, implementing such a key
exchange in a secure manner is challenging because IMDs are
resource-constrained with limited memory, computational
power, and nonrechargeable and nonreplaceable batteries.
Moreover, IMDs do not have physically accessible input or
output interfaces, such as a keyboard or a screen once they are
implanted. This obstructs traditional pairing methods used in
technologies like Bluetooth, where manually typing a 4-digit
PIN code on the devices is a standard procedure [8].
Furthermore, network connections with these devices can be
ad-hoc. For instance, in an emergency (eg, patients with cardiac
implants can experience syncope symptoms and become
unconscious [9]), a doctor may quickly have to use a new
programmer device to connect to the patient’s IMD. Due to
these limitations of IMDs, conventional pairing techniques (such
as the ones based on symmetric or public keys [10]) are often
not a viable option [5,11].

Previous work has proposed a variety of pairing techniques to
overcome this challenge [12]. Rasmussen et al [13] propose an
approach where the IMD and external device send ultrasound
to each other to verify each other’s legitimacy and exchange a
key. Marin et al [5] and Tomlinson et al [14] propose a pairing
method by transmitting a low alternating current through the
patient’s skin and tissue. Denning et al [15] and Gollakota et al
[16] propose to delegate security to a proxy device that the
patient can carry around (such as a bracelet). [17-20] propose

a pairing process by the IMD and external device synchronously
and simultaneously measuring a human physiological signal
(such as heartbeats).

Across those previous approaches, a crucial aspect has been
systematically overlooked: user perception. We observe that
previous work has attempted to follow a “seamless” design
approach that makes the IMD pairing as unobtrusive as possible
to the patient, rendering the pairing process almost imperceptible
at the same time. This can prevent patients from detecting
unexpected pairing attempts made by adversaries in proximity,
thereby hindering their ability to appropriately respond to such
security threats, for example, by seeking assistance or fleeing
the scene. Although the “seamless” design principle is common
in everyday security systems [21], we question its suitability in
the IMD context, where the device is part of the patient, and its
security is life-critical.

To address this issue, a pairing protocol needs to incorporate a
perceivable and robust (ie, cannot be hidden or canceled by an
adversary) signal. This leads us to consider vibration as an
out-of-band (OOB) channel (ie, a communication channel other
than a wireless channel) for pairing (Figure 1). Vibrations are
highly perceivable and have been widely used in smart consumer
devices for notification services [22]. In addition,
accelerometers, the primary type of vibration receiver used in
previous approaches, are already present in state-of-the-art IMDs
for medical purposes [23-25]. Another advantage of using
vibration is its limited range of reliable reception. In the IMD
context, this implies that if an external device intends to transmit
a vibration to an IMD, it must be physically attached to the
patient’s skin for a while [26]. If an adversary overpowers the
signal with a very strong vibration from a distance, the patient
can easily notice this.

Figure 1. IMD and external device. The vibration channel is used to exchange a key that subsequently secures the wireless channel. IMD: implantable
medical device.
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Related Work

Vibration-Based Secret Transmission in Ad-Hoc
Networks
Previous work has proposed vibration as an OOB channel for
transmitting secrets between 2 devices that physically contact
each other [26-32]. Table 1 summarizes their application

scenarios and hardware setups. Most are designed for wearables
and Internet of Things (IoT) devices that are not implanted in
the human body. As a common setup, the transmitter (such as
a smartphone) is equipped with a vibration motor and the
receiver contains a sensor to detect the vibrations, such as an
accelerometer [26,27,29-31], gyroscope [32] or microphone
[28].

Table . Setup for previous vibration-based secret transmission. The application context refers to the intended receiver device.

Sampling rate (Hz)Receiver sensor typeApplication contextTechnique

Not reportedAccelerometerRFID tagVibrate-to-Unlock [30]

1600AccelerometerWearableSYNCVIBE [27]

3200AccelerometerIMDaSecureVibe [26]

32000GyroscopeIoTb deviceVibroComm [32]

1600AccelerometerMobile deviceRipple [29]

48000MicrophoneMobile deviceRipple II [28]

250AccelerometerWristband deviceTouch-And-Guard [31]

aIMD: implantable medical device.
bIoT: Internet of Things.

Previous work predominantly directly embeds the secret within
the vibration signal itself [26-30,32]: the transmitter encodes
the secret into vibration using specific modulation methods (eg,
on-off keying [26,27,33]), and the receiver picks up this
vibration with a sensor and decodes the secret. Another strategy
leverages vibration to “amplify” the secret from humans: Wei
et al [31] propose an approach that pairs an IoT device with a
wristband device. When the user (who wears the wristband)
touches the IoT device, the IoT device emits a vibration that
sweeps through a range of frequencies. Contrary to the above
methods, the vibration here does not carry the secret and remains
consistent across different sessions. Instead, the secret comes
from the (to some extent random) resonant properties of the
user’s hand-arm area, which can be derived from the devices’
accelerometer readings.

However, we argue that most work (in their current form) is not
deployable in existing IMD products because they have stringent
requirements on the receiver sensor. Microphones do not exist
in IMDs, while inertial sensors (ie, accelerometer and
gyroscope) often require sampling rates in several thousands of
Hz or higher. Such high-performance sensors are rare in IMDs
[34-36] and are too energy-consuming for IMDs’ limited battery
capacity [37]. Future studies could certainly explore if previous
work remains effective at reduced sensor sampling rates such
as a few hundred Hz. Nevertheless, this is likely to significantly
impact the performance because vibration signal demodulation
often requires sensor data with high resolution [29].

Overall, we find that only [31] demands a lower sampling rate
of 250 Hz. This is because the secret relies on the resonant
frequencies of the user’s hand-arm region, which are situated
in the low-frequency domain ranging from several to a few
hundred Hz [38,39]. Nonetheless, its practicality was only
validated for wristbands but has not been tested in other
deployment environments or with different hardware setups.

Suitable Protocols for OOB Channel-Based Pairing
Previous work has extensively proposed using an OOB channel
for pairing with resource-constrained devices, including IMDs
[5,19,26,40,41]. Typically, the ultimate objective of such pairing
is to establish a 128-bit cryptographic key between 2 devices
for data encryption [7]. However, these works commonly
propose to directly exchange the entire key through the OOB
channel, which raises several concerns.

First, OOB channels often have much lower data throughput
compared to conventional wireless channels. For instance, the
data throughput of the aforementioned vibration-based method
[31] is only 7.15 bits per second. As a result, a 128-bit key
bootstrap would require at least 18 seconds, potentially posing
issues of usability and safety in emergencies. Second, OOB
channels face threats from advanced side-channel eavesdropping
attacks. For example, a vibration channel might be compromised
using microphones in proximity due to acoustic leakage, leading
to severe consequences.

To mitigate these concerns, prior work has suggested using a
password-authenticated key agreement (PAKE) method
[19,42,43], such as Diffie-Hellman Encrypted Key Exchange
[44]. PAKE is a cryptographic protocol aiming at exchanging
a high-entropy cryptographic key between parties who have
previously shared a short and low-entropy secret. This approach
allows 2 devices to initially exchange a short bitstring, after
which they execute a PAKE to further exchange a 128-bit key.
The latter step can be fast and thus largely reduce the impact of
the low data rate of OOB channels. In addition, PAKE provides
forward secrecy and rules out offline brute-force attacks. This
is the approach that we adopt in our work, and therefore we
consider that vibration is only to be used to exchange an
ephemeral and low-entropy secret between the IMD and the
external device.
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Objectives
The objective of this paper is to explore the potential of using
vibration for pairing with resource-constrained IMDs. This
study aimed to (1) propose a novel technique that leverages
vibration to extract secrets from the naturally random human
motor behavior for pairing, (2) develop a prototype as a
proof-of-concept to demonstrate our technique, and (3) evaluate
our prototype’s accuracy, security, and usability in a lab study
involving 24 participants.

Methods

Pairing Technique
The pairing process requires the user (patient or doctor) to
repeatedly attach the external device to the patient’s body (near
the IMD’s location) for a few times. In this work, each repetition
was referred to as a cycle, and the complete pairing process
(including several cycles) was defined as a run. Each cycle
comprises three main steps:

1. Device attachment: the user attaches the external device to
the body and holds it steadily.

2. Vibration broadcast: the external device emits a vibration
signal for a short period. The signal is always the same and
does not serve as the secret. Both the IMD and external
device take a measurement of the acceleration. The user
releases the external device when the vibration stops.

3. Randomness extraction: both devices process the sensed
acceleration signal and derive a shared secret from it.

The security of pairing relies on the randomness of the shared
secret, which originates from the diverse physiological
characteristics of the human body as well as the inherent
variability of human behavior (eg, the varying attachment
position and the grip strength) [45]. The vibration signal itself
remains constant in each cycle and is not a source of

randomness. Instead, it serves as a “catalyst” that allows the
randomness of body and motion to be reflected in the
accelerometer measurements.

Obtaining a Shared Secret From Humans
The design of vibration strategy in each cycle—namely, the
control of the motor to vibrate at a certain frequency for a certain
time frame—is crucial. The feasibility of the aforementioned
work [31] was first explored in the context of IMDs. The exact
same experimental settings were replicated using our prototype
that simulates the human body environment (elaborated in the
following sections): the accelerometer sampling rates of the
external device and IMD are set as 250 Hz. In each cycle, the
motor is programmed to sweep between 20 Hz to 125 Hz within
1.75 seconds. During this period, 2 devices measure the z-axis
acceleration data (aligning with the user’s sagittal plane) and
subsequently generate the frequency spectrum by doing fast
Fourier transform (FFT) [46].

One researcher of the team performs 100 cycles as a preliminary
test. The results are shown in Figure 2 (the locations of the
resonant frequency peaks shared by both devices were regarded
as secrets in [31]). Among all, 72 cycles show one stable peak;
17 cycles have 2 common peaks; 2 possess 3 peaks; in 9 cycles,
the data is too noisy to capture any shared peaks. The results
differ significantly from [31] where an average of 4‐8 peaks
can be obtained per cycle. In addition, the peaks in [31] are
somehow uniformly distributed over the whole 20‐125 Hz
range, while ours are almost always in the range of 80‐110
Hz. Our interpretation for the discrepancy in the performance
of this strategy is the presence of the plastic board and shell in
our prototype setup, which “masks” the resonant frequencies
of the human body. Unfortunately, in the context of IMD
pairing, the existence of such components (eg, a plastic or metal
device housing) is inevitable.
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Figure 2. Performance of the preliminary test (A) with 1 peak (72%), (B) with 2 peaks (17%), (C) with 3 peaks (2%), and (D) the noisy data (9%).
IMD: implantable medical device.

Nevertheless, the above test implies the natural randomness
inherent in the user attachment motions. Intuitively, we want
to test if a constant-frequency vibration is a viable option. We
program the motor to emit a 50 Hz vibration for 1 s per cycle,
and the same researcher executes 100 cycles using our prototype.
For each cycle, we collect z-axis acceleration data from both
devices and generate the frequency spectrum using FFT. Figure
3 shows an example of the frequency spectrum in one cycle. It
was observed that 2 devices can obtain very similar data,
especially for a prominent amplitude peak. Figure 4 illustrates

the spectrum change of the IMD over ten consecutive cycles.
Each row in this figure corresponds to a frequency spectrum
obtained in 1 cycle, and the bright spots indicate the prominent
peaks on the curve. We observe that the peak locations vary
around 50 Hz, suggesting the presence of a degree of
randomness. These findings indicate that providing an
excitement of a constant-frequency vibration, the prominent
peak location in the frequency domain is a potentially qualified
shared entropy source between the IMD and the external device,
which can be used for pairing purposes.

Figure 3. Frequency spectrum given a constant vibration (50 Hz, 1 s) in one cycle. IMD: implantable medical device.
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Figure 4. Frequency spectrum of IMD, given a constant vibration (50 Hz, 1 s) in 10 consecutive cycles. IMD: implantable medical device.

Signal Processing Workflow
Figure 5 shows the workflow of our pairing technique (assuming
the IMD is a pacemaker). In each cycle, the patient holds the

external device and attaches it on their chest. During the
attachment, the motor vibrates, and both the IMD and the
external device measure a pair of z-axis acceleration data.

Figure 5. An overview of our pairing technique. acc: accelerometer; FFT: fast Fourier transform; PAKE: password-authenticated key agreement.

To remove the noise of the direct current component, each
device subtracts the acceleration data with its mean value. In
addition, when the vibration motor is switched on from standstill
or switched off, the generated vibration signal is not amplified
or attenuated immediately but with a slow and damped response
[26,27]. This means that the transition parts (ie, 2 ends) of a
vibration signal segment are often noisy. This is addressed by
applying a Hanning window on the data.

Subsequently, each device applies FFT on the acceleration signal
to obtain the frequency spectrum. The frequency range of 0 to
20 Hz is then excluded to avoid the effects of noisy motion
artifacts like human breathing movements, as well as ambient
vibrations present in the patient’s environment [47]. As
mentioned, there is a prominent amplitude peak in the frequency
spectrum. In order to detect the location of this peak, each device
simply traverses the frequency domain to find the frequency
value corresponding to the maximum amplitude.

Based on the above procedure, after the user completes a pairing
(ie, a run) by repeating the attachment for several times, each
of the 2 devices will possess a sequence of peak locations.
However, these sequences may not be exactly the same due to
the measurement noise and human error (eg, hand wobbles).
To resolve this, the peak locations are encoded into binary
format using Gray code [48]. This coding method ensures

minimal bit mismatches if the discrepant peak locations are
very close on 2 devices, which is the case of our technique.
Then, we use a cryptographic algorithm known as a fuzzy
extractor [11,49] to reconcile any remaining bit differences
between the 2 bitstrings without revealing the secret itself. If
the rate of bit mismatches falls within the error-correcting
capability of the fuzzy extractor, the IMD and the external
device agree on an identical bitstring as a shared secret.

Adversary Model
Given our review of relevant literature about IMD pairing
techniques [3,12,13,16,19,40,50], we assume a sophisticated
adversary following the Dolev-Yao model [51] who has full
knowledge of our pairing protocol, has full control over the
wireless communication channels, and can be a
man-in-the-middle (MITM) attacker by intercepting legitimate
devices’ signals and sending their own messages instead. In
particular, the adversary can launch the following attacks
relevant in the context of our pairing technique: (1)
impersonation attack: the adversary uses a sequence of peak
locations in an attempt to impersonate a legitimate device. They
could succeed if their sequence closely matches the one
measured by the IMD or external device. (2) Brute-Force attack:
the adversary brute-forces possible peak location sequences and
launches MITM attacks to decipher and manipulate the
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communication between legitimate devices. The brute force can
be done online, that is, during the pairing process, the adversary
tries every possible sequence until they hit a correct one.
Alternatively, this can be done offline, where the adversary
records the pairing traffic and performs offline analysis to crack
the secret after pairing. (3) Acoustic eavesdropping: The
adversary may also attempt to eavesdrop on the vibration signals
using a microphone near the patient to reveal the secret.

Experimental Setup
The proposed pairing technique was validated through the design
and testing of the prototype in a user study. It was assumed that

the IMD is a pacemaker implanted beneath the chest and
considered the external handheld device to resemble a
smartphone with a plastic casing. Moreover, both devices
contain an accelerometer, and the external device is equipped
with a vibration motor.

Prototype Implementation
We show an overview of our prototype in Figure 6A. The
prototype consists of three main parts:

Figure 6. Experiment setup. (A) Prototype overview. (B) Hardware setup. (C) Chest simulator. (D) Participant in user study.

IMD
We use an InvenSense triaxial MPU-6050 accelerometer [52]
to simulate a pacemaker and house it inside a 3D-printed case
(Acc2 in Figure 6B). An Arduino Nano 33 BLE board interfaces
with the sensor, which contains a 32-bit Cortex-M
microcontroller and closely resembles the capabilities of an
IMD [53]. The sampling rate of the accelerometer is set at 250
Hz, the same as in previous work [31].

External Device (the Vibration Transmitter)
We do not directly use a smartphone as the external device
because the most common operating systems on mobile
devices—Android and iOS systems do not provide an API
interface for direct control of the vibration motor frequency.

Instead, we use an eccentric rotating mass type vibration motor
[54], along with another MPU-6050 sensor (Acc1 in Figure 6B)
to simulate an external device. These components are mounted
on an 11 cm × 7 cm × 0.5 cm plastic cuboid board, replicating
the size and shape of a typical smartphone.

We use a separate Arduino Nano 33 BLE board to control both
the vibration motor and the accelerometer. Particularly, this
Arduino board connects to the vibration motor and supplies
voltage to it. By using the pulse width modulation technique
[31], the board can adjust the driving voltage, allowing the
vibration motor’s frequency to be altered accordingly. In
addition, the accelerometer is set to a sampling rate of 250 Hz.
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Chest Environment
Given that pacemakers are embedded inside the body, it is
important for our experiments to mimic an environment that
resembles the human chest. We adopt the design in previous
research [5,26,40] and use 1 cm layer of bacon and 2 cm layer
of lean ground beef to replicate the chest’s physical properties
(see Figure 6C). The 1 cm depth is a standard depth for
pacemaker implantation [55]. In our study, we embed our
pacemaker simulator within the meat layers, which are kept
inside a food storage bag at room temperature. This bag of meat
is subsequently placed in a pocket stitched onto an elastic chest
band, positioned around an area corresponding to the human
heart’s location (see Figure 6B). Participants were asked to wear
the chest strap throughout the user study to mimic the conditions
of pacemaker users.

Participant Recruitment
We first conducted a pilot study with 6 individuals (ages 22 to
32 years, 4 females and 2 males) to identify and resolve any
problems with our experimental setup. Subsequently, we
recruited 24 participants for the main study, including 11 males
and 13 females of ages ranging from 18 to 52.

Moreover, given that patients who carry IMDs are often seniors
[56], we also conducted a co-design workshop with 2 senior
individuals who had intimate knowledge and experience with
pacemakers: (1) a 74-year-old female cardiology doctor and (2)
a 79-year-old male pacemaker patient.

Experiment Procedure
In total, 2 essential vibration settings, frequency, and duration,
were manipulated to measure the effect on pairing performance.
Based on experiences gained from our pilot study, we set
vibration motor frequencies to 50 Hz, 75 Hz, and 100 Hz, and
vibration durations to 400 ms, 700 ms, and 1000 ms. The 9
frequency–duration combinations enabled successful pairing
and avoided excessive participant workload.

During the user study, participants were instructed to wear our
prototype and sit on a chair. Then they need to grasp the external
device simulator and repeatedly attach it to the black pocket
area of the chest strap, as shown in Figure 6D. They were
advised to attach the device in a random manner (such as to
random positions), and (in each cycle) stay attached until the
vibration had completely ceased. Before starting the data
collection, participants were asked to acquaint themselves with
the prototype to understand the pairing process. This
introductory process took under a minute for all participants.
Subsequently, for each of the 9 vibration conditions, participants
were asked to conduct the attachment for 5 consecutive cycles
as one run and complete 4 such runs in total. The order in which
participants used different vibration frequencies was
counterbalanced.

At the end of the user study, participants were requested to fill
out a standard system usability scale (SUS) questionnaire [57]
to assess the usability of the pairing method. We then conducted
an interview with them to gather further insights. Full details
of the questionnaire and interview are given in Multimedia
Appendix 1.

During the co-design workshop, we asked the two senior
participants to try our prototype for only 6 runs (considering
their physical conditions) and provide their opinions and advice.

Evaluation Metrics
Our study focuses on certain metrics to evaluate the pairing
performance.

Accuracy
The accuracy of a pairing system is typically measured by false
rejection rate (FRR) and false acceptance rate (FAR) [43,58,59].
FRR is the frequency at which the pairing between legitimate
devices is incorrectly rejected. FAR indicates the frequency that
a pair of illegitimate devices (such as the IMD and a malicious
external device) is mistakenly authorized and gauges the
resilience of pairing against impersonation attacks. A high FRR
and FAR could lead to poor usability and security, respectively.
These 2 metrics are calculated as follows:

FRR=Number of rejected pairing between legitmate devicesAll pairing attempts between legitmate devices

FAR=Number of authorized pairing between illegitmate devicesAll pairing attempts between illegitmate devices

During the pairing process, there is often a mismatch (denoted
by d) between the readings of the IMD and the external device
due to inherent noises. As aforementioned, we use a fuzzy
extractor scheme to correct the mismatch. At the core of this
method is the selection of a threshold (denoted by Thr): the
mismatch can be rectified (and thus the pairing is accepted) if
d≤Thr; otherwise, the pairing is rejected. As such, one can
balance FRR and FAR by adjusting Thr. Because security is of
utmost importance for the IMDs, we set a smaller Thr to ensure
FAR=0 and use the corresponding lowest FRR to represent
accuracy.

Security
The FAR metric evaluates the system’s security against
impersonation attacks. The resilience against brute-force attacks
is determined by the randomness level of the attachment
motions, which can be measured in two primary ways: (1) By
the National Institute of Standards and Technology (NIST)
statistical test suite [60] that provides a comprehensive
randomness assessment of a random number generator, a method
widely recognized within the cybersecurity community
[19,31,43]. (2) By measuring Shannon entropy, which quantifies
the amount of information contained in each motion event
[17,31,61,62].

Usability
Usability is assessed based on the results from our SUS
questionnaires and interviews.

Ethical Considerations
This study involved human participants and underwent thorough
ethical review, particularly given the potential involvement of
older participants. Ethics approval was obtained from the
relevant institutions prior to participant recruitment and user
study, in accordance with institutional regulations (the
University of Melbourne: approved by the Human Ethics
Committee, application number: 2022-24851-31088-3; the
University of Birmingham: approved by the Science,
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Technology, Engineering and Mathematics Ethics Committee,
application number: ERN_2022‐0255).

Participants were recruited via online advertisements and were
offered US $30 for their time. All participants provided informed
consent prior to participation. The data collected during the user
study were specifically processed to ensure anonymity and
untraceability of identity and were securely stored in the
University of Melbourne’s data center. All participant data were
anonymized by removing personally identifiable information
before analysis, and participants were assigned unique
identification codes to ensure confidentiality. The entire user
study process was overseen by a departmental delegate of the
university’s ethics committee, with all study details reported to
them on a weekly basis.

Results

Performance of the Pairing Technique
Figure 7 shows the distribution of all peak locations (ie, the
secret) collected by the IMD from 24 participants. We observe
that for a specific vibration frequency, such as 50 Hz, the peak
locations range between 30 and 70 Hz and generally
approximate a normal distribution centered by the motor’s
frequency, suggesting a certain degree of randomness from the
user. Additionally, it appears that the distribution is slightly
flatter (thereby the level of randomness increases) with an
increase in vibration frequency. Notably, the possible options
for peak locations in the frequency domain are not continuous
due to the sample-based nature of the time domain acceleration
data.

Figure 7. Distribution of peak location measured by the IMD among 24 participants. The black dashed lines indicate frequencies of the vibration motor.
IMD: implantable medical device.

Mismatch is calculated by subtracting peak location values
between the IMD and the external device and represents the
level of noise and error. The mismatch distribution for our
prototype, as illustrated in Figure 8A, resembles a normal
distribution centered around a mean near zero and with a
standard deviation of 2.8 Hz. This implies that user-induced
errors and sensor noise are limited. Note that this result considers
situations where participants did not strictly follow our pairing

norms during the study. For instance, there were a number of
occasions when participants released the external device while
it was still vibrating. Such cases were not excluded from our
dataset as they present a more realistic use scenario; otherwise,
we expect that the mismatch levels would be even lower. On
the other hand, Figure 8B and C show that the degree of
mismatch does not have a straightforward correlation with either
the vibration frequency or the duration.

Figure 8. Mismatch between the IMD and the external device. (A) Mismatch of all data among participants. (B) Mismatch with vibration frequency.
(C) Mismatch with vibration time. IMD: implantable medical device.
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Experimental Evaluation

Accuracy Assessment
For each of the 9 vibration conditions, we build two sets to
measure accuracy:

Set I comprises 96 (=24 × 4) pairs of peak locations, each with
a length of 5 (since we collected 5 cycles per run). All the pairs
in Set I come from legitimate pairings of an IMD and an external
device. This set calculates the FRR metric as aforementioned.

Set II has 96 pairs of peak locations (the same size as Set I),
where each pair is created by randomly mixing data from
illegitimate device pairings. This set calculates the FAR metric
as aforementioned.

An effective pairing technique should maximize the acceptance
of pairs from Set I (ie, low FRR), while minimizing the
acceptance of pairs from Set II (ie, low FAR). Note that not all
five motions are necessarily needed, ie, we can vary the length
of runs ranging from 1 to 5, by truncating the initial elements.

The following figures show the accuracy of our prototype across
various numbers of attachment motions performed. FAR is 0
in all cases, and we consider that an FRR below 5% signifies
good usability [43,61]. As expected, increasing the number of
motions consistently improves the accuracy of the pairing.
Moreover, given a specific vibration frequency, longer vibration
duration leads to higher accuracy, which will be further
discussed in the coming sections. An additional observation is
that with a fixed vibration duration and number of motions, the
FRR tends to drop as the vibration frequency rises.

Overall, the red circles in the above figures indicate the 5 out
of 9 vibration conditions that offer acceptable accuracy levels
(with FAR=0 and FRR <5%). For example, a vibration condition
of 50 Hz for 1000 ms per cycle requires the user to execute five
attachments to achieve pairing with FAR=0 and FRR=3.7%
(see Figure 9A). Note that for other vibration conditions, more
than five motions are likely to also yield satisfactory accuracy.
However, this would demand more effort from the user, which
could harm usability and even safety in emergencies.

Figure 9. FRR versus number of attachments under different vibration frequencies: (A) 50 Hz, (B) 75 Hz, and (C) 100 Hz. FRR: false rejection rate.

Security Assessment
We refer to previous work [19,31,43] to assess the randomness
of the secret generated by our technique: For each of the
vibration conditions, we take the floor of the (fractional) entropy
value for that specific setting (refer to Table 2) and extract that
number of least significant bits from each peak location value.
Subsequently, we combine these bitstrings from all vibration
conditions (following the order in our user study) as a single

8.6 kbits string and evaluate its randomness using the NIST
statistical test suite [60]. The full results are given in Table 3.
The outputs of the NIST tests are P values that represent the
probability the data is generated by an eligible random number
generator. If a P value is smaller than a threshold (usually .01
[19,31,43]), the randomness hypothesis is rejected. Table 3
shows that all P values are larger than .01 and hence pass the
NIST tests.

Table . Entropy of each attachment motion (unit is bit).

100 Hz75 Hz50 Hz

3.873.122.61400 ms

4.153.863.03700 ms

4.484.013.151000 ms
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Table . NIST statistical test results for attachment motions.

P valueTestP valueTest

.14Block frequency.88Frequency

.10Longest runs.11Runs

.62FFTa.17Binary matrix rank

.38Overlapping template.16Non-overlap template

.72Linear complexity.64Serial (P value1)

.18Approximate entropy.68Serial (P value2)

.22Random excursions.19Cumulative sums (forward)

.40Random excursions var..26Cumulative sums (reverse)

aFFT: fast Fourier transform.

Table 2 shows the entropy value contained in each motion across
different vibration conditions. Overall, a single motion in our
study carries an entropy from 2.61 to 4.48 bits. For a certain
vibration frequency, the entropy grows with higher vibration
durations. This is because extended measurements yield larger
sample size and frequency resolution, enabling more possible
peak locations and thus higher entropy. Furthermore, for a given
vibration duration, the entropy value rises with an increase in
vibration frequency. We leave the study of this phenomenon to
future work. Nevertheless, the choice of vibration frequency is
often limited by the capability of the motor and accelerometer
in practice.

It is noteworthy that some entropy is sacrificed when rectifying
mismatches between the 2 devices. Here, we make a preliminary
estimation of the entropy loss: Using the encoding method in
[43] on our dataset, the maximum bit mismatch rates (ie,
percentage of different bits between two devices) for our
prototype vary between 0.7% and 3.0% for different vibration
conditions. This can be addressed by a fuzzy extractor with (31,
29) Reed-Solomon code that has a 3.23% error tolerance [11,63],
potentially leading to an entropy loss of 6.5%.

Usability Assessment
The average SUS score for our pairing technique is 73.6 (SD
18.14), which generally passes the typical benchmark value of
68 for “good usability” [57]. It is important to note that the SUS
questionnaires were completed after an extensive data collection
process including a repetition of 180 attachment motions. We
expect that users carrying out a more realistic task would report
even higher usability scores.

We gained further insights into usability from the interviews.
Over half of the participants (15 out of 24) explicitly indicated
that our technique was easy to use. For example, one participant
(p8) commented, “The attachment doesn’t require me to think.
This is an advantage. I don’t know what is happening here, but
I prefer it as it requires less effort,” and another participant (p13)
remarked, “It’s easy. You don’t really have to move that much,
and you can do it while you’re sitting as well.” Some
participants expressed their preference for the vibrational
feedback. One participant (p1) said, “The vibration is good
feedback, and I don’t have to visually see anything,” and another
participant (p22) noted, “The process is like listen to my heart.”

In addition, some participants conveyed that they found the
pairing process to be enjoyable and fun. For example, 3
participants described the vibration as a hand massage and 2
compared the pairing activity to using a stethoscope.

Most participants (18 out of 24) experienced no discomfort
during the study. Nonetheless, the rest of the 6 people did report
some discomfort at the end of the study. In total, 4 participants
noted that the intensity of the vibrations was excessive; for
example, one participant (p4) stated, “I feel like my entire chest
is vibrating, and I don’t like the feeling.” This concern might
be resolved by selecting a vibration motor with lower amplitude.
In addition, 4 participants reported feeling fatigued after the
data collection process, but also noted this was due to the
repetition of 180 attachments and that less motions will alleviate
this issue. Furthermore, one participant (p3) criticized the
prototype design and mentioned that the external device
simulator was too big. We leave the refinement of our prototype
as future work.

Valuable insights were also gathered from the co-design
workshop. Both participants initially found the vibration-based
pairing technique interesting and somewhat surprising, but they
quickly became accustomed to it and could easily complete the
remaining required motions. They both explicitly noted that the
pairing operations were easy to learn and perform. The
cardiology doctor described the pairing operation as “using a
stethoscope” and confirmed that the vibration signal in the
experiment would pose minimal risks to patients with IMDs.
Both participants also appreciated the tactile feedback from the
vibrations. The doctor commented, “The vibration tells you if
you’re on track,” while the pacemaker patient added, “The
vibration encourages me towards the end of pairing.” However,
both participants pointed out that the prototype used in the study
was bulky and heavy—an improvement we leave for future
work. Overall, both participants found the pairing experience
acceptable and expressed willingness to use it in real-world
scenarios if required.

Optimal Setups
Based on our analysis so far, we summarize all pairing
configurations that (1) exhibit high accuracy with zero FAR
and FRR under 5%, and (2) generate a level of entropy
surpassing a standard four-digit PIN code (with an entropy of
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13.3 bits), which is commonly used in pairing of Bluetooth
technologies and other security systems [8]. All viable settings
that meet these requirements (with minimum required number
of motions) are shown in Table 4. Note that the time values
include both the vibration duration and an additional
“preparation time” necessary for a user to detach and then

reattach the external device to their body; in our study, this
interval was 0.5 seconds.

In summary, we find that with a vibration configuration set at
100 Hz and 700 ms, a user can carry out 4 attachment motions
to enable the exchange of a secret with (FAR, FRR)=(0, 0.6%)
and entropy of 15.5 bits. This process can be completed in a
mere 4.8 seconds.

Table . Summary of well-performing pairing configurations.

Time (s)EntropyFARa, FRRb (%)Motion, nVibration condition

7.514.70, 3.7550 Hz, 1000 ms

618.00, 2.2575 Hz, 700 ms

615.00, 3.5475 Hz, 1000 ms

4.815.50, 0.64100 Hz, 700 ms

616.80, 0.64100 Hz, 1000 ms

aFAR: false acceptance rate.
bFRR: false rejection rate.

Discussion

Principal Findings
Our work introduces a new and reliable vibration-based pairing
approach for IMDs, which only requires a low sampling rate
accelerometer and relies on the natural randomness inherent in
human behavior. We empirically validate the feasibility of our
technique through a user study. Overall, we find that the
workload required to bootstrap a secure pairing is minimal, and
we estimate that it requires the user to attach a device to the
body only 4 times in roughly 5 s. With an FAR of 0 and an FRR
of 0.6%, the risk posed by adversaries is low, and legitimate
users will likely experience very few failures.

As mentioned in the related work section, the use of a PAKE
eliminates offline brute-force attacks. In addition, it also restricts
the number of online MITM attempts. Typically, the adversary
has a very limited period to obtain the secret and usually only
one chance for a MITM attack [44]. As an estimate, 4 motions
with 15.5 bits entropy reduce the adversary’s success probability
on online brute-force attacks to 0.002% [42] (assuming the
adversary is limited to guessing only). Therefore, we believe
these motions serve as adequate input for a PAKE. If needed,
higher entropy can be easily achieved by performing more
motions.

Our user study confirmed the high usability of our pairing
method. Participants found it straightforward to understand,
learn, and perform. The process of attaching the device is very
intuitive, like using a stethoscope as described by the
participants. Our technique also brings about certain
entertainment to users, being both relaxing and enjoyable (such
as described as hand massage). This could be advantageous in
certain therapeutic treatments, where physical interaction can
enhance memory, concentration, and mental health [64].
Moreover, it is worth noting that for patients who are unable
(eg, due to disabilities or unconsciousness in emergencies) or
unwilling to execute the motions, our pairing allows medical
practitioners or caregivers (who have received appropriate

training) to execute the motions on the patient’s body on their
behalf.

Our proposed method only requires an accelerometer, a
component already present in the latest generation IMDs
[23-25]. The signal processing and other cryptographic
algorithms for the IMD are computationally lightweight and
work efficiently on 32-bit Cortex-M microcontrollers, which
closely resemble IMDs’ capabilities [11,43,53]. Our approach
solely depends on vibration at a constant frequency, which can
be easily implemented on readily available consumer devices
such as smartphones and tablets. This is beneficial considering
that medical device companies already equip the IMDs with
the ability to connect to personal mobile devices [65]. Moreover,
while our work assumes that the IMD is a pacemaker, we argue
that the technique can be easily transferred to other types of
IMDs or even external wearables. Furthermore, our proposed
pairing technique incurs minimal costs. In our prototype
implementation, the combined cost of the vibration motor and
accelerometer was under $30, and this cost could be further
reduced during mass production.

Comparison With Prior Vibration-Based Work
Our pairing technique significantly relaxes the demands on the
IMD’s sampling capability. We use an accelerometer operating
at 250 Hz, in contrast to previous work that often relies on
sampling rates of several thousand Hz or more. In particular,
the sampling rate can be further decreased by using lower
vibration frequencies. For example, with a 50 Hz vibration, the
frequency domain peaks cluster between 30 and 70 Hz (see
Figure 7), indicating that an accelerometer with a 140 Hz
maximum is adequate.

Conventional approaches typically try to avoid user-generated
noise. For instance, the user needs to ensure stable contact
between devices during data transmission. Conversely, our
method harnesses user noise and benefits from it as a source of
entropy. Indeed, our dataset includes many instances with
significant user error, like when a participant releases the
external device before the vibration completely stops. In such
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scenarios, the IMD only captures a portion of the vibration
within its measurement window. Despite this, our technique
maintains high reliability.

Furthermore, previous work that encodes secrets into vibrations
often demands precise time synchronization in milliseconds
between devices, which itself is a challenging task for
resource-constrained devices [66]. In contrast, our approach
allows for more lenient synchronization—as long as the two
devices capture similar vibration signals within most of their
measurement windows, the peak locations effectively match.
This aspect greatly enhances the feasibility of our technique for
IMDs.

Notably, our data throughput is significantly lower than
[26,27,29,32] and is comparable with [31,33]. Considering the
scenario of transmitting a 4-digit PIN code for use in a PAKE,
previous work [26,27,29,32] only needs 0.0004 to 0.665 s, which
is much faster than the 4.8 seconds required by our method.
However, this rapid transmission, while advantageous in many
daily applications, may not be suitable for IMD pairing contexts,
where the vibration serves not only for secret exchange but also
as a crucial cue for patients to be aware of the pairing process.
In contrast, we argue that a duration of 4.8 s strikes a balance:
it is long enough to be noticeable, yet short enough to maintain
usability and safety in emergencies.

Considerations of Health Implications With Vibrations
Our proposed pairing technique incorporates vibration, a feature
that naturally raises concerns regarding the potential long-term
health impacts on patients. However, current research indicates
that only long-term and excessive exposure to vibrations is
linked to adverse effects on mental and physical health [67,68].
In contrast, our method involves brief vibrational interactions,
which last less than 5 seconds and may not occur every day.
This limited exposure could reduce the likelihood of the negative
health consequences.

Resilience to Acoustic Eavesdropping Attacks
Vibration is essentially a low-frequency audio signal, which
inevitably emits acoustic side-channel information that might
be eavesdropped using a microphone. This is particularly
threatening for methods that encode secrets within vibration
signals. For example, Halevi and Saxena [69] found that secrets
transmitted this way could be severely compromised using an

off-the-shelf microphone from a few meters away. To mitigate
this, Kim et al [26] and Anand and Saxena [70,71] proposed
using Gaussian white noise or masking signals to obscure the
acoustic leaks. These approaches have shown promise in
reducing side-channel vulnerabilities against advanced
eavesdropping attacks.

In comparison, as shown in [31], the risks associated with
eavesdropping are significantly reduced when the vibration is
not the carrier of the secret. Our research aligns with this
guideline, using a constant vibration signal across sessions to
minimize acoustic leakage. In addition, existing countermeasures
[26,70,71] are also applicable to our method.

Limitations
Our work has certain limitations. Our experiments did not
explicitly recruit participants who were IMD patients (mainly
due to ethics constraints of the institutions where the user study
was conducted). Further validation of our approach with these
patient groups is necessary.

We designed our prototype in line with previous work in the
IMD security community [5,26,40]. However, there is room for
enhancement, particularly in its size and weight. Future research
should develop more skin-conformable and miniaturized
prototypes.

Another aspect of future work is to empirically evaluate the
susceptibility of our pairing technique against microphone-based
eavesdropping attacks at a distance.

Conclusion
In this paper, we explore the potential of leveraging vibration
to pair with an IMD. We propose a novel technique that uses a
straightforward constant-frequency vibration to extract secrets
from natural and random human motor behavior for device
pairing. We implement and validate our technique through a
user study. Overall, we show that it is feasible to establish a
cryptographic key in 5 s with high usability, based only on
standard vibration motors and accelerometers with low sampling
capabilities. The ubiquity of accelerometers in today’s
commercial smart devices and IMDs maximizes the chance of
acceptance of our design. In general, we hope that our work
will serve as a reference for pairing with resource-constrained
devices using vibrations in body area networks.

 

Acknowledgments
MZ is funded by the Priestley PhD Scholarship program organized by the University of Melbourne and University of Birmingham.

Data Availability
The data collected from the user study and the software used in our prototype are publicly available at GitHub [72]. All data have
been anonymized in accordance with the requirements of the institutional ethics committees to protect participant privacy.
Additional supporting documentations are included in the repository to facilitate reuse.

Conflicts of Interest
None declared.

JMIR Biomed Eng 2025 | vol. 10 | e57091 | p.84https://biomedeng.jmir.org/2025/1/e57091
(page number not for citation purposes)

Zhang et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Multimedia Appendix 1
Questionnaire and interview design.
[DOCX File, 13 KB - biomedeng_v10i1e57091_app1.docx ]

References
1. Global number of pacemakers in 2016 and a forecast for 2023. Statista. 2022. URL: https://www.statista.com/statistics/

800794/pacemakers [accessed 2025-08-18]
2. Halperin D, Heydt-Benjamin TS, Fu K, Kohno T, Maisel WH. Security and privacy for implantable medical devices. IEEE

Pervasive Comput 2008;7(1):30-39. [doi: 10.1109/MPRV.2008.16]
3. Marin E, Singelée D, Garcia FD, Chothia T, Willems R, Preneel B. On the (in)security of the latest generation implantable

cardiac defibrillators and how to secure them. Presented at: ACSAC ’16: 2016 Annual Computer Security Applications
Conference; Dec 5-8, 2016; Los Angeles, California, USA. [doi: 10.1145/2991079.2991094]

4. Marin E, Singelée D, Yang B, Verbauwhede I, Preneel B. On the feasibility of cryptography for a wireless insulin pump
system. Presented at: CODASPY’16: Sixth ACM Conference on Data and Application Security and Privacy; Mar 9-11,
2016; New Orleans, Louisiana, USA. [doi: 10.1145/2857705.2857746]

5. Marin E, Singelée D, Yang B, et al. Securing wireless neurostimulators. Presented at: CODASPY ’18: Eighth ACM
Conference on Data and Application Security and Privacy; Mar 19-21, 2018; Tempe, AZ, USA. [doi:
10.1145/3176258.3176310]

6. Reverberi L, Oswald D. Breaking (and fixing) a widely used continuous glucose monitoring system. Presented at: 11th
USENIX Workshop on Offensive Technologies; Aug 14-15, 2017; Vancouver, Canada.

7. Daemen J, Rijmen V. AES proposal: Rijndael. CMU School of Computer Science. 1999. URL: https://www.cs.cmu.edu/
afs/cs/project/pscico-guyb/realworld/www/docs/rijndael.pdf [accessed 2025-08-18]

8. Bisdikian C. An overview of the Bluetooth wireless technology. IEEE Commun Mag 2001;39(12):86-94. [doi:
10.1109/35.968817]

9. Rocha EA, Cunha GS, Tavares AB, et al. Syncope in patients with cardiac pacemakers. Braz J Cardiovasc Surg 2021 Feb
1;36(1):18-24. [doi: 10.21470/1678-9741-2020-0076] [Medline: 33594860]

10. Adams C, Lloyd S. Understanding PKI: Concepts, Standards, and Deployment Considerations: Addison-Wesley Professional;
2003.

11. Zhang M, Marin E, Oswald D, Singelée D. FuzzyKey: comparing fuzzy cryptographic primitives on resource-constrained
devices. In: Grosso V, Pöppelmann T, editors. In Smart Card Research and Advanced Applications: Springer International
Publishing; 2022:289-309.

12. Rushanan M, Rubin AD, Kune DF, Swanson CM. SoK: security and privacy in implantable medical devices and body area
networks. In: 2014 IEEE Symposium on Security and Privacy (SP): IEEE; 2014:524-539. [doi: 10.1109/SP.2014.40]

13. Rasmussen KB, Castelluccia C, Heydt-Benjamin TS, Capkun S. Proximity-based access control for implantable medical
devices. Presented at: CCS ’09; Nov 9-13, 2009; Chicago, Illinois, USA. [doi: 10.1145/1653662.1653712]

14. Tomlinson WJ, Banou S, Yu C, Nogueira M, Chowdhury KR. Secure on-skin biometric signal transmission using galvanic
coupling. In: IEEE INFOCOM 2019 - IEEE Conference on Computer Communications: IEEE; 2019:1135-1143. [doi:
10.1109/INFOCOM.2019.8737540]

15. Denning T, Fu K, Kohno.2008 T. Absence makes the heart grow fonder: new directions for implantable medical device
security. Presented at: HOTSEC’08: Proceedings of the 3rd conference on Hot topics in security; Jul 29, 2008; San Jose,
CA, USA.

16. Gollakota S, Hassanieh H, Ransford B, Katabi D, Fu K. They can hear your heartbeats: non-invasive security for implantable
medical devices. In: Proceedings of the ACM SIGCOMM 2011 Conference: Association for Computing Machinery;
2011:2-13. [doi: 10.1145/2018436.2018438]

17. Lin Q, Xu W, Liu J, et al. H2B: heartbeat-based secret key generation using piezo vibration sensors. In: Proceedings of the
18th International Conference on Information Processing in Sensor Networks: Association for Computing Machinery;
2019:265-276. [doi: 10.1145/3302506.3310406]

18. Poon CCY. A novel biometrics method to secure wireless body area sensor networks for telemedicine and m-health. IEEE
Commun Mag 2006;44(4):73-81. [doi: 10.1109/MCOM.2006.1632652]

19. Rostami M, Juels A, Koushanfar F. Heart-to-heart (H2H): authentication for implanted medical devices. In: Proceedings
of Conference on Computer and Communications Security: Association for Computing Machinery; 2013:1099-1112. [doi:
10.1145/2508859.2516658]

20. Marin E, Argones Rúa E, Singelée D, Preneel B. On the difficulty of using patient’s physiological signals in cryptographic
protocols. In: Proceedings of the 24th ACM Symposium on Access Control Models and Technologies: Association for
Computing Machinery; 2019:113-122. [doi: 10.1145/3322431.3325099]

21. Dierks T, Allen C. The TLS protocol version 1.0. : The Internet Society; 1999.
22. Ryu J. Psychophysical model for vibrotactile rendering in mobile devices. Presence (Camb) 2010:364-387. [doi:

10.1162/PRES_a_00011]

JMIR Biomed Eng 2025 | vol. 10 | e57091 | p.85https://biomedeng.jmir.org/2025/1/e57091
(page number not for citation purposes)

Zhang et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=biomedeng_v10i1e57091_app1.docx&filename=2a1ee301-8205-11f0-a967-ad71a35aeeaa.docx
https://jmir.org/api/download?alt_name=biomedeng_v10i1e57091_app1.docx&filename=2a1ee301-8205-11f0-a967-ad71a35aeeaa.docx
https://www.statista.com/statistics/800794/pacemakers
https://www.statista.com/statistics/800794/pacemakers
http://dx.doi.org/10.1109/MPRV.2008.16
http://dx.doi.org/10.1145/2991079.2991094
http://dx.doi.org/10.1145/2857705.2857746
http://dx.doi.org/10.1145/3176258.3176310
https://www.cs.cmu.edu/afs/cs/project/pscico-guyb/realworld/www/docs/rijndael.pdf
https://www.cs.cmu.edu/afs/cs/project/pscico-guyb/realworld/www/docs/rijndael.pdf
http://dx.doi.org/10.1109/35.968817
http://dx.doi.org/10.21470/1678-9741-2020-0076
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33594860&dopt=Abstract
http://dx.doi.org/10.1109/SP.2014.40
http://dx.doi.org/10.1145/1653662.1653712
http://dx.doi.org/10.1109/INFOCOM.2019.8737540
http://dx.doi.org/10.1145/2018436.2018438
http://dx.doi.org/10.1145/3302506.3310406
http://dx.doi.org/10.1109/MCOM.2006.1632652
http://dx.doi.org/10.1145/2508859.2516658
http://dx.doi.org/10.1145/3322431.3325099
http://dx.doi.org/10.1162/PRES_a_00011
http://www.w3.org/Style/XSL
http://www.renderx.com/


23. Rate response feature. Medtronic. 2016. URL: https://www.medtronicacademy.com/features/rate-response-rr-feature
[accessed 2025-08-18]

24. Pacing & defibrillation. Cardiocases. URL: https://www.cardiocases.com/en/pacingdefibrillation [accessed 2025-08-18]
25. Puppala VK, Hofeld BC, Anger A, et al. Pacemaker detected active minutes are superior to pedometer-based step counts

in measuring the response to physical activity counseling in sedentary older adults. BMC Geriatr 2020 May 6;20(1):162.
[doi: 10.1186/s12877-020-01559-y] [Medline: 32375676]

26. Kim Y, Lee WS, Raghunathan V, Jha NK, Raghunathan A. Vibration-based secure side channel for medical devices. In:
Proceedings of the 52nd Annual Design Automation Conference: Association for Computing Machinery; 2015:1-6. [doi:
10.1145/2744769.2744928]

27. Lee K, Raghunathan V, Raghunathan A, Kim Y. SYNCVIBE: fast and secure device pairing through physical vibration
on commodity smartphones. In: 2018 IEEE 36th International Conference on Computer Design (ICCD: IEEE; 2018:234-241.
[doi: 10.1109/ICCD.2018.00043]

28. Roy N, Choudhury RR. Ripple {II}: faster communication through physical vibration. Presented at: 13th USENIX Symposium
on Networked Systems Design and Implementation; Apr 2-5, 2013; Lombard, IL, USA.

29. Roy N, Gowda M, Choudhury RR. Ripple: communicating through physical vibration. Presented at: 12th USENIX
Symposium on Networked Systems Design and Implementation; Apr 25-27, 2012; San Jose.

30. Saxena N, Uddin MB, Voris J. Treat’em like other devices: user authentication of multiple personal RFID tags. In: SOUPS
2009, Vol. 9:1-1. [doi: 10.1145/1572532.1572573]

31. Wang W, Yang L, Zhang Q. Resonance-Based Secure Pairing for Wearables. IEEE Trans on Mobile Comput
2018;17(11):2607-2618. [doi: 10.1109/TMC.2018.2809736]

32. Xiao R, Mayer S, Harrison C. VibroComm: using commodity gyroscopes for vibroacoustic data reception. Presented at:
MobileHCI ’20; Oct 5-8, 2020; Oldenburg, Germany. [doi: 10.1145/3379503.3403540]

33. Saxena N, Uddin MB, Voris J, Asokan N. Vibrate-to-unlock: mobile phone assisted user authentication to multiple personal
RFID tags. In: 2011 IEEE International Conference on Pervasive Computing and Communications (PerCom): IEEE;
2011:181-188. [doi: 10.1109/PERCOM.2011.5767583]

34. de Vaal MH, Neville J, Scherman J, Zilla P, Litow M, Franz T. The in vivo assessment of mechanical loadings on pectoral
pacemaker implants. J Biomech 2010 Jun 18;43(9):1717-1722. [doi: 10.1016/j.jbiomech.2010.02.028] [Medline: 20202638]

35. Stenerson M, Cameron F, Payne SR, et al. The impact of accelerometer use in exercise-associated hypoglycemia prevention
in type 1 diabetes. J Diabetes Sci Technol 2015 Jan;9(1):80-85. [doi: 10.1177/1932296814551045] [Medline: 25231116]

36. Stenerson M, Cameron F, Wilson DM, et al. The impact of accelerometer and heart rate data on hypoglycemia mitigation
in type 1 diabetes. J Diabetes Sci Technol 2014 Jan;8(1):64-69. [doi: 10.1177/1932296813516208]

37. Khan A, Hammerla N, Mellor S, Plötz T. Optimising sampling rates for accelerometer-based human activity recognition.
Pattern Recognit Lett 2016 Apr;73:33-40. [doi: 10.1016/j.patrec.2016.01.001]

38. Adewusi SA, Rakheja S, Marcotte P, Boutin J. Vibration transmissibility characteristics of the human hand–arm system
under different postures, hand forces and excitation levels. J Sound Vib 2010 Jul;329(14):2953-2971. [doi:
10.1016/j.jsv.2010.02.001]

39. Adewusi S, Thomas M, Vu VH, Li W. Modal parameters of the human hand-arm using finite element and operational
modal analysis. Mechanics & Industry 2014;15(6):541-549. [doi: 10.1051/meca/2014060]

40. Halperin D, Heydt-Benjamin TS, Ransford B, et al. Pacemakers and implantable cardiac defibrillators: software radio
attacks and zero-power defenses. 2008 Presented at: 2008 IEEE Symposium on Security and Privacy p. 129-142.

41. Schechter S. Security that is meant to be skin deep: using ultraviolet micropigmentation to store emergency-access keys
for implantable medical devices. Presented at: 1st USENIX Workshop on Health Security and Privacy; Aug 10, 2010;
Washington, DC.

42. Katz J, Ostrovsky R, Yung M. Forward secrecy in password-only key exchange protocols. In: International Conference on
Security in Communication Networks: Springer; 2002:29-44. [doi: 10.1007/3-540-36413-7_3]

43. Li X, Zeng Q, Luo L, Luo T. T2Pair: secure and usable pairing for heterogeneous iot devices. In: Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security: Association for Computing Machinery;
2020:309-323. [doi: 10.1145/3372297.3417286]

44. Bellovin SM, Merritt M. Encrypted key exchange: password-based protocols secure against dictionary attacks. Presented
at: CCS93: 1st ACM Conference on Communications and Computing Security; Nov 3-5, 1993; Fairfax, Virginia, USA.
[doi: 10.1145/168588.168618]

45. Han J, Chung AJ, Sinha MK, et al. Do you feel what i hear? Enabling autonomous iot device pairing using different sensor
types. In: 2018 IEEE Symposium on Security and Privacy (SP): IEEE; 2018:836-852. [doi: 10.1109/SP.2018.00041]

46. Introduction. CMSIS. 2022. URL: https://www.keil.com/pack/doc/CMSIS/DSP/html/group RealFFT.html [accessed
2025-08-18]

47. Zhang L, Pathak PH, Wu M, Zhao Y, Mohapatra P. Accelword: energy efficient hotword detection through accelerometer.
Presented at: MobiSys’15: The 13th Annual International Conference on Mobile Systems, Applications, and Services; May
18-22, 2015; Florence Italy. [doi: 10.1145/2742647.2742658]

48. Doran RW. The gray code. J Univers Comput Sci 2007 [FREE Full text]

JMIR Biomed Eng 2025 | vol. 10 | e57091 | p.86https://biomedeng.jmir.org/2025/1/e57091
(page number not for citation purposes)

Zhang et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

https://www.medtronicacademy.com/features/rate-response-rr-feature
https://www.cardiocases.com/en/pacingdefibrillation
http://dx.doi.org/10.1186/s12877-020-01559-y
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32375676&dopt=Abstract
http://dx.doi.org/10.1145/2744769.2744928
http://dx.doi.org/10.1109/ICCD.2018.00043
http://dx.doi.org/10.1145/1572532.1572573
http://dx.doi.org/10.1109/TMC.2018.2809736
http://dx.doi.org/10.1145/3379503.3403540
http://dx.doi.org/10.1109/PERCOM.2011.5767583
http://dx.doi.org/10.1016/j.jbiomech.2010.02.028
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20202638&dopt=Abstract
http://dx.doi.org/10.1177/1932296814551045
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25231116&dopt=Abstract
http://dx.doi.org/10.1177/1932296813516208
http://dx.doi.org/10.1016/j.patrec.2016.01.001
http://dx.doi.org/10.1016/j.jsv.2010.02.001
http://dx.doi.org/10.1051/meca/2014060
http://dx.doi.org/10.1007/3-540-36413-7_3
http://dx.doi.org/10.1145/3372297.3417286
http://dx.doi.org/10.1145/168588.168618
http://dx.doi.org/10.1109/SP.2018.00041
https://www.keil.com/pack/doc/CMSIS/DSP/html/group%20RealFFT.html
http://dx.doi.org/10.1145/2742647.2742658
https://www.jucs.org/jucs_13_11/the_gray_code/jucs_13_11_1573_1597_doran.pdf
http://www.w3.org/Style/XSL
http://www.renderx.com/


49. Dodis Y, Ostrovsky R, Reyzin L, Smith A. Fuzzy extractors: how to generate strong keys from biometrics and other noisy
data. SIAM J Comput 2008 Jan;38(1):97-139. [doi: 10.1137/060651380]

50. Xu F, Qin Z, Tan CC, Wang B, Li Q. IMDGuard: securing implantable medical devices with the external wearable guardian.
Presented at: IEEE Annual Joint Conference: INFOCOM, IEEE Computer and Communications Societies; Apr 10-15,
2011; Shanghai, China.

51. Dolev D, Yao A. On the security of public key protocols. IEEE Trans Inform Theory 1983 Mar;29(2):198-208. [doi:
10.1109/TIT.1983.1056650]

52. MPU-6000 and MPU-6050 product specification revision 34. Adafruit. 2013. URL: https://cdn-learn.adafruit.com/downloads/
pdf/mpu6050-6-axis-accelerometer-and-gyro.pdf [accessed 2025-08-18]

53. Azure pacing system. Medtronic. 2022. URL: https://europe.medtronic.com/xd-en/healthcare-professionals/products/
cardiac-rhythm/pacemakers/azure.html [accessed 2025-08-18]

54. Model no307-103 vibration motor. Precision Microdrives. 2021. URL: https://catalogue.precisionmicrodrives.com/product/
datasheet/307-103-9mm-vibration-motor-25mm-type-datasheet.pdf [accessed 2025-08-18]

55. Petronio AS, Sinning JM, Van Mieghem N, et al. Optimal implantation depth and adherence to guidelines on permanent
pacing to improve the results of transcatheter aortic valve replacement with the Medtronic CoreValve System: The CoreValve
Prospective, International, Post-Market ADVANCE-II Study. JACC Cardiovasc Interv 2015 May;8(6):837-846. [doi:
10.1016/j.jcin.2015.02.005] [Medline: 25999108]

56. Lim WY, Prabhu S, Schilling RJ. Implantable cardiac electronic devices in the elderly population. Arrhythm Electrophysiol
Rev 2019 May 2;8(2):143-146. [doi: 10.15420/aer.2019.3.4]

57. Lewis JR. The System Usability Scale: past, present, and future. International Journal of Human–Computer Interaction
2018 Jul 3;34(7):577-590. [doi: 10.1080/10447318.2018.1455307]

58. Ahmed I, Ye Y, Bhattacharya S, et al. Checksum gestures: continuous gestures as an out-of-band channel for secure pairing.
Presented at: UbiComp ’15: The 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing; Sep
7-11, 2015; Osaka, Japan. [doi: 10.1145/2750858.2807521]

59. Li X, Yan F, Zuo F, Zeng Q, Luo L. Touch well before use: intuitive and secure authentication for iot devices. Presented
at: MobiCom ’19: The 25th Annual International Conference on Mobile Computing and Networking; Oct 21-25, 2019;
Los Cabos, Mexico. [doi: 10.1145/3300061.3345434]

60. Rukhin A, Soto J, Nechvatal J, et al. A statistical test suite for random and pseudorandom number generators for cryptographic
applications. : NIST; 2001.

61. Mayrhofer R, Gellersen H. Shake well before use: intuitive and secure pairing of mobile devices. IEEE Trans on Mobile
Comput 2009;8(6):792-806. [doi: 10.1109/TMC.2009.51]

62. Thomas M, Joy AT. Elements of Information Theory: Wiley-Interscience; 2006.
63. Lin S, Costello DJ. Error Control Coding: Prentice Hall; 2001, Vol. 2.
64. Hedayati M, Sum S, Hosseini SR, Faramarzi M, Pourhadi S. Investigating the effect of physical games on the memory and

attention of the elderly in adult day-care centers in Babol and Amol. Clin Interv Aging 2019;14:859-869. [doi:
10.2147/CIA.S196148] [Medline: 31190772]

65. MyCareLink heart mobile app. Medtronic. 2021. URL: https://global.medtronic.com/xg-en/mobileapps/patient-caregiver/
cardiac-monitoring/mycarelink-heart-app.html [accessed 2025-08-18]

66. Wang C, Sarsenbayeva Z, Luo C, Goncalves J, Kostakos V. Improving wearable sensor data quality using context markers.
Presented at: UbiComp ’19: The 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing; Sep
9-13, 2019; London United Kingdom. [doi: 10.1145/3341162.3349334]

67. Bovenzi M. Health effects of mechanical vibration. G Ital Med Lav Ergon 2005;27(1):58-64. [Medline: 15915675]
68. Seidel H. Selected health risks caused by long‐term, whole‐body vibration. American J Industrial Med 1993

Apr;23(4):589-604. [doi: 10.1002/ajim.4700230407]
69. Halevi T, Saxena N. On pairing constrained wireless devices based on secrecy of auxiliary channels: the case of acoustic

eavesdropping. Presented at: CCS ’10: 17th ACM Conference on Computer and Communications Security 2010; Oct 4-8,
2010; Chicago, Illinois, USA. [doi: 10.1145/1866307.1866319]

70. Anand SA, Saxena N. Coresident evil: noisy vibrational pairing in the face of co-located acoustic eavesdropping. Presented
at: WiSec ’17: 10th ACM Conference on Security & Privacy in Wireless and Mobile Networks; Jul 18-20, 2017; Boston,
Massachusetts. [doi: 10.1145/3098243.3098256]

71. Anand SA, Saxena N. Noisy vibrational pairing of IoT devices. IEEE Trans Dependable Secure Comput 2018:530-545
[FREE Full text]

72. MrZMN/vibkey. GitHub. URL: https://github.com/MrZMN/VibKey [accessed 2025-08-18]

Abbreviations
FAR: false acceptance rate
FFT: fast Fourier transform
FRR: false rejection rate

JMIR Biomed Eng 2025 | vol. 10 | e57091 | p.87https://biomedeng.jmir.org/2025/1/e57091
(page number not for citation purposes)

Zhang et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://dx.doi.org/10.1137/060651380
http://dx.doi.org/10.1109/TIT.1983.1056650
https://cdn-learn.adafruit.com/downloads/pdf/mpu6050-6-axis-accelerometer-and-gyro.pdf
https://cdn-learn.adafruit.com/downloads/pdf/mpu6050-6-axis-accelerometer-and-gyro.pdf
https://europe.medtronic.com/xd-en/healthcare-professionals/products/cardiac-rhythm/pacemakers/azure.html
https://europe.medtronic.com/xd-en/healthcare-professionals/products/cardiac-rhythm/pacemakers/azure.html
https://catalogue.precisionmicrodrives.com/product/datasheet/307-103-9mm-vibration-motor-25mm-type-datasheet.pdf
https://catalogue.precisionmicrodrives.com/product/datasheet/307-103-9mm-vibration-motor-25mm-type-datasheet.pdf
http://dx.doi.org/10.1016/j.jcin.2015.02.005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25999108&dopt=Abstract
http://dx.doi.org/10.15420/aer.2019.3.4
http://dx.doi.org/10.1080/10447318.2018.1455307
http://dx.doi.org/10.1145/2750858.2807521
http://dx.doi.org/10.1145/3300061.3345434
http://dx.doi.org/10.1109/TMC.2009.51
http://dx.doi.org/10.2147/CIA.S196148
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31190772&dopt=Abstract
https://global.medtronic.com/xg-en/mobileapps/patient-caregiver/cardiac-monitoring/mycarelink-heart-app.html
https://global.medtronic.com/xg-en/mobileapps/patient-caregiver/cardiac-monitoring/mycarelink-heart-app.html
http://dx.doi.org/10.1145/3341162.3349334
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15915675&dopt=Abstract
http://dx.doi.org/10.1002/ajim.4700230407
http://dx.doi.org/10.1145/1866307.1866319
http://dx.doi.org/10.1145/3098243.3098256
https://nsaxena.engr.tamu.edu/wp-content/uploads/sites/238/2020/10/as-tdsc18.pdf
https://github.com/MrZMN/VibKey
http://www.w3.org/Style/XSL
http://www.renderx.com/


IMD: implantable medical device
IoT: Internet of things
MITM: man in the middle
NIST: National Institute of Standards and Technology
OOB: out-of-band
PAKE: password-authenticated key agreement
SUS: system usability scale

Edited by S Rizvi, T Leung; submitted 05.02.24; peer-reviewed by K Daripa, Y Liu; revised version received 09.07.25; accepted
09.07.25; published 26.08.25.

Please cite as:
Zhang M, Wang C, Jiang W, Oswald D, Murray T, Marin E, Wei J, Ryan M, Kostakos V
Using Vibration for Secure Pairing With Implantable Medical Devices: Development and Usability Study
JMIR Biomed Eng 2025;10:e57091
URL: https://biomedeng.jmir.org/2025/1/e57091 
doi:10.2196/57091

© Mo Zhang, Chaofan Wang, Weiwei Jiang, David Oswald, Toby Murray, Eduard Marin, Jing Wei, Mark Ryan, Vassilis Kostakos.
Originally published in JMIR Biomedical Engineering (http://biomsedeng.jmir.org), 26.8.2025. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR
Biomedical Engineering, is properly cited. The complete bibliographic information, a link to the original publication on
https://biomedeng.jmir.org/, as well as this copyright and license information must be included.

JMIR Biomed Eng 2025 | vol. 10 | e57091 | p.88https://biomedeng.jmir.org/2025/1/e57091
(page number not for citation purposes)

Zhang et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

https://biomedeng.jmir.org/2025/1/e57091
http://dx.doi.org/10.2196/57091
http://www.w3.org/Style/XSL
http://www.renderx.com/


Estimation of Brachial-Ankle Pulse Wave Velocity With Hierarchical
Regression Model From Wrist Photoplethysmography and
Electrocardiographic Signals: Method Design

Chih-I Ho1, MEng; Chia-Hsiang Yen1, BEng; Yu-Chuan Li1, MEng; Chiu-Hua Huang1, MEng; Jia-Wei Guo1, MEng;

Pei-Yun Tsai2, PhD; Hung-Ju Lin3, MD, PhD; Tzung-Dau Wang3, MD, PhD
1Department of Electrical Engineering, National Central University, Taoyuan, Taiwan
2Graduate School of Advanced Technology, National Taiwan University, Taipei, Taiwan
3Cardiovascular Center and Divisions of Cardiology and Hospital Medicine, Department of Internal Medicine, National Taiwan University Hospital,
No.7, Chung Shan S Rd, Taipei, Taiwan

Corresponding Author:
Tzung-Dau Wang, MD, PhD
Cardiovascular Center and Divisions of Cardiology and Hospital Medicine, Department of Internal Medicine, National Taiwan
University Hospital, No.7, Chung Shan S Rd, Taipei, Taiwan

Abstract

Background: Photoplethysmography (PPG) signals captured by wearable devices can provide vascular age information and
support pervasive and long-term monitoring of personal health condition.

Objective: In this study, we aimed to estimate brachial-ankle pulse wave velocity (baPWV) from wrist PPG and
electrocardiography (ECG) from smartwatch.

Methods: A total of 914 wrist PPG and ECG sequences and 278 baPWV measurements were collected via the smartwatch from
80 men and 82 women with average age of 63.4 (SD 13.4) and 64.3 (SD 11.6) years. Feature extraction and weighted pulse
decomposition were applied to identify morphological characteristics regarding blood volume change and component waves in
preprocessed PPG and ECG signals. A systematic strategy of feature combination was performed. The hierarchical regression
method based on the random forest for classification and extreme gradient boosting (XGBoost) algorithms for regression was
used, which first classified the data into subdivisions. The respective regression model for the subdivision was constructed with
an overlapping zone.

Results: By using 914 sets of wrist PPG and ECG signals for baPWV estimation, the hierarchical regression model with 2
subdivisions and an overlapping zone of 400 cm per second achieved root-mean-square error of 145.0 cm per second and 141.4
cm per second for 24 men and 26 women, respectively, which is better than the general XGBoost regression model and the
multivariable regression model (all P<.001).

Conclusions: We for the first time demonstrated that baPWV could be reliably estimated by the wrist PPG and ECG signals
measured by the wearable device. Whether our algorithm could be applied clinically needs further verification.

(JMIR Biomed Eng 2025;10:e58756)   doi:10.2196/58756

KEYWORDS

photoplethysmography; PPG; pulse wave velocity; brachial-ankle pulse wave velocity; XGBoost; electrocardiography; signal
processing; random forest

Introduction

Cardiovascular disease (CVD) is a major cause of death and
disability globally. Hemodynamic parameters are essential to
the assessment of CVD risks. Arterial compliance is defined as
the change of arterial blood volume for a given change in
pressure and reflects the extent of arterial stiffness. Pulse wave
velocity (PWV) describes the propagation of pulsatile activity
due to ventricular ejection of blood and its interaction with
arterial compliance [1]. Carotid-femoral PWV (cfPWV) and

brachial-ankle PWV (baPWV) are associated with future CVD
risk and commonly measured for clinic use. Compared with
cfPWV, baPWV can be easily obtained by the oscillometric
method with cuffs on the 4 limbs and is more widely used [2].

Owing to the advance of technology, wearable devices with
automatic or self-assisted monitoring have been recognized as
a promising tool to facilitate the assessment and management
of CVD risks. Photoplethysmography (PPG) [3,4],
ballistocardiography [5,6], electrical bioimpedance [7], or
tonometry [8] has been widely studied for these purposes. Due
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to the ease of implementation, the optical PPG module is more
often integrated into the wearable devices. The potential of
estimation of BP [9,10] and PWV [11-13] from PPG signals
attracts much attention.

Various approaches have been investigated to estimate PWV
from PPG signals of different measurement sites [14]. The
contour of PPG and its associated time interval features have
been used to estimate either baPWV or cfPWV by approaches
including multiple regression, artificial neural network, and
support vector machine [15,16]. Most of the prior works used
finger PPG signals for PWV estimation because of its clear
contour and ease of feature extraction, compared with wrist
PPG [17,18]. However, with the growing popularity of
smartwatches as wearable health care devices, the use of
wrist-based PPG in biomedical applications has attracted
considerable attention. In this study, we aimed to estimate
baPWV from wrist PPG and electrocardiography (ECG).

Methods

Methods and statistical analysis are briefly summarized in this
section. Further details are provided in the Supplementary
Section.

Data Collection
Figure 1 shows the measurement flow. Each volunteer wore a
SENSIO smartwatch recording wrist PPG and ECG during the
experimental period. For volunteers in the health management
center, 3 rounds of measurements were conducted. For
volunteers in the outpatient clinic, 5 rounds of measurements
were made. In each round, the participants maintained the sitting
position, and ECG was measured in the first minute. Blood
pressures were then measured by the sphygmomanometer on
the other arm (not wearing the smartwatch) with the cuff aligned
at the heart level. A one-minute rest was reserved between 2
adjacent rounds. The wrist PPG signals were continuously
recorded throughout the course. In the end, baPWV was
measured by the OMRON noninvasive vascular screening
device, with the cuffs on 4 limbs in the supine position.

Figure 1. Measurement flow. baPWV: brachial-ankle pulse wave velocity; ECG: electrocardiography; PPG: photoplethysmography.

Ethical Considerations
The experiment was approved by the research ethics committee
of National Taiwan University Hospital (number
201902087RIPA). All data were collected in accordance with
the approved protocol. Importantly, the dataset used in this study
did not contain any personally identifiable information, and all
records were fully anonymized prior to analysis. Informed
consent was obtained from all participants, and the study was
conducted in compliance with the ethical standards set forth in
the Declaration of Helsinki and relevant national regulations.

Processing Flow
The signal-processing flow is indicated in Figure 2. The PPG
and ECG, sampled at 256 Hz, were extracted from the first
minute of each round in the synchronization phase (Figures S1
A and S1 B in Multimedia Appendix 1). In the preprocessing
phase, baseline wandering of signals was corrected by the
discrete wavelet transform, and the 60-Hz power interference
was suppressed by the notch filter. The amplitude of the whole
signal segment was then normalized to [−1, +1]. The R peak of
ECG and the valley of PPG signals were detected to calculate
cycle length (Figures S1 C and S1 D in Multimedia Appendix
1). The skewness and variation of ECG and PPG cycle lengths
were adopted to establish the signal quality index to exclude
suboptimal ECG or PPG cycles for feature extraction. The

first-order derivative PPG (FDPPG) and the second-order
derivative PPG (SDPPG) signals were calculated. The systolic
peak, notch, and diastolic peak were marked by the algorithm
[19] for each PPG cycle (Figure 3A). The maximal slope (max
slope) of the ascending systolic pulse, corresponding to the
maximal rate of blood volume change, was identified by the
first local maximum in FDPPG (Figure 3B) [20]. The local
extrema of the SDPPG in systole are defined as a, b, c, and d
points, where points a and c are local maxima and points b and
d are local minima (Figure 3C) [21]. Point e is the local
maximum around the boundary of systole and diastole in
SDPPG. Point f is the first local minimum after point e.

The PPG pulse is regarded as a summation of several component
waves, including the forward waves by left ventricular
contraction and the distally reflected waves due to aortic
elasticity and reservoir property [22]. The pulse decomposition
analysis helps segregate the component waves [23]. With proper
weighting, the variation of component waves can be reduced
[24]. Five Gaussian waves are used for synthesizing the PPG
pulse. Given θi=αi,βi,γi corresponding to pulse amplitude, pulse
position, and pulse width of the component wave i, and
Θ={θ1, θ2, …,θ5}, the summation of the Gaussian waves takes
the form of

(1)G(t|θ)=∑i=15g(t|θi)

with
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(2)g(t|θi)=αie(t−βiTs)22(γiTs)2

Denote Gi as the component wave described by g(t|θi). Given
the boundary constraints, Lαi≤αi≤Uαi, Lβi≤βi≤Uβi, and
Lγi≤γi≤Uγi [24], the interior-point method is used to solve the
following optimization problem,

(3)Θ^=arg minΘ1M∑n=1Mw(n)[s(n)−G(nTs|Θ)],

where w(n) is the weight to emphasize the informative portion
of the PPG pulse sn with length M and is given by

(4)w(n)={ωna≤n≤nf1else

Variables na and nf refer to the position of points a and f. The
weight ω is set to 80 for stabilizing the variation of component

waves in the sequence with acceptable mean square error
between the synthesized waveform and original waveform.

Once the component waves are acquired, the forward wave is
generated by combining G1 and G2. The systolic wave and
diastolic wave are derived by combining G1 to G3 and G4 to G5,
respectively. The respective peaks of the synthesized forward
wave, systolic wave, and diastolic wave are named as pf, ps,
and pd. In the following, the amplitude and position of feature
x in the PPG pulse are indicated by Ax and nx, respectively.
The amplitude of feature x in the ith-order derivative PPG is
represented byAx(i). The result of decomposed component
waves by weighted pulse decomposition (WPD) is shown in
Figure 4.

Figure 2. Signal-processing flow. ECG: electrocardiography; PPG: photoplethysmography; SQI: signal quality index; WPD: weighted pulse decomposition.
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Figure 3. Photoplethysmography, first-order derivative photoplethysmography, and second-order derivative photoplethysmography waveforms and
features in 1 cardiac cycle (from A to C). FDPPG: first-order derivative photoplethysmography; PPG: photoplethysmography; SDPPG: second-order
derivative photoplethysmography.
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Figure 4. Component waves after weighted pulse decomposition. G1: Gaussian component wave 1; G2: Gaussian component wave 2; G3: Gaussian
component wave 3; G4: Gaussian component wave 4; G5: Gaussian component wave 5; WPD: weighted pulse decomposition.

To assess the quality of WPD, WPD signal quality index, which
was defined as mean square error between the PPG pulse, s(n),
and the synthesized pulse, G(nTs|Θ), of >2×10-3, was
implemented to remove disqualified pulses.

A total of 22 features were derived from the PPG pulse, FDPPG,
and SDPPG (Table S1 A in Multimedia Appendix 2). The age
index, which has been shown to be correlated with the
augmentation index of aortic pressure [21,25],

(5)Ab(2)−Ac(2)−Ad(2)−Ae(2)Aa(2)

and its related variant combining only highly correlated
components,

(6)Ab(2)−Ac(2)−Ad(2)Aa(2)

were also used. There were 27 features derived from WPD
(Table S1 B in Multimedia Appendix 2). The stiffness index
(SI) is defined as the time interval between the peaks of systolic
and diastolic waves [23] and is denoted by npd-nps. The time
intervals of the third or fourth component wave to the forward
wave were also calculated. Note that nps and npd were obtained
from synthesized systolic wave peak ps and diastolic wave peak
pd of WPD as shown in Figure 4 while nsys and ndia were
marked as the positions of systolic peak and diastolic peak in
PPG as shown in Figure 3.

The ECG-related features were also adopted (Table S1 C in
Multimedia Appendix 2). The R peak and T peak of the ECG
waveform were identified and marked as nR and nT. Since the

R peak occurs earlier than the PPG valley of the same heartbeat,
nR is negative in number. The pulse arrival time (PAT) measures
the time span between R peak and PPG valley, denoted by -nR.

PAT2 and Height2/PAT2 were included since either linear or
nonlinear relationship between BP and pulse transit time has
been shown [26]. The time span from R peak to maximum slope,
peak of systolic wave, or component wave 2 was also
considered.

Basic information (Table S1 D in Multimedia Appendix 2)
contains age, height (H), weight, BMI, and lengths from arm
to wrist (Law) and finger (Laf). The lengths from heart to
brachium (Lb) and from heart to ankle (La) can be approximated
by [27]

(7)La=0.8219H+12.328

(8)Lb=0.2195H−2.073.

The length difference between ankle and brachium could be
expressed by La-Lb.

Feature normalization is often adopted since the relative change
of 2 features could provide additional information than each
feature alone. To systematically derive the normalization results,
we generate combined features by dividing the value of feature
u by value of feature v. The combined features contain not only
magnitude-normalized or time-normalized features but also
basic information features.
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Estimation Approach

Multivariable Regression
Linear regression and multivariable regression had been applied
for baPWV estimation [12,28]. The time difference between
the systolic peak to diastolic peak has been used and normalized
by the Fridericia formula [28] while the systolic peak to the
next onset (P2O), M-nsys (feature 1 in Table S1 A in
Multimedia Appendix 2), of the PPG signal normalized by the
PPG pulse length was also examined for PWV estimation [12].
These 2 variables were selected from the finger PPG features
by the authors due to their high correlation to baPWV reported
in the literature. The wrist PPG was used in this study for
baPWV estimation. Because diastolic peak often vanished in
wrist PPG pulses, we used SI (feature 51 in Table S1 B in
Multimedia Appendix 2), which denotes the time span between
peaks of decomposed systolic wave and diastolic wave
according to WPD, and its normalized form with the Friderician
formula is given by SI/M1/3. The multivariable linear equations
are described by [12,28]

(9)PWV=C1Age+C2SIM1/3+C3

and

(10)PWV=C1Age+C2P2OM+C3.

Hierarchical Regression
The linear estimation regarding the correlations between PPG
features and PWV, as used in multivariable regression analysis,
may oversimplify the vascular hemodynamic state. The machine
learning algorithms have been prosperously developed and used
for biomedical applications, such as neural network and decision
tree regression for estimation of vascular age [29] and gradient
boosting decision tree regression for estimation of blood
pressure [30]. We herein developed the hierarchical regression
model based on the random forest and extreme gradient boosting
(XGBoost) algorithms. A general regression model by XGBoost
was also implemented for comparison.

The random forest and XGBoost algorithms of high scalability
have been shown to achieve excellent performance in many
fields [31]. In the random forest algorithm, a large number of
decision trees are constructed. A different subset of the data and
a random selection of features are used for each decision tree
to prevent overfitting in the training process. The final
classification is often made by taking the majority vote. On the
other hand, inherited from gradient boosting, XGBoost adds
the new regression tree in each iteration to improve the previous
prediction and to approach the target. The XGBoost introduces
the regularization term that considers the complexity of the tree
so as to avoid overfitting. In addition, the second-order gradient
statistics are used for accelerating the computation.

The concept of hierarchical regression can be described as
classification by random forest algorithm and then regression
by XGBoost algorithm (Multimedia Appendix 3). The whole
PWV range is partitioned into several subdivisions. Thus, a
global classifier handles the entire PWV range, and several local
regressors are in charge of the respective subdivisions. First, an
outcome regarding the possible baPWV subdivision is generated
by the global classifier. Then, the estimation result is calculated

by the associated local regressor. Because it is possible that the
data around the subdivision boundary are erroneously classified,
the adjacent regressors are designed to have an overlapping
zone to extend the respective coverages. Owing to the data
quantity, 2 subdivisions were adopted and the boundary
threshold was set at 1600 cm per second. The widths of the
overlapping zone were set as 200 cm per second, 400 cm per
second, and 600 cm per second.

Statistical Analysis
The differences between the estimated results v^j and the
measured PWV vj of the jth measurement are shown by the
mean absolute error, mean error, SD, and root-mean-square
error (RMSE), which are defined as follows.

(11)ej=vj−vj^

(12)MAE=E{|ej|}

(13)ME=e−=E{ej}

(14)SD=1N−1∑j=1N(ej−e−)2

(15)RMSE=E{ej2}.

The correlation coefficients together with P values are also
provided. Since some participants have more than 1
measurement, to avoid unbalanced weighting, averaged PWV
estimation and averaged PWV measurement are used for the
statistical results per participant.

Results

In this study, 80 male participants and 82 female participants
were recruited. Their demographic characteristics are shown in
Table 1. The averaged PWV value of left baPWV and right
baPWV was used. The PWV values of male participants and
female participants were 1591 (SD 266) cm per second and
1613 (SD 321) cm per second. Among total participants, 39
male participants and 23 female participants had more than 1
PWV values due to their multiple visits. A total of 914 PPG as
well as ECG sequences were collected from the smartwatch,
corresponding to 278 PWV values. On average, 1 male
participant has 3.5 PPG and ECG sequences associated with 1
PWV measurement while 1 female participant has 3.1 PPG and
ECG sequences for 1 PWV measurement. Among 278 PWV
measurements, there are 123 PWV measurements from
participants taking antihypertensive medications on the same
day.

The medians of the respective combined features in the 528 and
386 sequences were used for computing correlation coefficients
for men and women. The correlation coefficients of combined
features defined by the X and Y indices are often higher than
the original one (Multimedia Appendix 4). For example, the
correlation coefficients of the age and maximum slope time
(nms) to baPWV are 0.334 and −0.281, whereas the correlation
coefficient of the combined feature Age/nms becomes 0.491
(Multimedia Appendix 5). The correlation coefficients of SI
corrected by Friderician’s formula and the time interval between
systolic peak to the onset of next PPG (P2O) normalized by
pulse length from the wrist PPG versus baPWV are −0.271
(P<.001), −0.036 (P=.413) and −.370 (P<.001), −0.070 (P=.171)
for men and women, respectively.
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The reproducibility of the measured baPWV was also checked.
The PWVs of 31 participants were measured twice by the same
OMRON noninvasive vascular screening device with 1-minute
separation. The maximal differences of left baPWV and right
baPWV of these participants were 276 cm per second and 210
cm per second, respectively. The maximal difference of
averaged baPWV from left baPWV and right baPWV was 196.5
cm per second. The RMSEs of 2 consecutively measured left
baPWV and right baPWV were 83.4 cm per second and 62.0
cm per second, respectively. The RMSE of consecutive averaged
baPWV was 68.8 cm per second.

For multivariable regression, 39 and 34 PWV measurements
from 24 male participants and 26 female participants,

respectively, were reserved as the testing dataset. The medians
of the respective features from the sequences associated with
the same PWV measurement were averaged. The testing dataset
was selected to approach uniform distribution in the range
between 1000 cm per second and 2100 cm per second. The
mean and SD of the male and female PWV values in the testing
dataset were 1538 (SD 237) cm per second and 1638 (SD 283)
cm per second. The training dataset for deriving the coefficients
contained 114 PWV measurements with 391 PPG per ECG
sequences from 56 male participants and 91 PWV measurements
with 291 sequences from 56 female participants. The
participant-split criterion is obeyed. The baPWV estimation
results by multivariable regression are shown in Table 2 for
men and women, respectively.

Table . Demographic summary.a

Female participants, mean (SD; n)Male participants, mean (SD; n)Characteristics

64.3 (11.6; 82)63.4 (13.4; 80)Age (years)

71.0 (8.2; 386)73.9 (12.7; 528)Heart rate (bps)

125.9 (17.9; 386)126.0 (15.7; 528)SBPb (mm Hg)

77.0 (12.0; 386)79.4 (10.6; 528)DBPc (mm Hg)

1613 (321; 125)1591 (266; 153)PWVd (cm per second)

aAmong a total of 278 pulse wave velocity measurements, 123 measurements were obtained from participants taking antihypertensive medications on
the same day.
bSBP: systolic blood pressure.
cDBP: diastolic blood pressure.
dPWV: pulse wave velocity.

Table . Estimation results from multivariate regressiona.

Correlation coeffi-
cient (P value)

RMSEd (cm per
second)

SD (cm per second)MEc (cm per sec-
ond)

MAEb (cm per sec-
ond)

NMethods

Men

0.44 (.006)217.2214.3−49.0179.139 roundsPWV=C1Age+C2SIM1/3+C3

[28e,f] 0.55 (.006)195.8195.7−40.4160.424 participants

0.37 (.02)224.6219.8−57.7189.039 roundsPWV=C1Age+C2P2OM+C3[12g]

0.43 (.04)209.1207.8−48.1176.124 participants

Women

0.66 (<.001)208.6211.71.8165.234 roundsPWV=C1Age+C2SIM1/3+C3[28]

0.72 (<.001)194.0197.4−12.1157.426 participants

0.62 (<.001)229.8233.010.0196.034 roundsPWV=C1Age+C2P2OM+C3[12]

0.67 (<.001)217.6221.88.6188.826 participants

aThe testing set contained 39 and 34 pulse wave velocity measurements from 24 male participants and 26 female participants, respectively.
bMAE: mean absolute error.
cME: mean error.
dRMSE: root-mean-square error.
ePWV indicates pulse wave velocity.
fSI: stiffness index.
gP2O: systolic peak to the next onset.

For hierarchical regression, the same training and testing datasets
as those in multivariable regression were used to keep

participants split. The training dataset was oversampled to make
the distribution balanced in each interval of 100 cm per second.
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Several parameters, such as the shrinkage factor, tree depth,
and column subsampling, are required for the random forest
and XGBoost algorithms. Hence, a validation set split from the
training dataset was used for parameter settings. Because the
number of PWV measurements of extreme high and low values
was not sufficiently large, leave-one-out validation was used
to ensure that the model for validation is similar to that for
training. For the general model, the male validation set contained
23 participants and 33 PWV measurements, while the female
validation set had 22 participants and 39 PWV measurements.
The validation set consisted of more than one-third of
participants in the training dataset and kept uniformly distributed
in the range from 1000 cm per second to 2100 cm per second.
During leave-one-out validation, all the PPG or ECG sequences
associated with the PWV measurements of 1 validation
participant were removed from the training dataset to avoid data
leak. For each submodel of the local regressor, the validation
dataset in each subdivision includes those with the PWV
measurements in the overlapping zone. Given the overlapping
zone of 400 cm per second, there were 24 PWV measurements
from 13 male participants and 26 PWV measurements from 12
female participants in the high submodel for validation from
1400 cm per second. On the other hand, 25 PWV measurements
from 13 male participants and 25 PWV measurements from 16
female participants were used in the low submodel for validation
up to 1800 cm per second.

Table 3 lists the estimation results from the general and
hierarchical regression models by the random forest
classification and XGBoost regression algorithms with different
settings of the width of the overlapping zones. First, the RMSE
results from the hierarchical regression models are better than
those from the multivariable linear regression model. The
hierarchical regression model also outperforms the general
regression model. Figures 5 and 6 show the Bland-Altman and
scatter plots of regression results by the hierarchical regression

model with overlapping zone of 400 cm per second for men
and women participants. Their participant numbers are indicated
in the legend. Good estimation was obtained for this setting.
The left subfigures indicate the Bland-Altman plot. The scatter
plots in the right subfigures provide the final estimation results.
The classification accuracies of total rounds from male
participants and female participants are 76.9% and 91.2%,
respectively. The estimation of erroneously classified data close
to the boundary got improved with the introduction of an
overlapping zone. The best estimation results achieve RMSE
of 145.0 cm per second and 141.4 cm per second for men and
women, respectively. In the random forest classifier for male
participants, the number of estimators is 100 and the maximum
tree depth is 20. As to the random forest for female participants,
the number of estimators is 250 and the maximum tree depth
is 9. In both cases, the minimum samples for tree split should
be larger than 2 and the minimum number of samples in leaf
nodes is 1. As to the XGBoost regressors, the number of
estimators is 200; the fraction of features sampled for each tree
is 0.7; and the minimum loss reduction for further partition is
0. The maximum depth of the low submodel for male
participants is 5 and is set to 3 for the remaining submodels.

The XGBoost algorithm performs tree splitting by evaluating
structure scores to accumulate gradient statistics according to
the sorted feature values while the random forest algorithm can
assess the impact on pureness of the leaves from a feature.
Hence, both can report the feature importance. Given the
overlapping zone of 400 cm per second in the hierarchical
regression model, besides PAT (nR), PAT square (nR2), and
age, PPG features and WPD features were also frequently used
(Multimedia Appendix 6). Local regression models used features
different from those used in global classification models.
Features from component wave, points a, b, c, and d of SDPPG
were often adopted.
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Table . Hierarchical regression results for men and for women are listed.

Correlation coef-
ficient (P value)

RMSEc

(cm per second)

SD

(cm per second)
MEb

(cm per second)

MAEa

(cm per second)

NOverlapping
zone

(cm per second)

Method

Men

0.61 (<.001)185.3187.0−16.5157.439 rounds—d    General regres-
sion

0.66 (<.001)169.7173.1−8.4141.724 participants—    General regres-
sion

0.64 (<.001)183.9185.3−19.4156.039 rounds200    Hierarchical
regression

0.63 (.001)182.6185.6−18.4152.124 participants200    Hierarchical
regression

0.74 (<.001)158.3160.1−8.1133.639 rounds400    Hierarchical
regression

0.77e (<.001)145.0 e147.8−8.9126.524 participants400    Hierarchical
regression

0.63 (<.001)180.5182.9−2.3153.639 rounds600    Hierarchical
regression

0.70 (<.001)162.1165.013.7143.624 participants600    Hierarchical
regression

Women

0.67 (<.001)216.8217.0−36.0174.334 rounds—    General regres-
sion

0.66 (<.001)214.7217.8−22.4177.726 participants—    General regres-
sion

0.80 (<.001)169.7171.0−20.7141.534 rounds200    Hierarchical
regression

0.83 (<.001)157.0157.4−29.2131.426 participants200    Hierarchical
regression

0.83 (<.001)154.5156.7−3.5127.334 rounds400    Hierarchical
regression

0.86e (<.001)141.4 e144.1−6.0116.726 participants400    Hierarchical
regression

0.79 (<.001)173.0173.924.2144.334 rounds600    Hierarchical
regression

0.79 (<.001)171.8173.524.0141.226 participants600    Hierarchical
regression

aMAE:mean absolute error.
bME: mean error.
cRMSE: root-mean-square error.
dNot applicable.
eValues in italics indicate best estimation result with acceptable accuracy set by the ARTERY Society.
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Figure 5. (A) Bland-Altman plot and (B) scatter plot of pulse wave velocity regression by the hierarchical regression model with 2 submodels and
overlapping zone of 400 cm per second for 24 men. PWV: pulse wave velocity.

Figure 6. (A) Bland-Altman plot and (B) scatter plot of pulse wave velocity regression by the hierarchical regression model with 2 submodels and
overlapping zone of 400 cm per second for 26 women. PWV: pulse wave velocity.

Discussion

Principal Findings
In this study, we used wrist PPG and ECG signals to estimate
baPWV. The morphology of wrist PPG signals is quite different
from that of finger PPG signals. The conventional approach
that used finger PPG morphology features may encounter the
problem of feature missing due to much fewer identifiable
features of wrist PPG signals. In addition, the multivariable
regression model used in prior works may be too simple to
describe the complicated hemodynamic state in the vessels.
Hence, we resorted to the machine learning algorithm to deal
with the estimation. Although the wrist PPG and ECG signals

were acquired before the baPWV measurement, they are still
related to the vessel condition and stiffness. To further improve
and refine the estimation results, hierarchical regression was
adopted to shrink the range handled in the submodel. The
achieved RMSE and SD by our hierarchical regression models
for both men and women are lower than the threshold (150 cm
per second) of acceptable accuracy for PWV estimation set by
the ARTERY Society [32].

Comparison With Prior Work
With the WPD and feature imputation techniques developed by
us, more than 98% of all ambiguous and missing features of
wrist PPG can be identified [19]. From the correlation results
(Multimedia Appendix 4), besides age (feature 23) and age
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square (feature 63), correlation related to SDPPG amplitude of
point c (feature 18), point d (feature 19), and point e (feature
20) are still obvious as what has been mentioned in finger PPG
[25]. In addition, SI (npd-nps; feature 51), which are often
missing in the original wrist PPG pulses, can be computed
through the synthesized systolic and diastolic waves in
decomposed wrist PPG. According to the feature importance
(Multimedia Appendix 6), it still plays an important role for
PWV estimation.

The multivariable regression uses only a few features. If
significantly high correlations of those features to baPWV do
not appear, the performance of estimation will be degraded.
However, the machine learning algorithm can help exploit more
linear or nonlinear information embedded in the PPG waveform
or its component waves and thus is suitable for these
applications. Furthermore, the combined features from PPG
and ECG morphology, WPD, and basic information supplied
more feature information sources that can be selected by the
model.

Hierarchical Model Insights
The concept of hierarchical regression is to introduce different
models to refine the estimation results. However, the global
classifier or regressor must provide sufficiently correct
classification to avoid model mismatch. From the hierarchical
regression results, it is clear that the inclusion of overlapping
zone in local regressors indeed improved the estimation results,
as reflected in the improved correlation coefficients (Table 2).
However, the determination of optimal range of overlapping
zone is still controversial. If the overlapping zone is too wide,
the hierarchical regression model would become similar to the
general regression model. On the other hand, if the overlapping
zone is too narrow, the misclassified data cannot be properly
handled. In this study, we recommend the overlapping zone of
400 cm per second of 2 subdivision models because the
misclassified data are near the boundary due to good capability
of the global classifier and can be appropriately covered by the
submodel. We conducted further analysis on the features that
were misclassified for those samples not near the decision
boundary. The results showed no significant outliers.
Additionally, the vote counts for 2 classes across the entire

forest were close, indicating low confidence among the trees.
The latent properties beyond the observed features should be
further studied. On the other hand, we also applied a Kernel
Density Estimation–based mutual information analysis [33] to
assess the relevance of individual features in male and female
datasets. The mutual information values from male features
were lower than those from female features, which can also
explain the lower classification accuracy in male participants
of our dataset.

Limitations and Future Directions
This study has limitations, which point to the directions for
future research. First, the sample size remained small and more
older adult people were recruited in the study, which might limit
its applicability in younger populations. While the current
dataset demonstrates feasibility in estimating PWV using wrist
PPG in older individuals, the skewed dataset toward older
individuals may have influenced the performance due to
age-related vascular characteristics. In future work, we plan to
expand the study population by actively recruiting more young
participants. The inclusion of younger participants will help
balance the age distribution and allow for more robust
assessment of the model performance across different age
groups. This extension will not only improve the generalizability
of the model but also enable a more comprehensive evaluation
of age-related vascular changes. Second, the current model
adopts machine learning algorithms to exploit linear and
nonlinear features within the scope of this dataset. As the dataset
grows in size and diversity, other deep learning algorithms, such
as Bayesian neural networks or multilayer perceptrons, can be
applied, which may offer better uncertainty quantification or
modeling capabilities. Third, the feature space used in the
current model is relatively high-dimensional, which may hinder
its practical deployment on wearable or edge devices with
limited computational resources. Feature compression or
dimensionality reduction techniques can be considered to
decrease model complexity in the future. This optimization will
help make the system more suitable for real-time, low-power
applications in wearable health care settings. Together, these
improvements aim to enhance both the robustness and the
applicability of the proposed approach, facilitating its transition
toward practical use in diverse and real-world scenarios.
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Multimedia Appendix 1
(A) Electrocardiography before preprocessing, (B) photoplethysmography before preprocessing, (C) electrocardiography with R
peak after preprocessing, and (D) photoplethysmography with valley after preprocessing.
[PNG File, 97 KB - biomedeng_v10i1e58756_app1.png ]

Multimedia Appendix 2
List of extracted features: (A) photoplethysmography features, (B) weighted pulse decomposition features, (C) electrocardiography
features, and (D) basic information.
[DOCX File, 23 KB - biomedeng_v10i1e58756_app2.docx ]

Multimedia Appendix 3
Concept of hierarchical regression.
[PNG File, 251 KB - biomedeng_v10i1e58756_app3.png ]

Multimedia Appendix 4
Heat map of correlation coefficients of combined features (defined in Tables S1 A, S1 B, S1 C, and S1 D in Multimedia Appendix
2) versus brachial-ankle pulse wave velocity for (A) 80 male participants and (B) 82 female participants with 528 and 386 data,
respectively. The diagonal elements are the correlation coefficients of original features. The off-diagonal elements are the
correlation coefficients of combined features.
[PNG File, 71 KB - biomedeng_v10i1e58756_app4.png ]

Multimedia Appendix 5
The distributions of brachial-ankle pulse wave velocity versus (A) age, (B) nms, and (C) Age/nms for 386 female data.
[PNG File, 79 KB - biomedeng_v10i1e58756_app5.png ]

Multimedia Appendix 6
Top 10 important features of classification and local regression for (A) men and (B) women.
[DOCX File, 24 KB - biomedeng_v10i1e58756_app6.docx ]
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Abbreviations
baPWC: brachial-ankle pulse wave velocity
cfPWV: carotid-femoral pulse wave velocity
CVD: cardiovascular disease
ECG: electrocardiography
FDPPG: first-order derivative photoplethysmography
PAT: pulse arrival time
PPG: photoplethysmography
P2O: peak to the next onset
PWV: pulse wave velocity
RMSE: root-mean-square error
SDPPG: second-order derivative photoplethysmography
SI: stiffness index
WPD: weighted pulse decomposition
XGBoost: extreme gradient boosting
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Abstract

Background: Diagnostic errors and administrative burdens, including medical coding, remain major challenges in health care.
Large language models (LLMs) have the potential to alleviate these problems, but their adoption has been limited by concerns
regarding reliability, transparency, and clinical safety.

Objective: This study introduces and evaluates 2 LLM-based frameworks, implemented within the Rhazes Clinician platform,
designed to address these challenges: generation-assisted retrieval-augmented generation (GARAG) for automated evidence-based
treatment planning and generation-assisted vector search (GAVS) for automated medical coding.

Methods: GARAG was evaluated on 21 clinical test cases created by medically qualified authors. Each case was executed 3
times independently, and outputs were assessed using 4 criteria: correctness of references, absence of duplication, adherence to
formatting, and clinical appropriateness of the generated management plan. GAVS was evaluated on 958 randomly selected
admissions from the Medical Information Mart for Intensive Care (MIMIC)–IV database, in which billed International Classification
of Diseases, Tenth Revision (ICD-10) codes served as the ground truth. Two approaches were compared: a direct GPT-4.1 baseline
prompted to predict ICD-10 codes without constraints and GAVS, in which GPT-4.1 generated diagnostic entities that were each
mapped onto the top 10 matching ICD-10 codes through vector search.

Results: Across the 63 outputs, 62 (98.4%) satisfied all evaluation criteria, with the only exception being a minor ordering
inconsistency in one repetition of case 14. For GAVS, the 958 admissions contained 8576 assigned ICD-10 subcategory codes
(1610 unique). The vanilla LLM produced 131,329 candidate codes, whereas GAVS produced 136,920. At the subcategory level,
the vanilla LLM achieved 17.95% average recall (15.86% weighted), while GAVS achieved 20.63% (18.62% weighted), a
statistically significant improvement (P<.001). At the category level, performance converged (32.60% vs 32.58% average weighted
recall; P=.99).

Conclusions: GARAG demonstrated a workflow that grounds management plans in diagnosis-specific, peer-reviewed guideline
evidence, preserving fine-grained clinical detail during retrieval. GAVS significantly improved fine-grained diagnostic coding
recall compared with a direct LLM baseline. Together, these frameworks illustrate how LLM-based methods can enhance clinical
decision support and medical coding. Both were subsequently integrated into Rhazes Clinician, a clinician-facing web application
that orchestrates LLM agents to call specialized tools, providing a single interface for physician use. Further independent validation
and large-scale studies are required to confirm generalizability and assess their impact on patient outcomes.

(JMIR Biomed Eng 2025;10:e66691)   doi:10.2196/66691

KEYWORDS

AI assistant; large language model; LLM; GPT-4; retrieval-augmented generation; RAG; generation-assisted retrieval-augmented
generation; GARAG; generation-assisted vector search; GAVS; medical informatics; digital health; generative AI in medicine;
medical web application; automated medical coding; AI diagnosis; artificial intelligence
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Introduction

Health Care’s Diverse Challenges
Health care is facing profound challenges that urgently require
innovative solutions. Medical errors [1], overwhelming
administrative burdens [2], understaffing [3,4], spiraling costs
[5], and clinician burnout [6,7] threaten the foundations of
medical care. Despite this, the health care sector has lagged
behind other industries in adopting new technologies.

To address the above challenges, a subset of the authors has
developed an AI-powered web app called Rhazes that helps
doctors with paperwork and analytical tasks along their clinical
workflow. Rhazes, like many other digital health startups, aims
to offer integrated tools to health care professionals to match
many of the growing needs in health care worsened by a staffing
crisis [8-10]. AI-powered tools have been shown to have the
potential to automate rote tasks [11], reduce errors [12,13], cut
costs for everyone [14], improve clinician well-being and their
patient-centeredness [15], and ultimately deliver better patient
outcomes [12,16]. However, significant barriers and challenges
persist in ensuring the safe and effective integration of AI within
health care systems globally [17-19].

Diagnostic Errors
Diagnostic errors in health care are more common than generally
recognized and often receive less attention in both clinical
practice and research. There are 2 ways to estimate their
prevalence: autopsies and expert opinions. Various studies
suggest a range between 5% and 20% [20-22], with the actual
figure likely falling somewhere in between. Considering the
1.3 billion health care visits annually in the United States as an
example, this percentage translates to a staggering 65 to 260
million diagnostic errors each year in the United States alone
[23]. The rate of false negatives varies widely, from as low as
2.2% for myocardial infarction to an alarming 62.1% for spinal
abscesses [20]. The National Academy of Medicine underscores
the severity of this issue, attributing diagnostic errors to
approximately 10% of patient deaths and 6% to 17% of hospital
complications, with vascular events, infections, and cancers
constituting around 75% of the serious harms from these errors
[24].

Diagnostic errors arise from several causes. No-fault errors,
such as those due to atypical disease presentations, are difficult
to prevent. System-related issues, including delays in testing
and communication failures, also play a role, though
comprehensive data are limited. Cognitive errors, however, are
the most frequent, with Graber et al finding that cognitive
factors—such as faulty perception, failed heuristics, and
cognitive biases—contribute to 74% of diagnostic errors [25].
This suggests that a substantial proportion of these errors could
be mitigated through targeted interventions aimed at clinical
decision-making and judgment. In malpractice claims, nearly
90% involve failures in these domains, regardless of the
underlying condition [26].

All Roads Lead to Burnout
Clinicians are responsible not only for making diagnoses but
also for managing patient care thereafter. This process involves

3 major challenges. The first is staying up to date with a rapidly
expanding medical knowledge base, which is estimated to
double every 73 days [27] alongside frequently updated clinical
guidelines. To address this, many physicians rely on
peer-reviewed online clinical guideline databases, such as
subscription-based services including UpToDate [28], DynaMed
[29], as well as freely available resources like StatPearls [30].
The second challenge is identifying the most relevant guideline
for a specific clinical scenario. The third, and often most
complex, is tailoring these guidelines to the unique needs of
each patient, taking into account individual characteristics,
medical history, preferences, and socioeconomic context.

Medical errors often occur within the broader context of
systemic pressures. One major factor is the administrative
workload placed on clinicians. Studies indicate that for every
hour spent in direct patient care, physicians spend approximately
2 additional hours on documentation and other administrative
tasks [31]. This environment can contribute to situations where
clinical duties become secondary to administrative
responsibilities.

In the United States, more than half of physicians report at least
1 symptom of burnout [32], representing an estimated annual
economic cost of US $4.6 billion or US $7600 per physician
[33]. In the United Kingdom, physician burnout rates reached
a record high in 2021 according to the annual national training
survey [34].

Medical Coding
Medical coding has clinical, statistical, and billing-related
usages. Systematized Nomenclature of Medicine–Clinical Terms
(SNOMED-CT; maintained by the International Health
Terminology Standards Development Organization) is a
terminology that provides clinicians with precise patient-specific
information, including symptoms, diagnoses, procedures, and
social contexts [35]. In the National Health Service (NHS), UK,
SNOMED-CT is used for clinical coding, specifically to safely
and accurately exchange information between health care
providers. It is recorded at the point-of-care level and integrated
into electronic health records (EHRs) as required by Fast Health
Care Interoperability Resources [35], a health care data sharing
standard. Most general practitioner clinics employ medical
coders to translate patient findings into a mix of SNOMED-CT
and in-house diagnostic codes for the most common cases.
SNOMED-CT allows for more precise coding, as it not only
comprises over 340,000 clinical [36] and 1.4 million
drug-related codes but also describes the relationship between
these codes, essentially functioning as an ontology [35]. In the
United Kingdom, diagnostic codes using the International
Classification of Diseases, Eleventh Revision (ICD-11) standard
(published by the World Health Organization) and procedural
codes using the Operating Procedure Codes Supplement (OPCS;
published by NHS England) standard are recorded after the
clinical event for statistical purposes, whereas in the United
States, ICD-11 is used for mainly billing purposes [37]. For
coding procedures in the United States, the Health Care
Common Procedure Coding System (HCPCS; published by the
Centers for Medicare and Medicaid Services) is used. It has 2
levels: level 1 comprises Current Procedural Terminology (CPT)
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codes (published by the American Medical Association), which
is used to bill for procedures done by health care professionals,
and level 2 can be used to bill for products, supplies, and
services used outside the physician’s office such as ambulatory
services or orthotics [38]. Automated medical coding is needed
for 2 main reasons: one is accuracy and the other is efficiency:
the average coding accuracy is around 80% [37], with 83% in
the United Kingdom and 89% in Scotland [39], and just the
coding of backlog cases can take anywhere from several months
to over a year [40].

Large Language Models Could Help
Given the recent progress in artificial intelligence (AI), it has
been proposed to help with various aspects of clinical work,
including scribing and diagnosis [13,41,42]. GPT-4, a large
language model (LLM) developed by OpenAI, has shown
promise in medical applications with its passing of the medical
board exam in multiple countries and languages [43-45]. A
peer-reviewed study assessing the diagnostic ability of GPT-4
and Pathways Language Model 2 on 1000 electronic patient
records reported that GPT-4 achieved a 93.9% diagnostic hit
rate (lower bound), validated by 3 medical doctors [46].
Furthermore, the authors found that a quick and accurate
automated diagnostic evaluation may be possible by presenting
the ground truth data to GPT-4 and asking it to assess the
diagnostic predictions made by LLMs [46,47]. This can then
be used to rapidly benchmark different models and prompting
strategies. A report published by OpenAI and Penda Health [48]
claimed that AI Consult, a tool powered by LLMs, reduced
diagnostic errors by 16% and treatment errors by 13% for 39,849
patient visits in Kenya.

When it comes to management planning, LLMs can
revolutionize medical search and find recommendations for a
specific clinical scenario by automatically citing the relevant
guidelines. Examples include recently developed online medical
search tools such as Elsevier Clinical Key [49] and MedWise
[50]. The next level of automation is AI analyzing and extracting
the relevant details from the EHR to adapt the clinical guidelines
to the unique needs of the patient, essentially crafting a
personalized treatment plan. An application capable of doing
this is called a clinical decision support (CDS) [51] system, and
industry examples of such tools include Glass Health [52] and
Rhazes [53].

Another important application of LLMs in clinics is notetaking.
Automated documentation leveraging ambient listening has
shown promise in reducing clinician burden and improving the
experience of doctor–patient interactions for both parties [54,55].
In addition, clinical evaluation of existing scribing tools such
as Tortus [56], DeepScribe [57], Nuance Dragon Ambient
Experience (DAX) [58,59], and Rhazes [60] has indicated
enhanced documentation quality [56], increase in billed
diagnostic codes, and potential time and cost savings [57,58,60].
However, such tools can cost US $1850 per month per clinician
[58] and cause a worsening of after-hours electronic health
records (EHR) usage [59]. In fact, Haberle et al found that
Dragon Ambient Experience did not benefit documentation,
productivity, or even patient experience but helped with provider
engagement [59]. Ma et al argue that ambient AI scribes can

even reduce time spent on the EHR, but further studies are
needed to identify the users benefiting most from such
technology [61].

Even though computer-assisted medical coding has been shown
to improve coding accuracy [62], automating the clinical coding
system appeared out of reach prior to the generative AI
revolution due to technological and implementation-level
challenges [63]. Non-LLM–based encoder–decoder-type models
were shown to really struggle with identifying less frequent
codes [64]; however, retrieval-augmented generation
(RAG)–enhanced LLMs were recently found to be preferable
to provider coders in terms of coding accuracy [65]. Generative
AI seems to have made a big contribution toward the full
automation of medical coding, and while we found no
peer-reviewed evaluation paper to date, the authors of the
previously cited paper, affiliated with Corti AI [66], who were
researching non-LLM-based methods [64], are now leveraging
generative AI to automate medical coding [66].

Methods

Ethical Considerations
The Medical Information Mart for Intensive Care (MIMIC)–IV
[67] is a publicly available database and was previously ethically
approved by the institutional review boards at Beth Israel
Deaconess Medical Center (2001P001699) and the
Massachusetts Institute of Technology (0403000206) in
accordance with the tenets of the Declaration of Helsinki. The
waiver of the requirement for informed consent was included
in the institutional review board approval, as all protected health
information was deidentified [67]. One of the authors (PS) was
granted access to the database after completing training in
human research (CITI Human Research certification number:
54889098) and signing a data use agreement in PhysioNet
(agreement number 64081). The experiments described in this
paper were conducted on Microsoft Azure (Azure OpenAI
service) according to the “Responsible use of MIMIC data with
online services like GPT” guidance by PhysioNet [68]. The
code associated with this publication has been shared in an open
repository, and information is provided in the “Data
Availability” section of this manuscript.

Generation-Assisted Retrieval-Augmented Generation
for Clinical Decision Support
Here we demonstrate how to build a prototype for an AI-driven
CDS, in particular, for crafting patient-specific management
plans with verifiable citations from StatPearls [30], a
point-of-care medical database with peer-reviewed clinical
guidelines. On March 2, 2025, a comprehensive archive of
clinical guidelines from StatPearls (approximately 1.5 gigabytes
in size) was downloaded for use as the reference corpus in the
RAG process. After unpacking the archive, a total of 9559 nxml
files were obtained, each corresponding to the management of
a distinct medical condition. These files were subsequently
cleaned to remove nonclinical and extraneous information,
including licenses, credits, warranties, publishing details, user
prompts (eg, “Comment on this article”), and reference sections,
so that only clinically relevant content remained. The title of
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each file was automatically inferred from the text and used as
a filename, thereby linking each document to the medical event
it described. The cleaned files were then converted into plain
text format and uploaded to Azure Blob Storage. For citation
purposes, a mapping was preserved between each inferred
filename and the original download URL from StatPearls.

To enable semantic search and retrieval, the corpus was indexed
within Azure Search Service. The indexing pipeline comprised
a data source connection to Azure Blob Storage, a search index
with fields for filename, chunk identifier, chunk text, and
embedding vector; a text-splitting skill with a maximum chunk
size of 4000 tokens and an overlap of 100 tokens; and an
embedding skill using text-embedding-3-large model, OpenAI’s
latest and best embedding model to date [69]. An indexer was
then executed to vectorize and index the entire collection of
document chunks.

Building upon this foundation, we developed a proof-of-concept
workflow, which we termed generation-assisted
retrieval-augmented generation (GARAG). GARAG proceeds
in 3 stages. First, given EHR data, an LLM (specifically
GPT-4.1) is prompted to generate a structured list of differential

diagnoses. Second, for each diagnosis, the system queries the
indexed StatPearls corpus through Azure Search Service,
employing the Hierarchical Navigable Small World approximate
nearest neighbor algorithm (with parameters M=4,
efConstruction=400, and efSearch=500) and cosine similarity
as the distance metric. The 4 most relevant text chunks are
retrieved for each candidate diagnosis. Third, the LLM is
prompted again with the patient data and the retrieved evidence
sources. From this input, the model generates a structured
management plan covering investigations, treatment suggestions,
supportive management, other considerations, risks, and
references. Citations are automatically hyperlinked to the
original StatPearls sources via the preserved filename-to-URL
mapping (Figure 1). A key advantage of GARAG is its ability
to ground recommendations in guideline-specific, peer-reviewed
sources tailored to each predicted diagnosis. This targeted
retrieval avoids the information dilution that can occur with
standard RAG approaches, where embedding the entire case
may obscure fine-grained clinical details. By structuring the
workflow around diagnosis-specific guideline retrieval, GARAG
ensures that management plans are directly aligned with
authoritative clinical references.

Figure 1. Generating a personalized evidence-based management plan using StatPearls and the GARAG framework. EHR: electronic health record;
GARAG: generation-assisted retrieval-augmented generation; LLM: large language model.

For clarity, we have provided a Python Jupyter Notebook that
demonstrates our implementation of such a GARAG system
and the automated tests we have run to confirm that the
instructions are being followed by the LLM. To contrast the
GARAG workflow to a traditional RAG workflow, we also
provide the reader with a Python prototype that generates
treatment plans with StatPearls references using RAG.

Generation-Assisted Vector Search for Automated
Medical Coding
Next, we demonstrate how to build an AI tool for automated
medical coding using a method we named generation-assisted
vector search (GAVS). Unlike RAG, in which retrieval precedes
generation, GAVS inverts the process: generation is performed
first and retrieval follows. In this pipeline, an Azure OpenAI
LLM is few-shot prompted to read EHR text and to enumerate,
with maximal granularity, the clinically relevant entities for

coding (eg, diagnoses/comorbidities/abnormalities,
procedures/treatments/services, and drugs). Each generated item
is subsequently embedded with text-embedding-3-large and
matched against a vector database representing the target coding
ontology.

For procedural coding, the coding ontology was derived from
the official 2025 CPT release downloaded as an Excel workbook
from the Centers for Disease Control and Prevention government
website. The worksheet containing all CPT entries (“ALL 2025
CPT Codes”) was parsed to retain the canonical code identifier
and its short description; rows with missing codes were
removed. Each row was converted into a LangChain [70]
Document whose embedding encodes the description, while the
metadata preserves both the CPT Code and Title. Because CPT
descriptions are short, no chunking was required.
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Embeddings were stored in a Pinecone serverless index [71]
and queried via the LangChain [70] PineconeVectorStore at
runtime. During inference, each model-generated item
(eg,procedure) in a structured list output is embedded on the
fly and used to perform semantic search, retrieving the top 10
nearest CPT entries by cosine similarity. The returned results
include both semantic scores and the canonical CPT codes via
the stored metadata, allowing the system to report
human-readable candidates (code+title) alongside each extracted
clinical item.

The same pattern generalizes to diagnostic and pharmacological
coding by substituting the target ontology (eg, ICD-11 or
SNOMED CT for diagnoses; SNOMED CT for drugs) and
constructing an analogous vector store with description-level
embeddings and code identifiers preserved in metadata. For
transparency and reproducibility, we provide a Jupyter Notebook
demonstrating the full CPT workflow end-to-end, including
data acquisition, runtime index creation, LLM-based generation,
and similarity search-based mapping. Crucially, the index is
created and populated programmatically at runtime if absent
(index name cpt-cdc-2025-text-embedding-3-large, dimension
3072, metric cosine, region eu-west-1); if present, the pipeline
connects to the existing index without reingestion. We also
provide links to download coding ontologies from the official
publisher websites in the format of single or multiple Excel
files: CPT from the Centers for Medicare and Medicaid Services
[72], ICD-11 from the World Health Organization [73], and
SNOMED from the NHS Digital website [74].

To quantitatively assess the benefits of GAVS over direct LLM
prompting, we conducted a proof-of-concept evaluation for
International Classification of Diseases, Tenth Revision
(ICD-10) coding following the methods of Sarvari and Al-Fagih
[47]. We initially sampled 1000 admissions at random from
MIMIC-IV, of which 42 did not have officially assigned ICD-10
codes and were excluded, resulting in a final cohort of 958
admissions. For each admission, the set of billed ICD-10 codes
served as the ground truth. Across this cohort, there were 8576
total ICD-10 codes at the subcategory (full code) level,
comprising 1610 unique subcategories. When mapped to parent
categories, the total number decreased to 7311 codes across 540
unique categories. The discrepancy (8576 vs 7311) reflects cases
in which the Python library used for mapping [75] did not
recognize certain overly specific subcategory codes, in which
case no parent category was assigned. The full ICD-10 ontology
includes 95,109 valid codes, defining the candidate space for
prediction. Two approaches were compared. In the vanilla LLM
method, GPT-4.1 was prompted directly to predict ICD-10
codes for each admission, without external constraints. In the
GAVS method, GPT-4.1 was first prompted to generate granular
diagnostic entities, which were then embedded and matched to
the top 10 most similar ICD-10 codes through vector search
(Azure Search Service) of the official ontology. Both methods
used identical LLM configuration and dataset preprocessing,
ensuring comparability across experiments. The primary
outcome was recall, defined as the fraction of ground-truth codes
correctly predicted. Two variants were calculated, consistent
with [46] (1) average (per-admission mean) recall, averaged
across the 958 admissions, and (2) aggregate (weighted average)

recall, defined as the total number of correctly predicted codes
divided by the total number of codes (8576) or 1−(∑missed
codes across admissions / ∑true codes across admissions).

Precision was not reported, as discussed previously [47], because
billing records are not a reliable gold standard for false positive
determination: clinically valid diagnoses often go unbilled, and
multiple codes may be acceptable matches (especially when
working with incomplete data). In this context, precision metrics
would therefore be misleading. For statistical comparison,
following [47], we applied a 2-proportion z test to evaluate
differences between methods in recovered versus missed
ground-truth codes.

For clarity, we provide the reader with a Python Jupyter
notebook, demonstrating the entire automated coding prediction
(including the vanilla GPT-4.1 and GAVS methods for
predicting ICD-10 codes) and evaluation workflow both at the
subcategory and category levels.

Results

GARAG: Citation Integrity and Relevance
Using the LLM-as-a-judge method [47,76], we evaluated the
GARAG workflow on 21 clinical test cases created by a subset
of the authors who are medical professionals. Each case was
executed 3 times independently to assess reproducibility,
yielding a total of 63 runs. Performance was assessed using four
criteria: (1) correctness of references, (2) absence of duplicate
citations, (3) adherence to citation formatting standards, and
(4) contextual appropriateness of the generated management
plan, including whether it explicitly addressed the presented
diagnoses. Across all 63 runs, 62 satisfied all 4 criteria,
corresponding to a success rate of 98.4%. The single exception
occurred in case 14 during its first repetition, in which references
were accurate but displayed a minor ordering inconsistency,
with “[3]” appearing before “[2].” Importantly, no spurious
references were observed, all citations could be traced directly
to their StatPearls sources, and all management plans were
judged clinically relevant. These findings demonstrate that
GARAG provides a highly reliable and reproducible workflow
for generating clinical management plans with proper citation
handling, with only minor formatting issues detected across
repeated executions.

GAVS: Diagnostic Coding Performance
We next evaluated the GAVS method for automated diagnostic
coding on 958 randomly selected MIMIC-IV hospital
admissions. Across these cases, there were 8576 total assigned
ICD-10 codes at the subcategory level, spanning 1610 unique
subcategories. When collapsed to categories using a Python
mapping library [75], this corresponded to 7311 total codes
across 540 unique categories. The full ICD-10 ontology contains
95,109 valid codes, underscoring the scale of the prediction
task. Two approaches were compared: (1) a direct LLM baseline,
in which GPT-4.1 was prompted to predict ICD-10 codes
without constraints, and (2) GAVS, in which GPT-4.1 first
generated granular diagnostic entities that were each mapped
onto the top 10 matching ICD-10 codes through vector search
over the official ontology. Across all admissions, the vanilla
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LLM produced 131,329 candidate codes, while GAVS produced
136,920. At the subcategory level, the vanilla LLM achieved a
mean recall of 17.95% (15.86% weighted), whereas GAVS
achieved 20.63% (18.62% weighted), representing a statistically
significant improvement (P<.001, 2-proportion z test). Notably,
GAVS generated 11,254 unique predicted subcategories,
compared with 15,572 unique subcategories from the vanilla
LLM, suggesting that the vanilla approach was more diffuse in
its predictions, whereas GAVS concentrated predictions on a
narrower and more relevant set of codes. At the category level,
the vanilla LLM achieved a mean recall of 34.05% (32.60%
weighted), while GAVS achieved 33.57% (32.58% weighted).
The difference was not statistically significant (P=.99). GAVS
produced 1192 unique predicted categories, compared with 913
unique categories for the vanilla LLM.

Integration Into Rhazes Clinician
Building on the GARAG and GAVS prototypes, we developed
a clinician-facing agentic web application that integrates
documentation assistance, management planning (GARAG),
automated coding (GAVS), and differential diagnosis tools and
is accessible via the Rhazes website [53]. To maximize
accessibility, the system was deployed as a Progressive Web
Application, enabling installation and seamless use across
desktop and mobile platforms without requiring a native app.
The application was implemented using a modern web
architecture: a Next.js full-stack framework with React
(TypeScript) for the front end, a Node.js backend, and a
PostgreSQL database accessed through the Prisma
object-relational mapper. Hosting was provided on Aptible [77],
a platform-as-a-service offering secure, Health Insurance
Portability and Accountability Act–ready infrastructure. Within
Rhazes, user queries are handled by LLM agents that route
requests to the most appropriate tools. These include the
management planning (GARAG) and medical coding (GAVS)
pipelines described above, a documentation assistant for
completing predefined templates, and a differential diagnosis
tool that was previously evaluated in Sarvari and Al-Fagih [47].
The orchestration layer was built on LangGraph [70], allowing
for parallel tool execution and a persistent shared conversation
history across agents. The system, certified under Cyber
Essentials [78,79], is used by thousands of doctors and supports
integration with major EHR systems, including Epic (32.8%
market share in 2021) and Cerner (23.2% market share in 2021)
[80].

Discussion

Principal Findings
In this study, we introduced Rhazes, an AI assistant for doctors
designed to handle paperwork and analytical tasks in clinical
medicine. Rhazes aims to free physicians from the burden of
documentation and to help them provide better care for more
patients. Within this broader system, the GARAG and GAVS
frameworks demonstrate the feasibility of embedding structured
guardrails into LLM-based clinical workflows. GARAG ensures
that management plans are grounded in peer-reviewed guideline
sources with properly formatted references, achieved through
a diagnosis-first retrieval workflow that increases the likelihood

of relevant sources being cited. GAVS applies a similar principle
to coding, improving fidelity through a 2-step process in which
diagnostic entities are generated first and then deterministically
mapped to valid ontology terms via vector search. Both methods
represent proof-of-concept prototypes that were subsequently
deployed within the Rhazes Clinician platform. Although
GARAG was evaluated on a smaller case set compared with
GAVS, its strength lies in preserving fine-grained diagnostic
information during retrieval. By generating diagnoses first and
then retrieving guideline evidence for each one, GARAG avoids
the information dilution that occurs when the entire patient
record is embedded at once, ensuring that management plans
remain tightly linked to diagnosis-specific guidance.

Taken together, the evaluation results indicate that GAVS
improves resolution at the subcategory level without sacrificing
performance at the broader category level. Beyond this
quantitative advantage, GAVS has 3 qualitative benefits that
strengthen its reliability and scalability. First, GAVS guarantees
that every predicted code is part of the official coding ontology.
Because predictions are drawn directly from a vector search
over the ontology, the system cannot hallucinate nonexistent
codes—a risk that remains with unconstrained LLM outputs.
Second, GAVS is flexible across coding systems. Adapting it
to a different ICD version, or to CPT/SNOMED, or to
institution-specific ontologies requires no retraining or prompt
engineering. One simply replaces the vector database with
embeddings of the target ontology’s code descriptions, and the
method functions seamlessly. Third, GAVS enhances
explainability. The LLM provides a structured list of diagnostic
predictions together with textual reasoning, and each prediction
is then mapped deterministically to a small, fixed set of
candidate codes via cosine similarity. This 2-step design ensures
systematic and interpretable outputs. By contrast, a vanilla LLM
generates codes as a single sequence based on statistical
likelihood, with no guarantee of coverage, ordering, or
manageable length, making its reasoning harder to audit and its
predictions less scalable.

Future Work
There are many feature improvements we envisage adding to
Rhazes Clinician soon. First, we plan to experiment with new
embedding models such as Guided In-Sample Selection of
Training Negatives-large-embedding-v0 [81], which has been
identified as a good fit for clinical tasks in a previous study [82].
The change in the embedding model means that we will have
to reindex the latest versions of the clinical and coding
guidelines we have been using for GARAG and GAVS. From
a platform perspective, Rhazes already supports ICD, CPT, and
SNOMED codes. We plan to extend this support to the full
HCPCS [38] (including level 2) as well as OPCS. These
additions will broaden coverage across clinical and
administrative workflows. From an evaluation perspective,
future work will focus on systematically assessing whether
GAVS’ advantage over an unconstrained LLM generalizes
across coding ontologies beyond ICD-10. We will design
blinded, head-to-head comparisons—similar in spirit to Klang
et al [65]—spanning CPT, SNOMED, HCPCS level 2, OPCS,
and clinic-specific ontologies, with physicians and LLMs
independently adjudicating results. Because these ontologies
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(particularly the less common or locally maintained ones) are
less likely to be represented in pretraining data, our a priori
hypothesis is that the relative benefit of GAVS will be larger
than what we observed for ICD-10. As part of this program, we
aim to construct and share a deidentified, gold-labeled coding
dataset suitable for benchmarking across methods. Additional
methodological work will examine the effect of the
vector-search candidate set size (eg, top-k), alternative
embedding models [81,82], and improved parent-mapping
resources to reduce unresolvable cases during category
aggregation. Finally, we plan to extend our EHR integration
offerings: we aim to support Egton Medical Information
Systems, the leading EHR for UK primary care clinics, and
SystmOne, the second most popular EHR for UK general
practitioners [83]. These integrations will facilitate prospective,
multisite evaluations and subgroup analyses while maintaining
interoperability with existing clinical systems.

Limitations
The GARAG workflow was tested on a relatively small set of
21 author-designed cases. While reproducibility was high,
independent validation on larger and more varied case sets is
needed. The GAVS evaluation, while based on a sizable cohort
of 958 admissions, relied on billing records as the gold standard.
Because billing data do not fully capture the clinical picture of
each admission, it is not possible to definitively establish
precision, as some well-reasoned diagnostic predictions may
go unbilled [46,47]. Moreover, the underlying MIMIC-IV
dataset has well-recognized constraints: it lacks clinical notes,
physical examination findings, and certain test results such as
electrocardiograms, and it is drawn from a single hospital in
Boston, MA. This means the data are subject to demographic
and institutional biases and may not generalize to other patient
populations. Finally, some specific ICD-10 codes could not be
mapped to parent categories due to library limitations. These
factors highlight the need for further testing against richer
clinical datasets, across multiple institutions, and with more
comprehensive ontology mappings. Taken together, these
component-level limitations reflect broader challenges in
deploying LLM-driven systems like Rhazes into clinical
practice. The effectiveness of an AI co-pilot hinges on its
accuracy across diverse clinical scenarios. In general, evaluation
of clinical performance of LLMs is challenging due to the lack
of transparency when it comes to versions, prompts, human
evaluations, LLM-as-a-judge evaluations [47,76], patient data,
and due to the nonexistence of gold-labeled data sets for many
clinical applications [84]. Care must be taken to accurately
assess AI for improved patient outcomes and to avoid
statistically flawed evaluations [85]. In practice, AI tools can
exhibit degraded performance when used outside the conditions
of their training (out-of-distribution use). Even models that
performed well in development or obtained regulatory clearance
have underperformed in new settings due to poor generalization.
This raises the risk of missed diagnoses or incorrect management
plans if the AI encounters patient data that differs from its
training distribution. Continuous validation of the system on
local patient populations is therefore critical to ensure reliability
in AI-generated recommendations [86]. AI models learn from
historical data, so any biases or gaps in those data can lead to

skewed or inequitable outcomes [87]. If the training dataset
underrepresents certain demographics or conditions, the model
suggestions may be less accurate for those groups, potentially
perpetuating health disparities. For example, studies have found
some clinical AI algorithms perform significantly worse for
female patients or racial minorities, underdiagnosing these
groups compared to others [88,89]. Such bias not only affects
accuracy but also violates principles of fairness in care. Ensuring
the data used by AI co-pilots are diverse and representative is
essential to minimize this risk. We must also be mindful of other
harmful biases LLMs may learn during training [84], as well
as the risks that over-reliance on AI systems may bring to
medicine (eg, automation bias) [90].

AI in Health Care Ethics
Under the General Data Protection Regulation, health care
organizations can often process patient data for care without
explicit consent, provided they have a valid lawful basis (Article
6) and meet a special category condition (Article 9) [91], such
as provision of health care services. This lawful basis should
naturally extend to the data processors used, such as the AI
scribes. However, alongside lawfulness, transparency is
important. Patients should be informed when an algorithm is
involved in their diagnosis or treatment planning. Research
indicates that disclosing the use of an AI tool is essential to
patients; a recent study found that patients strongly prefer to be
informed when AI assists in their care and recommended that
explicit consent for AI involvement be obtained during the
clinical workflow [92]. In the context of Rhazes, this means
clinicians should be transparent about the AI’s role—explaining
to patients that an AI system will analyze their data and
contribute to suggestions. Such transparency not only respects
patient autonomy but also helps build trust, as patients are more
likely to accept AI-derived recommendations if they understand
and agree to their use.

An AI system must consistently uphold the core principles of
medical ethics—beneficence, nonmaleficence, autonomy, and
justice. One concern is that software like Rhazes might, in some
situations, propose an option that, while data-driven, conflicts
with a patient’s values or broader ethical norms. For example,
an AI might prioritize treatments based on statistical outcomes
or cost-effectiveness, which could unintentionally de-emphasize
a patient’s personal preference for quality of life. If Rhazes
recommends an aggressive treatment purely because it
maximizes survival odds, but the patient prioritizes comfort,
blindly following the AI would undermine patient autonomy.
Human clinicians must interpret Rhazes’ outputs through the
lens of their professional ethics and clinical judgment. They
should override or adjust recommendations that do not fit the
patient’s individual context or the ethical standards of care. In
essence, Rhazes should support clinical decisions that are not
only effective but also ethically sound, with the physician
ensuring final decisions align with the principle of autonomy
and patient-centered care. Several approaches can address these
ethical concerns and ensure that AI tools are used responsibly
in health care. One key strategy is incorporating explainability
into the AI model. Rather than acting as a “black box,” Rhazes
provides interpretable reasoning or an explanation for its
suggestions (for instance, highlighting which patient factors or
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medical evidence led to a given diagnostic recommendation).
Explainable AI methods help clinicians and patients understand
why a recommendation was made, which is vital for trust and
for verifying that the recommendation makes ethical and clinical
sense. Another strategy is clinician oversight and accountability.
Rhazes is intended to assist, not replace, the clinician; therefore,
protocols should emphasize that the human provider retains
ultimate responsibility for diagnosis and treatment decisions.
By maintaining clear accountability—where the clinician must
review and approve AI-generated plans—the risk of blind
adoption of incorrect suggestions is reduced. Studies on
automation bias mitigation have noted that training users and
stressing their accountability can counter overreliance [93].
Regular training sessions for clinicians on the proper use of
Rhazes, including case studies of when the AI errs, can sharpen
their judgment on when to trust the AI and when to apply
caution. Finally, patient education about AI in health care can
help. Patients should be informed in understandable terms what
Rhazes is and what role it plays in their care. When patients
understand that the AI is a tool used by their doctor (and not a
substitute for the doctor), it can alleviate fears of a purely
machine-driven care plan. Surveys have shown that both doctors
and patients feel anxious if they do not understand AI’s
involvement [94], so educational efforts (leaflets, consent
discussions, etc) can demystify the technology. In summary,
through explainable AI design, strong human oversight, and
educational transparency, Rhazes can be deployed in a way that
upholds ethical standards and supports clinicians and patients
alike.

Compliance Requirements for AI Tools in Hospitals
Any digital health technology company operating within the
United Kingdom collecting or processing any form of personal
data must comply with UK General Data Protection Regulation
and the Data Protection Act [95]. Companies processing
personal data in the United Kingdom must be registered with
the Information Commissioner’s Office (ICO) [96]. In addition
to the usual requirements around processing personal data, it is
likely that a health-tech company will be processing sensitive
personal health data, which would classify as special category
data. This can bring some additional requirements, such as the
need or recommendation to complete a Data Protection Impact
Assessment [97]. There must also be appropriate contracts and
Data Processing Agreements [98] in place between an NHS
organization and the digital health supplier, between which
personal data may flow.

If a digital health supplier is looking to work with NHS
organizations and will be interacting with NHS patient data,
they will need to complete the Data Security and Protection
Toolkit (DSPT) [99]. This is not a requirement in the private
sector or in direct-to-consumer models. If an organization is an
IT supplier with 50+ staff members and has a turnover of at
least £10 million (US $13.16 million) and supplies digital goods
and services to the NHS, the company must also undertake an
independent audit/assessment [99]. Organizations handling
patient data may require the following personnel: a data
protection officer (DPO), a senior information risk owner, and
a Caldicott guardian [99]. A DPO [100] is required if a
company’s core activities consist of large-scale processing of

special category data. DPOs help to monitor internal compliance,
inform on data protection obligations, provide advice regarding
Data Protection Impact Assessments and act as a point of contact
for data subjects and the ICO. The Senior Information Risk
Owner is a senior member of the organization whose roles are
to promote a culture that values and protects ICO information,
own information risk management policies and processes and
ensure they are implemented, advise on information risk
management processes and provide assurance, and own the
incident management framework. The Caldicott Guardian [101]
is a senior person responsible for overseeing the use and sharing
of patient information by protecting the confidentiality of
people’s health and care information.

Companies aiming to deploy in the NHS also must go through
information security and technical assurance. UK Cyber
Essentials [78,102,103] is a self-assessment that any company
looking to work with the public sector must comply with. The
general recommendation is for companies to comply with Cyber
Essentials Plus, which involves both a self-assessment and an
external audit. Often, companies will use ISO 27001 to
demonstrate a higher level of security than required by just
meeting DSPT requirements, but it is not generally mandated
in health care organizations. ISO 27001 is an internationally
recognized standard for information security [102] that is not
health care specific. It requires companies to implement
Information Security Management Systems and focuses on risk
assessment. It requires independent certification by an accredited
body. Digital health technologies deployed in NHS organizations
in England will also need to comply with the digital clinical
safety standards DCB0129/0160. This is required by law, under
section 250 of the Health and Social Care Act 2012 [104]. Both
the manufacturer (DCB0129) and deploying health or social
care organization (DCB01060) are required to complete a
clinical risk assessment, including key documentation. This
process is overseen by an appropriately qualified Clinical Safety
Officer. There is also a requirement to monitor and record any
incidents post-deployment. Penetration testing is required to
assess the security of digital health technologies deployed in
NHS organizations as part of the NHS Digital Technology
Assessment Criteria (DTAC) [105], which mandates that any
identified vulnerabilities should be appropriately remediated.
The NHS DTAC [105] is a framework that brings together
legislation and best practice in 5 core areas: clinical safety, data
protection, technical security, interoperability, and accessibility
and usability, which incorporates the aforementioned NHS
DSPT and DCB0129 standards. The DTAC is a national baseline
criteria for digital health technologies being deployed within
NHS health care organizations and can be used by health care
organizations to assess suppliers as part of their due diligence
process. Due to the complexity of navigating NHS compliance
frameworks, specialized firms have emerged to help digital
health companies accelerate clinical assurance processes; these
include Assuric [106], Vanta [107], and Naq [108].

If the AI product meets the definition of software as a medical
device (SaMD), companies would also need to comply with
medical device regulation and achieve appropriate certifications
before being available for use in the open market. This would
be the case if the intended purpose and functionality of the

JMIR Biomed Eng 2025 | vol. 10 | e66691 | p.110https://biomedeng.jmir.org/2025/1/e66691
(page number not for citation purposes)

Sarvari et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


product extends into diagnosis, prevention, monitoring,
prediction, prognosis, treatment, or alleviation of disease, as
defined by European Union (EU) Medical Device Regulation
[109]. SaMD is defined as “software intended to be used for
one or more medical purposes that perform these purposes
without being part of a hardware medical device” [110]. In the
United Kingdom, medical devices are classified by risk to class
1, class 2a, class 2b, and class 3, with class 1 being low risk to
patients and class 3 being high risk to patients. Manufacturers
face a greater scope of work and evidentiary burden when
dealing with higher-risk products. In the United Kingdom,
low-risk class 1 devices require manufacturers to make a
self-declaration of conformity to the Medicines and Healthcare
Products Regulatory Agency (MHRA). Other classes require
involvement and approval from an approved body (an
organization designated by the MHRA to assess the conformity
of products before they are placed on the market), granting a
UK Conformity Assessed mark, the equivalent to a Conformité
Européenne (CE) mark in the EU.

There have been several AI-as-a-medical device products on
the market for some time, primarily in the category of diagnostic
radiology or dermatology tools, one example being Skin
Analytics, which recently achieved regulatory approval for
autonomous AI skin cancer detection system Deep Ensemble
for Recognition of Malignancy in Europe, receiving class III
CE marking. This is the first legally authorized AI to
independently make clinical decisions on skin cancer without
oversight. Deep Ensemble for Recognition of Malignancy
achieves 99.8% accuracy rate in ruling out cancer, surpassing
the performance of dermatologists who typically achieve 98.9%
[111]. However, there is yet to be a generative AI product that
has been certified as a medical device in the United Kingdom
or EU. In the United States, Modella AI’s generative AI co-pilot,
PathChat, has received device designation by the Food and Drug
Administration. This is the first regulatory approval of a
clinical-grade generative AI co-pilot [112] and is the first of
likely many more SaMD generative AI applications.

The NHS 10-Year Reform Plan sets a clear direction for
modernizing care delivery, with a strong emphasis on digital
transformation, integrated community services, and reducing
strain on clinical staff [113]. One area gaining significant
momentum is the deployment of AI-enabled ambient scribing
tools, which offer practical relief from administrative overhead
by automatically transcribing and summarizing clinical
encounters [113]. The plan explicitly highlights the need to
streamline documentation and use responsible automation to
release clinician time for patient care [113]. In parallel, NHS
England’s technical guidance on ambient voice technology adds
further clarity and outlines key regulatory considerations for
these tools [114]. Pure transcription tools are generally not
considered medical devices. However, where generative AI
features extend into summarization, providing prompts,
generating structured clinical notes, letters, or codes, they are
likely to qualify as SaMD. Such tools would then require UK

Conformity Assessed or CE marking, MHRA registration, and
a full clinical safety case under DCB0129/0160. Beyond
regulatory certification, NHS organizations are expected to
ensure integration with existing EHRs through standards such
as Fast Health Care Interoperability Resources, HL7, and
SNOMED CT, maintain strong human oversight to mitigate
diagnostic drift or foreseeable misuse, and implement a clear
post-deployment monitoring framework. This includes
mechanisms for clinicians to flag transcription errors, routine
audits of scribe outputs, and attention to bias risks, particularly
for patients with regional accents, dialects, or speech
impairments.

Conclusion
While AI has been rapidly evolving over the last 2 years,
progress has not been reciprocated in the health care industry,
a heavily regulated space with many financial, staffing, and
quality-of-service-type problems. Due to the lack of gold-labeled
datasets and human evaluation protocols for LLM-generated
text, recent AI in health care innovations was driven by
well-funded industry players who were able to start generating
evidence by securing hospital pilots early. So far, most
companies seek to innovate in administrative workflows that
avoid direct patient care as this comes with lesser regulatory
burden. There seems to be a regulatory gray area surrounding
workflows which could ultimately affect patient care should
doctors over-rely on AI. Examples include AI scribing and
clinical document generation, with only a few AI notetaker tools
evaluated in academic journals with often conflicting and lack
of reproducible results.

In this article, we reviewed the need for AI tools in health care
and the current state of the industry, including dominant players
and their progress. During this review, we demonstrated,
firsthand, how such tools may be created and how they may be
used by physicians. We discussed key implementation
considerations for Rhazes Clinician, an AI assistant for doctors.
We described in detail the methods used to create a CDS and
an admin assistant for doctors, including the LLMs deployed,
the clinical guidelines used, the RAG hyperparameters, and the
cloud services used. We also introduced a new method for
medical coding that we dubbed GAVS for
Generation-Augmented Vector Search and an improved RAG
workflow for CDS that we named GARAG. GARAG highlights
the value of diagnosis-specific retrieval, allowing management
plans to stay closely linked to diagnostic evidence while
avoiding the information dilution that occurs when entire patient
records are embedded in typical RAG workflows. We showed
that GAVS statistically significantly improves ICD-10 coding
predictions. For both treatment planning and medical coding,
we provided Jupyter notebooks that demonstrate the (albeit
simplified) implementation of these Rhazes tools. Our goal with
this is to contribute to the academic discussion about AI tools
for health care and encourage academics as well as industry
players to share their datasets and novel methods in order to
accelerate the deployment of transparent AI tools in hospitals.
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OPCS: Operating Procedure Codes Supplement
RAG: retrieval-augmented generation
SaMD: software as a medical device
SNOMED-CT: Systematized Nomenclature of Medicine–Clinical Terms
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Abstract

Background: Accurately assessing pain severity is essential for effective pain treatment and desirable patient outcomes. In
clinical settings, pain intensity assessment relies on self-reporting methods, which are subjective to individuals and impractical
for noncommunicative or critically ill patients. Previous studies have attempted to measure pain objectively using physiological
responses to an external pain stimulus, assuming that the participant is free of internal body pain. However, this approach does
not reflect the situation in a clinical setting, where a patient subjected to an external pain stimulus may already be experiencing
internal body pain.

Objective: This study investigates the hypothesis that an individual’s physiological response to external pain varies in the
presence of preexisting pain.

Methods: We recruited 39 healthy participants aged 22‐37 years, including 23 female and 16 male participants. Physiological
signals, electrodermal activity, and electromyography were recorded while participants were subject to a combination of preexisting
heat pain and cold pain stimuli. Feature engineering methods were applied to extract time-series features, and statistical analysis
using ANOVA was conducted to assess significance.

Results: We found that the preexisting pain influences the body’s physiological responses to an external pain stimulus. Several
features—particularly those related to temporal statistics, successive differences, and distributions—showed statistically significant
variation across varying preexisting pain conditions, with P values <.05 depending on the feature and stimulus.

Conclusions: Our findings suggest that preexisting pain alters the body’s physiological response to new pain stimuli, highlighting
the importance of considering pain history in objective pain assessment models.

(JMIR Biomed Eng 2025;10:e70938)   doi:10.2196/70938
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Introduction

Accurate pain assessment is vital for ensuring proper treatment
and helping patients receive the necessary care to reduce
discomfort and prevent complications. Yet, current pain
assessment tools and methods, which rely on patients’
description of their pain using scales or descriptive measures,
often fall short of clinical expectations [1]. These methods are
ineffective for noncommunicative patients, such as infants or
critically ill patients under sedation or mechanical ventilation.
They are also inherently subjective, as pain perception varies
widely between individuals [2-5]. These limitations increase
the risk of misdiagnosis and mistreatment, highlighting the need
for more objective and reliable pain assessment methods [6,7].

To address the limitations of self-reported pain assessments,
physiological signals offer a promising alternative. Signals such
as skin conductance, heart rate, and muscle activity provide
objective data that can reflect the body’s response to pain.

Unlike self-reporting, physiological signals do not depend on
a patient’s ability to communicate, making them particularly
suitable for critically ill or noncommunicative patients. By
monitoring these signals in real-time, health care providers can
gain an accurate and continuous understanding of a patient’s
pain levels, paving the way for timely and appropriate
interventions. This shift toward objective, data-driven pain
assessment can help reduce the variability and inaccuracies
associated with traditional methods, enhancing health care
providers’ assessments [8,9].

Several studies have explored data-driven approaches for
assessing pain through physiological signals [10-12]. These
studies primarily collected data such as skin conductance,
electromyography (EMG), electrocardiography, and
electroencephalography during controlled pain stimuli
experiments [9,13-15]. The BioVid Heat Pain Database is one
of the most well-known, aiming to differentiate between various
pain levels by analyzing physiological responses to heat pain
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[9]. Other studies, like Rojas et al [16] and Lin et al [14], also
gathered data from participants exposed to heat or cold stimuli,
applying machine learning techniques to classify pain levels.
These studies have demonstrated the potential of physiological
signals for objective pain assessment and established valuable
datasets for pain assessment research [9,14,17,18].

While the aforementioned studies provide promising results,
they mainly focus on healthy participants responding to a single
type of externally induced pain stimulus. One crucial factor that
remains underexplored is the impact of preexisting conditions,
such as chronic pain, postsurgical pain, or injury pain, that a
patient is experiencing when the patient is administered an
external pain stimulus. A few studies have investigated different
patient populations, such as patients with chronic pain (back
pain and shoulder pain) [11,19-22], patients in postsurgery [23],
patients who are injured [24], patients with orthopedic trauma
[25], patients with musculoskeletal trauma [26], and patients
with cancer (eg, breast cancer [27]). These studies have provided
insights into pain assessment in these populations, but they have
not fully explored how preexisting pain interacts with new pain
stimuli in terms of physiological responses.

Although the literature has begun exploring objective pain
assessment for a single source of external pain stimuli, insights
from medical research reveal that preexisting pain influences
responses to new pain stimuli, underscoring the importance of
considering preexisting pain. Sacco et al [20] found that
individuals without chronic pain (without preexisting pain)
exhibit an adaptive response to acute pain (new pain) by
activating internal pain regulation mechanisms, including the
release of natural painkillers and an increase in blood pressure,
which temporarily reduces sensitivity. However, in patients
with chronic pain, this adaptive mechanism can become
disrupted, leading to heightened sensitivity to both acute and
chronic pain. Similarly, Moscato et al [22] found that the
autonomic signals of patients with chronic low back pain show
differences compared to those of healthy individuals, both at
rest and when subjected to a noxious stimulus, as evaluated
through a set of physiological indicators. Lee et al [26] showed
that preexisting pain can impact specific biomarkers, such as
IL−1β, affecting how the body processes musculoskeletal trauma
as a new pain. Raza et al [27] also found that women with
chronic breast pain experienced more severe postoperative pain,
highlighting preexisting pain as a predictor of adverse pain
outcomes. In patients with trauma, Fetzh et al [24] observed
that preexisting pain serves as a significant predictor for
long-term pain following severe injury, emphasizing the
complex interaction between pain history and physiological
responses.

Although chronic pain is often referenced in the literature, the
goal of this study is neither to simulate nor to assess chronic
pain specifically. Instead, we use “preexisting pain” as a broader
effect that can include various types of ongoing pain, such as
postsurgical pain, injury-related pain, or other chronic and
nonchronic conditions. Our aim is to investigate how any form
of preexisting pain—regardless of origin—might influence the
physiological response to a new external pain stimulus.

Our hypothesis is that preexisting pain significantly alters
physiological responses to new pain stimuli. For instance,
patients with chronic pain or postsurgical pain may show distinct
physiological signals—such as changes in skin conductance or
EMG—compared to healthy individuals when encountering
new pain. To test this hypothesis, we conducted an experimental
study examining how different levels of preexisting pain
influence physiological responses to new pain stimuli.
Understanding these responses could lead to accurate and
personalized pain assessments.

In our experiments, we designated “heat pain” as a form of
preexisting pain and “cold pain” as a new external stimulus.
Heat pain and cold pain were studied at 3 levels: zero, low, and
high. We conducted experiments with 9 combinations of
no-heat, low-heat, high-heat, no-cold, low-cold, and high-cold
pain. We recorded electrodermal activity (EDA) and EMG as
time series data during these experimental conditions. Following
data collection, we used feature engineering methods to extract
features from these time series. We identified distributions,
simple temporal statistics, linear and nonlinear autocorrelation,
successive differences, and fluctuation analysis as pain-sensitive
features. Next, we applied an ANOVA test to investigate
whether physiological responses to cold pain stimuli exhibit
statistical differences across three levels of preexisting heat
pain. By analyzing variations in EDA and EMG features across
different pain exposure levels, we aim to gain insights into how
preexisting pain modulates the body’s response to new pain.

The aim of this study is to investigate how varying levels of
preexisting heat pain affect the physiological response to new
cold pain stimuli, using EDA and EMG signals as objective
markers.

To our knowledge, this work represents the first experimental
study that explores the EDA and EMG features that exhibit
statistically significant differences across varying preexisting
heat pain levels in response to an external stimulus.

Methods

Ethical Considerations
The research protocol was approved by the Northeastern
University Institutional Review Board (IRB #22-11-06). The
methods for this study adhered to the guidelines outlined in the
Belmont Report. Northeastern University holds a Federal Wide
Assurance with the US Department of Health & Human
Services, ensuring our compliance with the principles of the
Common Rule, 45 CFR 46. Before the experiment, the
researcher orally explained the experimental procedure to each
participant, the participant’s role, and other relevant information.
In addition, the researcher presented each participant with a
written consent form to read. The researcher obtained written
informed consent from each participant before commencing the
experiment. The research team kept participants’ data
confidential and anonymized, securely storing all data with
access limited to the research team only. No identifying
information was included in the manuscript or any related
materials. Participants were compensated with a gift card.
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Participants
In total, 39 participants were recruited, with 31 completing the
experiments. The remaining 8 participants chose not to continue
the experiment due to discomfort from the heat pain. The study
included 23 female and 16 male participants, with ages ranging
from 22 to 37 years, with an average age of 26.1 (SD 3.57)
years. All participants were healthy, and none reported
experiencing pain before the experiment.

Inclusion and Exclusion Criteria
Participants were recruited from the Northeastern University
community, including students, faculty, and staff. Inclusion
criteria required participants to be between 18 and 50 years of
age, in good general health, and not currently experiencing
chronic pain or other medical conditions that could interfere
with physiological responses. Only English-speaking individuals
were included to ensure clear communication and understanding
of study procedures. Pregnant individuals were excluded from
participation to ensure their comfort and to avoid the
introduction of additional physiological variability. There were
no exclusion criteria related to gender, race or ethnicity,
socioeconomic status, or literacy level.

Measured Physiological Signals
This study examined two physiological signals, EDA and EMG,
to capture responses to pain stimuli.

Electrodermal Activity (EDA)
EDA serves as an indicator of neurocognitive stress through
changes in the skin’s electrical conductance [28]. Closely linked
to the sympathetic branch of the autonomic nervous system,
EDA can sense and transmit information about environmental
changes, including temperature, pressure, and pain [29-31].
Consequently, EDA reflects emotional and cognitive states,
making it a valuable physiological marker across various
applications [32].

During emotional arousal or cognitive stress, sweat gland
stimulation induces fluctuations in skin conductance, measured
by EDA. These changes, largely beyond conscious control,
capture subconscious physiological responses to emotions and
stress, providing an objective means of assessing an individual’s
state [33].

In pain assessment, EDA plays a crucial role by offering a
quantitative and objective measure of physiological responses
to pain. It provides valuable insights into pain intensity,
complementing self-reporting to enhance pain assessment
accuracy in research and clinical settings [28,34]. EDA
encompasses data related to both slow shifts (tonic component)
and the signal’s rapid alterations (phasic changes). Our analysis
focused on gathering information from the tonic component,
specifically skin conductance level.

Electromyography (EMG)
EMG is the electrical signal produced by skeletal muscle
activity. These signals originate from motor neurons, which are
integral components of the central nervous system. Since EMG
signals are a reflection of neuromuscular activity, they find
application in the diagnosis of conditions such as muscle
injuries, nerve damage, and muscle dysfunction arising from
neurological and muscular disorders [35-37]. EMG is an
excellent choice for developing an objective pain assessment
tool because of its unique ability to measure muscle activity
directly. It allows real-time monitoring of muscle responses to
understand pain intensity, location, and characteristics
[14,38,39].

Design of the Experiment
The physiological data were collected using the BIOPAC
MP160 data acquisition and analysis systems with
AcqKnowledge software (BIOPAC Systems, Inc). Smart
amplifiers recorded EMG and EDA. Heat stimulation was
delivered using OCOOPA Hand Warmers, which offered two
temperature settings: 37 and 45 °C. These temperatures were
measured and monitored using a BIOPAC SKT (Skin
Temperature) Smart Amplifier. Cold stimulation was provided
through iced water, with the temperature continuously monitored
using a thermometer. In these experiments, heat pain acts as
preexisting pain, while cold pain acts as a new pain stimulus.

Using temperature-based modalities for both preexisting (heat)
and new (cold) pain stimuli allowed us to design a consistent,
safe, and replicable experimental setup. Temperature stimuli
are well-established in pain research and offer practical
advantages regarding ecological validity and participant safety.
Moreover, the thermal approach enabled controlled comparisons
of physiological responses across different pain levels while
minimizing variability introduced by mechanical or electrical
alternatives.

EDA data were collected using the BIOPAC EDA Smart
Amplifier attached to the ring and index fingers of the
participant’s nondominant hand. Before attaching the sensors
to the fingers, the skin was cleaned with wet wipes, and
GEL101A was applied to the electrodes to improve conductivity,
enhance signal quality, and reduce impedance. EMG data were
acquired using the BIOPAC EMG Smart Amplifier, with three
electrodes attached to the participant’s nondominant forearm.
The skin in the sensor placement area was prepared by cleaning
it with wet wipes, followed by abrasion and application of
ELPREP. GEL100 was applied to the electrodes to improve
contact. To minimize motion artifacts, all cables were secured
with medical tape. Hand warmers were fastened to the
participant’s dominant forearm using a strap. Figure 1A shows
the picture of the placement of the electrodes.

JMIR Biomed Eng 2025 | vol. 10 | e70938 | p.120https://biomedeng.jmir.org/2025/1/e70938
(page number not for citation purposes)

Ozek et alJMIR BIOMEDICAL ENGINEERING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 1. Data acquisition setup and experimental setup for pain stimuli. (A) EDA data were gathered from the ring and index fingers of the participant’s
nondominant hand, while EMG data were recorded using three electrodes positioned on the participant’s nondominant forearm. (B,C) Hand warmers,
serving as heat pain stimuli, were fastened to the participant’s dominant forearm using a strap. Cold pain stimuli were induced by iced water when
participants placed their fingers or hands in the iced water, depending on the stimulus level the participant is expected to receive in the design of
experiments: for low-level cold pain stimulus, participants placed fingers in the iced water, and for high-level cold pain stimulus, participants placed
the hand in the iced water.

The experiment consisted of two types of pain stimuli: (1) heat
pain caused by attaching hand warmers to the forearm and (2)
cold pain induced by placing fingers or hands in ice water. Each
type of pain had low and high levels. The heat and cold pain
stimuli were applied to the dominant hand, while physiological
signals were collected from the nondominant hand. At the end
of each step, participants were asked to report their pain levels
on a scale of 0 to 10. The participants are given a 4-minute
relaxation break at the beginning of each data collection session.

We collected baseline data from each participant without
inducing any type of pain stimulus. The rest of the experimental
procedure consisted of two phases. In the first phase, we
collected data from four steps; in Step 1, only the low-level cold
pain was applied; in Step 2, only the high-level cold was applied;
in Step 3, only low-level heat pain was applied; and in Step 4,
only high-level heat pain was applied. In the second phase of
the experiments, we applied a different combination of heat and
cold pain levels to examine their combined effect in Steps 5
through 8.

The experimental procedures for the first phase involved four
steps. First, the participant placed their fingers in iced water
and held them there for 8 seconds, representing low-level cold
pain. In the second step, they placed their dominant hand in
iced water for 8 seconds, representing high-level cold pain. In
the third step, using a hand warmer attached to the participant’s
dominant forearm, they were subjected to 37 °C heat for 1.5
minutes, which caused low-level preexisting heat pain. In the
final step of the first phase, using a hand warmer attached to
the participant’s dominant forearm, they were subjected to 45
°C heat for 1.5 minutes, which caused high-level preexisting
heat pain.

The second phase of the experiment involved four additional
steps. In the fifth step of the experiment, the participant wore
a hand warmer on their nondominant forearm, experiencing a
temperature of 37 °C for 1.5 minutes. After 80 seconds into the
heat pain stimulus, the participant placed their fingers in iced
water for 8 seconds. This scenario represents the simultaneous
application of low preexisting heat pain and new low cold pain.
In the sixth step, the participant repeated Step 5 with the hand
warmer on their nondominant forearm, but at a temperature of
45 °C. Again, after 80 seconds, they placed their fingers in iced
water for 8 seconds. This scenario represents the simultaneous
application of high preexisting heat pain and new low cold pain.
In the seventh step, the participant wore the hand warmer on
their nondominant forearm at 37 °C for 1.5 minutes. After 80
seconds had elapsed, they immersed their dominant hand in
iced water for 8 seconds. This scenario represents the
simultaneous application of low preexisting heat pain and new
high cold pain. In the eighth and final step, the participant
repeated Step 7 with the hand warmer on their nondominant
forearm at 45 °C for 1.5 minutes. After 80 seconds, they
immersed their dominant hand in iced water for 8 seconds. This
scenario represents the simultaneous application of high
preexisting heat pain and new high cold pain.

Figure 1B,C illustrates how the hand warmer is positioned on
the forearm and how the fingers or hand are placed in the ice
water.

Signal Processing
Both EDA and EMG signals were recorded at a data acquisition
rate of 2000 samples per second (2 kHz). For EDA, a low-pass
filter with a 1.0 Hz frequency cutoff was used to eliminate
high-frequency noise [30,40].
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We processed EMG signals through a comb bandstop
transformation to eliminate interference from the power line
frequency (50 Hz) [41]. The comb bandstop transformation
aims to effectively suppress or eliminate interference originating
from the power line frequency (50 Hz), ensuring a relatively
noise-free EMG signal for analysis and interpretation.
Subsequently, a finite impulse response bandpass filter was
applied, specifying a low-frequency cutoff at 28 Hz and a
high-frequency cutoff at 500 Hz [42]. This step was
implemented to filter out both high and low artifacts, such as
motion artifacts, and to focus on the EMG signal within the
frequency range of 28 to 500 Hz.

Recognizing that the EMG signal centers around 0, a rectified
version was generated by averaging samples in sets of 100. This
approach makes analysis easy by eliminating negative values
and retaining the magnitude of the signal.

To analyze EMG further, the root mean square (RMS) was
calculated using a window size of 100 samples. This

measurement meaningfully represents the signal’s characteristics
because EMG is centered around 0.

Feature Extraction
In this study, we derived features from EDA and EMG using
the “Canonical Time-series Characteristics” outlined by Lubba
et al [43]. These features encompass fundamental statistical
metrics of time-series data, stationarity measures, entropy, linear
correlations, nonlinear time-series analysis techniques, linear
and nonlinear model parameters, predictive capabilities, and
fits. Specifically, we identified the subset of 22 features
highlighted as the most informative by Lubba et al [43]. These
features are listed in Table 1. Following all the data processing
and extraction steps, we obtained 22 features from EDA, EMG,
rectified EMG, and RMS of EMG signals; this resulted in a
total of 22×4=88 features. Then, we applied z-transformation
to normalize all features for each participant, using the
participant-specific mean and SD.

Table . Time-series feature categories and descriptions using the “Canonical Time-series Characteristics” defined by Lubba et al [43].

FeaturesFeature category

Distribution • Mode of z-scored distribution (5-bin histogram)
• Mode of z-scored distribution (10-bin histogram)

Simple temporal statistics • The longest period of consecutive values above the mean
• Time intervals between successive extreme events above the mean
• Time intervals between successive extreme events below the mean

Linear autocorrelation • The first 1/e crossing of the autocorrelation function
• The first minimum of the autocorrelation function
• Total power in the lowest fifth of frequencies in the Fourier power

spectrum
• Centroid of the Fourier power spectrum
• Mean error from a rolling 3-sample mean forecasting

Nonlinear autocorrelation • Time-reversibility statistic,  (xt+1−xt)
3 t

• Auto mutual information, m=2, τ=5
• The first minimum of the auto-mutual information function

Successive differences • Proportion of successive differences exceeding 0.04 σ (Mietus et al
[44])

• The longest period of successive incremental decreases
• Shannon entropy of two successive letters in equiprobable 3-letter

symbolization
• Change in correlation length after iterative differencing
• Exponential fit to successive distances in 2D embedding space

Fluctuation analysis • The proportion of slower timescale fluctuations that scale with DFAa

(50% sampling)
• The proportion of slower timescale fluctuations that scale with linearly

rescaled range fits

Others • Trace of covariance of the transition matrix between symbols in the
3-letter alphabet

• Periodicity measure (Wang et al [45])

aDFA: detrended fluctuation analysis.

Statistical Testing
The initial analysis aims to identify statistically significant
features for class differentiation. This includes using the

ANOVA test, which assesses variations among the means of
various groups. It is applied in various situations to ascertain
whether there are any significant differences between the means
of the groups [46,47]. The null hypothesis asserts that the means
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of the groups are the same, while the alternative hypothesis
posits that the means are not equal.

(1)H0:μ1=μ2H1:μ1≠μ2

We reject the null hypothesis if the calculated P value is less
than the chosen significance level, say, .05.

We used ANOVA to assess the statistical differences in the
means of extracted time series features derived from
physiological signals. The sample comprises 31 observations.
The normality of data, which is a requisite for ANOVA, is
confirmed through the Kolmogorov-Smirnov Test for normality
of data and examination of quantile-quantile plots (Q-Q plots)
for each individual feature. A significance level of .05 is set for
the ANOVA test, which is conducted as a 2-tailed analysis.

Results

The following sections present the results of statistical
comparisons of EMG and EDA signal features across different
combinations of heat and cold pain levels.

Significant Features in the Presence and Absence of
Pre-existing Pain
Table 2 summarizes the statistically significant differences
(P<.05) in EMG and EDA features across experimental groups.
Each row corresponds to a specific hypothesis involving two
groups. For example, the first row compares Group 1
(participants who experienced low-level cold pain without
preexisting heat pain) with Group 2 (participants who
experienced the same low-level cold pain while also
experiencing mild preexisting heat pain). This comparison
examines feature-level differences across EMG and EDA signals
under these two conditions.

Table . Statistically significant feature categories and the average P values of features within each category for different hypotheses, aiming to study
the influence of the presence or absence of pre-existing pain on external pain stimuli between symbols in the 3-letter set.

EDA,c (P value)Rectified EMG, (P value)RMSb of EMG, (P value)EMG,a (P value)Groups

••••• Statistics (.02)Linear autocorrelation
(.003)

Linear autocorrelation
(.004)

Linear autocorrelation
(<.001)

Group 1: low-level
cold pain without any
pre-existing pain •• Successive differences

(.001)
Successive differences
(.002) • Successive differences

(.01)
• Group 2: low-level

cold pain with mild
pre-existing heat pain

• Distribution (.02)
• Others (.006)
• Statistics (.02)

••••• Statistics (.02)Linear autocorrelation
(.02)

Linear autocorrelation
(.02)

Linear autocorrelation
(.004)

Group 1: low-level
cold pain without any
pre-existing pain

• Others (.04)
•• Successive differences

(.03)
Successive differences
(.005)• Group 2: low-level

cold pain with severe
pre-existing heat pain

• Others (.02)
• Statistics (.02)

••••• Successive differences
(.03)

No significant featuresNo significant featuresNo significant featuresGroup 1: high-level
cold pain without any
pre-existing pain

• Group 2: high-level
cold pain with mild
pre-existing heat pain

••••• Others (.03)Successive differences
(.03)

No significant featuresNo significant featuresGroup 1: high-level
cold pain without any
pre-existing pain

• Group 2: high-level
cold pain with severe
pre-existing heat pain

aEMG: electromyography.
bRMS: root mean square.
cEDA: electrodermal activity.

For low-level cold pain without any pre-existing pain (Group
1) versus low-level cold pain with mild pre-existing heat pain
(Group 2), significant differences were observed in EMG
features related to linear autocorrelation, including the “first
minimum and the first 1/e crossing of the autocorrelation
function.” In the EDA signal, temporal statistics, specifically

“time intervals between successive extreme events,” showed
statistically significant differences.

For low-level cold pain without any pre-existing pain (Group
1) versus low-level cold pain with severe pre-existing heat pain
(Group 2), EMG features related to linear autocorrelation, such
as the first minimum and 1/e crossing of the autocorrelation
function, were significantly different. The EDA features that
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showed the differences included “time intervals between
successive extreme events” and the “longest period of
consecutive values above the mean.”

For high-level cold pain without any pre-existing pain (Group
1) versus high-level cold pain with mild pre-existing heat pain
(Group 2), the distinguishing features were found in the EDA
signal’s successive differences, particularly the “longest period
of successive incremental decreases.”

For high-level cold pain without any pre-existing pain (Group
1) versus high-level cold pain with severe pre-existing heat pain
(Group 2), statistically significant differences were observed in
the rectified EMG signal for features related to successive
differences, including the “change in correlation length after
iterative differencing” and the “longest period of successive
incremental decreases.” In the EDA signal, differences were
observed in the “trace of covariance of the transition matrix
between symbols in the 3-letter set.”

Significant Features in the Mild and Severe Cases of
Pre-existing Pain
Table 3 presents the signals and their respective features that
exhibit statistically significant differences (P<.05) among the
groups. In this section, two hypotheses are investigated. The
first hypothesis aims to compare physiological signals to assess
the influence of mild and severe pre-existing pain in Groups 1
and 2; Group 1 includes signals from participants subjected to
low-level cold pain while already experiencing mild pre-existing
heat pain; Group 2 includes signals from participants subjected
to low-level cold pain while already experiencing severe
pre-existing heat pain. The second hypothesis involves
comparing the groups to assess the impact of mild and severe
pre-existing heat pain on participants when they are subjected
to high-level cold pain. Figure 2 visually illustrates the
distribution of the most statistically significant features for each
of the two hypotheses.
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Table . Statistically significant feature categories and individual features for distinguishing the influence of varying levels of pre-existing pain on the
response to low and high levels of cold pain.

Feature (P value)Feature categoryHypotheses and signal

Group 1: low-level cold pain with mild pre-existing heat pain; Group 2: low-level cold pain with severe pre-existing heat pain

Mode of z-scored distribution

(10-bin histogram; .03)

Distribution    EMGa

Longest period of successive incre-
mental decreases (.01)

Successive

differences
    RMSb of EMG

Longest period of consecutive val-
ues above the mean

(.03)

Statistics    RMS of EMG

Group 1: high-level cold pain with mild pre-existing heat pain; Group 2: high-level cold pain with severe pre-existing heat pain

Longest period of successive incre-
mental decreases (.007)

Successive

differences

    Rectified EMG

Longest period of consecutive val-
ues above the mean

(.01)

Statistics    Rectified EMG

Mode of z-scored distribution

(10-bin histogram; .03)

Distribution    EMG

Time intervals between successive
extreme events below the mean
(.04)

Statistics    EMG

Time intervals between successive
extreme events below the mean
(.005)

Statistics    RMS of EMG

Time intervals between successive
extreme events above the mean
(.009)

Statistics    RMS of EMG

Time intervals between successive
extreme events below the mean
(.01)

Statistics    Rectified EMG

Time intervals between successive
extreme events above the mean (.01)

Statistics    Rectified EMG

Change in correlation length after
iterative differencing (.03)

Successive

differences

    Rectified EMG

Time intervals between successive
extreme events below the mean
(.01)

Statistics    EDAc

Trace of covariance of transition
matrix (.02)

Others    EDA

aEMG: electromyography.
bRMS: root mean square.
cEDA: electrodermal activity.
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Figure 2. Distribution of features with the influence of pre-existing heat pain: (A,B) Illustrate the probability density of two significant EMG features
under low- and high-level cold pain conditions. (C,D) Present the corresponding boxplots for each feature, comparing the mild and severe pre-existing
pain conditions. EMG: electromyography; RMS: root mean square.

Hypothesis 1 examines the influence of mild and severe
pre-existing heat pain on the body’s response to low-level cold
pain. Significant differences were observed in the EMG signal’s
“mode of z-scored distribution.” RMS of EMG showed
variations in successive differences and statistics, specifically
related to “the longest period of incremental decreases” and
“the longest period of consecutive values above the mean.”
Similar patterns were found in the rectified EMG signal.

Hypothesis 2 investigates the influence of mild and severe
pre-existing heat pain on the body’s response to high-level cold
pain. The “mode of z-scored distribution” of EMG exhibited
significant differences across the groups. RMS of EMG also
showed variations in statistics related to “time intervals between
successive extreme events below and above the mean.” Rectified
EMG signals differed in features pertaining to successive

differences and statistics. Additionally, EDA signals showed
significant differences in the “trace of covariance of the
transition matrix.”

Heat and Cold Pain Interactions
This section presents a response surface analysis using marginal
mean plots and surface plots. It examines how varying levels
of heat and cold pain affect two statistically significant features:
the rectified EMG’s “longest period of successive incremental
decreases” and the RMS of EMG’s “time intervals between
successive extreme events below the mean.” Figure 3A and C
show the rectified EMG response values, while Figure 3B and
D display the RMS of EMG response values. The analysis
includes pain levels coded as 0 (no pain), 1 (mild pain), and 2
(severe pain).
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Figure 3. Interaction effects of pre-existing heat pain and new cold pain on EMG features. (A,B) Marginal means plots illustrating how rectified EMG
and RMS values vary across different levels of heat pain (0, 1, 2) and cold pain (0, 1, 2). (C,D) Surface plots depicting the variation in responses under
various combinations of heat and cold pain levels. EMG: electromyography; RMS: root mean square.

Discussion

Principal Findings
This study was guided by the hypotheses that (1) pre-existing
body pain alters the physiological response to a new pain
stimulus relative to the physiological response in the absence
of pre-existing pain, and (2) pre-existing pain of different
intensities produces distinguishably different physiological
patterns in response to a new pain stimulus. The use of
multimodal physiological signals, EDA, and EMG provides
insight into the underlying mechanisms and supports the
potential for objective, signal-based pain assessment in complex
pain scenarios.

This study found that pre-existing heat pain significantly
influences physiological responses to new cold pain stimuli, as
indicated by features from EDA and EMG, particularly
successive differences, temporal statistics, and distribution
features, demonstrating noticeable sensitivity to varying pain
combinations.

Comparative Analysis: Features Sensitive to the
Presence and Absence of Pre-existing Pain
This section evaluates how the presence or absence of
pre-existing heat pain influences physiological responses when

the body encounters a cold pain stimulus. EMG signals exhibit
significant variation across groups, particularly in features such
as “linear autocorrelation” and “successive differences,” while
EDA signals indicate differences through statistical features.

When an external low-level cold pain is applied, the pre-existing
heat pain, mild or severe, consistently leads to marked changes
in both EMG and EDA signals. In the EMG signal, features
such as the “first minimum and the first 1/e crossing of the
autocorrelation function” capture distinct temporal
characteristics of muscle activity. The first minimum identifies
a key point of dissimilarity, while the 1/e crossing reflects the
timescale at which the signal’s autocorrelation declines to
approximately 36.8% of its peak. In the EDA signal, the “time
intervals between successive extreme events” and the “longest
period of consecutive values above the mean” emerge as
distinguishing features. These results indicate that low-level
cold pain elicits prominently different physiological features in
the presence and absence of pre-existing heat pain.

When a high-level cold pain stimulus is applied, the EDA
signal’s sensitivity to successive differences, particularly the
“longest period of successive incremental decreases,” emerges
as a distinguishing feature. This feature identifies continuous
patterns where EDA consistently decreases from one point to
the next and the trace of covariance of the “transition matrix
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between symbols in the 3-letter set.” This method involves
encoding and simplifying the EDA signal into sequences,
allowing for the analysis of how these sequences change and
relate to each other over time, highlighting its utility in capturing
autonomic dynamics influenced by layered pain conditions.
Similarly, rectified EMG features tied to successive differences
are important: the “change in correlation length after iterative
differencing” and the “longest period of successive incremental
decreases” further underscore the complementary roles of
multimodal physiological measurements.

High-intensity cold pain appears to overshadow the
physiological responses associated with pre-existing heat pain.
Under these conditions, significant differences are limited and
primarily observed in EDA and rectified EMG signals. The
overwhelming nature of high-level cold pain reduces the
detectability of pre-existing pain effects, making it difficult to
distinguish their individual contributions to the physiological
response. Despite this, certain features remain sensitive. In the
EDA signal, successive differences, particularly the “longest
period of successive incremental decreases,” identify continuous
patterns where EDA consistently decreases from one point to
the next. Additionally, the “trace of covariance of the transition
matrix between symbols in the 3-letter” set captures how
patterns evolve over time, offering insights into autonomic
dynamics under layered pain conditions. Similarly, rectified
EMG features related to successive differences, including the
“change in correlation length after iterative differencing” and
the “longest period of successive decreases,” emphasize the
value of combining multimodal physiological measurements to
capture subtle effects that may persist despite dominant pain
stimuli.

Together, these findings suggest that the influence of
pre-existing heat pain on the body’s physiological response is
more discernible when cold pain is mild, particularly through
EMG and EDA signals. In contrast, high-intensity cold pain
may mask these effects, making it difficult to detect the
physiological changes due to pre-existing pain. Understanding
these interactions between physiological responses due to
external and pre-existing pains is essential for interpreting pain
states in complex and overlapping pain scenarios. The presence
of statistically significant and diverse features supports the
notion that pre-existing heat pain has a measurable impact on
physiological responses.

Comparative Analysis: Significant Features in the Mild
and Severe Cases of Pre-existing Pain
This section examines how the severity of pre-existing heat
pain, ranging from mild to severe, influences the body’s
physiological response when exposed to a new cold pain
stimulus. The findings reveal distinct alterations in EMG and
EDA signals that differentiate these pain intensities.

When participants experience low-level cold pain while the
body is already encountering varying degrees of pre-existing
heat pain, the physiological responses captured through EMG
are particularly sensitive to the severity of pre-existing heat
pain. Features like “mode of z-score distribution,” which refers
to the value or range of values that occur most frequently,
indicate shifts in the most dominant muscle activity patterns.

Additionally, the RMS of EMG shows differences in features
related to successive differences and statistics, specifically the
“longest period of incremental decreases” and the “longest
period of consecutive values above the mean.” The first feature
refers to the duration in the time series where the EMG signal’s
RMS consistently decreases incrementally. In simpler terms, it
identifies the most extended continuous period during which
the RMS values decrease step by step. The second feature
pertains to the time series duration in which the EMG signal’s
RMS values remain consistently above the mean. This duration
captures the longest continuous segment where the RMS values
are consistently higher than the average. These features are
further supported by similar patterns observed in the rectified
EMG signal, reinforcing the robustness of these distinctions.

In the high-level cold pain condition, EMG signals continue to
reveal statistically significant differences across pre-existing
pain intensities. The “mode of the z-scored distribution” emerges
as an important marker, indicating distinctive patterns in muscle
activity under mild and severe pre-existing heat pain conditions.
Analysis of the RMS of EMG signals unveils notable variations
in statistics involving “time intervals between successive
extreme events above or below the mean.” This observation
highlights the complex temporal dynamics associated with the
interaction of high-level cold pain and the severity of
pre-existing pain. The distribution of rectified EMG signals
further reinforces these findings, highlighting distinct patterns
in successive differences and statistics, which contribute to the
differentiation of the influence of different pre-existing pain
conditions. Beyond EMG, EDA signals also contribute to this
differentiation. The “trace of the covariance of the transition
matrix” emerges as a key feature. This reveals variation in how
these patterns evolve over time under different pre-existing pain
conditions. The inclusion of EDA signals in our analysis deepens
our understanding of physiological responses to the influence
of varying pre-existing pain intensities.

The results of this study highlight that the body exhibits distinct
responses to cold pain stimuli when experiencing mild versus
severe pre-existing heat pain. These findings highlight the
intricate relationship between pain conditions and physiological
responses. The identified features within EMG and EDA signals
offer valuable insights into the body’s mechanisms, highlighting
the influence of pre-existing pain on physiological signals.

Analysis of Heat and Cold Pain Interactions
Response surface analysis provides comprehensive insight into
how varying levels of pre-existing heat pain and externally
introduced cold pain interact to influence physiological
responses.

Figure 3A displays the marginal means plot of the rectified
EMG response. Marginal means plots illustrate the responses
by considering only the level of one type of pain, independent
of the levels of any other type of pain. For example, the response
is the strongest when the heat pain is mild. Similarly, when
considering only cold pain, the response peaks again at the
mildest level of pain. The surface plot represents the interactions
between the two types of pain and their effects on the response.
The surface plot in Figure 3Creveals a convex shape with a
peak, indicating that the rectified EMG responses reach their
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highest values when both heat and cold pain are at a mild level.
The plot shows that the response is low when there is no heat
pain and mild cold pain, and similarly low under severe heat
pain with no accompanying cold pain.

Figure 3B presents a marginal mean plot of the RMS of EMG
responses. Here, it is evident that mild cold levels yield the
highest response values. Both “no heat” pain and “mild heat”
pain conditions result in high response values, while severe heat
pain significantly reduces the RMS of EMG responses. In Figure
3D, surface plots of the RMS of EMG responses are displayed.

Notably, as heat pain increases, the RMS value decreases,
reaching its peak when heat pain is absent or mild. Conversely,
instances of mild heat paired with no cold pain result in the
lowest RMS of EMG response values.

These patterns underscore the importance of considering
multidimensional pain contexts, as overlapping pain experiences
can interact in nonintuitive ways that meaningfully alter
physiological signatures.

Limitations
The relatively small and homogeneous sample size, consisting
of 31 healthy young adults aged 22 to 37 years, is one of the
shortcomings of this study. This may limit the generalizability
of the findings to broader and clinically relevant populations.
Additionally, the study was conducted in a controlled laboratory
environment, which may not fully replicate real-world clinical
settings, thus limiting its ecological validity. While the use of
fixed-intensity heat and cold stimuli was effective for controlled
experimental design, it may not capture the full complexity of
pre-existing pain conditions and individual pain thresholds.
Furthermore, the fixed-intensity nature of these stimuli does
not account for interindividual variability in pain sensitivity,
which could influence physiological responses. The devices
used in this study did not support personalized stimulus
calibration, which we recognize as a limitation.

Future Directions
Future work is open to expanding the sample population to
include individuals from diverse age groups and clinical
backgrounds, particularly those experiencing chronic or
postsurgical pain, to improve the generalizability of findings.
Validation in real-world clinical environments is also crucial
for enhancing ecological validity. To better reflect the
complexity of pain experiences, future studies should explore
alternative or multimodal pain induction methods beyond heat
and cold stimuli and incorporate personalized calibration to
account for individual pain thresholds. Additionally, expanding
the range of physiological signals—such as heart rate variability,
electroencephalography, and functional neuroimaging—may
offer a more comprehensive understanding of the neural and
autonomic correlates of pain.

This study used statistical analysis to examine the significance
of physiological differences across pain conditions. In future
work, we will further explore machine learning models to
analyze physiological responses to new external pain stimuli.
This approach will enable us to assess the intensity of
pre-existing pain caused by chronic conditions, injuries, or

surgeries. By integrating machine learning, we aim to develop
predictive models that can objectively assess pain intensity and
support personalized, effective pain management, particularly
in clinical settings where patients are unable to verbally
communicate their pain levels.

Conclusions
Accurate pain assessment is crucial for the correct diagnosis
and effective treatment of many diseases. While existing
literature has developed tools for estimating pain levels based
on physiological responses, these studies often focus on healthy
individuals experiencing acute pain, overlooking the potential
influence of pre-existing conditions, such as postsurgical pain,
chronic pain, and physical discomfort, on the physiological
signals triggered by acute pain. Acknowledging this factor is
essential, as individuals may respond differently to new pain
stimuli depending on the intensity of their pre-existing pain.

This study examined the impact of pre-existing heat pain through
experimental research when participants were exposed to cold
pain stimuli. We used heat pain as the pre-existing pain
condition, cold pain as the new pain stimulus, and EMG and
EDA as physiological signals. By using statistical tests, we
observed significant differences in specific EDA and EMG
signal features across varying levels of pre-existing heat pain
and new cold pain combinations. Notably, simple temporal
statistics (the most extended period of consecutive values, time
intervals between successive extreme events), successive
differences (change in correlation length after iterative
differencing), distribution (mode of z-scored distribution), and
autocorrelation (the first 1/e crossing of the autocorrelation
function) emerged as primary feature categories that
significantly varied across pre-existing heat pain and new cold
pain intensity combinations.

Our investigation into the differences in EMG and EDA signals
in the presence of different levels of pre-existing heat pain has
revealed valuable insights. The distinction between the absence
of pre-existing pain and the presence of mild or severe
pre-existing heat pain, particularly when stimulated with new
low-level cold pain, highlighted statistically significant
differences in both EMG and EDA signals. Notably, when we
switched to high-level cold pain, EDA emerged as a more
reliable indicator of variation in pre-existing pain than EMG.
During high-level cold pain, the time series features of
“successive differences” proved to be effective indicators of
the level of the pre-existing pain. Furthermore, our analysis of
mild and severe pre-existing heat pain scenarios revealed that
EMG exhibited statistically significant differences, particularly
in response to the new low-level cold pain, whereas EDA
remained relatively unchanged. However, when we switched
to high-level cold pain, both EMG and EDA signal features
exhibited statistically significant differences. Successive
difference, temporal statistics, and distribution features of time
series emerged as reliable indicators of the pre-existing heat
pain in these cases. These findings shed light on the changes in
EMG and EDA signals across different levels of pre-existing
pain, advancing our understanding of physiological responses
in pain assessment.
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Abstract

Background: Adapting physical activity monitors to detect gait events (ie, at initial and final contact) has the potential to build
a more personalized approach to gait rehabilitation after stroke. Meeting laboratory standards for detecting these events in impaired
populations is challenging, without resorting to a multisensor solution. The Teager-Kaiser energy operator (TKEO) estimates the
instantaneous energy of a signal; its enhanced sensitivity has successfully detected gait events from the acceleration signals of
individuals with impaired mobility, but has not been applied to stroke.

Objective: This study aimed to test the criterion validity of TKEO gait event detection (and derived spatiotemporal metrics)
using data from thigh mounted physical activity monitors compared with concurrent 3D motion capture in chronic survivors of
stroke.

Methods: Participants with a history of stroke(n=13, mean age 59, SD 14 years), time since stroke (mean 1.5, SD 0.5 years),

walking speed (mean 0.93ms
−1 , SD 0.38 m/s) performed two 10m walks at their comfortable speed, while wearing two ActivPAL

4+ (AP4) sensors (anterior of both thighs) and LED cluster markers on the pelvis and ankles which were tracked by a motion
capture system. The TKEO signal processing technique was then used to extract gait events (initial and final contact) and calculate
stance durations which were compared with motion capture data.

Results: There was very good agreement between the AP4 and motion capture data for stance duration (AP4 0.85s, motion
capture system 0.88s, 95% CI of difference −0.07 to 0.13, intraclass correlation coefficient [3,1]=0.79).

Conclusions: The TKEO method for gait event detection using AP4 data provides stance time durations that are comparable
with laboratory-based systems in a population with chronic stroke. Providing accurate stance time durations from wearable sensors
could extend gait training out of clinical environments. Limitations include ecological and external validity. Future work should
confirm findings with a larger sample of participants with a history of stroke.

Trial Registration: ClinicalTrials.gov NCT06787768; https://clinicaltrials.gov/study/NCT06787768

(JMIR Biomed Eng 2025;10:e80308)   doi:10.2196/80308

KEYWORDS

accelerometers; Teager-Kaiser energy operator; stance phase estimation; stroke; thigh-worn sensor; spaciotemporal

Introduction

Rehabilitation improves recovery after stroke, with better
outcomes when applied intensively and tailored to individual
needs [1-4]. Wearable technology has the potential to support
increased self-managed rehabilitation by providing performance
feedback during everyday activities such as walking in the
community but needs to be accurate [5].

As an important feature of independent living, the recovery of
walking ability is a major rehabilitation goal [6]. Reduced
walking ability is common after stroke, particularly in
hemiplegic stroke, which causes specific gait impairments such
as reduced stance time duration on the hemiplegic side [3,7].
Speed is the most widely reported and clinically accessible
metric in stroke rehabilitation, used as a global measure of

mobility recovery [8,9]. Speed alone, however, does not provide
meaningful information on the underlying impairments needed
to inform effective rehabilitation interventions [10]. One metric
that could provide this insight and is clinically relevant and
sensitive to change, is stance duration symmetry [11-13].
Measuring this metric during everyday rehabilitation is
problematic but achievable with wearable sensors; however,
such an approach should consider measurement burden and
potential Hawthorne effects [14]. Integrating these metrics into
existing systems, for example physical activity monitors, may
be a more acceptable approach.

One well-established wearable device, designed for measuring
free-living physical activity, is the ActivPAL4+ (AP4) activity
monitor (PAL technologies), which is a uniaxial accelerometer
attached to the anterior thigh, using proprietary algorithms to
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measure physical activity and posture of a healthy and impaired
populations within free-living environments [15]. This includes
standing, sitting, walking (durations and transitions) and
measurements of stepping cadence, step counts and energy
expenditure [16]. The AP4 has good validity for measuring
walking bouts at normal walking speeds, intraclass correlation
coefficient [ICC (2,1)=0.78] when compared to direct
observation [15,17-19].

Many algorithms and analysis techniques have been developed
to measure gait parameters from wearable sensors, from
frequency domain metrics to more complex approaches that
calculate joint angular displacements [20,21]. To detect gait
events specifically, most approaches have used peak detection
algorithms and zero crossing techniques, but these have not
been found to be robust [22-24]. Gait event detection using the
Teager Kaiser Energy Operator (TKEO) with AP4 data has been
attempted before with Huntington’s disease, to determine initial
(IC) and final contact (FC) events, with the resulting stance
phase calculation consistently underestimated (0.08 s), compared
to video analysis [25,26]. While this technique appears
promising from tests in healthy and impaired participants
populations data, there is a need to test with a hemiplegic
population post stroke who stand to benefit from the enhanced
gait rehabilitation, that could be enabled by the feedback from
this approach.

The aim of this study, therefore, was to test the concurrent
validity of a thigh-mounted physical activity sensor (AP4) for
measuring the stance phase duration of hemiplegic gait, with a
3D motion capture system details acting as the gold standard
measure. The hypothesis was that the AP4 would have
acceptable levels of concurrent validity through an ICC (3,1)
greater than 0.75, and a low (<0.1 s) absolute difference between
the two systems experience.

Methods

Recruitment
The data were collected as part of a larger rehabilitation trial.

Study Design
Concurrent validation of an accelerometer-based system (AP4,
PAL technologies, Glasgow, UK) was performed against 3D

motion capture (Vicon) for measuring stance phase duration in
participants of hemiplegic stroke.

Data Capture
Data from the AP4 and motion capture system were captured
concurrently from participants with hemiplegic chronic stroke
during two 10m walks in a gait laboratory. An AP4 (43 mmx26
mmx5 mm) was attached to the anterior surface of each thigh
(ie, hemiplegic and nonhemiplegic side) with the acceleration
data sampled at 50Hz. Marker clusters (Pulsars, Vicon) were
attached to participants at three locations (posterior pelvis, lateral
malleoli) using Velcro straps and tracked with 37 cameras
(Viper, Vicon) sampling at 120 HZ. The 3D trajectory data for
the clusters was captured using commercial software (Evoke,
Vicon) and processed with a customized Python script (version
3.13.2, Python Software Foundation).

Stance Time Duration Calculation
Stance time durations were calculated from the motion capture
data using a coordinate-based algorithm, modified to use
ankle-placed cluster markers [27]. For the acceleration data,
Teager and Kaiser [28] developed an algorithm that used the
amplitude and frequency of a signal to discern its energy. This
algorithm is defined as:

(1)Ψ[x(t)]=x˙(t)−x(t)x¨(t)

with Ψx(t) equating the energy of the signal, x, at time, t. x˙(t)
and x¨t denoting the first and second derivative of the signal,
x, respectively. The discrete time variant is required for
determining specific gait events. To obtain this, a 3-sample
symmetric difference is calculated, approximating the first and
second derivatives. For a discrete one-dimensional accelerometer
signal, xn, the TKEO signal, φn, is obtained through equation
(1):

(2)φn=[2xn2+(xn+1−xn−1)2−xn(xn+2−xn−2)]4Ts2

Flood et al [26] used equation (2) to amplify accelerometer
signal transient features for gait event detection. The TKEO, a
nonlinear energy-tracking operator, is considered effective in
amplifying sudden changes in signal energy. This allows for
identifying gait-related events, such as IC and FC, as seen in
Figure 1.
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Figure 1. Example TKEO output featuring IC and FC locations. Each large peak in anterior-posterior (AP) acceleration corresponds to IC, red crosses.
Processing removed these peaks and calibrated the surrounding regions. After further processing, the largest remaining peaks correspond to FC, blue
circles. AP: ; IC: initial contact; FC: final contact; TKEO: Teager-Kaiser energy operator.

An initial high-pass filter, at 0.5Hz via a 4th-order Butterworth
filter is used on the anterior-posterior (AP) acceleration signal
of the thigh-mounted sensor. Equation (2) is then applied to
obtain φn. Once φn was obtained, the processing of the signal
was conducted in the same fashion as Lozano-García et al [25],
but distinguished by using the constraints and calibration
discussed by Flood et al [26].

Applying the TKEO technique meant that the AP4 could remain
in its recommended location on the anterior thigh, enabling
collection of physical activity parameters using the AP4’s
proprietary algorithms [15], as well as collection of stance
duration data.

Data Analysis
A Kolmogorov-Smirnov test was conducted to determine the
normality of the difference between the AP4 and Evoke cluster
marker system (ECMS). A two-sample t test was then used to
determine whether the AP4 was statistically different from that
of the ECMS when measuring stance times. A Bland-Altman
plot and 95% CI of the limits of agreement (LOA) were used
to compare the AP4 to the ECMS. A two-way mixed-effect,
absolute agreement, single-measures ICC (3,1) was calculated
to determine absolute agreement between the AP4 and ECMS.

Ethical Considerations
This study received ethical approval from Strathclyde University
Ethics Committee (UEC25/23: Kerr) and is a registered clinical
trial (NCT06787768) [29,30]. All participants of the main trial
were invited to take part in this substudy. All participants
provided informed consent before their involvement in the study.
Participants did not receive compensation, and all data were
anonymized.

Results

The Montreal cognitive assessment (MoCA) is a screening
instrument that evaluates general mental capabilities, such as
visuospatial abilities, executive functions, and orientation to
time and space. The MoCA is rated between 1 and 30, with
increasing score dictating better cognitive ability [31]. The
functional ambulation category (FAC) evaluates walking ability
in 6 levels, with a score of 0 defining no ability to walk, or
requiring the help of 2 physiotherapist, and a score of 5 defining
full capability to walk independently, including stairs [32]. The
Rivermead mobility index (RMI) is an outcome measure used
to assess mobility after stroke, rated between 0 and 15, with
increasing score indicating better mobility [33] (Table 1).

The AP4 (mean stance time=0.85) saw consistent
underestimation in comparison to the ECMS (mean stance
time=0.88). Despite this, both methods had a high agreement
for stance time measurement (T=0.61, P=.54, 95% CI for
difference=−0.07s, 0.13s, ICC [3,1]=0.79). The differences
between the AP4 and ECMS were shown to be within a standard
distribution (D=0.11, P=.10).

The Bland-Altman plot (Figure 2) displays a consistent spread
between the techniques during the performed stroke gait which
ranged between 0.49 and 1.90. This shows close agreement
between the AP4 and ECMS, irrespective of the value. A bias
of 0.03 seconds is reported, suggesting excellent accuracy of
the AP4 in comparison to ECMS. The LOA were 0.28s and
−0.22s, which contain the 95% of the recorded datapoints. This
indicates good agreement between the AP4 and ECMS.
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Table . Participant characteristics of validation study.

Participants (N=13)Characteristics

30‐78Age (years)

5Aphasia, n

1‐13Years since stroke, range

16‐30MoCAa (1-30), range

1‐5FACb (0‐5), range

0.06‐1.39Walking speed, range (m/s)

9‐15RMIc

aMoCA: Montreal cognitive assessment.
bFAC: functional ambulation category.
cRMI: Rivermead mobility index.

Figure 2. Bland-Altman plot comparing Evoke motion capture system stance time measurement using the Zeni technique with the AP4 using the
Teager-Kaiser energy operator (TKEO) measurement technique. The X-axis shows the mean of the two measurements and the Y-axis shows the
difference of the two measurements. The central line represents the mean difference with the outer lines representing 95% limits of agreement.

Discussion

This study aimed to test the concurrent validity of detecting gait
events (ie, initial and final foot contact) and the derived
metric—stance phase duration—from thigh acceleration data
analyzed with the TKEO, compared with a gold standard 3D
motion capture (Vicon) in chronic survivors of stroke. The
excellent accuracy (bias=0.03 s) were similar to Flood et al (IC
error=0.01s, FC error=0.02 s) [26]and Lozano-García et al
(bias=0.08 s) [25] . In the context of a typical stance duration
(nonparetic =1.01 s), the reported difference of 0.03 s (2
sampling frames) represents a 2.97% difference, with
performance comparable to other commonly used methods of
wearable sensor gait parameter measurement, collected by Pacini

Panebianco [34] et al. The reported bias of 0.03 seconds could
be considered clinically unimportant. A study by Wang [35] et
al denoted stance time averages and variability from survivors
of stroke at different gait speeds. They noted 0.90 (SD 0.34)
seconds and 1.01 (SD 0.41) seconds for the paretic and
nonparetic sides, respectively. The magnitude of the bias,
therefore, will have little effect on the readings that the AP4
will make by using the TKEO technique. These findings should
be confirmed with a larger sample that preserves the diverse
nature of the current sample (speed ranged between

0.06‐1.39ms
−1 ).

This positive outcome opens opportunity to expand the output
of wearable sensors currently used as physical activity monitors,
to provide feedback on gait parameters (stance duration,
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symmetry and weight transference) during the rehabilitation of
patients with hemiplegic stroke, without increasing measurement
burden.

The results should be interpreted in light of the study’s
limitations. The testing took place in a laboratory setting,
reducing the generalizability of results. This controlled
environment may not reflect everyday gait [36,37]. To obtain
ecologically valid gait data, there is a need to capture in
free-living environments. The sample of participants with a
history of chronic stroke means that only a specific subset
(chronic) of the population with stroke has been validated for
this technique. Future studies are encouraged to include subacute
populations who may have more variable gait parameters. The
study had a small sample size, limiting the statistical power and

potentially not representing the whole population, although the

range of walking ability (walking speed 0.06‐1.39ms
−1 , FAC

1‐5; Table 1) is reassuringly wide.

In conclusion, the AP4 sensor, in conjunction with the TKEO
technique, has been validated against a gold standard 3D Motion
Capture system, for stance duration measurement in participants
with chronic stroke. However, this positive finding is limited
by the study’s setting and small sample. Future work should
consider a bigger sample and collect gait data in free-living
environments. The outcomes of this study could be exploited
to enhance the function of wearable sensors, in order to provide
the gait parameters valuable for self-rehabilitation after stroke,
such as symmetry.
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Abstract

This study analyzed the capability of GPT-4o to properly identify knee osteoarthritis and found that the model had good sensitivity
but poor specificity in identifying knee osteoarthritis; patients and clinicians should practice caution when using GPT-4o for
image analysis in knee osteoarthritis.

(JMIR Biomed Eng 2025;10:e67481)   doi:10.2196/67481

KEYWORDS

large language model; ChatGPT; GPT-4o; radiology; osteoarthritis; machine learning; X-rays; osteoarthritis detection

Introduction

Osteoarthritis often affects the knee, causing pain and disability,
and is typically diagnosed by X-ray [1]. Advancements in
artificial intelligence (AI) offer potential to automate image
analysis, reducing diagnostic burden [2]. Given its widespread
availability, tools like ChatGPT have potential as point-of-care
diagnostic aids. AI has already been incorporated on the
physician side through clinical decision support systems and
robotic surgery. On the patient side, AI is used in applications
such as virtual health assistants [3].

Orthopedic surgeons, radiologists, and primary care physicians
can use AI tools to streamline their workflows and reduce errors
while analyzing imaging for pathologies like osteoarthritis.
Moreover, patients use ChatGPT to analyze their imaging to
further understand their condition [4]. The ability of AI to read
other radiological images (eg, computed tomography

angiograms) has been shown to be subpar [5]. However, studies
have shown that AI can perform well with X-rays [6]. As such,
it is increasingly important for physicians to understand AI’s
strengths and limitations to assess its use in imaging and guide
patients using AI for self-diagnosis.

Methods

We queried ChatGPT (using the GPT-4o version) and assessed
its performance in classifying 500 X-ray images of normal knees
and 500 images of knees with osteoarthritis from a publicly
available Kaggle database [7]. Images were verified based on
consensus among radiologists. A single standardized prompt
was used: “This is an x-ray image found on examination, the
multiple-choice question is as follows. Based on the x-ray image,
does the patient have A) no osteoarthritis, B) osteoarthritis.”
Key metrics included accuracy, sensitivity, and specificity. No
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images were rejected by ChatGPT. The code used for statistical
analysis is included in Multimedia Appendix 1.

Results

The model’s performance in distinguishing osteoarthritis from
nonosteoarthritis knee X-rays was mixed. The high recall (0.950,
95% CI 0.964-0.943) suggests that the model was sensitive in
identifying arthritis cases, while the low specificity (0.114, 95%
CI 0.134-0.104) indicated a poor ability to correctly identify
nonosteoarthritis cases. The F1-score (0.670, 95% CI
0.699-0.655) balanced precision and recall, showing moderate
effectiveness, but the precision (0.517, 95% CI 0.548-0.501)

reflected that about half the predicted osteoarthritis cases were
correct. Accuracy was 0.532 (95% CI 0.563-0.516). Figure 1
shows sensitivity and specificity.

The binomial test, where the null hypothesis assumed the
model’s accuracy was 50% or less, indicated that the model was
statistically better than random chance (P=.02). Additionally,

the χ2 test (P<.001) indicated a strong dependence between the
model’s predictions and the actual labels, demonstrating that
its classifications were not purely random. However, the
significance of this test should be interpreted with caution, as
it does not necessarily reflect high accuracy or clinical
reliability.

Figure 1. Sensitivity and specificity of Chat-GPT4o in analyzing knee osteoarthritis X-rays.

Discussion

The model had difficulty distinguishing between “not arthritis”
and “arthritis.” While the recall for arthritis was high (0.950),
indicating strong performance in identifying true arthritis cases,
the low specificity (0.114) reflects a significant number of false
positives, with many nonarthritis cases misclassified as arthritis.
This bias toward predicting arthritis lowered precision (0.517)
and accuracy (0.532); similar misclassification issues have been
reported in other ChatGPT studies [8].

Limitations include, first, that the prompt was binary. A binary
prompt was used because it would have been difficult to analyze
data obtained with an open-ended prompt. Second, the dataset
was small; a larger dataset would have yielded more robust
conclusions.

Even with its limitations, this study presents important data on
GPT4o’s use in imaging for diagnosing osteoarthritis. This is
vital, as our understanding of tools like this in health care
contexts is limited. These results suggest a need for better class

balance and improved feature differentiation. Similar
misclassification patterns have been noted in previous studies,
where overlapping features led to false positives [9]. A
higher-resolution, more comprehensively annotated osteoarthritis
dataset could improve model training, enhancing overall
accuracy, sensitivity, and specificity. Thus, future work should
focus on analyzing larger datasets and refining the model to
handle more nuanced cases more effectively, improving
performance statistics. Using image preprocessing techniques,
such as contrast enhancement and noise reduction, and including
metadata like medical history and clinical presentation could
also help distinguish osteoarthritis from anatomical variations.

Our results suggest that clinicians should use ChatGPT
cautiously and as a screening tool prior to their own validation
to help mitigate misclassification. Clinicians should also educate
patients about the risks of using AI for self-diagnosis of
osteoarthritis based on X-rays. Despite its shortcomings, AI has
potential for developing more reliable diagnostic models for
osteoarthritis.
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