JMIR BIOMEDICAL ENGINEERING Ozek et al

Original Paper

Influence of Pre-Existing Pain on the Body’s Response to
External Pain Stimuli: Experimental Study

Burcu Ozek, PhD; Zhenyuan Lu, PhD; Srinivasan Radhakrishnan, PhD; Sagar Kamarthi, PhD

Mechanical and Industrial Engineering Department, Northeastern University, Boston, MA, United States

Corresponding Author:

Sagar Kamarthi, PhD

Mechanical and Industrial Engineering Department
Northeastern University

360 Huntington Avenue

Boston, MA 02115

United States

Phone: 1 6173733070

Email: s.kamarthi @northeastern.edu

Abstract

Background: Accurately assessing pain severity is essential for effective pain treatment and desirable patient outcomes. In
clinical settings, pain intensity assessment relies on self-reporting methods, which are subjective to individuals and impractical
for noncommunicative or critically ill patients. Previous studies have attempted to measure pain objectively using physiologi-
cal responses to an external pain stimulus, assuming that the participant is free of internal body pain. However, this approach
does not reflect the situation in a clinical setting, where a patient subjected to an external pain stimulus may already be
experiencing internal body pain.

Objective: This study investigates the hypothesis that an individual’s physiological response to external pain varies in the
presence of preexisting pain.

Methods: We recruited 39 healthy participants aged 22-37 years, including 23 female and 16 male participants. Physiological
signals, electrodermal activity, and electromyography were recorded while participants were subject to a combination of
preexisting heat pain and cold pain stimuli. Feature engineering methods were applied to extract time-series features, and
statistical analysis using ANOVA was conducted to assess significance.

Results: We found that the preexisting pain influences the body’s physiological responses to an external pain stimulus.
Several features—particularly those related to temporal statistics, successive differences, and distributions —showed statisti-
cally significant variation across varying preexisting pain conditions, with P values <.05 depending on the feature and
stimulus.

Conclusions: Our findings suggest that preexisting pain alters the body’s physiological response to new pain stimuli,
highlighting the importance of considering pain history in objective pain assessment models.
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They are also inherently subjective, as pain perception varies
widely between individuals [2-5]. These limitations increase
the risk of misdiagnosis and mistreatment, highlighting the
need for more objective and reliable pain assessment methods

Introduction

Accurate pain assessment is vital for ensuring proper
treatment and helping patients receive the necessary care to

reduce discomfort and prevent complications. Yet, current
pain assessment tools and methods, which rely on patients’
description of their pain using scales or descriptive measures,
often fall short of clinical expectations [1]. These methods are
ineffective for noncommunicative patients, such as infants or
critically ill patients under sedation or mechanical ventilation.

https://biomedeng.jmir.org/2025/1/e70938

[6,7].

To address the limitations of self-reported pain assess-
ments, physiological signals offer a promising alternative.
Signals such as skin conductance, heart rate, and muscle
activity provide objective data that can reflect the body’s
response to pain. Unlike self-reporting, physiological signals
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do not depend on a patient’s ability to communicate, making
them particularly suitable for critically ill or noncommunica-
tive patients. By monitoring these signals in real-time, health
care providers can gain an accurate and continuous under-
standing of a patient’s pain levels, paving the way for timely
and appropriate interventions. This shift toward objective,
data-driven pain assessment can help reduce the variabil-
ity and inaccuracies associated with traditional methods,
enhancing health care providers’ assessments [8,9].

Several studies have explored data-driven approaches
for assessing pain through physiological signals [10-12].
These studies primarily collected data such as skin con-
ductance, electromyography (EMG), electrocardiography,
and electroencephalography during controlled pain stimuli
experiments [9,13-15]. The BioVid Heat Pain Database is
one of the most well-known, aiming to differentiate between
various pain levels by analyzing physiological responses to
heat pain [9]. Other studies, like Rojas et al [16] and Lin et al
[14], also gathered data from participants exposed to heat or
cold stimuli, applying machine learning techniques to classify
pain levels. These studies have demonstrated the potential
of physiological signals for objective pain assessment and
established valuable datasets for pain assessment research
[9,14,17,18].

While the aforementioned studies provide promising
results, they mainly focus on healthy participants responding
to a single type of externally induced pain stimulus. One
crucial factor that remains underexplored is the impact of
preexisting conditions, such as chronic pain, postsurgical
pain, or injury pain, that a patient is experiencing when
the patient is administered an external pain stimulus. A few
studies have investigated different patient populations, such
as patients with chronic pain (back pain and shoulder pain)
[11,19-22], patients in postsurgery [23], patients who are
injured [24], patients with orthopedic trauma [25], patients
with musculoskeletal trauma [26], and patients with cancer
(eg, breast cancer [27]). These studies have provided insights
into pain assessment in these populations, but they have not
fully explored how preexisting pain interacts with new pain
stimuli in terms of physiological responses.

Although the literature has begun exploring objective
pain assessment for a single source of external pain stim-
uli, insights from medical research reveal that preexisting
pain influences responses to new pain stimuli, underscoring
the importance of considering preexisting pain. Sacco et al
[20] found that individuals without chronic pain (without
preexisting pain) exhibit an adaptive response to acute pain
(new pain) by activating internal pain regulation mechanisms,
including the release of natural painkillers and an increase
in blood pressure, which temporarily reduces sensitivity.
However, in patients with chronic pain, this adaptive
mechanism can become disrupted, leading to heightened
sensitivity to both acute and chronic pain. Similarly, Moscato
et al [22] found that the autonomic signals of patients with
chronic low back pain show differences compared to those
of healthy individuals, both at rest and when subjected to a
noxious stimulus, as evaluated through a set of physiological
indicators. Lee et al [26] showed that preexisting pain can
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impact specific biomarkers, such as IL—1f, affecting how
the body processes musculoskeletal trauma as a new pain.
Raza et al [27] also found that women with chronic breast
pain experienced more severe postoperative pain, highlighting
preexisting pain as a predictor of adverse pain outcomes. In
patients with trauma, Fetzh et al [24] observed that preexist-
ing pain serves as a significant predictor for long-term pain
following severe injury, emphasizing the complex interaction
between pain history and physiological responses.

Although chronic pain is often referenced in the literature,
the goal of this study is neither to simulate nor to assess
chronic pain specifically. Instead, we use “preexisting pain”
as a broader effect that can include various types of ongoing
pain, such as postsurgical pain, injury-related pain, or other
chronic and nonchronic conditions. Our aim is to investigate
how any form of preexisting pain—regardless of origin—
might influence the physiological response to a new external
pain stimulus.

Our hypothesis is that preexisting pain significantly alters
physiological responses to new pain stimuli. For instance,
patients with chronic pain or postsurgical pain may show
distinct physiological signals—such as changes in skin
conductance or EMG —compared to healthy individuals when
encountering new pain. To test this hypothesis, we conduc-
ted an experimental study examining how different levels
of preexisting pain influence physiological responses to new
pain stimuli. Understanding these responses could lead to
accurate and personalized pain assessments.

In our experiments, we designated “heat pain” as a form of
preexisting pain and “cold pain” as a new external stimu-
lus. Heat pain and cold pain were studied at 3 levels: zero,
low, and high. We conducted experiments with 9 combi-
nations of no-heat, low-heat, high-heat, no-cold, low-cold,
and high-cold pain. We recorded electrodermal activity
(EDA) and EMG as time series data during these experimen-
tal conditions. Following data collection, we used feature
engineering methods to extract features from these time
series. We identified distributions, simple temporal statistics,
linear and nonlinear autocorrelation, successive differences,
and fluctuation analysis as pain-sensitive features. Next, we
applied an ANOVA test to investigate whether physiological
responses to cold pain stimuli exhibit statistical differences
across three levels of preexisting heat pain. By analyzing
variations in EDA and EMG features across different pain
exposure levels, we aim to gain insights into how preexisting
pain modulates the body’s response to new pain.

The aim of this study is to investigate how varying levels
of preexisting heat pain affect the physiological response
to new cold pain stimuli, using EDA and EMG signals as
objective markers.

To our knowledge, this work represents the first exper-
imental study that explores the EDA and EMG features
that exhibit statistically significant differences across varying
preexisting heat pain levels in response to an external
stimulus.
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Methods

Ethical Considerations

The research protocol was approved by the Northeastern
University Institutional Review Board (IRB #22-11-06). The
methods for this study adhered to the guidelines outlined
in the Belmont Report. Northeastern University holds a
Federal Wide Assurance with the US Department of Health
& Human Services, ensuring our compliance with the
principles of the Common Rule, 45 CFR 46. Before the
experiment, the researcher orally explained the experimental
procedure to each participant, the participant’s role, and other
relevant information. In addition, the researcher presented
each participant with a written consent form to read. The
researcher obtained written informed consent from each
participant before commencing the experiment. The research
team kept participants’ data confidential and anonymized,
securely storing all data with access limited to the research
team only. No identifying information was included in
the manuscript or any related materials. Participants were
compensated with a gift card.

Participants

In total, 39 participants were recruited, with 31 completing
the experiments. The remaining 8 participants chose not to
continue the experiment due to discomfort from the heat pain.
The study included 23 female and 16 male participants, with
ages ranging from 22 to 37 years, with an average age of
26.1 (SD 3.57) years. All participants were healthy, and none
reported experiencing pain before the experiment.

Inclusion and Exclusion Criteria

Participants were recruited from the Northeastern University
community, including students, faculty, and staff. Inclusion
criteria required participants to be between 18 and 50 years
of age, in good general health, and not currently experi-
encing chronic pain or other medical conditions that could
interfere with physiological responses. Only English-speaking
individuals were included to ensure clear communication and
understanding of study procedures. Pregnant individuals were
excluded from participation to ensure their comfort and to
avoid the introduction of additional physiological variability.
There were no exclusion criteria related to gender, race or
ethnicity, socioeconomic status, or literacy level.

Measured Physiological Signals

This study examined two physiological signals, EDA and
EMG, to capture responses to pain stimuli.

Electrodermal Activity (EDA)

EDA serves as an indicator of neurocognitive stress through
changes in the skin’s electrical conductance [28]. Closely
linked to the sympathetic branch of the autonomic nerv-
ous system, EDA can sense and transmit information about
environmental changes, including temperature, pressure, and
pain [29-31]. Consequently, EDA reflects emotional and
cognitive states, making it a valuable physiological marker
across various applications [32].
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During emotional arousal or cognitive stress, sweat
gland stimulation induces fluctuations in skin conductance,
measured by EDA. These changes, largely beyond con-
scious control, capture subconscious physiological responses
to emotions and stress, providing an objective means of
assessing an individual’s state [33].

In pain assessment, EDA plays a crucial role by offering a
quantitative and objective measure of physiological respon-
ses to pain. It provides valuable insights into pain intensity,
complementing self-reporting to enhance pain assessment
accuracy in research and clinical settings [28,34]. EDA
encompasses data related to both slow shifts (tonic compo-
nent) and the signal’s rapid alterations (phasic changes). Our
analysis focused on gathering information from the tonic
component, specifically skin conductance level.

Electromyography (EMG)

EMG is the electrical signal produced by skeletal muscle
activity. These signals originate from motor neurons, which
are integral components of the central nervous system. Since
EMG signals are a reflection of neuromuscular activity, they
find application in the diagnosis of conditions such as muscle
injuries, nerve damage, and muscle dysfunction arising from
neurological and muscular disorders [35-37]. EMG is an
excellent choice for developing an objective pain assessment
tool because of its unique ability to measure muscle activity
directly. It allows real-time monitoring of muscle responses
to understand pain intensity, location, and characteristics
[14,38,39].

Design of the Experiment

The physiological data were collected using the BIO-
PAC MP160 data acquisition and analysis systems with
AcgKnowledge software (BIOPAC Systems, Inc). Smart
amplifiers recorded EMG and EDA. Heat stimulation was
delivered using OCOOPA Hand Warmers, which offered
two temperature settings: 37 and 45 °C. These tempera-
tures were measured and monitored using a BIOPAC SKT
(Skin Temperature) Smart Amplifier. Cold stimulation was
provided through iced water, with the temperature continu-
ously monitored using a thermometer. In these experiments,
heat pain acts as preexisting pain, while cold pain acts as a
new pain stimulus.

Using temperature-based modalities for both preexisting
(heat) and new (cold) pain stimuli allowed us to design a
consistent, safe, and replicable experimental setup. Tem-
perature stimuli are well-established in pain research and
offer practical advantages regarding ecological validity and
participant safety. Moreover, the thermal approach enabled
controlled comparisons of physiological responses across
different pain levels while minimizing variability introduced
by mechanical or electrical alternatives.

EDA data were collected using the BIOPAC EDA Smart
Amplifier attached to the ring and index fingers of the
participant’s nondominant hand. Before attaching the sensors
to the fingers, the skin was cleaned with wet wipes,
and GELI0IA was applied to the electrodes to improve
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conductivity, enhance signal quality, and reduce impedance.
EMG data were acquired using the BIOPAC EMG Smart
Amplifier, with three electrodes attached to the participant’s
nondominant forearm. The skin in the sensor placement area
was prepared by cleaning it with wet wipes, followed by
abrasion and application of ELPREP. GEL100 was applied

Ozek et al

to the electrodes to improve contact. To minimize motion
artifacts, all cables were secured with medical tape. Hand
warmers were fastened to the participant’s dominant forearm
using a strap. Figure 1A shows the picture of the placement of
the electrodes.

Figure 1. Data acquisition setup and experimental setup for pain stimuli. (A) EDA data were gathered from the ring and index fingers of the
participant’s nondominant hand, while EMG data were recorded using three electrodes positioned on the participant’s nondominant forearm. (B,C)
Hand warmers, serving as heat pain stimuli, were fastened to the participant’s dominant forearm using a strap. Cold pain stimuli were induced by
iced water when participants placed their fingers or hands in the iced water, depending on the stimulus level the participant is expected to receive
in the design of experiments: for low-level cold pain stimulus, participants placed fingers in the iced water, and for high-level cold pain stimulus,

participants placed the hand in the iced water.

The experiment consisted of two types of pain stimuli: (1)
heat pain caused by attaching hand warmers to the forearm
and (2) cold pain induced by placing fingers or hands in ice
water. Each type of pain had low and high levels. The heat
and cold pain stimuli were applied to the dominant hand,
while physiological signals were collected from the nondomi-
nant hand. At the end of each step, participants were asked to
report their pain levels on a scale of 0 to 10. The participants
are given a 4-minute relaxation break at the beginning of each
data collection session.

We collected baseline data from each participant with-
out inducing any type of pain stimulus. The rest of the
experimental procedure consisted of two phases. In the first
phase, we collected data from four steps; in Step 1, only the
low-level cold pain was applied; in Step 2, only the high-level
cold was applied; in Step 3, only low-level heat pain was
applied; and in Step 4, only high-level heat pain was applied.
In the second phase of the experiments, we applied a different
combination of heat and cold pain levels to examine their
combined effect in Steps 5 through 8.

The experimental procedures for the first phase involved
four steps. First, the participant placed their fingers in
iced water and held them there for 8 seconds, representing
low-level cold pain. In the second step, they placed their
dominant hand in iced water for 8 seconds, representing

https://biomedeng.jmir.org/2025/1/¢70938
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high-level cold pain. In the third step, using a hand warmer
attached to the participant’s dominant forearm, they were
subjected to 37 °C heat for 1.5 minutes, which caused
low-level preexisting heat pain. In the final step of the first
phase, using a hand warmer attached to the participant’s
dominant forearm, they were subjected to 45 °C heat for 1.5
minutes, which caused high-level preexisting heat pain.

The second phase of the experiment involved four
additional steps. In the fifth step of the experiment, the
participant wore a hand warmer on their nondominant
forearm, experiencing a temperature of 37 °C for 1.5 minutes.
After 80 seconds into the heat pain stimulus, the participant
placed their fingers in iced water for 8 seconds. This scenario
represents the simultaneous application of low preexisting
heat pain and new low cold pain. In the sixth step, the
participant repeated Step 5 with the hand warmer on their
nondominant forearm, but at a temperature of 45 °C. Again,
after 80 seconds, they placed their fingers in iced water for 8
seconds. This scenario represents the simultaneous applica-
tion of high preexisting heat pain and new low cold pain. In
the seventh step, the participant wore the hand warmer on
their nondominant forearm at 37 °C for 1.5 minutes. After
80 seconds had elapsed, they immersed their dominant hand
in iced water for 8 seconds. This scenario represents the
simultaneous application of low preexisting heat pain and
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new high cold pain. In the eighth and final step, the partici-
pant repeated Step 7 with the hand warmer on their nondomi-
nant forearm at 45 °C for 1.5 minutes. After 80 seconds, they
immersed their dominant hand in iced water for 8 seconds.
This scenario represents the simultaneous application of high
preexisting heat pain and new high cold pain.

Figure 1B,C illustrates how the hand warmer is positioned
on the forearm and how the fingers or hand are placed in the
ice water.

Signal Processing

Both EDA and EMG signals were recorded at a data
acquisition rate of 2000 samples per second (2 kHz). For
EDA, a low-pass filter with a 1.0 Hz frequency cutoff was
used to eliminate high-frequency noise [30,40].

We processed EMG signals through a comb bandstop
transformation to eliminate interference from the power
line frequency (50 Hz) [41]. The comb bandstop transforma-
tion aims to effectively suppress or eliminate interference
originating from the power line frequency (50 Hz), ensuring
a relatively noise-free EMG signal for analysis and interpreta-
tion. Subsequently, a finite impulse response bandpass filter
was applied, specifying a low-frequency cutoff at 28 Hz
and a high-frequency cutoff at 500 Hz [42]. This step was
implemented to filter out both high and low artifacts, such as
motion artifacts, and to focus on the EMG signal within the
frequency range of 28 to 500 Hz.

Ozek et al

Recognizing that the EMG signal centers around O,
a rectified version was generated by averaging samples
in sets of 100. This approach makes analysis easy by
eliminating negative values and retaining the magnitude of
the signal.

To analyze EMG further, the root mean square (RMS)
was calculated using a window size of 100 samples. This
measurement meaningfully represents the signal’s character-
istics because EMG is centered around 0.

Feature Extraction

In this study, we derived features from EDA and EMG
using the “Canonical Time-series Characteristics” outlined
by Lubba et al [43]. These features encompass fundamental
statistical metrics of time-series data, stationarity measures,
entropy, linear correlations, nonlinear time-series analysis
techniques, linear and nonlinear model parameters, predictive
capabilities, and fits. Specifically, we identified the subset of
22 features highlighted as the most informative by Lubba et
al [43]. These features are listed in Table 1. Following all the
data processing and extraction steps, we obtained 22 features
from EDA, EMG, rectified EMG, and RMS of EMG signals;
this resulted in a total of 22x4=88 features. Then, we applied
z-transformation to normalize all features for each participant,
using the participant-specific mean and SD.

Table 1. Time-series feature categories and descriptions using the “Canonical Time-series Characteristics” defined by Lubba et al [43].

Feature category

Features

Distribution

Simple temporal statistics

Linear autocorrelation

Nonlinear autocorrelation

Successive differences

Fluctuation analysis

Others

Mode of z-scored distribution (5-bin histogram)

Mode of z-scored distribution (10-bin histogram)

The longest period of consecutive values above the mean

Time intervals between successive extreme events above the mean

Time intervals between successive extreme events below the mean

The first 1/e crossing of the autocorrelation function

The first minimum of the autocorrelation function

Total power in the lowest fifth of frequencies in the Fourier power spectrum
Centroid of the Fourier power spectrum

Mean error from a rolling 3-sample mean forecasting

Time-reversibility statistic, ((xt“—xt)s)l

Auto mutual information, m=2, =5

The first minimum of the auto-mutual information function

Proportion of successive differences exceeding 0.04 o (Mietus et al [44])
The longest period of successive incremental decreases

Shannon entropy of two successive letters in equiprobable 3-letter
symbolization

Change in correlation length after iterative differencing

Exponential fit to successive distances in 2D embedding space

The proportion of slower timescale fluctuations that scale with DFA® (50%
sampling)

The proportion of slower timescale fluctuations that scale with linearly rescaled
range fits

Trace of covariance of the transition matrix between symbols in the 3-letter
alphabet

Periodicity measure (Wang et al [45])

2DFA: detrended fluctuation analysis.
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Statistical Testing

The initial analysis aims to identify statistically significant
features for class differentiation. This includes using the
ANOVA test, which assesses variations among the means of
various groups. It is applied in various situations to ascertain
whether there are any significant differences between the
means of the groups [46,47]. The null hypothesis asserts that
the means of the groups are the same, while the alternative
hypothesis posits that the means are not equal.

Ho:py = uy

D

Hy:jy # Wy
We reject the null hypothesis if the calculated P value is less
than the chosen significance level, say, .05.

We used ANOVA to assess the statistical differences in
the means of extracted time series features derived from
physiological signals. The sample comprises 31 observations.
The normality of data, which is a requisite for ANOVA,
is confirmed through the Kolmogorov-Smirnov Test for
normality of data and examination of quantile-quantile plots

Ozek et al
(Q-Q plots) for each individual feature. A significance level

of .05 is set for the ANOVA test, which is conducted as a
2-tailed analysis.

Results

The following sections present the results of statistical
comparisons of EMG and EDA signal features across
different combinations of heat and cold pain levels.

Significant Features in the Presence and
Absence of Pre-existing Pain

Table 2 summarizes the statistically significant differences
(P<.05) in EMG and EDA features across experimental
groups. Each row corresponds to a specific hypothesis
involving two groups. For example, the first row compares
Group 1 (participants who experienced low-level cold pain
without preexisting heat pain) with Group 2 (participants
who experienced the same low-level cold pain while also
experiencing mild preexisting heat pain). This comparison
examines feature-level differences across EMG and EDA
signals under these two conditions.

Table 2. Statistically significant feature categories and the average P values of features within each category for different hypotheses, aiming to study

the influence of the presence or absence of pre-existing pain on external pain stimuli between symbols in the 3-letter set.

Groups EMG 2 (P value) RMSP of EMG, (P value) Rectified EMG, (P value) EDA [ (P value)
e Group 1: low-level e Linear e Linear ¢ Linear e Statistics (.02)
cold pain without any autocorrelation autocorrelation autocorrelation (.003)
pre-existing pain (<.001) (.004) ¢ Successive
e Group 2: low-level ¢ Successive ¢ Successive differences (.001)
cold pain with mild differences (.002) differences (.01)
pre-existing heat pain * Distribution (.02)

¢ Others (.006)
e Statistics (.02)

e Group 1: low-level e Linear ¢ Linear e Statistics (.02)
cold pain without any * Linear autocorrelation autocorrelation (.02) ¢ Others (.04)
pre-existing pain autocorrelation (.004) (.02) ¢ Successive

¢ Group 2: low-level * Successive differences (.03)
cold pain with severe differences (.005)
pre-existing heat pain * Others (.02)

e Statistics (.02)

* Group 1: high-level * No significant * No significant * No significant * Successive
cold pain without any features features features differences (.03)
pre-existing pain

* Group 2: high-level
cold pain with mild
pre-existing heat pain

* Group 1: high-level * No significant * No significant * Successive e Others (.03)
cold pain without any features features differences (.03)

pre-existing pain
* Group 2: high-level
cold pain with severe

pre-existing heat pain

2EMG: electromyography.
bRMS: root mean square.
“EDA: electrodermal activity.
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For low-level cold pain without any pre-existing pain (Group
1) versus low-level cold pain with mild pre-existing heat pain
(Group 2), significant differences were observed in EMG
features related to linear autocorrelation, including the “first
minimum and the first 1/e crossing of the autocorrelation
function.” In the EDA signal, temporal statistics, specifically
“time intervals between successive extreme events,” showed
statistically significant differences.

For low-level cold pain without any pre-existing pain
(Group 1) versus low-level cold pain with severe pre-exist-
ing heat pain (Group 2), EMG features related to linear
autocorrelation, such as the first minimum and 1/e crossing
of the autocorrelation function, were significantly different.
The EDA features that showed the differences included
“time intervals between successive extreme events” and the
“longest period of consecutive values above the mean.”

For high-level cold pain without any pre-existing pain
(Group 1) versus high-level cold pain with mild pre-existing
heat pain (Group 2), the distinguishing features were found
in the EDA signal’s successive differences, particularly the
“longest period of successive incremental decreases.”

For high-level cold pain without any pre-existing pain
(Group 1) versus high-level cold pain with severe pre-existing
heat pain (Group 2), statistically significant differences were

Ozek et al

observed in the rectified EMG signal for features related to
successive differences, including the “change in correlation
length after iterative differencing” and the “longest period
of successive incremental decreases.” In the EDA signal,
differences were observed in the “trace of covariance of the
transition matrix between symbols in the 3-letter set.”

Significant Features in the Mild and
Severe Cases of Pre-existing Pain

Table 3 presents the signals and their respective features
that exhibit statistically significant differences (P<.05) among
the groups. In this section, two hypotheses are investigated.
The first hypothesis aims to compare physiological signals
to assess the influence of mild and severe pre-existing
pain in Groups 1 and 2; Group 1 includes signals from
participants subjected to low-level cold pain while already
experiencing mild pre-existing heat pain; Group 2 includes
signals from participants subjected to low-level cold pain
while already experiencing severe pre-existing heat pain.
The second hypothesis involves comparing the groups to
assess the impact of mild and severe pre-existing heat pain
on participants when they are subjected to high-level cold
pain. Figure 2 visually illustrates the distribution of the most
statistically significant features for each of the two hypothe-
ses.

Table 3. Statistically significant feature categories and individual features for distinguishing the influence of varying levels of pre-existing pain on

the response to low and high levels of cold pain.

Hypotheses and signal

Feature category

Feature (P value)

Group 1: low-level cold pain with mild pre-existing heat pain; Group 2: low-level cold pain with severe pre-existing heat pain

EMG?*

RMSP of EMG

RMS of EMG

Distribution Mode of z-scored distribution
(10-bin histogram; .03)
Successive Longest period of successive
differences incremental decreases (.01)
Statistics Longest period of consecutive

values above the mean
(.03)

Group 1: high-level cold pain with mild pre-existing heat pain; Group 2: high-level cold pain with severe pre-existing heat pain

Rectified EMG

Rectified EMG

EMG

EMG

RMS of EMG

RMS of EMG

https://biomedeng.jmir.org/2025/1/e70938

Successive
differences

Statistics

Distribution

Statistics

Statistics

Statistics

Longest period of successive
incremental decreases (.007)

Longest period of consecutive
values above the mean

(.01)
Mode of z-scored distribution
(10-bin histogram; .03)

Time intervals between successive
extreme events below the mean
(.04)

Time intervals between successive
extreme events below the mean
(.005)

Time intervals between successive
extreme events above the mean
(.009)
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Hypotheses and signal

Feature category

Feature (P value)

Rectified EMG

Rectified EMG

Rectified EMG

EDAC

EDA

Statistics

Statistics

Successive
differences

Statistics

Others

Time intervals between successive
extreme events below the mean
01

Time intervals between successive
extreme events above the mean
01

Change in correlation length after
iterative differencing (.03)

Time intervals between successive
extreme events below the mean
01)

Trace of covariance of transition
matrix (.02)

4EMG: electromyography.
PRMS: root mean square.
CEDA: electrodermal activity.

Figure 2. Distribution of features with the influence of pre-existing heat pain: (A,B) Illustrate the probability density of two significant EMG
features under low- and high-level cold pain conditions. (C,D) Present the corresponding boxplots for each feature, comparing the mild and severe
pre-existing pain conditions. EMG: electromyography; RMS: root mean square.
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Hypothesis 1 examines the influence of mild and severe
pre-existing heat pain on the body’s response to low-level
cold pain. Significant differences were observed in the EMG
signal’s “mode of z-scored distribution.” RMS of EMG
showed variations in successive differences and statistics,
specifically related to “the longest period of incremental
decreases” and “the longest period of consecutive values
above the mean.” Similar patterns were found in the rectified
EMG signal.

Hypothesis 2 investigates the influence of mild and severe
pre-existing heat pain on the body’s response to high-level

https://biomedeng.jmir.org/2025/1/¢70938

cold pain. The “mode of z-scored distribution” of EMG
exhibited significant differences across the groups. RMS of
EMG also showed variations in statistics related to “time
intervals between successive extreme events below and
above the mean.” Rectified EMG signals differed in features
pertaining to successive differences and statistics. Addition-
ally, EDA signals showed significant differences in the “trace
of covariance of the transition matrix.”
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Heat and Cold Pain Interactions

This section presents a response surface analysis using
marginal mean plots and surface plots. It examines how
varying levels of heat and cold pain affect two statistically
significant features: the rectified EMG’s “longest period of
successive incremental decreases” and the RMS of EMG’s

Ozek et al

“time intervals between successive extreme events below the
mean.” Figure 3A and C show the rectified EMG response
values, while Figure 3B and D display the RMS of EMG
response values. The analysis includes pain levels coded as 0
(no pain), 1 (mild pain), and 2 (severe pain).

Figure 3. Interaction effects of pre-existing heat pain and new cold pain on EMG features. (A,B) Marginal means plots illustrating how rectified
EMG and RMS values vary across different levels of heat pain (0, 1, 2) and cold pain (0, 1, 2). (C,D) Surface plots depicting the variation in
responses under various combinations of heat and cold pain levels. EMG: electromyography; RMS: root mean square.
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Discussion

Principal Findings

This study was guided by the hypotheses that (1) pre-existing
body pain alters the physiological response to a new pain
stimulus relative to the physiological response in the absence
of pre-existing pain, and (2) pre-existing pain of different
intensities produces distinguishably different physiological
patterns in response to a new pain stimulus. The use of
multimodal physiological signals, EDA, and EMG provides
insight into the underlying mechanisms and supports the
potential for objective, signal-based pain assessment in
complex pain scenarios.

This study found that pre-existing heat pain significantly
influences physiological responses to new cold pain stimuli,
as indicated by features from EDA and EMG, particularly
successive differences, temporal statistics, and distribution
features, demonstrating noticeable sensitivity to varying pain
combinations.
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Comparative Analysis: Features Sensitive
to the Presence and Absence of Pre-
existing Pain

This section evaluates how the presence or absence of
pre-existing heat pain influences physiological responses
when the body encounters a cold pain stimulus. EMG signals
exhibit significant variation across groups, particularly in
features such as “linear autocorrelation” and ‘“successive
differences,” while EDA signals indicate differences through
statistical features.

When an external low-level cold pain is applied, the
pre-existing heat pain, mild or severe, consistently leads
to marked changes in both EMG and EDA signals. In the
EMG signal, features such as the “first minimum and the
first 1/e crossing of the autocorrelation function” capture
distinct temporal characteristics of muscle activity. The first
minimum identifies a key point of dissimilarity, while the 1/e
crossing reflects the timescale at which the signal’s autocor-
relation declines to approximately 36.8% of its peak. In the
EDA signal, the “time intervals between successive extreme
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events” and the “longest period of consecutive values above
the mean” emerge as distinguishing features. These results
indicate that low-level cold pain elicits prominently differ-
ent physiological features in the presence and absence of
pre-existing heat pain.

When a high-level cold pain stimulus is applied, the EDA
signal’s sensitivity to successive differences, particularly
the “longest period of successive incremental decreases,”
emerges as a distinguishing feature. This feature identifies
continuous patterns where EDA consistently decreases from
one point to the next and the trace of covariance of the
“transition matrix between symbols in the 3-letter set.”
This method involves encoding and simplifying the EDA
signal into sequences, allowing for the analysis of how
these sequences change and relate to each other over time,
highlighting its utility in capturing autonomic dynamics
influenced by layered pain conditions. Similarly, rectified
EMG features tied to successive differences are important:
the “change in correlation length after iterative differencing”
and the “longest period of successive incremental decreases”
further underscore the complementary roles of multimodal
physiological measurements.

High-intensity cold pain appears to overshadow the
physiological responses associated with pre-existing heat
pain. Under these conditions, significant differences are
limited and primarily observed in EDA and rectified EMG
signals. The overwhelming nature of high-level cold pain
reduces the detectability of pre-existing pain effects, making
it difficult to distinguish their individual contributions to
the physiological response. Despite this, certain features
remain sensitive. In the EDA signal, successive differen-
ces, particularly the “longest period of successive incremen-
tal decreases,” identify continuous patterns where EDA
consistently decreases from one point to the next. Addition-
ally, the “trace of covariance of the transition matrix between
symbols in the 3-letter” set captures how patterns evolve over
time, offering insights into autonomic dynamics under layered
pain conditions. Similarly, rectified EMG features related to
successive differences, including the “change in correlation
length after iterative differencing” and the “longest period
of successive decreases,” emphasize the value of combining
multimodal physiological measurements to capture subtle
effects that may persist despite dominant pain stimuli.

Together, these findings suggest that the influence of
pre-existing heat pain on the body’s physiological response is
more discernible when cold pain is mild, particularly through
EMG and EDA signals. In contrast, high-intensity cold pain
may mask these effects, making it difficult to detect the
physiological changes due to pre-existing pain. Understand-
ing these interactions between physiological responses due
to external and pre-existing pains is essential for interpret-
ing pain states in complex and overlapping pain scenarios.
The presence of statistically significant and diverse features
supports the notion that pre-existing heat pain has a measura-
ble impact on physiological responses.

https://biomedeng.jmir.org/2025/1/e70938
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Comparative Analysis: Significant
Features in the Mild and Severe Cases of
Pre-existing Pain

This section examines how the severity of pre-existing heat
pain, ranging from mild to severe, influences the body’s
physiological response when exposed to a new cold pain
stimulus. The findings reveal distinct alterations in EMG and
EDA signals that differentiate these pain intensities.

When participants experience low-level cold pain while
the body is already encountering varying degrees of pre-exist-
ing heat pain, the physiological responses captured through
EMG are particularly sensitive to the severity of pre-exist-
ing heat pain. Features like “mode of z-score distribution,”
which refers to the value or range of values that occur
most frequently, indicate shifts in the most dominant muscle
activity patterns. Additionally, the RMS of EMG shows
differences in features related to successive differences and
statistics, specifically the “longest period of incremental
decreases” and the “longest period of consecutive values
above the mean.” The first feature refers to the duration in
the time series where the EMG signal’s RMS consistently
decreases incrementally. In simpler terms, it identifies the
most extended continuous period during which the RMS
values decrease step by step. The second feature pertains
to the time series duration in which the EMG signal’s
RMS values remain consistently above the mean. This
duration captures the longest continuous segment where the
RMS values are consistently higher than the average. These
features are further supported by similar patterns observed in
the rectified EMG signal, reinforcing the robustness of these
distinctions.

In the high-level cold pain condition, EMG signals
continue to reveal statistically significant differences across
pre-existing pain intensities. The “mode of the z-scored
distribution” emerges as an important marker, indicating
distinctive patterns in muscle activity under mild and severe
pre-existing heat pain conditions. Analysis of the RMS
of EMG signals unveils notable variations in statistics
involving “time intervals between successive extreme events
above or below the mean.” This observation highlights the
complex temporal dynamics associated with the interaction
of high-level cold pain and the severity of pre-existing pain.
The distribution of rectified EMG signals further reinforces
these findings, highlighting distinct patterns in successive
differences and statistics, which contribute to the differentia-
tion of the influence of different pre-existing pain conditions.
Beyond EMG, EDA signals also contribute to this differentia-
tion. The “trace of the covariance of the transition matrix”
emerges as a key feature. This reveals variation in how these
patterns evolve over time under different pre-existing pain
conditions. The inclusion of EDA signals in our analysis
deepens our understanding of physiological responses to the
influence of varying pre-existing pain intensities.

The results of this study highlight that the body exhibits
distinct responses to cold pain stimuli when experiencing
mild versus severe pre-existing heat pain. These findings
highlight the intricate relationship between pain conditions
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and physiological responses. The identified features within
EMG and EDA signals offer valuable insights into the body’s
mechanisms, highlighting the influence of pre-existing pain
on physiological signals.

Analysis of Heat and Cold Pain
Interactions

Response surface analysis provides comprehensive insight
into how varying levels of pre-existing heat pain and
externally introduced cold pain interact to influence physio-
logical responses.

Figure 3A displays the marginal means plot of the rectified
EMG response. Marginal means plots illustrate the responses
by considering only the level of one type of pain, independ-
ent of the levels of any other type of pain. For example,
the response is the strongest when the heat pain is mild.
Similarly, when considering only cold pain, the response
peaks again at the mildest level of pain. The surface plot
represents the interactions between the two types of pain
and their effects on the response. The surface plot in Figure
3C reveals a convex shape with a peak, indicating that the
rectified EMG responses reach their highest values when both
heat and cold pain are at a mild level. The plot shows that
the response is low when there is no heat pain and mild
cold pain, and similarly low under severe heat pain with no
accompanying cold pain.

Figure 3B presents a marginal mean plot of the RMS of
EMG responses. Here, it is evident that mild cold levels
yield the highest response values. Both “no heat” pain and
“mild heat” pain conditions result in high response values,
while severe heat pain significantly reduces the RMS of EMG
responses. In Figure 3D, surface plots of the RMS of EMG
responses are displayed.

Notably, as heat pain increases, the RMS value decreases,
reaching its peak when heat pain is absent or mild. Con-
versely, instances of mild heat paired with no cold pain result
in the lowest RMS of EMG response values.

These patterns underscore the importance of consider-
ing multidimensional pain contexts, as overlapping pain
experiences can interact in nonintuitive ways that meaning-
fully alter physiological signatures.

Limitations

The relatively small and homogeneous sample size, consist-
ing of 31 healthy young adults aged 22 to 37 years, is
one of the shortcomings of this study. This may limit the
generalizability of the findings to broader and clinically
relevant populations. Additionally, the study was conduc-
ted in a controlled laboratory environment, which may not
fully replicate real-world clinical settings, thus limiting its
ecological validity. While the use of fixed-intensity heat and
cold stimuli was effective for controlled experimental design,
it may not capture the full complexity of pre-existing pain
conditions and individual pain thresholds. Furthermore, the
fixed-intensity nature of these stimuli does not account for
interindividual variability in pain sensitivity, which could
influence physiological responses. The devices used in this
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study did not support personalized stimulus calibration, which
we recognize as a limitation.

Future Directions

Future work is open to expanding the sample population
to include individuals from diverse age groups and clini-
cal backgrounds, particularly those experiencing chronic or
postsurgical pain, to improve the generalizability of find-
ings. Validation in real-world clinical environments is also
crucial for enhancing ecological validity. To better reflect the
complexity of pain experiences, future studies should explore
alternative or multimodal pain induction methods beyond
heat and cold stimuli and incorporate personalized calibra-
tion to account for individual pain thresholds. Addition-
ally, expanding the range of physiological signals—such as
heart rate variability, electroencephalography, and functional
neuroimaging —may offer a more comprehensive understand-
ing of the neural and autonomic correlates of pain.

This study used statistical analysis to examine the
significance of physiological differences across pain
conditions. In future work, we will further explore machine
learning models to analyze physiological responses to new
external pain stimuli. This approach will enable us to assess
the intensity of pre-existing pain caused by chronic condi-
tions, injuries, or surgeries. By integrating machine learning,
we aim to develop predictive models that can objectively
assess pain intensity and support personalized, effective pain
management, particularly in clinical settings where patients
are unable to verbally communicate their pain levels.

Conclusions

Accurate pain assessment is crucial for the correct diagno-
sis and effective treatment of many diseases. While exist-
ing literature has developed tools for estimating pain levels
based on physiological responses, these studies often focus
on healthy individuals experiencing acute pain, overlooking
the potential influence of pre-existing conditions, such as
postsurgical pain, chronic pain, and physical discomfort, on
the physiological signals triggered by acute pain. Acknowl-
edging this factor is essential, as individuals may respond
differently to new pain stimuli depending on the intensity of
their pre-existing pain.

This study examined the impact of pre-existing heat
pain through experimental research when participants were
exposed to cold pain stimuli. We used heat pain as the
pre-existing pain condition, cold pain as the new pain
stimulus, and EMG and EDA as physiological signals. By
using statistical tests, we observed significant differences in
specific EDA and EMG signal features across varying levels
of pre-existing heat pain and new cold pain combinations.
Notably, simple temporal statistics (the most extended period
of consecutive values, time intervals between successive
extreme events), successive differences (change in correla-
tion length after iterative differencing), distribution (mode
of z-scored distribution), and autocorrelation (the first 1/e
crossing of the autocorrelation function) emerged as primary
feature categories that significantly varied across pre-existing
heat pain and new cold pain intensity combinations.
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Our investigation into the differences in EMG and EDA
signals in the presence of different levels of pre-existing heat
pain has revealed valuable insights. The distinction between
the absence of pre-existing pain and the presence of mild
or severe pre-existing heat pain, particularly when stimula-
ted with new low-level cold pain, highlighted statistically
significant differences in both EMG and EDA signals.
Notably, when we switched to high-level cold pain, EDA
emerged as a more reliable indicator of variation in pre-
existing pain than EMG. During high-level cold pain, the
time series features of “successive differences” proved to
be effective indicators of the level of the pre-existing pain.
Furthermore, our analysis of mild and severe pre-existing

Ozek et al

heat pain scenarios revealed that EMG exhibited statisti-
cally significant differences, particularly in response to the
new low-level cold pain, whereas EDA remained relatively
unchanged. However, when we switched to high-level cold
pain, both EMG and EDA signal features exhibited statisti-
cally significant differences. Successive difference, temporal
statistics, and distribution features of time series emerged
as reliable indicators of the pre-existing heat pain in these
cases. These findings shed light on the changes in EMG
and EDA signals across different levels of pre-existing pain,
advancing our understanding of physiological responses in
pain assessment.
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