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Abstract
Background: Diagnostic errors and administrative burdens, including medical coding, remain major challenges in health care.
Large language models (LLMs) have the potential to alleviate these problems, but their adoption has been limited by concerns
regarding reliability, transparency, and clinical safety.
Objective: This study introduces and evaluates 2 LLM-based frameworks, implemented within the Rhazes Clinician platform,
designed to address these challenges: generation-assisted retrieval-augmented generation (GARAG) for automated evidence-
based treatment planning and generation-assisted vector search (GAVS) for automated medical coding.
Methods: GARAG was evaluated on 21 clinical test cases created by medically qualified authors. Each case was executed 3
times independently, and outputs were assessed using 4 criteria: correctness of references, absence of duplication, adherence
to formatting, and clinical appropriateness of the generated management plan. GAVS was evaluated on 958 randomly selected
admissions from the Medical Information Mart for Intensive Care (MIMIC)–IV database, in which billed International
Classification of Diseases, Tenth Revision (ICD-10) codes served as the ground truth. Two approaches were compared: a direct
GPT-4.1 baseline prompted to predict ICD-10 codes without constraints and GAVS, in which GPT-4.1 generated diagnostic
entities that were each mapped onto the top 10 matching ICD-10 codes through vector search.
Results: Across the 63 outputs, 62 (98.4%) satisfied all evaluation criteria, with the only exception being a minor ordering
inconsistency in one repetition of case 14. For GAVS, the 958 admissions contained 8576 assigned ICD-10 subcategory codes
(1610 unique). The vanilla LLM produced 131,329 candidate codes, whereas GAVS produced 136,920. At the subcategory
level, the vanilla LLM achieved 17.95% average recall (15.86% weighted), while GAVS achieved 20.63% (18.62% weighted),
a statistically significant improvement (P<.001). At the category level, performance converged (32.60% vs 32.58% average
weighted recall; P=.99).
Conclusions: GARAG demonstrated a workflow that grounds management plans in diagnosis-specific, peer-reviewed
guideline evidence, preserving fine-grained clinical detail during retrieval. GAVS significantly improved fine-grained
diagnostic coding recall compared with a direct LLM baseline. Together, these frameworks illustrate how LLM-based
methods can enhance clinical decision support and medical coding. Both were subsequently integrated into Rhazes Clinician,
a clinician-facing web application that orchestrates LLM agents to call specialized tools, providing a single interface for
physician use. Further independent validation and large-scale studies are required to confirm generalizability and assess their
impact on patient outcomes.
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Introduction
Health Care’s Diverse Challenges
Health care is facing profound challenges that urgently
require innovative solutions. Medical errors [1], overwhelm-
ing administrative burdens [2], understaffing [3,4], spiraling
costs [5], and clinician burnout [6,7] threaten the foundations
of medical care. Despite this, the health care sector has lagged
behind other industries in adopting new technologies.

To address the above challenges, a subset of the authors
has developed an AI-powered web app called Rhazes that
helps doctors with paperwork and analytical tasks along
their clinical workflow. Rhazes, like many other digital
health startups, aims to offer integrated tools to health care
professionals to match many of the growing needs in health
care worsened by a staffing crisis [8-10]. AI-powered tools
have been shown to have the potential to automate rote
tasks [11], reduce errors [12,13], cut costs for everyone
[14], improve clinician well-being and their patient-centered-
ness [15], and ultimately deliver better patient outcomes [12,
16]. However, significant barriers and challenges persist in
ensuring the safe and effective integration of AI within health
care systems globally [17-19].
Diagnostic Errors
Diagnostic errors in health care are more common than
generally recognized and often receive less attention in both
clinical practice and research. There are 2 ways to estimate
their prevalence: autopsies and expert opinions. Various
studies suggest a range between 5% and 20% [20-22],
with the actual figure likely falling somewhere in between.
Considering the 1.3 billion health care visits annually in the
United States as an example, this percentage translates to
a staggering 65 to 260 million diagnostic errors each year
in the United States alone [23]. The rate of false negatives
varies widely, from as low as 2.2% for myocardial infarc-
tion to an alarming 62.1% for spinal abscesses [20]. The
National Academy of Medicine underscores the severity of
this issue, attributing diagnostic errors to approximately 10%
of patient deaths and 6% to 17% of hospital complications,
with vascular events, infections, and cancers constituting
around 75% of the serious harms from these errors [24].

Diagnostic errors arise from several causes. No-fault
errors, such as those due to atypical disease presentations, are
difficult to prevent. System-related issues, including delays in
testing and communication failures, also play a role, though
comprehensive data are limited. Cognitive errors, however,
are the most frequent, with Graber et al finding that cogni-
tive factors—such as faulty perception, failed heuristics, and
cognitive biases—contribute to 74% of diagnostic errors [25].
This suggests that a substantial proportion of these errors

could be mitigated through targeted interventions aimed at
clinical decision-making and judgment. In malpractice claims,
nearly 90% involve failures in these domains, regardless of
the underlying condition [26].
All Roads Lead to Burnout
Clinicians are responsible not only for making diagnoses
but also for managing patient care thereafter. This process
involves 3 major challenges. The first is staying up to date
with a rapidly expanding medical knowledge base, which is
estimated to double every 73 days [27] alongside frequently
updated clinical guidelines. To address this, many physicians
rely on peer-reviewed online clinical guideline databases,
such as subscription-based services including UpToDate [28],
DynaMed [29], as well as freely available resources like
StatPearls [30]. The second challenge is identifying the most
relevant guideline for a specific clinical scenario. The third,
and often most complex, is tailoring these guidelines to the
unique needs of each patient, taking into account individual
characteristics, medical history, preferences, and socioeco-
nomic context.

Medical errors often occur within the broader context
of systemic pressures. One major factor is the administra-
tive workload placed on clinicians. Studies indicate that for
every hour spent in direct patient care, physicians spend
approximately 2 additional hours on documentation and other
administrative tasks [31]. This environment can contribute
to situations where clinical duties become secondary to
administrative responsibilities.

In the United States, more than half of physicians report
at least 1 symptom of burnout [32], representing an estimated
annual economic cost of US $4.6 billion or US $7600 per
physician [33]. In the United Kingdom, physician burnout
rates reached a record high in 2021 according to the annual
national training survey [34].
Medical Coding
Medical coding has clinical, statistical, and billing-related
usages. Systematized Nomenclature of Medicine–Clinical
Terms (SNOMED-CT; maintained by the International Health
Terminology Standards Development Organization) is a
terminology that provides clinicians with precise patient-spe-
cific information, including symptoms, diagnoses, proce-
dures, and social contexts [35]. In the National Health Service
(NHS), UK, SNOMED-CT is used for clinical coding,
specifically to safely and accurately exchange information
between health care providers. It is recorded at the point-
of-care level and integrated into electronic health records
(EHRs) as required by Fast Health Care Interoperability
Resources [35], a health care data sharing standard. Most
general practitioner clinics employ medical coders to translate
patient findings into a mix of SNOMED-CT and in-house
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diagnostic codes for the most common cases. SNOMED-CT
allows for more precise coding, as it not only comprises over
340,000 clinical [36] and 1.4 million drug-related codes but
also describes the relationship between these codes, essen-
tially functioning as an ontology [35]. In the United King-
dom, diagnostic codes using the International Classification
of Diseases, Eleventh Revision (ICD-11) standard (published
by the World Health Organization) and procedural codes
using the Operating Procedure Codes Supplement (OPCS;
published by NHS England) standard are recorded after the
clinical event for statistical purposes, whereas in the United
States, ICD-11 is used for mainly billing purposes [37]. For
coding procedures in the United States, the Health Care
Common Procedure Coding System (HCPCS; published by
the Centers for Medicare and Medicaid Services) is used. It
has 2 levels: level 1 comprises Current Procedural Termi-
nology (CPT) codes (published by the American Medical
Association), which is used to bill for procedures done by
health care professionals, and level 2 can be used to bill
for products, supplies, and services used outside the physi-
cian’s office such as ambulatory services or orthotics [38].
Automated medical coding is needed for 2 main reasons:
one is accuracy and the other is efficiency: the average
coding accuracy is around 80% [37], with 83% in the United
Kingdom and 89% in Scotland [39], and just the coding of
backlog cases can take anywhere from several months to over
a year [40].
Large Language Models Could Help
Given the recent progress in artificial intelligence (AI), it
has been proposed to help with various aspects of clinical
work, including scribing and diagnosis [13,41,42]. GPT-4,
a large language model (LLM) developed by OpenAI, has
shown promise in medical applications with its passing of the
medical board exam in multiple countries and languages [43-
45]. A peer-reviewed study assessing the diagnostic abil-
ity of GPT-4 and Pathways Language Model 2 on 1000
electronic patient records reported that GPT-4 achieved a
93.9% diagnostic hit rate (lower bound), validated by 3
medical doctors [46]. Furthermore, the authors found that
a quick and accurate automated diagnostic evaluation may
be possible by presenting the ground truth data to GPT-4
and asking it to assess the diagnostic predictions made by
LLMs [46,47]. This can then be used to rapidly benchmark
different models and prompting strategies. A report published
by OpenAI and Penda Health [48] claimed that AI Consult, a
tool powered by LLMs, reduced diagnostic errors by 16% and
treatment errors by 13% for 39,849 patient visits in Kenya.

When it comes to management planning, LLMs can
revolutionize medical search and find recommendations
for a specific clinical scenario by automatically citing the
relevant guidelines. Examples include recently developed
online medical search tools such as Elsevier Clinical Key
[49] and MedWise [50]. The next level of automation is AI
analyzing and extracting the relevant details from the EHR
to adapt the clinical guidelines to the unique needs of the
patient, essentially crafting a personalized treatment plan. An
application capable of doing this is called a clinical decision

support (CDS) [51] system, and industry examples of such
tools include Glass Health [52] and Rhazes [53].

Another important application of LLMs in clinics is
notetaking. Automated documentation leveraging ambient
listening has shown promise in reducing clinician burden
and improving the experience of doctor–patient interactions
for both parties [54,55]. In addition, clinical evaluation of
existing scribing tools such as Tortus [56], DeepScribe [57],
Nuance Dragon Ambient Experience (DAX) [58,59], and
Rhazes [60] has indicated enhanced documentation quality
[56], increase in billed diagnostic codes, and potential time
and cost savings [57,58,60]. However, such tools can cost US
$1850 per month per clinician [58] and cause a worsening
of after-hours electronic health records (EHR) usage [59]. In
fact, Haberle et al found that Dragon Ambient Experience
did not benefit documentation, productivity, or even patient
experience but helped with provider engagement [59]. Ma et
al argue that ambient AI scribes can even reduce time spent
on the EHR, but further studies are needed to identify the
users benefiting most from such technology [61].

Even though computer-assisted medical coding has been
shown to improve coding accuracy [62], automating the
clinical coding system appeared out of reach prior to the
generative AI revolution due to technological and imple-
mentation-level challenges [63]. Non-LLM–based encoder–
decoder-type models were shown to really struggle with
identifying less frequent codes [64]; however, retrieval-aug-
mented generation (RAG)–enhanced LLMs were recently
found to be preferable to provider coders in terms of coding
accuracy [65]. Generative AI seems to have made a big
contribution toward the full automation of medical coding,
and while we found no peer-reviewed evaluation paper to
date, the authors of the previously cited paper, affiliated
with Corti AI [66], who were researching non-LLM-based
methods [64], are now leveraging generative AI to automate
medical coding [66].

Methods
Ethical Considerations
The Medical Information Mart for Intensive Care (MIMIC)–
IV [67] is a publicly available database and was previously
ethically approved by the institutional review boards at
Beth Israel Deaconess Medical Center (2001P001699) and
the Massachusetts Institute of Technology (0403000206) in
accordance with the tenets of the Declaration of Helsinki. The
waiver of the requirement for informed consent was included
in the institutional review board approval, as all protected
health information was deidentified [67]. One of the authors
(PS) was granted access to the database after completing
training in human research (CITI Human Research certifica-
tion number: 54889098) and signing a data use agreement
in PhysioNet (agreement number 64081). The experiments
described in this paper were conducted on Microsoft Azure
(Azure OpenAI service) according to the “Responsible use
of MIMIC data with online services like GPT” guidance by
PhysioNet [68]. The code associated with this publication
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has been shared in an open repository, and information is
provided in the “Data Availability” section of this manuscript.
Generation-Assisted Retrieval-
Augmented Generation for Clinical
Decision Support
Here we demonstrate how to build a prototype for an
AI-driven CDS, in particular, for crafting patient-specific
management plans with verifiable citations from StatPearls
[30], a point-of-care medical database with peer-reviewed
clinical guidelines. On March 2, 2025, a comprehensive
archive of clinical guidelines from StatPearls (approximately
1.5 gigabytes in size) was downloaded for use as the
reference corpus in the RAG process. After unpacking the
archive, a total of 9559 nxml files were obtained, each
corresponding to the management of a distinct medical
condition. These files were subsequently cleaned to remove
nonclinical and extraneous information, including licenses,
credits, warranties, publishing details, user prompts (eg,
“Comment on this article”), and reference sections, so that
only clinically relevant content remained. The title of each
file was automatically inferred from the text and used as a
filename, thereby linking each document to the medical event
it described. The cleaned files were then converted into plain
text format and uploaded to Azure Blob Storage. For citation
purposes, a mapping was preserved between each inferred
filename and the original download URL from StatPearls.

To enable semantic search and retrieval, the corpus was
indexed within Azure Search Service. The indexing pipeline
comprised a data source connection to Azure Blob Storage,
a search index with fields for filename, chunk identifier,
chunk text, and embedding vector; a text-splitting skill with a
maximum chunk size of 4000 tokens and an overlap of 100

tokens; and an embedding skill using text-embedding-3-large
model, OpenAI’s latest and best embedding model to date
[69]. An indexer was then executed to vectorize and index the
entire collection of document chunks.

Building upon this foundation, we developed a proof-
of-concept workflow, which we termed generation-assisted
retrieval-augmented generation (GARAG). GARAG proceeds
in 3 stages. First, given EHR data, an LLM (specifically
GPT-4.1) is prompted to generate a structured list of
differential diagnoses. Second, for each diagnosis, the system
queries the indexed StatPearls corpus through Azure Search
Service, employing the Hierarchical Navigable Small World
approximate nearest neighbor algorithm (with parameters
M=4, efConstruction=400, and efSearch=500) and cosine
similarity as the distance metric. The 4 most relevant text
chunks are retrieved for each candidate diagnosis. Third,
the LLM is prompted again with the patient data and
the retrieved evidence sources. From this input, the model
generates a structured management plan covering investiga-
tions, treatment suggestions, supportive management, other
considerations, risks, and references. Citations are automat-
ically hyperlinked to the original StatPearls sources via
the preserved filename-to-URL mapping (Figure 1). A
key advantage of GARAG is its ability to ground rec-
ommendations in guideline-specific, peer-reviewed sources
tailored to each predicted diagnosis. This targeted retrieval
avoids the information dilution that can occur with stand-
ard RAG approaches, where embedding the entire case
may obscure fine-grained clinical details. By structuring
the workflow around diagnosis-specific guideline retrieval,
GARAG ensures that management plans are directly aligned
with authoritative clinical references.

Figure 1. Generating a personalized evidence-based management plan using StatPearls and the GARAG framework. EHR: electronic health record;
GARAG: generation-assisted retrieval-augmented generation; LLM: large language model.
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For clarity, we have provided a Python Jupyter Notebook that
demonstrates our implementation of such a GARAG system
and the automated tests we have run to confirm that the
instructions are being followed by the LLM. To contrast the
GARAG workflow to a traditional RAG workflow, we also
provide the reader with a Python prototype that generates
treatment plans with StatPearls references using RAG.
Generation-Assisted Vector Search for
Automated Medical Coding
Next, we demonstrate how to build an AI tool for automated
medical coding using a method we named generation-assis-
ted vector search (GAVS). Unlike RAG, in which retrieval
precedes generation, GAVS inverts the process: generation
is performed first and retrieval follows. In this pipeline, an
Azure OpenAI LLM is few-shot prompted to read EHR text
and to enumerate, with maximal granularity, the clini-
cally relevant entities for coding (eg, diagnoses/comorbidi-
ties/abnormalities, procedures/treatments/services, and drugs).
Each generated item is subsequently embedded with text-
embedding-3-large and matched against a vector database
representing the target coding ontology.

For procedural coding, the coding ontology was derived
from the official 2025 CPT release downloaded as an
Excel workbook from the Centers for Disease Control and
Prevention government website. The worksheet containing all
CPT entries (“ALL 2025 CPT Codes”) was parsed to retain
the canonical code identifier and its short description; rows
with missing codes were removed. Each row was converted
into a LangChain [70] Document whose embedding encodes
the description, while the metadata preserves both the CPT
Code and Title. Because CPT descriptions are short, no
chunking was required.

Embeddings were stored in a Pinecone serverless index
[71] and queried via the LangChain [70] PineconeVectorStore
at runtime. During inference, each model-generated item
(eg,procedure) in a structured list output is embedded on the
fly and used to perform semantic search, retrieving the top 10
nearest CPT entries by cosine similarity. The returned results
include both semantic scores and the canonical CPT codes via
the stored metadata, allowing the system to report human-
readable candidates (code+title) alongside each extracted
clinical item.

The same pattern generalizes to diagnostic and pharmaco-
logical coding by substituting the target ontology (eg, ICD-11
or SNOMED CT for diagnoses; SNOMED CT for drugs)
and constructing an analogous vector store with description-
level embeddings and code identifiers preserved in metadata.
For transparency and reproducibility, we provide a Jupyter
Notebook demonstrating the full CPT workflow end-to-end,
including data acquisition, runtime index creation, LLM-
based generation, and similarity search-based mapping.
Crucially, the index is created and populated programmat-
ically at runtime if absent (index name cpt-cdc-2025-text-
embedding-3-large, dimension 3072, metric cosine, region
eu-west-1); if present, the pipeline connects to the existing
index without reingestion. We also provide links to download

coding ontologies from the official publisher websites in the
format of single or multiple Excel files: CPT from the Centers
for Medicare and Medicaid Services [72], ICD-11 from the
World Health Organization [73], and SNOMED from the
NHS Digital website [74].

To quantitatively assess the benefits of GAVS over direct
LLM prompting, we conducted a proof-of-concept evaluation
for International Classification of Diseases, Tenth Revision
(ICD-10) coding following the methods of Sarvari and
Al-Fagih [47]. We initially sampled 1000 admissions at
random from MIMIC-IV, of which 42 did not have officially
assigned ICD-10 codes and were excluded, resulting in a final
cohort of 958 admissions. For each admission, the set of
billed ICD-10 codes served as the ground truth. Across this
cohort, there were 8576 total ICD-10 codes at the subcate-
gory (full code) level, comprising 1610 unique subcatego-
ries. When mapped to parent categories, the total number
decreased to 7311 codes across 540 unique categories. The
discrepancy (8576 vs 7311) reflects cases in which the Python
library used for mapping [75] did not recognize certain overly
specific subcategory codes, in which case no parent category
was assigned. The full ICD-10 ontology includes 95,109
valid codes, defining the candidate space for prediction. Two
approaches were compared. In the vanilla LLM method,
GPT-4.1 was prompted directly to predict ICD-10 codes for
each admission, without external constraints. In the GAVS
method, GPT-4.1 was first prompted to generate granular
diagnostic entities, which were then embedded and matched
to the top 10 most similar ICD-10 codes through vector
search (Azure Search Service) of the official ontology.
Both methods used identical LLM configuration and dataset
preprocessing, ensuring comparability across experiments.
The primary outcome was recall, defined as the fraction
of ground-truth codes correctly predicted. Two variants
were calculated, consistent with [46] (1) average (per-admis-
sion mean) recall, averaged across the 958 admissions,
and (2) aggregate (weighted average) recall, defined as the
total number of correctly predicted codes divided by the
total number of codes (8576) or 1−(∑missed codes across
admissions / ∑true codes across admissions).

Precision was not reported, as discussed previously [47],
because billing records are not a reliable gold standard for
false positive determination: clinically valid diagnoses often
go unbilled, and multiple codes may be acceptable matches
(especially when working with incomplete data). In this
context, precision metrics would therefore be misleading. For
statistical comparison, following [47], we applied a 2-pro-
portion z test to evaluate differences between methods in
recovered versus missed ground-truth codes.

For clarity, we provide the reader with a Python
Jupyter notebook, demonstrating the entire automated coding
prediction (including the vanilla GPT-4.1 and GAVS methods
for predicting ICD-10 codes) and evaluation workflow both at
the subcategory and category levels.
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Results
GARAG: Citation Integrity and Relevance
Using the LLM-as-a-judge method [47,76], we evaluated the
GARAG workflow on 21 clinical test cases created by a
subset of the authors who are medical professionals. Each
case was executed 3 times independently to assess reproduci-
bility, yielding a total of 63 runs. Performance was assessed
using four criteria: (1) correctness of references, (2) absence
of duplicate citations, (3) adherence to citation formatting
standards, and (4) contextual appropriateness of the generated
management plan, including whether it explicitly addressed
the presented diagnoses. Across all 63 runs, 62 satisfied all
4 criteria, corresponding to a success rate of 98.4%. The
single exception occurred in case 14 during its first repe-
tition, in which references were accurate but displayed a
minor ordering inconsistency, with “[3]” appearing before
“[2].” Importantly, no spurious references were observed, all
citations could be traced directly to their StatPearls sources,
and all management plans were judged clinically relevant.
These findings demonstrate that GARAG provides a highly
reliable and reproducible workflow for generating clinical
management plans with proper citation handling, with only
minor formatting issues detected across repeated executions.
GAVS: Diagnostic Coding Performance
We next evaluated the GAVS method for automated
diagnostic coding on 958 randomly selected MIMIC-IV
hospital admissions. Across these cases, there were 8576 total
assigned ICD-10 codes at the subcategory level, spanning
1610 unique subcategories. When collapsed to categories
using a Python mapping library [75], this corresponded to
7311 total codes across 540 unique categories. The full
ICD-10 ontology contains 95,109 valid codes, underscor-
ing the scale of the prediction task. Two approaches were
compared: (1) a direct LLM baseline, in which GPT-4.1
was prompted to predict ICD-10 codes without constraints,
and (2) GAVS, in which GPT-4.1 first generated granular
diagnostic entities that were each mapped onto the top
10 matching ICD-10 codes through vector search over the
official ontology. Across all admissions, the vanilla LLM
produced 131,329 candidate codes, while GAVS produced
136,920. At the subcategory level, the vanilla LLM ach-
ieved a mean recall of 17.95% (15.86% weighted), whereas
GAVS achieved 20.63% (18.62% weighted), representing a
statistically significant improvement (P<.001, 2-proportion
z test). Notably, GAVS generated 11,254 unique predicted
subcategories, compared with 15,572 unique subcategories
from the vanilla LLM, suggesting that the vanilla approach
was more diffuse in its predictions, whereas GAVS concen-
trated predictions on a narrower and more relevant set of
codes. At the category level, the vanilla LLM achieved a
mean recall of 34.05% (32.60% weighted), while GAVS
achieved 33.57% (32.58% weighted). The difference was not
statistically significant (P=.99). GAVS produced 1192 unique
predicted categories, compared with 913 unique categories for
the vanilla LLM.

Integration Into Rhazes Clinician
Building on the GARAG and GAVS prototypes, we
developed a clinician-facing agentic web application that
integrates documentation assistance, management planning
(GARAG), automated coding (GAVS), and differential
diagnosis tools and is accessible via the Rhazes website
[53]. To maximize accessibility, the system was deployed
as a Progressive Web Application, enabling installation
and seamless use across desktop and mobile platforms
without requiring a native app. The application was imple-
mented using a modern web architecture: a Next.js full-
stack framework with React (TypeScript) for the front end,
a Node.js backend, and a PostgreSQL database accessed
through the Prisma object-relational mapper. Hosting was
provided on Aptible [77], a platform-as-a-service offering
secure, Health Insurance Portability and Accountability Act–
ready infrastructure. Within Rhazes, user queries are handled
by LLM agents that route requests to the most appropriate
tools. These include the management planning (GARAG)
and medical coding (GAVS) pipelines described above, a
documentation assistant for completing predefined templates,
and a differential diagnosis tool that was previously evaluated
in Sarvari and Al-Fagih [47]. The orchestration layer was
built on LangGraph [70], allowing for parallel tool execution
and a persistent shared conversation history across agents.
The system, certified under Cyber Essentials [78,79], is used
by thousands of doctors and supports integration with major
EHR systems, including Epic (32.8% market share in 2021)
and Cerner (23.2% market share in 2021) [80].

Discussion
Principal Findings
In this study, we introduced Rhazes, an AI assistant for
doctors designed to handle paperwork and analytical tasks
in clinical medicine. Rhazes aims to free physicians from
the burden of documentation and to help them provide
better care for more patients. Within this broader system, the
GARAG and GAVS frameworks demonstrate the feasibility
of embedding structured guardrails into LLM-based clinical
workflows. GARAG ensures that management plans are
grounded in peer-reviewed guideline sources with properly
formatted references, achieved through a diagnosis-first
retrieval workflow that increases the likelihood of relevant
sources being cited. GAVS applies a similar principle to
coding, improving fidelity through a 2-step process in which
diagnostic entities are generated first and then determinis-
tically mapped to valid ontology terms via vector search.
Both methods represent proof-of-concept prototypes that were
subsequently deployed within the Rhazes Clinician platform.
Although GARAG was evaluated on a smaller case set
compared with GAVS, its strength lies in preserving fine-
grained diagnostic information during retrieval. By generat-
ing diagnoses first and then retrieving guideline evidence for
each one, GARAG avoids the information dilution that occurs
when the entire patient record is embedded at once, ensuring
that management plans remain tightly linked to diagnosis-spe-
cific guidance.
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Taken together, the evaluation results indicate that
GAVS improves resolution at the subcategory level with-
out sacrificing performance at the broader category level.
Beyond this quantitative advantage, GAVS has 3 qualita-
tive benefits that strengthen its reliability and scalability.
First, GAVS guarantees that every predicted code is part
of the official coding ontology. Because predictions are
drawn directly from a vector search over the ontology, the
system cannot hallucinate nonexistent codes—a risk that
remains with unconstrained LLM outputs. Second, GAVS
is flexible across coding systems. Adapting it to a different
ICD version, or to CPT/SNOMED, or to institution-specific
ontologies requires no retraining or prompt engineering. One
simply replaces the vector database with embeddings of the
target ontology’s code descriptions, and the method functions
seamlessly. Third, GAVS enhances explainability. The LLM
provides a structured list of diagnostic predictions together
with textual reasoning, and each prediction is then mapped
deterministically to a small, fixed set of candidate codes via
cosine similarity. This 2-step design ensures systematic and
interpretable outputs. By contrast, a vanilla LLM generates
codes as a single sequence based on statistical likelihood,
with no guarantee of coverage, ordering, or manageable
length, making its reasoning harder to audit and its predic-
tions less scalable.
Future Work
There are many feature improvements we envisage adding to
Rhazes Clinician soon. First, we plan to experiment with new
embedding models such as Guided In-Sample Selection of
Training Negatives-large-embedding-v0 [81], which has been
identified as a good fit for clinical tasks in a previous study
[82]. The change in the embedding model means that we will
have to reindex the latest versions of the clinical and coding
guidelines we have been using for GARAG and GAVS. From
a platform perspective, Rhazes already supports ICD, CPT,
and SNOMED codes. We plan to extend this support to
the full HCPCS [38] (including level 2) as well as OPCS.
These additions will broaden coverage across clinical and
administrative workflows. From an evaluation perspective,
future work will focus on systematically assessing whether
GAVS’ advantage over an unconstrained LLM generalizes
across coding ontologies beyond ICD-10. We will design
blinded, head-to-head comparisons—similar in spirit to Klang
et al [65]—spanning CPT, SNOMED, HCPCS level 2, OPCS,
and clinic-specific ontologies, with physicians and LLMs
independently adjudicating results. Because these ontologies
(particularly the less common or locally maintained ones) are
less likely to be represented in pretraining data, our a priori
hypothesis is that the relative benefit of GAVS will be larger
than what we observed for ICD-10. As part of this program,
we aim to construct and share a deidentified, gold-labeled
coding dataset suitable for benchmarking across methods.
Additional methodological work will examine the effect
of the vector-search candidate set size (eg, top-k), alterna-
tive embedding models [81,82], and improved parent-map-
ping resources to reduce unresolvable cases during category
aggregation. Finally, we plan to extend our EHR integration
offerings: we aim to support Egton Medical Information

Systems, the leading EHR for UK primary care clinics, and
SystmOne, the second most popular EHR for UK general
practitioners [83]. These integrations will facilitate prospec-
tive, multisite evaluations and subgroup analyses while
maintaining interoperability with existing clinical systems.
Limitations
The GARAG workflow was tested on a relatively small
set of 21 author-designed cases. While reproducibility was
high, independent validation on larger and more varied case
sets is needed. The GAVS evaluation, while based on a
sizable cohort of 958 admissions, relied on billing records
as the gold standard. Because billing data do not fully
capture the clinical picture of each admission, it is not
possible to definitively establish precision, as some well-
reasoned diagnostic predictions may go unbilled [46,47].
Moreover, the underlying MIMIC-IV dataset has well-recog-
nized constraints: it lacks clinical notes, physical examination
findings, and certain test results such as electrocardiograms,
and it is drawn from a single hospital in Boston, MA.
This means the data are subject to demographic and insti-
tutional biases and may not generalize to other patient
populations. Finally, some specific ICD-10 codes could
not be mapped to parent categories due to library limita-
tions. These factors highlight the need for further testing
against richer clinical datasets, across multiple institutions,
and with more comprehensive ontology mappings. Taken
together, these component-level limitations reflect broader
challenges in deploying LLM-driven systems like Rhazes
into clinical practice. The effectiveness of an AI co-pilot
hinges on its accuracy across diverse clinical scenarios.
In general, evaluation of clinical performance of LLMs is
challenging due to the lack of transparency when it comes
to versions, prompts, human evaluations, LLM-as-a-judge
evaluations [47,76], patient data, and due to the nonexis-
tence of gold-labeled data sets for many clinical applica-
tions [84]. Care must be taken to accurately assess AI for
improved patient outcomes and to avoid statistically flawed
evaluations [85]. In practice, AI tools can exhibit degra-
ded performance when used outside the conditions of their
training (out-of-distribution use). Even models that performed
well in development or obtained regulatory clearance have
underperformed in new settings due to poor generalization.
This raises the risk of missed diagnoses or incorrect man-
agement plans if the AI encounters patient data that differs
from its training distribution. Continuous validation of the
system on local patient populations is therefore critical to
ensure reliability in AI-generated recommendations [86]. AI
models learn from historical data, so any biases or gaps in
those data can lead to skewed or inequitable outcomes [87].
If the training dataset underrepresents certain demographics
or conditions, the model suggestions may be less accurate
for those groups, potentially perpetuating health disparities.
For example, studies have found some clinical AI algorithms
perform significantly worse for female patients or racial
minorities, underdiagnosing these groups compared to others
[88,89]. Such bias not only affects accuracy but also violates
principles of fairness in care. Ensuring the data used by
AI co-pilots are diverse and representative is essential to
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minimize this risk. We must also be mindful of other harmful
biases LLMs may learn during training [84], as well as the
risks that over-reliance on AI systems may bring to medicine
(eg, automation bias) [90].
AI in Health Care Ethics
Under the General Data Protection Regulation, health care
organizations can often process patient data for care without
explicit consent, provided they have a valid lawful basis
(Article 6) and meet a special category condition (Article
9) [91], such as provision of health care services. This
lawful basis should naturally extend to the data processors
used, such as the AI scribes. However, alongside lawfulness,
transparency is important. Patients should be informed when
an algorithm is involved in their diagnosis or treatment
planning. Research indicates that disclosing the use of an
AI tool is essential to patients; a recent study found that
patients strongly prefer to be informed when AI assists in
their care and recommended that explicit consent for AI
involvement be obtained during the clinical workflow [92].
In the context of Rhazes, this means clinicians should be
transparent about the AI’s role—explaining to patients that an
AI system will analyze their data and contribute to sugges-
tions. Such transparency not only respects patient autonomy
but also helps build trust, as patients are more likely to accept
AI-derived recommendations if they understand and agree to
their use.

An AI system must consistently uphold the core principles
of medical ethics—beneficence, nonmaleficence, autonomy,
and justice. One concern is that software like Rhazes might,
in some situations, propose an option that, while data-driven,
conflicts with a patient’s values or broader ethical norms. For
example, an AI might prioritize treatments based on statistical
outcomes or cost-effectiveness, which could unintentionally
de-emphasize a patient’s personal preference for quality of
life. If Rhazes recommends an aggressive treatment purely
because it maximizes survival odds, but the patient priori-
tizes comfort, blindly following the AI would undermine
patient autonomy. Human clinicians must interpret Rhazes’
outputs through the lens of their professional ethics and
clinical judgment. They should override or adjust recommen-
dations that do not fit the patient’s individual context or
the ethical standards of care. In essence, Rhazes should
support clinical decisions that are not only effective but also
ethically sound, with the physician ensuring final decisions
align with the principle of autonomy and patient-centered
care. Several approaches can address these ethical concerns
and ensure that AI tools are used responsibly in health
care. One key strategy is incorporating explainability into
the AI model. Rather than acting as a “black box,” Rhazes
provides interpretable reasoning or an explanation for its
suggestions (for instance, highlighting which patient factors
or medical evidence led to a given diagnostic recommenda-
tion). Explainable AI methods help clinicians and patients
understand why a recommendation was made, which is
vital for trust and for verifying that the recommendation
makes ethical and clinical sense. Another strategy is clinician
oversight and accountability. Rhazes is intended to assist, not
replace, the clinician; therefore, protocols should emphasize

that the human provider retains ultimate responsibility for
diagnosis and treatment decisions. By maintaining clear
accountability—where the clinician must review and approve
AI-generated plans—the risk of blind adoption of incorrect
suggestions is reduced. Studies on automation bias mitigation
have noted that training users and stressing their accountabil-
ity can counter overreliance [93]. Regular training sessions
for clinicians on the proper use of Rhazes, including case
studies of when the AI errs, can sharpen their judgment on
when to trust the AI and when to apply caution. Finally,
patient education about AI in health care can help. Patients
should be informed in understandable terms what Rhazes is
and what role it plays in their care. When patients understand
that the AI is a tool used by their doctor (and not a substitute
for the doctor), it can alleviate fears of a purely machine-
driven care plan. Surveys have shown that both doctors
and patients feel anxious if they do not understand AI’s
involvement [94], so educational efforts (leaflets, consent
discussions, etc) can demystify the technology. In summary,
through explainable AI design, strong human oversight, and
educational transparency, Rhazes can be deployed in a way
that upholds ethical standards and supports clinicians and
patients alike.
Compliance Requirements for AI Tools in
Hospitals
Any digital health technology company operating within
the United Kingdom collecting or processing any form of
personal data must comply with UK General Data Protection
Regulation and the Data Protection Act [95]. Companies
processing personal data in the United Kingdom must be
registered with the Information Commissioner’s Office (ICO)
[96]. In addition to the usual requirements around process-
ing personal data, it is likely that a health-tech company
will be processing sensitive personal health data, which
would classify as special category data. This can bring some
additional requirements, such as the need or recommenda-
tion to complete a Data Protection Impact Assessment [97].
There must also be appropriate contracts and Data Processing
Agreements [98] in place between an NHS organization and
the digital health supplier, between which personal data may
flow.

If a digital health supplier is looking to work with NHS
organizations and will be interacting with NHS patient data,
they will need to complete the Data Security and Protec-
tion Toolkit (DSPT) [99]. This is not a requirement in
the private sector or in direct-to-consumer models. If an
organization is an IT supplier with 50+ staff members and
has a turnover of at least £10 million (US $13.16 million)
and supplies digital goods and services to the NHS, the
company must also undertake an independent audit/assess-
ment [99]. Organizations handling patient data may require
the following personnel: a data protection officer (DPO), a
senior information risk owner, and a Caldicott guardian [99].
A DPO [100] is required if a company’s core activities consist
of large-scale processing of special category data. DPOs
help to monitor internal compliance, inform on data protec-
tion obligations, provide advice regarding Data Protection
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Impact Assessments and act as a point of contact for data
subjects and the ICO. The Senior Information Risk Owner
is a senior member of the organization whose roles are to
promote a culture that values and protects ICO information,
own information risk management policies and processes
and ensure they are implemented, advise on information risk
management processes and provide assurance, and own the
incident management framework. The Caldicott Guardian
[101] is a senior person responsible for overseeing the use
and sharing of patient information by protecting the confiden-
tiality of people’s health and care information.

Companies aiming to deploy in the NHS also must
go through information security and technical assurance.
UK Cyber Essentials [78,102,103] is a self-assessment that
any company looking to work with the public sector must
comply with. The general recommendation is for companies
to comply with Cyber Essentials Plus, which involves both
a self-assessment and an external audit. Often, companies
will use ISO 27001 to demonstrate a higher level of secur-
ity than required by just meeting DSPT requirements, but
it is not generally mandated in health care organizations.
ISO 27001 is an internationally recognized standard for
information security [102] that is not health care specific.
It requires companies to implement Information Security
Management Systems and focuses on risk assessment. It
requires independent certification by an accredited body.
Digital health technologies deployed in NHS organizations
in England will also need to comply with the digital clin-
ical safety standards DCB0129/0160. This is required by
law, under section 250 of the Health and Social Care Act
2012 [104]. Both the manufacturer (DCB0129) and deploy-
ing health or social care organization (DCB01060) are
required to complete a clinical risk assessment, including
key documentation. This process is overseen by an appro-
priately qualified Clinical Safety Officer. There is also a
requirement to monitor and record any incidents post-deploy-
ment. Penetration testing is required to assess the security
of digital health technologies deployed in NHS organizations
as part of the NHS Digital Technology Assessment Criteria
(DTAC) [105], which mandates that any identified vulnerabil-
ities should be appropriately remediated. The NHS DTAC
[105] is a framework that brings together legislation and
best practice in 5 core areas: clinical safety, data protec-
tion, technical security, interoperability, and accessibility and
usability, which incorporates the aforementioned NHS DSPT
and DCB0129 standards. The DTAC is a national baseline
criteria for digital health technologies being deployed within
NHS health care organizations and can be used by health
care organizations to assess suppliers as part of their due
diligence process. Due to the complexity of navigating NHS
compliance frameworks, specialized firms have emerged to
help digital health companies accelerate clinical assurance
processes; these include Assuric [106], Vanta [107], and Naq
[108].

If the AI product meets the definition of software as
a medical device (SaMD), companies would also need to
comply with medical device regulation and achieve appro-
priate certifications before being available for use in the

open market. This would be the case if the intended pur-
pose and functionality of the product extends into diagno-
sis, prevention, monitoring, prediction, prognosis, treatment,
or alleviation of disease, as defined by European Union
(EU) Medical Device Regulation [109]. SaMD is defined
as “software intended to be used for one or more medical
purposes that perform these purposes without being part of
a hardware medical device” [110]. In the United Kingdom,
medical devices are classified by risk to class 1, class 2a,
class 2b, and class 3, with class 1 being low risk to patients
and class 3 being high risk to patients. Manufacturers face a
greater scope of work and evidentiary burden when dealing
with higher-risk products. In the United Kingdom, low-risk
class 1 devices require manufacturers to make a self-declara-
tion of conformity to the Medicines and Healthcare Products
Regulatory Agency (MHRA). Other classes require involve-
ment and approval from an approved body (an organiza-
tion designated by the MHRA to assess the conformity of
products before they are placed on the market), granting a UK
Conformity Assessed mark, the equivalent to a Conformité
Européenne (CE) mark in the EU.

There have been several AI-as-a-medical device products
on the market for some time, primarily in the category
of diagnostic radiology or dermatology tools, one example
being Skin Analytics, which recently achieved regulatory
approval for autonomous AI skin cancer detection system
Deep Ensemble for Recognition of Malignancy in Europe,
receiving class III CE marking. This is the first legally
authorized AI to independently make clinical decisions on
skin cancer without oversight. Deep Ensemble for Recogni-
tion of Malignancy achieves 99.8% accuracy rate in ruling
out cancer, surpassing the performance of dermatologists
who typically achieve 98.9% [111]. However, there is yet
to be a generative AI product that has been certified as a
medical device in the United Kingdom or EU. In the United
States, Modella AI’s generative AI co-pilot, PathChat, has
received device designation by the Food and Drug Adminis-
tration. This is the first regulatory approval of a clinical-grade
generative AI co-pilot [112] and is the first of likely many
more SaMD generative AI applications.

The NHS 10-Year Reform Plan sets a clear direction for
modernizing care delivery, with a strong emphasis on digital
transformation, integrated community services, and reduc-
ing strain on clinical staff [113]. One area gaining signifi-
cant momentum is the deployment of AI-enabled ambient
scribing tools, which offer practical relief from administra-
tive overhead by automatically transcribing and summariz-
ing clinical encounters [113]. The plan explicitly highlights
the need to streamline documentation and use responsible
automation to release clinician time for patient care [113]. In
parallel, NHS England’s technical guidance on ambient voice
technology adds further clarity and outlines key regula-
tory considerations for these tools [114]. Pure transcription
tools are generally not considered medical devices. How-
ever, where generative AI features extend into summariza-
tion, providing prompts, generating structured clinical notes,
letters, or codes, they are likely to qualify as SaMD. Such
tools would then require UK Conformity Assessed or CE
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marking, MHRA registration, and a full clinical safety case
under DCB0129/0160. Beyond regulatory certification, NHS
organizations are expected to ensure integration with existing
EHRs through standards such as Fast Health Care Interoper-
ability Resources, HL7, and SNOMED CT, maintain strong
human oversight to mitigate diagnostic drift or foreseeable
misuse, and implement a clear post-deployment monitoring
framework. This includes mechanisms for clinicians to flag
transcription errors, routine audits of scribe outputs, and
attention to bias risks, particularly for patients with regional
accents, dialects, or speech impairments.
Conclusion
While AI has been rapidly evolving over the last 2 years,
progress has not been reciprocated in the health care industry,
a heavily regulated space with many financial, staffing, and
quality-of-service-type problems. Due to the lack of gold-
labeled datasets and human evaluation protocols for LLM-
generated text, recent AI in health care innovations was
driven by well-funded industry players who were able to
start generating evidence by securing hospital pilots early.
So far, most companies seek to innovate in administrative
workflows that avoid direct patient care as this comes with
lesser regulatory burden. There seems to be a regulatory gray
area surrounding workflows which could ultimately affect
patient care should doctors over-rely on AI. Examples include
AI scribing and clinical document generation, with only a few
AI notetaker tools evaluated in academic journals with often
conflicting and lack of reproducible results.

In this article, we reviewed the need for AI tools in
health care and the current state of the industry, including
dominant players and their progress. During this review, we
demonstrated, firsthand, how such tools may be created and
how they may be used by physicians. We discussed key
implementation considerations for Rhazes Clinician, an AI
assistant for doctors. We described in detail the methods
used to create a CDS and an admin assistant for doctors,
including the LLMs deployed, the clinical guidelines used,
the RAG hyperparameters, and the cloud services used. We
also introduced a new method for medical coding that we
dubbed GAVS for Generation-Augmented Vector Search
and an improved RAG workflow for CDS that we named
GARAG. GARAG highlights the value of diagnosis-specific
retrieval, allowing management plans to stay closely linked to
diagnostic evidence while avoiding the information dilution
that occurs when entire patient records are embedded in
typical RAG workflows. We showed that GAVS statistically
significantly improves ICD-10 coding predictions. For both
treatment planning and medical coding, we provided Jupyter
notebooks that demonstrate the (albeit simplified) implemen-
tation of these Rhazes tools. Our goal with this is to contrib-
ute to the academic discussion about AI tools for health care
and encourage academics as well as industry players to share
their datasets and novel methods in order to accelerate the
deployment of transparent AI tools in hospitals.
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