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Abstract
Background: Photoplethysmography (PPG) signals captured by wearable devices can provide vascular age information and
support pervasive and long-term monitoring of personal health condition.
Objective: In this study, we aimed to estimate brachial-ankle pulse wave velocity (baPWV) from wrist PPG and electrocar-
diography (ECG) from smartwatch.
Methods: A total of 914 wrist PPG and ECG sequences and 278 baPWV measurements were collected via the smartwatch
from 80 men and 82 women with average age of 63.4 (SD 13.4) and 64.3 (SD 11.6) years. Feature extraction and weighted
pulse decomposition were applied to identify morphological characteristics regarding blood volume change and component
waves in preprocessed PPG and ECG signals. A systematic strategy of feature combination was performed. The hierarchical
regression method based on the random forest for classification and extreme gradient boosting (XGBoost) algorithms for
regression was used, which first classified the data into subdivisions. The respective regression model for the subdivision was
constructed with an overlapping zone.
Results: By using 914 sets of wrist PPG and ECG signals for baPWV estimation, the hierarchical regression model with 2
subdivisions and an overlapping zone of 400 cm per second achieved root-mean-square error of 145.0 cm per second and 141.4
cm per second for 24 men and 26 women, respectively, which is better than the general XGBoost regression model and the
multivariable regression model (all P<.001).
Conclusions: We for the first time demonstrated that baPWV could be reliably estimated by the wrist PPG and ECG signals
measured by the wearable device. Whether our algorithm could be applied clinically needs further verification.
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Introduction
Cardiovascular disease (CVD) is a major cause of death and
disability globally. Hemodynamic parameters are essential to
the assessment of CVD risks. Arterial compliance is defined
as the change of arterial blood volume for a given change
in pressure and reflects the extent of arterial stiffness. Pulse
wave velocity (PWV) describes the propagation of pulsatile
activity due to ventricular ejection of blood and its interaction
with arterial compliance [1]. Carotid-femoral PWV (cfPWV)
and brachial-ankle PWV (baPWV) are associated with future
CVD risk and commonly measured for clinic use. Compared
with cfPWV, baPWV can be easily obtained by the oscillo-
metric method with cuffs on the 4 limbs and is more widely
used [2].

Owing to the advance of technology, wearable devi-
ces with automatic or self-assisted monitoring have been
recognized as a promising tool to facilitate the assessment
and management of CVD risks. Photoplethysmography (PPG)
[3,4], ballistocardiography [5,6], electrical bioimpedance [7],
or tonometry [8] has been widely studied for these purposes.
Due to the ease of implementation, the optical PPG module is
more often integrated into the wearable devices. The potential
of estimation of BP [9,10] and PWV [11-13] from PPG
signals attracts much attention.

Various approaches have been investigated to estimate
PWV from PPG signals of different measurement sites [14].
The contour of PPG and its associated time interval features
have been used to estimate either baPWV or cfPWV by
approaches including multiple regression, artificial neural
network, and support vector machine [15,16]. Most of the

prior works used finger PPG signals for PWV estimation
because of its clear contour and ease of feature extrac-
tion, compared with wrist PPG [17,18]. However, with the
growing popularity of smartwatches as wearable health care
devices, the use of wrist-based PPG in biomedical applica-
tions has attracted considerable attention. In this study, we
aimed to estimate baPWV from wrist PPG and electrocar-
diography (ECG).

Methods
Methods and statistical analysis are briefly summarized in
this section. Further details are provided in the Supplementary
Section.
Data Collection
Figure 1 shows the measurement flow. Each volunteer
wore a SENSIO smartwatch recording wrist PPG and
ECG during the experimental period. For volunteers in the
health management center, 3 rounds of measurements were
conducted. For volunteers in the outpatient clinic, 5 rounds
of measurements were made. In each round, the participants
maintained the sitting position, and ECG was measured in
the first minute. Blood pressures were then measured by
the sphygmomanometer on the other arm (not wearing the
smartwatch) with the cuff aligned at the heart level. A
one-minute rest was reserved between 2 adjacent rounds. The
wrist PPG signals were continuously recorded throughout the
course. In the end, baPWV was measured by the OMRON
noninvasive vascular screening device, with the cuffs on 4
limbs in the supine position.

Figure 1. Measurement flow. baPWV: brachial-ankle pulse wave velocity; ECG: electrocardiography; PPG: photoplethysmography.

Ethical Considerations
The experiment was approved by the research ethics
committee of National Taiwan University Hospital (number
201902087RIPA). All data were collected in accordance with
the approved protocol. Importantly, the dataset used in this
study did not contain any personally identifiable information,
and all records were fully anonymized prior to analysis.
Informed consent was obtained from all participants, and the
study was conducted in compliance with the ethical standards
set forth in the Declaration of Helsinki and relevant national
regulations.

Processing Flow
The signal-processing flow is indicated in Figure 2. The PPG
and ECG, sampled at 256 Hz, were extracted from the first
minute of each round in the synchronization phase (Figures
S1 A and S1 B in Multimedia Appendix 1). In the preprocess-
ing phase, baseline wandering of signals was corrected by the
discrete wavelet transform, and the 60-Hz power interference
was suppressed by the notch filter. The amplitude of the
whole signal segment was then normalized to [−1, +1]. The
R peak of ECG and the valley of PPG signals were detected
to calculate cycle length (Figures S1 C and S1 D in Mul-
timedia Appendix 1). The skewness and variation of ECG
and PPG cycle lengths were adopted to establish the signal
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quality index to exclude suboptimal ECG or PPG cycles for
feature extraction. The first-order derivative PPG (FDPPG)
and the second-order derivative PPG (SDPPG) signals were
calculated. The systolic peak, notch, and diastolic peak were
marked by the algorithm [19] for each PPG cycle (Figure
3A). The maximal slope (max slope) of the ascending systolic
pulse, corresponding to the maximal rate of blood volume
change, was identified by the first local maximum in FDPPG
(Figure 3B) [20]. The local extrema of the SDPPG in systole
are defined as a, b, c, and d points, where points a and c are
local maxima and points b and d are local minima (Figure
3C) [21]. Point e is the local maximum around the boundary
of systole and diastole in SDPPG. Point f is the first local
minimum after point e.

The PPG pulse is regarded as a summation of several
component waves, including the forward waves by left
ventricular contraction and the distally reflected waves due
to aortic elasticity and reservoir property [22]. The pulse
decomposition analysis helps segregate the component waves
[23]. With proper weighting, the variation of component
waves can be reduced [24]. Five Gaussian waves are used for
synthesizing the PPG pulse. Given θi = αi, βi, γi  corre-
sponding to pulse amplitude, pulse position, and pulse width
of the component wave i, and Θ = θ1,  θ2,  …, θ5 , the
summation of the Gaussian waves takes the form of

(1)G(t |θ) = i = 1
5 g(t |θi)

with

(2)g t |θi = αie t − βiTs 22 γiTs 2

Denote Gi as the component wave described byg t |θi . Given the boundary constraints, Lαi ≤ αi ≤ Uαi,Lβi ≤ βi ≤ Uβi, and Lγi ≤ γi ≤ Uγi [24], the interior-point
method is used to solve the following optimization problem,

(3)Θ = arg minΘ 1M n = 1
M w n s n − G nTs |Θ ,

where w n  is the weight to emphasize the informative
portion of the PPG pulse s n  with length M and is given
by

(4)w n = ω na ≤ n ≤ nf1 else
Variables na and nf refer to the position of points a and f. The
weight ω is set to 80 for stabilizing the variation of compo-
nent waves in the sequence with acceptable mean square error
between the synthesized waveform and original waveform.

Once the component waves are acquired, the forward wave
is generated by combining G1 and G2. The systolic wave
and diastolic wave are derived by combining G1 to G3 and
G4 to G5, respectively. The respective peaks of the synthe-
sized forward wave, systolic wave, and diastolic wave are
named as pf, ps, and pd. In the following, the amplitude
and position of feature x in the PPG pulse are indicated byAx and nx, respectively. The amplitude of feature x in theith-order derivative PPG is represented byAxi . The result of
decomposed component waves by weighted pulse decomposi-
tion (WPD) is shown in Figure 4.

Figure 2. Signal-processing flow. ECG: electrocardiography; PPG: photoplethysmography; SQI: signal quality index; WPD: weighted pulse
decomposition.
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Figure 3. Photoplethysmography, first-order derivative photoplethysmography, and second-order derivative photoplethysmography waveforms and
features in 1 cardiac cycle (from A to C). FDPPG: first-order derivative photoplethysmography; PPG: photoplethysmography; SDPPG: second-order
derivative photoplethysmography.

Figure 4. Component waves after weighted pulse decomposition. G1: Gaussian component wave 1; G2: Gaussian component wave 2; G3: Gaussian
component wave 3; G4: Gaussian component wave 4; G5: Gaussian component wave 5; WPD: weighted pulse decomposition.

JMIR BIOMEDICAL ENGINEERING Ho et al

https://biomedeng.jmir.org/2025/1/e58756 JMIR Biomed Eng 2025 | vol. 10 | e58756 | p. 4
(page number not for citation purposes)

https://biomedeng.jmir.org/2025/1/e58756


To assess the quality of WPD, WPD signal quality index,
which was defined as mean square error between the PPG
pulse, s n , and the synthesized pulse, G nTs |Θ , of >2 × 10−3, was implemented to remove disqualified pulses.

A total of 22 features were derived from the PPG pulse,
FDPPG, and SDPPG (Table S1 A in Multimedia Appendix
2). The age index, which has been shown to be correlated
with the augmentation index of aortic pressure [21,25],

(5)Ab2 − Ac2 − Ad2 − Ae2Aa2
and its related variant combining only highly correlated
components,

(6)Ab2 − Ac2 − Ad2Aa2
were also used. There were 27 features derived from WPD
(Table S1 B in Multimedia Appendix 2). The stiffness index
(SI) is defined as the time interval between the peaks of
systolic and diastolic waves [23] and is denoted by npd − nps.
The time intervals of the third or fourth component wave to
the forward wave were also calculated. Note that nps and npd
were obtained from synthesized systolic wave peak ps and
diastolic wave peak pd of WPD as shown in Figure 4 whilensys and ndia were marked as the positions of systolic peak
and diastolic peak in PPG as shown in Figure 3.

The ECG-related features were also adopted (Table S1 C
in Multimedia Appendix 2). The R peak and T peak of the
ECG waveform were identified and marked as nR and nT.
Since the R peak occurs earlier than the PPG valley of the
same heartbeat, nR is negative in number. The pulse arrival
time (PAT) measures the time span between R peak and
PPG valley, denoted by −nR. PAT2 and Height2/PAT2 were
included since either linear or nonlinear relationship between
BP and pulse transit time has been shown [26]. The time span
from R peak to maximum slope, peak of systolic wave, or
component wave 2 was also considered.

Basic information (Table S1 D in Multimedia Appendix
2) contains age, height H , weight, BMI, and lengths from
arm to wrist Law  and finger Laf . The lengths from heart to
brachium Lb  and from heart to ankle La  can be approxima-
ted by [27]

(7)La = 0.8219H + 12.328
(8)Lb = 0.2195H − 2.073.

The length difference between ankle and brachium could be
expressed by La − Lb.

Feature normalization is often adopted since the rela-
tive change of 2 features could provide additional informa-
tion than each feature alone. To systematically derive the
normalization results, we generate combined features by
dividing the value of feature u by value of feature v. The
combined features contain not only magnitude-normalized or
time-normalized features but also basic information features.

Estimation Approach

Multivariable Regression
Linear regression and multivariable regression had been
applied for baPWV estimation [12,28]. The time difference
between the systolic peak to diastolic peak has been used and
normalized by the Fridericia formula [28] while the systolic
peak to the next onset (P2O), M − nsys (feature 1 in Table S1
A in Multimedia Appendix 2), of the PPG signal normal-
ized by the PPG pulse length was also examined for PWV
estimation [12]. These 2 variables were selected from the
finger PPG features by the authors due to their high correla-
tion to baPWV reported in the literature. The wrist PPG was
used in this study for baPWV estimation. Because diastolic
peak often vanished in wrist PPG pulses, we used SI (feature
51 in Table S1 B in Multimedia Appendix 2), which denotes
the time span between peaks of decomposed systolic wave
and diastolic wave according to WPD, and its normalized
form with the Friderician formula is given by SI/M1/3. The
multivariable linear equations are described by [12,28]

(9)PWV = C1Age + C2 SIM1/3 + C3
and

(10)PWV = C1Age + C2P2OM + C3 .
Hierarchical Regression
The linear estimation regarding the correlations between
PPG features and PWV, as used in multivariable regression
analysis, may oversimplify the vascular hemodynamic state.
The machine learning algorithms have been prosperously
developed and used for biomedical applications, such as
neural network and decision tree regression for estimation
of vascular age [29] and gradient boosting decision tree
regression for estimation of blood pressure [30]. We herein
developed the hierarchical regression model based on the
random forest and extreme gradient boosting (XGBoost)
algorithms. A general regression model by XGBoost was also
implemented for comparison.

The random forest and XGBoost algorithms of high
scalability have been shown to achieve excellent performance
in many fields [31]. In the random forest algorithm, a large
number of decision trees are constructed. A different subset
of the data and a random selection of features are used
for each decision tree to prevent overfitting in the training
process. The final classification is often made by taking the
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majority vote. On the other hand, inherited from gradient
boosting, XGBoost adds the new regression tree in each
iteration to improve the previous prediction and to approach
the target. The XGBoost introduces the regularization term
that considers the complexity of the tree so as to avoid
overfitting. In addition, the second-order gradient statistics
are used for accelerating the computation.

The concept of hierarchical regression can be described as
classification by random forest algorithm and then regression
by XGBoost algorithm (Multimedia Appendix 3). The whole
PWV range is partitioned into several subdivisions. Thus, a
global classifier handles the entire PWV range, and several
local regressors are in charge of the respective subdivisions.
First, an outcome regarding the possible baPWV subdivision
is generated by the global classifier. Then, the estimation
result is calculated by the associated local regressor. Because
it is possible that the data around the subdivision boun-
dary are erroneously classified, the adjacent regressors are
designed to have an overlapping zone to extend the respective
coverages. Owing to the data quantity, 2 subdivisions were
adopted and the boundary threshold was set at 1600 cm per
second. The widths of the overlapping zone were set as 200
cm per second, 400 cm per second, and 600 cm per second.

Statistical Analysis
The differences between the estimated results vj and the
measured PWV vj of the jth measurement are shown by the
mean absolute error, mean error, SD, and root-mean-square
error (RMSE), which are defined as follows.

(11)ej = vj − vj
(12)MAE = E ej
(13)ME = e− = E ej
(14)SD = 1N − 1 j = 1

N ej − e− 2

(15)RMSE = E ej2 .
The correlation coefficients together with P values are also
provided. Since some participants have more than 1 meas-
urement, to avoid unbalanced weighting, averaged PWV
estimation and averaged PWV measurement are used for the
statistical results per participant.

Results
In this study, 80 male participants and 82 female participants
were recruited. Their demographic characteristics are shown
in Table 1. The averaged PWV value of left baPWV and right

baPWV was used. The PWV values of male participants and
female participants were 1591 (SD 266) cm per second and
1613 (SD 321) cm per second. Among total participants, 39
male participants and 23 female participants had more than 1
PWV values due to their multiple visits. A total of 914 PPG
as well as ECG sequences were collected from the smart-
watch, corresponding to 278 PWV values. On average, 1 male
participant has 3.5 PPG and ECG sequences associated with
1 PWV measurement while 1 female participant has 3.1 PPG
and ECG sequences for 1 PWV measurement. Among 278
PWV measurements, there are 123 PWV measurements from
participants taking antihypertensive medications on the same
day.

The medians of the respective combined features in the
528 and 386 sequences were used for computing correlation
coefficients for men and women. The correlation coefficients
of combined features defined by the X and Y indices are often
higher than the original one (Multimedia Appendix 4). For
example, the correlation coefficients of the age and maximum
slope time (nms) to baPWV are 0.334 and −0.281, whereas
the correlation coefficient of the combined feature Age/nms
becomes 0.491 (Multimedia Appendix 5). The correlation
coefficients of SI corrected by Friderician’s formula and the
time interval between systolic peak to the onset of next PPG
(P2O) normalized by pulse length from the wrist PPG versus
baPWV are −0.271 (P<.001), −0.036 (P=.413) and −.370
(P<.001), −0.070 (P=.171) for men and women, respectively.

The reproducibility of the measured baPWV was also
checked. The PWVs of 31 participants were measured twice
by the same OMRON noninvasive vascular screening device
with 1-minute separation. The maximal differences of left
baPWV and right baPWV of these participants were 276 cm
per second and 210 cm per second, respectively. The maximal
difference of averaged baPWV from left baPWV and right
baPWV was 196.5 cm per second. The RMSEs of 2 consecu-
tively measured left baPWV and right baPWV were 83.4 cm
per second and 62.0 cm per second, respectively. The RMSE
of consecutive averaged baPWV was 68.8 cm per second.

For multivariable regression, 39 and 34 PWV measure-
ments from 24 male participants and 26 female partici-
pants, respectively, were reserved as the testing dataset.
The medians of the respective features from the sequences
associated with the same PWV measurement were aver-
aged. The testing dataset was selected to approach uniform
distribution in the range between 1000 cm per second and
2100 cm per second. The mean and SD of the male and
female PWV values in the testing dataset were 1538 (SD
237) cm per second and 1638 (SD 283) cm per second.
The training dataset for deriving the coefficients contained
114 PWV measurements with 391 PPG per ECG sequences
from 56 male participants and 91 PWV measurements with
291 sequences from 56 female participants. The participant-
split criterion is obeyed. The baPWV estimation results by
multivariable regression are shown in Table 2 for men and
women, respectively.
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Table 1. Demographic summary.a
Characteristics Male participants, mean (SD; n) Female participants, mean (SD; n)
Age (years) 63.4 (13.4; 80) 64.3 (11.6; 82)
Heart rate (bps) 73.9 (12.7; 528) 71.0 (8.2; 386)
SBPb (mm Hg) 126.0 (15.7; 528) 125.9 (17.9; 386)
DBPc (mm Hg) 79.4 (10.6; 528) 77.0 (12.0; 386)
PWVd (cm per second) 1591 (266; 153) 1613 (321; 125)

aAmong a total of 278 pulse wave velocity measurements, 123 measurements were obtained from participants taking antihypertensive medications on
the same day.
bSBP: systolic blood pressure.
cDBP: diastolic blood pressure.
dPWV: pulse wave velocity.
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For hierarchical regression, the same training and testing
datasets as those in multivariable regression were used to
keep participants split. The training dataset was oversampled
to make the distribution balanced in each interval of 100 cm
per second. Several parameters, such as the shrinkage factor,
tree depth, and column subsampling, are required for the
random forest and XGBoost algorithms. Hence, a validation
set split from the training dataset was used for parameter
settings. Because the number of PWV measurements of
extreme high and low values was not sufficiently large, leave-
one-out validation was used to ensure that the model for
validation is similar to that for training. For the general
model, the male validation set contained 23 participants and
33 PWV measurements, while the female validation set had
22 participants and 39 PWV measurements. The validation
set consisted of more than one-third of participants in the
training dataset and kept uniformly distributed in the range
from 1000 cm per second to 2100 cm per second. During
leave-one-out validation, all the PPG or ECG sequences
associated with the PWV measurements of 1 validation
participant were removed from the training dataset to avoid
data leak. For each submodel of the local regressor, the
validation dataset in each subdivision includes those with the
PWV measurements in the overlapping zone. Given the
overlapping zone of 400 cm per second, there were 24 PWV
measurements from 13 male participants and 26 PWV
measurements from 12 female participants in the high
submodel for validation from 1400 cm per second. On the
other hand, 25 PWV measurements from 13 male participants
and 25 PWV measurements from 16 female participants were
used in the low submodel for validation up to 1800 cm per
second.

Table 3 lists the estimation results from the general
and hierarchical regression models by the random for-
est classification and XGBoost regression algorithms with
different settings of the width of the overlapping zones.
First, the RMSE results from the hierarchical regression
models are better than those from the multivariable linear
regression model. The hierarchical regression model also

outperforms the general regression model. Figures 5 and 6
show the Bland-Altman and scatter plots of regression results
by the hierarchical regression model with overlapping zone
of 400 cm per second for men and women participants.
Their participant numbers are indicated in the legend. Good
estimation was obtained for this setting. The left subfigures
indicate the Bland-Altman plot. The scatter plots in the right
subfigures provide the final estimation results. The classi-
fication accuracies of total rounds from male participants
and female participants are 76.9% and 91.2%, respectively.
The estimation of erroneously classified data close to the
boundary got improved with the introduction of an overlap-
ping zone. The best estimation results achieve RMSE of
145.0 cm per second and 141.4 cm per second for men
and women, respectively. In the random forest classifier
for male participants, the number of estimators is 100 and
the maximum tree depth is 20. As to the random forest
for female participants, the number of estimators is 250
and the maximum tree depth is 9. In both cases, the min-
imum samples for tree split should be larger than 2 and
the minimum number of samples in leaf nodes is 1. As to
the XGBoost regressors, the number of estimators is 200;
the fraction of features sampled for each tree is 0.7; and
the minimum loss reduction for further partition is 0. The
maximum depth of the low submodel for male participants is
5 and is set to 3 for the remaining submodels.

The XGBoost algorithm performs tree splitting by
evaluating structure scores to accumulate gradient statistics
according to the sorted feature values while the random forest
algorithm can assess the impact on pureness of the leaves
from a feature. Hence, both can report the feature importance.
Given the overlapping zone of 400 cm per second in the
hierarchical regression model, besides PAT (nR), PAT square
(nR2), and age, PPG features and WPD features were also
frequently used (Multimedia Appendix 6). Local regression
models used features different from those used in global
classification models. Features from component wave, points
a, b, c, and d of SDPPG were often adopted.

Table 3. Hierarchical regression results for men and for women are listed.
Method Overlapping

zone
(cm per second)

N MAEa

(cm per
second)

MEb

(cm per
second)

SD
(cm per
second)

RMSEc

(cm per
second)

Correlation coefficient
(P value)

Men
  General regression —d 39 rounds 157.4 −16.5 187.0 185.3 0.61 (<.001)
  General regression — 24 participants 141.7 −8.4 173.1 169.7 0.66 (<.001)
  Hierarchical

regression
200 39 rounds 156.0 −19.4 185.3 183.9 0.64 (<.001)

  Hierarchical
regression

200 24 participants 152.1 −18.4 185.6 182.6 0.63 (.001)

  Hierarchical
regression

400 39 rounds 133.6 −8.1 160.1 158.3 0.74 (<.001)

  Hierarchical
regression

400 24 participants 126.5 −8.9 147.8 145.0e 0.77e (<.001)
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Method Overlapping

zone
(cm per second)

N MAEa

(cm per
second)

MEb

(cm per
second)

SD
(cm per
second)

RMSEc

(cm per
second)

Correlation coefficient
(P value)

  Hierarchical
regression

600 39 rounds 153.6 −2.3 182.9 180.5 0.63 (<.001)

  Hierarchical
regression

600 24 participants 143.6 13.7 165.0 162.1 0.70 (<.001)

Women
  General regression — 34 rounds 174.3 −36.0 217.0 216.8 0.67 (<.001)
  General regression — 26 participants 177.7 −22.4 217.8 214.7 0.66 (<.001)
  Hierarchical

regression
200 34 rounds 141.5 −20.7 171.0 169.7 0.80 (<.001)

  Hierarchical
regression

200 26 participants 131.4 −29.2 157.4 157.0 0.83 (<.001)

  Hierarchical
regression

400 34 rounds 127.3 −3.5 156.7 154.5 0.83 (<.001)

  Hierarchical
regression

400 26 participants 116.7 −6.0 144.1 141.4e 0.86e (<.001)

  Hierarchical
regression

600 34 rounds 144.3 24.2 173.9 173.0 0.79 (<.001)

  Hierarchical
regression

600 26 participants 141.2 24.0 173.5 171.8 0.79 (<.001)

aMAE:mean absolute error.
bME: mean error.
cRMSE: root-mean-square error.
dNot applicable.
eValues in italics indicate best estimation result with acceptable accuracy set by the ARTERY Society.

Figure 5. (A) Bland-Altman plot and (B) scatter plot of pulse wave velocity regression by the hierarchical regression model with 2 submodels and
overlapping zone of 400 cm per second for 24 men. PWV: pulse wave velocity.
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Figure 6. (A) Bland-Altman plot and (B) scatter plot of pulse wave velocity regression by the hierarchical regression model with 2 submodels and
overlapping zone of 400 cm per second for 26 women. PWV: pulse wave velocity.

Discussion
Principal Findings
In this study, we used wrist PPG and ECG signals to estimate
baPWV. The morphology of wrist PPG signals is quite
different from that of finger PPG signals. The conventional
approach that used finger PPG morphology features may
encounter the problem of feature missing due to much fewer
identifiable features of wrist PPG signals. In addition, the
multivariable regression model used in prior works may be
too simple to describe the complicated hemodynamic state
in the vessels. Hence, we resorted to the machine learning
algorithm to deal with the estimation. Although the wrist
PPG and ECG signals were acquired before the baPWV
measurement, they are still related to the vessel condition
and stiffness. To further improve and refine the estimation
results, hierarchical regression was adopted to shrink the
range handled in the submodel. The achieved RMSE and
SD by our hierarchical regression models for both men and
women are lower than the threshold (150 cm per second) of
acceptable accuracy for PWV estimation set by the ARTERY
Society [32].
Comparison With Prior Work
With the WPD and feature imputation techniques developed
by us, more than 98% of all ambiguous and missing features
of wrist PPG can be identified [19]. From the correlation
results (Multimedia Appendix 4), besides age (feature 23)
and age square (feature 63), correlation related to SDPPG
amplitude of point c (feature 18), point d (feature 19), and
point e (feature 20) are still obvious as what has been
mentioned in finger PPG [25]. In addition, SI (npd − nps;
feature 51), which are often missing in the original wrist PPG

pulses, can be computed through the synthesized systolic and
diastolic waves in decomposed wrist PPG. According to the
feature importance (Multimedia Appendix 6), it still plays an
important role for PWV estimation.

The multivariable regression uses only a few features. If
significantly high correlations of those features to baPWV do
not appear, the performance of estimation will be degraded.
However, the machine learning algorithm can help exploit
more linear or nonlinear information embedded in the PPG
waveform or its component waves and thus is suitable
for these applications. Furthermore, the combined features
from PPG and ECG morphology, WPD, and basic informa-
tion supplied more feature information sources that can be
selected by the model.
Hierarchical Model Insights
The concept of hierarchical regression is to introduce
different models to refine the estimation results. However, the
global classifier or regressor must provide sufficiently correct
classification to avoid model mismatch. From the hierarchical
regression results, it is clear that the inclusion of overlap-
ping zone in local regressors indeed improved the estimation
results, as reflected in the improved correlation coefficients
(Table 2). However, the determination of optimal range of
overlapping zone is still controversial. If the overlapping zone
is too wide, the hierarchical regression model would become
similar to the general regression model. On the other hand,
if the overlapping zone is too narrow, the misclassified data
cannot be properly handled. In this study, we recommend
the overlapping zone of 400 cm per second of 2 subdivision
models because the misclassified data are near the boundary
due to good capability of the global classifier and can be
appropriately covered by the submodel. We conducted further
analysis on the features that were misclassified for those
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samples not near the decision boundary. The results showed
no significant outliers. Additionally, the vote counts for 2
classes across the entire forest were close, indicating low
confidence among the trees. The latent properties beyond the
observed features should be further studied. On the other
hand, we also applied a Kernel Density Estimation–based
mutual information analysis [33] to assess the relevance of
individual features in male and female datasets. The mutual
information values from male features were lower than those
from female features, which can also explain the lower
classification accuracy in male participants of our dataset.
Limitations and Future Directions
This study has limitations, which point to the directions for
future research. First, the sample size remained small and
more older adult people were recruited in the study, which
might limit its applicability in younger populations. While
the current dataset demonstrates feasibility in estimating
PWV using wrist PPG in older individuals, the skewed
dataset toward older individuals may have influenced the
performance due to age-related vascular characteristics. In
future work, we plan to expand the study population by
actively recruiting more young participants. The inclusion

of younger participants will help balance the age distribu-
tion and allow for more robust assessment of the model
performance across different age groups. This extension
will not only improve the generalizability of the model
but also enable a more comprehensive evaluation of age-
related vascular changes. Second, the current model adopts
machine learning algorithms to exploit linear and nonlinear
features within the scope of this dataset. As the dataset
grows in size and diversity, other deep learning algorithms,
such as Bayesian neural networks or multilayer perceptrons,
can be applied, which may offer better uncertainty quanti-
fication or modeling capabilities. Third, the feature space
used in the current model is relatively high-dimensional,
which may hinder its practical deployment on wearable or
edge devices with limited computational resources. Feature
compression or dimensionality reduction techniques can be
considered to decrease model complexity in the future. This
optimization will help make the system more suitable for
real-time, low-power applications in wearable health care
settings. Together, these improvements aim to enhance both
the robustness and the applicability of the proposed approach,
facilitating its transition toward practical use in diverse and
real-world scenarios.
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Multimedia Appendix 4
Heat map of correlation coefficients of combined features (defined in Tables S1 A, S1 B, S1 C, and S1 D in Multimedia
Appendix 2) versus brachial-ankle pulse wave velocity for (A) 80 male participants and (B) 82 female participants with
528 and 386 data, respectively. The diagonal elements are the correlation coefficients of original features. The off-diagonal
elements are the correlation coefficients of combined features.
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Multimedia Appendix 5
The distributions of brachial-ankle pulse wave velocity versus (A) age, (B) nms, and (C) Age/nms for 386 female data.
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Top 10 important features of classification and local regression for (A) men and (B) women.
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CVD: cardiovascular disease
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PAT: pulse arrival time
PPG: photoplethysmography
P2O: peak to the next onset
PWV: pulse wave velocity
RMSE: root-mean-square error
SDPPG: second-order derivative photoplethysmography
SI: stiffness index
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WPD: weighted pulse decomposition
XGBoost: extreme gradient boosting
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