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Abstract

Background: Cardiovascular diseases (CVDs) are the leading cause of death globally, and aimost one-half of all adultsin the
United States have at |east one form of heart disease. This review focused on advanced technol ogies, genetic variablesin CVD,
and biomaterials used for organ-independent cardiovascular repair systems.

Objective: A variety of implantable and wearable devices, including biosensor-equipped cardiovascular stents and biocompatible
cardiac patches, have been developed and evaluated. The incorporation of those strategies will hold a bright future in the
management of CV D in advanced clinical practice.

Methods: This study employed widely used academic search systems, such as Google Scholar, PubMed, and Web of Science.
Recent progress in diagnostic and treatment methods against CVD, as described in the content, are extensively examined. The
innovative bioengineering, gene delivery, cell biology, and artificial intelligence-based technologies that will continuously
revol utionize biomedical devicesfor cardiovascular repair and regeneration are also discussed. The novel, balanced, contemporary,
guery-based method adapted in this manuscript defined the extent to which an updated literature review could efficiently provide
research on the evidence-based, comprehensive applicability of cardiovascular devices for clinical treatment against CVD.

Results: Advanced technologies along with artificial intelligence—based telehealth will be essential to create efficient implantable
biomedical devices, including cardiovascular stents. The proper statistical approaches along with results from clinical studies
including model-based risk probability prediction from genetic and physiological variables are integral for monitoring and
treatment of CVD risk.

Conclusions: To overcomethe current obstaclesin cardiac repair and regeneration and achieve successful therapeutic applications,
future interdisciplinary collaborativework isessential. Novel cardiovascular devices and their targeted treatmentswill accomplish
enhanced health care delivery and improved therapeutic efficacy against CVD. As the review articles contain comprehensive
sources for state-of-the-art evidence for clinicians, these high-quality reviews will serve as afirst outline of the updated progress
on cardiovascular devices before undertaking clinical studies.
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Introduction

Cardiovascular diseases (CVDs) are the leading cause of death
globally, accounting for an estimated 17.9 million deaths in
2019 according to a report from the World Health
Organization. Almost one-half of all adultsin the United States
have at least oneform of heart disease[1]. Myocardia infarction
(M1) iscaused by ischemiain the coronary artery, primarily due
to blocked arteries resulting from atherosclerosis [2]. This
blockage damages the myocardium, reducing its contractile
capacity, which leads to a decreased gection fraction and,
ultimately, heart failure [3]. In the United States, one healthy
heart becomes infarcted every 40 seconds [4].

Preserving tissue and cellular functioniscrucial for maintaining
heart functionality. Numerous signaling pathways and genetic
factors associated with M1 survival have been periodically
reviewed [5-7]. Thereis agrowing emphasis on understanding
the mechanismsinvolved in myocardial repair and regeneration
[8]. Reports from organizations such as the Transnational
Alliance for Regenerative Therapies in Cardiovascular
Syndromes highlight the importance of these mechanisms. Key
principles affecting reparative and regenerative potential include
survival and protection, cell-cell communication, angiogenesis
and vascularization, cardiomyogenesis, molecular regulation
of the cell cycle and proliferation, inflammation reduction, and
cardiac aging [7,9].

An increase in reactive oxygen species (ROS) is a hallmark of
ischemic cardiomyopathy [10]. ROS, such ashydrogen peroxide
(H,0,) and hydroxyl radicals, play asignificant rolein Ml and
can be considered ideal regulators for patients post-MI [11].
The concentration of H,0O, in hedlthy cellsis about 0.02 mM,
whereas intracellular concentrations above 0.1 mM induce
oxidative stress and cell death [12,13]. Given that extracellular
H,O, concentrations can be 10 to 100 times higher than
intracellular levels [14], careful monitoring of H,O, levelsin
cellsisessential for prevention and treatment. As ROS play an
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integral rolein platel et aggregation and vasodilation, inhibitors
of vasodilation and platel et aggregation are commonly adapted
as a therapeutic means against M1 [15].

Regarding the treatment methods against CV D, organ transplant
has been the most efficient strategy. Despite the preference for
organ donor replacement in treating CV D, the shortage of organ
donors has driven significant research into human-scale
cardiovascular organs and functional tissue substitutes[16,17].
Challenges such as complex fabrication processes [18], poor
mechanical properties [19], and biocompatibility and
immunogenic issues [20] remain unresolved.

Designing prostheses requiresfabricating matrix constructswith
complex shapes and sizes for clinica applications [21].
Prostheses and implantabl e devices have varying reguirements
that are categorized into chemical, mechanical, electrical, and
thermal characteristics [22]. Additionally, these devices must
be biocompatibl e, be nonimmunogenic, and maintain functional
capabilities within the body’s biological environment [23].
Although seriousinfections or side effects from cardiovascular
prostheses are rare, infected prostheses can be fatal [24].

Hydrogels, which are hydrophilic polymeric scaffolds with
unique 3-dimensional structures, can absorb large amounts of
water or biological fluids, making them potential candidatesfor
cardiovascular tissue engineering [23]. Various synthetic and
natura polymersare used inimplantable hydrogels, with natural
polymers like collagen offering higher immunity and
biodegradabl e properties over synthetic ones.

This review focused on genetic variables in CvD, advanced
technologies, and biomaterials for organ-independent
cardiovascular repair systems (Figure 1). A variety of
implantable and wearable devices, including biosensor-equipped
cardiovascular stents and biocompatible cardiac patches, have
been devel oped and evaluated. Finally, future research directions
intherapidly evolving fields of 3D-printed biomedical devices,
artificial intelligence (Al), and multifunctional sensing devices
are discussed.

Figure 1. Cardiac repair and regeneration via advanced technol ogies and gene therapy.
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Image Features Extracted From Imaging Modalities

Risk variables used for the classification of CVD progression
include radiological imaging features and genetic factors. The
complex nature of cardiovascular structures makes stenosis
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assessment from image modalities a serious challenge. In
general, imaging features are considered radiomic-based
biomarkers or indicators rather than pathological symptoms.
An assessment of imaging features can serve as a quantitative
index extractable from such imaging modalities as magnetic
resonance imaging, computed tomography angiography (CTA),
and optical coherence tomography [25]. Even though a
semiquantitative estimation of coronary stenosisisfeasiblevia
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a thorough assessment of image features over an extended
period, this process requires advanced technol ogy expertise and
labor-intensive effort.

In particular, coronary CTA, a noninvasive examination
technique, playsan integral rolein the evaluation and treatment
of coronary artery disease (CAD) [26]. For instance, dual-source
CTA alows for improved resolutions of implantable devices,
including intrinsically higher-density stents, whose adversities
are dueto distortion reduction stemming from thick strut slices
[27]. This approach makes it possible to conduct advanced
cardiac imaging analysis, even though its invasive nature
sometimes yields a high risk of fatality and complications
[28-30].

Asthenumber of images exponentially grows, the lack of ability
to accurately label those images causes intrinsic limitationsin
the interpretation of the data [31]. A recent surge of Al
techniques could serve as an ideal solution, enhancing the
accuracy of a quantitative assessment of segmented features,
including intima-mediathickness ascertained by such computed
algorithms as convolutional neural networks, UNet, UNet+, and
DenseNet [32]. Al techniques and associated programmed
modelsarefor accurate identification of patterns, abnormalities,
and defects in images, leading to enhanced efficiency and a
reduction in errors inherent in human inspection [33].

Evolving Gene Therapy Against CVD

Genetic Factorsin the Assessment of CVD Risk

Genes are involved in most cardiovascular functions, starting
with the robustness of blood vessels to the way cells interact.
People with a family history of heart disease could share
common environmental factors, such as the intake habits of
drinking water and daily food and exposure to chemicals,
including carbon monoxide, in the air. As most cardiac
disorders, including arrhythmias, congenital heart disease,
cardiomyopathy, and high blood cholesterol, can be inherited
[34], assessing genetic variants or biomarkersto identify at-risk
individualsisintegral to the prevention and treatment of CVD
[35].

Genetic variations acquired by children from parents in the
DNA of the eggsand sperm can influence every cell of achild’s
body, not only in the development process but also in the onset
of heart disease[36]. An 8-year follow-up study found that CVD
risk increased by 75% with a paternal history and about 60%
with amaternal history of premature CVD, implying that certain
genes can significantly enhance the risk of heart disease [37].
In the same study, a 16-year follow-up investigation found that
afamily history of premature CAD (age <50 years) marked a
44% higher risk of CVD mortality.

The pooled cohort equations for risk classification have been
adapted based on genetic variants and medication decisions,
including statins [38]. On the other hand, polygenic risk score
(PRS) generation based on the rel ati onshi ps between the amount
and frequency of genetic variants and the onset of specific
diseases[39-41] has been explored for the assessment of genetic
risk and extrapolation of individual outcomes [42]. The PRS
could be accompanied by family history, lifestyle, and
environmental factors [43,44] and fortified with emerging
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technologies, including proteomics, when determining an
individual’s genetic predisposition to CVD [45,46]. PRS mostly
outperformstraditional risk scoresin the prediction of individual
outcomes, and additional Al-based transfer learning could
further upgrade the relatively less accurate performance on
tranglating PRS from ancestry to different ethnicities that are
mostly unknown and unvalidated [47].

Genes that could reduce the development of plaque around
infected regions would prevent neointimal formation [48]. The
primary CV D endogenousbiological variantsinclude C-reactive
protein, a liver protein released in response to inflammation
[8,49], and plasmalevels of low-density lipoprotein chol esterol
[50], aseminal risk factor for the development of coronary heart
disease. In addition, pro-inflammatory CD4+ cells with CD28
expression [49,51], cardiac troponin | [52], and the number of
regulatory T lymphocytes [53] are frequently examined as
specific biomarkersfor the diagnosis of acute MI. Also, specific
genes (eg, APOB, LDLR, and PCSK9 genes for familial
hypercholesterolemia and BAG3, LMNA, MYH7, PLN,
RBM20, SCN5A, TTN, TNNC1, TNNI3, TNNT2, and TPM1
genes for dilated cardiomyopathy) were recommended by the
American Heart Association to be tested for the diagnosis of
monogenic CVDs [54].

Along with those biological variants, pathological genetic factors
or symptoms assessed for CV D include carotid intimathickness
[55,56] and vascular function (which occur in the early stage
of familial hypercholesterolemia) [57,58]. Detection of those
genetic markers as part of familial cascade screening programs
infamilial hyperchol esterolemiacan lead to preventive effects,
where subsequent medical therapy can lower long-term CVD
risk [55,59]. A combined application of various genetic factors
based on each patient’s genetic profile may guarantee an
efficient treatment strategy against CVD [35].

Even though genetic factors play asignificant rolein developing
conditions of CVD, the screening processes including a health
DNA test can only reveal certain genetic mutationsthat increase
the risk and responses [60]. Subsequently, the relationship
between genetic factors and risk scores is sometimes poor due
to the fact that those having the genetic mutation do not
necessarily havethe samelifestylefactors, including basic health
measures. Therefore, proper statistical approaches along with
the results from clinical studies including model-based risk
probability prediction from each or combined genetic variables
areintegral for genetic-based prediction of the CVD risk [61].

Al for Cardiovascular Gene Therapy

Genes(DNA, small interfering RNA, and microRNA) that could
interfere with the devel opment of plaque around infected regions
are conjugated on biomedical deviceslike cardiovascular stents
to prevent neointima formation. An advanced monitoring
process of genetic data and clinical datafrom electronic health
records could lead to a fast and precise clinical decision and
achieve customized treatment, eventually alleviating CVD via
the detection of CVD symptoms at an early stage. However,
theefficiency of cardiovascular genetherapy has been hampered
by some obstacles, such asinsufficient gene propagation, alack
of delivery mechanisms, and insufficient cell-vector interactions
[62]. Moreover, health care providers may negatively influence
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clinical outcomes due to the lack of disciplinein the treatment
algorithms and the absence of established regulationsto handle
early-onset data[63,64)].

Combined Al models will address highly complicated
cardiovascular clinical genetics[65]. Al profoundly apprehends
complex patterns in imaging profiles and offers quantitative
assessments of radiographic properties, serving as a valuable
tool for enhancing imaging postprocessing. For instance, a
combined convolutional neural network and recurrent neural
network has achieved enhanced accuracy in predicting stenosis
(=50%) upon examining genetic variables grouped into training
and testing samples[32,66]. This approach has obtained similar
outcomesin the quantitative assessment of the growing number
of segmented image features, including intima-mediathickness
for CvD [31,32].

In general, the advanced technology involved with Al is
revolutionizing the method that ensures the accuracy,
completeness, consistency, and validity of clinically applicable
genedata[67]. In parallel, researchers should follow established
guidance on using information from the digital world, as several
guidelines have already been issued by institutional review
boards to properly maintain genetic data integrity [68]. As a
result of the increase in genetic testing and the fear of privacy
breaches by health providers, employers, and society, the
disciplines of ethics, public health, and genetics have aso
emerged. The health professional should make a compromise
between providing proper arrangements for patient care and
protecting persona privacy. In the near future, the adaptation
of Al inradiomics will lead to precise and automated analysis
of genetic variables involved with disease onset and progress.

Telehealth Genetic Counseling Between Patients and
Genetic Counselors
To improve the efficacy of the diagnosis and assessment of

CVD risk, the prediction tools, including telehealth systems,
should assess endogenous genetic compounds involved with
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heart failure, atherosclerosis, and CAD [67,69]. Telehealth
genetic counseling, including videoconferencing and telephone
counseling, was compared with in-person genetic counseling
for the degree of outcomes specific to patient experiences and
accessibility to various treatment methods. The patients
expressed the highest satisfaction with genetic counseling
provided by mediadevices, such astelephoneand video [70-72].
Moreover, telehealth genetic counseling is considered equitable
to in-person genetic counseling across numerous domains, even
though those studies were conducted with telehealth systems
that were less robust and accurate than what is available today.

The benefits and limitations of telehealth from the perspectives
of the patients and genetic counselors have been thoroughly
examined to resolve potential uncertainty in the analysis
processes [73-75]. Those limitations include technical
challenges, difficulty in rapport and the subsequent psychosocial
issues, and lack of clinical complement [74,76]. There needsto
be some conceptual changes in the current status of telehealth
approaches over time, providing continuous advancement in
involved technologies[76,77].

M obile Sensorsfor Cardiovascular | nformation
Systems

Remote monitoring is considered the ambulatory tracing of vital
signs and other medical indicators of a patient’s health and
recovery status via a telemedicine system without the patient
meeting doctors or being present in the clinic (Figure 2) [78].
The Food and Drug Administration has recognized the
importance of devices such as continuous temperature
monitoring or continuous glucose monitoring devicesthat allow
health care providers to remotely monitor patients, including
those that measure body temperature, respiratory rate, heart
rate, and blood pressure. In addition, a new approach based on
advanced technologies for various physiological variables and
biomarkers has performed continuous in-time monitoring as
well as subsequent customized treatment strategies.

Figure 2. Schematic Representation of Remote Monitoring System of Biosensor/Cardiac Implantable Electronic Device.
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The current roles of mobile sensors explored in telehealth
technologies and further challenges in CVD will specifically
emphasize (1) accurate assessment and diagnosis of vital signs
or biomarkersfrom CVDs, (2) reliable and reproducible sensing
systems to monitor the progress of a patient’s disease status,
and (3) wearable devices with maintenance of battery life and
restoration of interaction sensitivity capable of assessing
cardiovascular information of patients at risk [79-81].

The problem arises when analyzing data from mobile sensors
dueto alack of normalization and implementation of proprietary
interfaces to the respective device or platform. In daily life,
numerous portal s provided by each sensor manufacturer should
be simultaneously traced and aggregated into the existing
database for each cardiovascular patient [82]. Thus, the
integration of data obtained from patients with heart failure or
implantable cardiac devices needs to be properly conducted to
store data in a structured and interoperable way for timely
clinical and scientific evaluations [83,84].

Advanced Systems Currently Available
for CVD

Biomaterialsfor Organ-Independent Cardiovascular
Repair Systems

Required Properties for Organ-I ndependent
Cardiovascular Repair Systems

The highly ordered myocardium capacity for electrical integrity
and electrical conduction between healthy and infarcted cells
startsto diminish astherelatively disordered fibrous scar tissue
disposition increasesin the myocardium, leading to systolic and
diastolic dysfunction and cardiac arrhythmia [85]. As heart
transplantation is limited due to a shortage of organ donors,
organ-independent systems, including cardiac patches, grafts,
and scaffolds, play an essential role in cardiac repair and
treatment of M1 [86].

Biomaterial systems function like norma cardiac tissues,
providing excellent electrical conductivity, mechanical strength,
and biological activities to infarcted heart tissues [87]. Novel
biomaterial-based systems offer self-renewal and regeneration
in the damaged heart, serving as various resources for cardiac
tissue repair for those with CVD. For instance, cardiac patches
provide mechanical support to themyocardia wall and passively
prevent the infarcted myocardium following MI by reducing
myocardial wall stress and preventing left ventricular dilation
and remodeling [88].

Hydrogelsfor Organ-I ndependent Cardiovascular Repair
Systems

Hydrogels are soft and moist injectable biomaterials with
properties similar to those of human soft tissues. They are
minimally invasive and serve as a vehicle for the delivery of
therapeutic agentsin situ [89,90]. Conductive hydrogel systems
based on low-dimensional inorganic nanomaterials, such as
carbon nanotubes and graphene derivatives [23], and
simultaneously loaded with stem cells, growth factors, cytokines,
or oligonucleotides, are found to aleviate cardiac casualties by
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promoting angiogenesis and cardiomyocyte proliferation and
reducing fibrosis and apoptosis.

In addition, acomplex hydrogel patchis produced by principles

of fabrication via Fe"-induced ionic coordination between a
homogeneous network of dopamine-gelatin conjugates and
dopamine-functionalized polypyrrole [91]. The Schiff base
reaction between oxidized sodium hyauronic acid and
hydrazided hyaluronic acid was explored to form an injectable
hydrogel patch. Added bioactive peptides, a 7-amino acid
peptide, loaded in collagen-based hydrogel reduced cell
apoptosis, enhanced Sca-1+ recruitment and differentiation of
stem cells, and enhanced neovascularization formation, which
resulted in improved heart function in amouse MI model [90].

Cardiac Patch

Therapeutic Patch as an Effective Strategy

All the delivery methods for MI recovery drugs, primarily via
the oral route but occasionally via an intravenous route, direct
injection to the heart, and drug-eluting stents, have their own
limitations in resolving MI-induced loss of cardiomyocytes
[92]. Advanced formulations, including cardiac patches, have
demonstrated their efficiencies in functional recovery for drug
carrierswith targeted and local delivery of cardiovascular drugs,
nutrients, and cells. Moreover, patches not only are capable of
providing necessary mediators in multiple therapies to recover
the affected area but also strengthen the damaged area with
induced cell attachment and proliferation [93].

Typesof Patchesand Their Applicationsfor M1 Recovery

Therapeutic patches are divided into two types based on the
presence or absence of cells: cell-based patches and acellular
patches. Asthereis alack of regeneration of cardiomyocytes,
cells such as human-induced pluripotent stem cells,
mesenchymal stem cells, and skeleta myoblasts are often
introduced to restore cardiac function [94].

Newly introduced cells can lead to enhanced angiogenesis,
lowered fibrosis, and apoptosis of cardiomyocytes [2]. Due to
the inefficiency of generating new heart tissue from
cardiomyocytes, acellular cardiac patches, which might include
paracrine factors such as proteins, RNA, growth factors, or small
molecules, are occasionaly explored to accomplish
cardioprotective effects [95].

The biocompatibility of the source biomaterial often entails a
serious challenge in designing any implantable patches [96].
Moreover, the biomaterial should be similar to that of host
tissues from the perspectives of biochemical, mechanical, and
topographical properties  [97,98]. For instance,
poly(hydroxyethyl) methacrylate (pHEMA) polymer has
demonstrated biocompatibility and has been used for biomedical
applications, including drug delivery [99,100], contact lenses
[101,102], and tissue engineering [103,104]. However, the low
viscous nature of pHEM A makesit achallenging task to develop
pHEMA-based biomedical devices, including a cardiac patch
that is capable of successfully delivering agents like ROS
scavengers against Ml.
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3D Printing Technology for Cardiac Patch Devel opment

3D printing can be used to create patient-specific devices, such
as organ implants and tissue models that mimic human
physiology. 3D printing can generate surgical planning models
and reduce the need for animal testing. 3D printing can be used
to create personalized medicines and their delivery systemsthat
specifically adapt to each patient’s genetic makeup [105].

There are numerous methods, including el ectrospinning, solvent
evaporation, and decellularization, used for the devel opment of
patches [106]. Each of these methods has its own challenges,
such as material selectivity, limitationsin complex shapes, and
cost and time efficiency [107]. Additionally, 3D printing has
emerged as a low-cost and fast method to develop patches
produced from avast range of materialswith the utmost efficacy.

As previously mentioned, anovel patch based on biocompatible
pHEMA polymers was developed with the aid of direct-light
3D printing technology. Stereolithography-based 3D printing,
wheretheink is placed on a platform, was successfully used to
prepare 3D-printed acellular cardiac patches or cardiovascular
stents[21]. In 3D-printed systems, theimmunosuppressive drug,
like sirolimus, dispersed within the patch matrix will be released
when the linker, like an ROS-responsive thioketal linker, that
connectsthe polymersiscleaved [108]. Theratio of the polymer
and crosslinker can be customized to achieve controllable drug
release.

3D- or 4D-Printable Smart Devicesfor CVD

3D printing provides geometric flexibility, which has been
explored to produce metal or polymer-embedded 3D construct
microsystemswith high flexibility [23,109]. 3D-printed systems
or smart devices use advanced materials with characteristics
such asthermal and electrical conductivity and piezo-resistivity
[110]. Electric units or components, including resistors,
capacitors, inductors, circuits, and passive wireless sensorsand
batteries, have been incorporated into 3D-printed products for
potential practical applications.

3D tactile sensors capable of detection and differentiation of
human movements, including pulse monitoring and finger
motions via detection of endogenous compounds, were
fabricated using multimaterial, multiscale, and multifunctional
approaches under ambient conditions conformally onto freeform
surfaces[111]. Aslactate level s have been associated with heart
fallure as well as diabetes, the portable luminometer, a
disposable minicartridge produced by 3D printing and stored
in cell phones, was used to detect chemiluminescence from
enzyme-coupled reactions [112]. Lactate oxidase was coupled
with horseradish peroxidase to noninvasively detect the lactate
levels within 5 minutes at a detection limit of 0.5 mM/L and
0.1 mM/L in oral fluids and sweat, respectively.

By adapting Al to additive manufacturing, 3D designers can
optimize cardiovascular biosensors or implants to be more
efficient and robust. Al-mediated 3D printing tools can
synchronize with high-quality imaging data, such as computed
tomography and magnetic resonance imaging scans, and
generate personalized designs, enabling thorough control over
the otherwise unavoidably complicated, time-consuming, and
exhaustive process [3].
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An optimal combination of 3D printing based on novel or hybrid
3D printing methods and Al can achieve the next generation of
cardiovascular systems [113]. Subsequently, advanced 3D or
4D printing, once nearly overcoming the cost and scalability
barriers, could lead to more effective and targeted treatments
against CVD, accomplishing improved treatment outcomes and
enhanced health care delivery [67].

Advanced Cardiovascular Stentsfor CVD

Gene-Eluting Stents

Advanced biomedical gene carriers have been intensively
explored in vascular cell biology and CVD treatment. The
identification of critical regulators, such as noncoding RNAS,
including microRNA, long noncoding RNA, and circular RNA
presence in such cell types as vascular smooth muscle cells,
endothelia cells, and macrophages, has served as an efficient
therapeutic target in the field of CVD.

Among biomedical carriers, multifunctional gene-loaded stents
and integrated stents equipped with self-reporting sensors are
often explored as promising technologies against CVD,
including atherosclerosis and M1 [114,115]. Cardiovascular
stents keep the vessel open and prevent it from re-occluding
(ie, restenosis), but vessel injury by stent struts leads to the
activation of platelets and mura thrombus formation, leading
to the activation of circulating neutrophils and tissue
macrophages [116-118]. As the cardiovascular stent produces
late-stage restenosis [119,120], people with stents are at risk of
high blood pressure. Therefore, it is integral to find a more
advanced and sensitive stent capable of real-time monitoring
of blood flow.

Gene-loaded stents coated with synthetic and natural polymers
such as polylactic-polyglycolic acid (PLGA), collagen,
hydroxyapatite, and matrix metall oproteins can overcome major
limitations of cardiovascular genetherapy, including insufficient
cell-vector interactions, a lack of delivery mechanisms, and
insufficient gene propagation [121]. Gene-loaded stents also
allow for maintaining a curative gene, serving as a carrier to
convey the gene and administer the vector and avoiding immune
responses [62].

The first successful in vivo transfection of green fluorescent
protein plasmid DNA loaded in aDNA-PLGA coated stent was
efficiently expressed in céll cultures (7.9%, SD 0.7% vs 0.6%,
SD 0.2% control; P<.001) of rat aortic smooth muscle cells
[122]. In addition, PLGA nanoparticle-coated stents
encapsulated with vascular endothelial growth factor and
paclitaxel [123] or Ang-1 proteins [124] were developed as an
aternative therapy, reducing in-stent restenosis and
accomplishing complete re-endothelialization. In addition, an
Aktl smal interfering RNA-embedded stent alleviated
restenosis, reducing cell growth via muting RNA [125,126].
Furthermore, bare-metal stents with a synthetic complex for
reversible vector binding produced prominent green fluorescent
protein positivity in A10 cells proximal to the strut after 72
hoursin culture [127].

A collagen-coated stent covalently coupled with anti-DNA
immunoglobulin M antibody and loaded with plasmid DNA
was efficiently developed for localized gene delivery to smooth
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muscle cells in an artery, accomplishing high-level protein
production through reporter gene expression [125]. In addition,
a stent coated with biomimetic hyaluronic acid and deposited
with DNA/polyethylenimine polyplexeswas explored to deliver
plasmid DNA to the artery, exerting its efficacy in aleviating
restenosis with a higher neointimal transfection rate while
maintaining structural stability [128].

Stents Equipped With Cardiovascular Self-Reporting
Sensors

Continuous blood flow surveillance can serve as screening,
advanced detection, and aert for cardiovascular health using
noninvasive technology that can be placed in the coronary
arteries[129]. Remote monitoring of patient progressisfeasible
by creating an application-specific integrated circuit that features
avoltage regulator and radio frequency power element loaded
in biomedical devices, including cardiovascular stents.

For instance, a remote monitoring stent was combined with a
tiny heart pressure sensor as well as a wireless transmitter that
continuously monitors vascular conditions and the status of
implanted devices. To minimize the number of antenna
components for the conservation of space, the stent was used
as an inductive antennato create awireless network [130,131],
transmitting quantified solubilization to the immediate
neighborhood via a wireless telemetry transmitter [132].
Reviewing the admittance of an antenna close to the implant
component and connected to it via electromagnetic coupling
will enable this function [133]. A radio frequency—powering
component was implanted on the chip in the finished device as
an ideal power distribution feature. Microelectromechanical
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modul es were crammed with an application-specific integrated
circuit for data collection [134].

As shown in Figure 3, a blood flow sensor enclosed in
graphene-embedded silicon rings subsequently equipped with
a digital wireless transmission microchip was developed as a
unit of the smart theranostic cardiovascular stent (Figure 3C).
Numerous commercial devices, including pressure sensors, use
the piezoresistive effect of silicon, whose gauge factors can be
2 orders of magnitude larger than those observed in most metals
[135,136]. Thus, a flow sensor enclosed in the stent was able
to continuously monitor real-time blood flow with high
inductance and pressure resolution and transmit corresponding
data to a cardiologist outside the body. In addition to superior
moisture barrier property, the high thermal conductivity of
graphene (which has a negative thermal expansion coefficient

[-8.0 x 10°%/K] between 0 and 700 K) guaranteed dimensional
stability upon exposure to body temperature and continuous
blood flow.

The pressure sensors and the microchip were mounted on the
rectangular areas of the stent structure, as shown in Figure 3C.
The pressure sensors bound to the steel stent [137,138] were
molded into graphene-embedded silicone rings, and the pattern
was cut on athin stainless-steel foil. These digital transmission
techniques reduced the power radiated by the external reader,
thus minimizing the patient’s exposureto el ectromagnetic fields.

In electromagneti c coupling, acontinuous el ectromagnetic wave
with relatively large power is radiated by the reader, and the
microchip modulates the impedance of the antenna by
connecting or disconnecting a load to it according to the data
to be transmitted [130].

Figure 3. (1) stent and rings, (2) dimension and size of rings (A: Ring inner diameter (i.e., same as stent outer diameter); B: Stent inner diameter), (3)
3-Dimentiona Stent (C: Stent length; D: Ring outer diameter) and (4) application of external electromagnetic stimuli.

(1) (2)

s T e

Conclusion

Biotechnologies play animportant rolein cardiovascul ar repair
and regeneration. Genetic variablesin CVD, currently available
technology, and biomaterials for organ-independent
cardiovascular repair systems were updated in this articlein a
timely manner. Advanced biotechnologies aimed at
target-specific therapeutics are designed for customized and
personalized cardiac treatment strategies with one or multiple
admini stration routes whose methods shoul d be further improved
to enhance targeting and treatment efficacy.

https://biomedeng.jmir.org/2025/1/e65366

RenderX

3)

The goal of gene therapy for cardiac repair and regeneration is
to achieve cardiac transfection outcomes via the selection of
proper gene vectors and modifying agene or genetic pathways.
Moreover, 3D hioprinting technology has been widely used in
cardiac repair by integrating biomaterials with various
manufacturing processes to customize cardiac conditions. 3D
scaffolds with varying cell types have demonstrated better
biocompatibility, delivery efficiency, and low immunogenicity.
In the future, screening and designing of viral vectors through
structure evolution mediated by 3D printing would enhance
cardiac gene therapy.
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To overcome the current obstacles in cardiac repair and biomedical devices, including cardiovascular stents. Advanced
regeneration and achieve successful therapeutic applications, innovative bioengineering, gene delivery, and cell biology
future interdisciplinary collaborative work should be integral.  technologies will continuously revolutionize medical devices
Advanced new material and cell biology, along with Al-based for cardiovascular repair and regeneration in the future.
telehealth, will be essential to create efficient implantable
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