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Abstract
Background: Brain-computer interface (BCI) closed-loop systems have emerged as a promising tool in health care and
wellness monitoring, particularly in neurorehabilitation and cognitive assessment. With the increasing burden of neurological
disorders, including Alzheimer disease and related dementias (AD/ADRD), there is a critical need for real-time, noninvasive
monitoring technologies. BCIs enable direct communication between the brain and external devices, leveraging artificial
intelligence (AI) and machine learning (ML) to interpret neural signals. However, challenges such as signal noise, data
processing limitations, and privacy concerns hinder widespread implementation.
Objective: The primary objective of this study is to investigate the role of ML and AI in enhancing BCI closed-loop systems
for health care applications. Specifically, we aim to analyze the methods and parameters used in these systems, assess the
effectiveness of different AI and ML techniques, identify key challenges in their development and implementation, and
propose a framework for using BCIs in the longitudinal monitoring of AD/ADRD patients. By addressing these aspects, this
study seeks to provide a comprehensive overview of the potential and limitations of AI-driven BCIs in neurological health
care.
Methods: A systematic literature review was conducted following PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses) guidelines, focusing on studies published between 2019 and 2024. We sourced research articles
from PubMed, IEEE, ACM, and Scopus using predefined keywords related to BCIs, AI, and AD/ADRD. A total of 220 papers
were initially identified, with 18 meeting the final inclusion criteria. Data extraction followed a structured matrix approach,
categorizing studies based on methods, ML algorithms, limitations, and proposed solutions. A comparative analysis was
performed to synthesize key findings and trends in AI-enhanced BCI systems for neurorehabilitation and cognitive monitoring.
Results: The review identified several ML techniques, including transfer learning (TL), support vector machines (SVMs), and
convolutional neural networks (CNNs), that enhance BCI closed-loop performance. These methods improve signal classifica-
tion, feature extraction, and real-time adaptability, enabling accurate monitoring of cognitive states. However, challenges such
as long calibration sessions, computational costs, data security risks, and variability in neural signals were also highlighted.
To address these issues, emerging solutions such as improved sensor technology, efficient calibration protocols, and advanced
AI-driven decoding models are being explored. In addition, BCIs show potential for real-time alert systems that support
caregivers in managing AD/ADRD patients.
Conclusions: BCI closed-loop systems, when integrated with AI and ML, offer significant advancements in neurological
health care, particularly in AD/ADRD monitoring and neurorehabilitation. Despite their potential, challenges related to data
accuracy, security, and scalability must be addressed for widespread clinical adoption. Future research should focus on refining
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AI models, improving real-time data processing, and enhancing user accessibility. With continued advancements, AI-powered
BCIs can revolutionize personalized health care by providing continuous, adaptive monitoring and intervention for patients
with neurological disorders.
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Introduction
The adoption of technology in health care and wellness
monitoring has grown significantly in recent years [1,2]. As
of 2024, more than 1.3 billion people worldwide relied on
digital health tools such as fitness trackers, smartwatches,
and virtual doctor consultations. In the United States alone,
43% of the population actively used health apps [3,4]. This
surge in digital health adoption is further reflected in the
health care IT market, which is projected to expand from
US$360 billion in 2024 to over US$730 billion by 2029
[5]. A recent survey revealed that 80% of Americans own
at least one such device, including blood pressure monitors
(45%), electric toothbrushes (39%), and fitness trackers or
pedometers (24%) [6]. These devices play a crucial role in
early detection and management of health conditions; notably,
28% of users reported receiving alerts about potential health
issues from their devices, leading to successful diagnoses
after consulting with health care professionals [6].

As technological advancements continue to reshape health
care, their role in the early detection and management
of Alzheimer disease and related dementias (AD/ADRD)
is becoming increasingly critical [7]. AD is known as
a neurological disorder characterized by memory loss,
cognitive decline, and impaired motor skills [8]. It damages
brain cells responsible for important mental functions and
enables the cells themselves to degenerate and die. The
degeneration begins from cognitive impairments, with motor
functions still intact. Gradually, over time, this progresses
into neuronal degeneration in several areas of the brain,
including the hippocampus and mediotemporal cortex [9].
The disease is most commonly found in older adult popula-
tions; the prevalence of all dementias is known to increase for
people aged 60‐90 years, making aging the biggest risk factor
for AD [10]. While the disease is irreversible and has no cure,
early detection and continuous monitoring can significantly
improve patient outcomes. However, up to a third of dementia
cases remain undiagnosed, and existing diagnostic methods
are often slow and inaccurate [11]. The integration of
technology—through wearable devices, advanced diagnostic
tests, and AI-driven analysis—enables continuous monitoring
and early identification of cognitive decline.

A promising innovation in this landscape is brain-com-
puter interfaces (BCIs), which have the potential to revolu-
tionize the diagnosis and management of neurodegenerative
diseases like AD/ADRD [12,13]. BCIs have been the subject
of significant research due to their correlation to decoding
neural activity and use by people with disabilities. The BCI

closed-loop system directly connects the human brain and
the outside environment [14], allowing for direct communica-
tion between a person and a computer. It enables users the
ability to operate external devices through their brain activity
and translate brain signals, strictly produced by the central
nervous system, into commands that carry out a desired
action [15]. The “closed-loop” aspect allows for the use of
real-time data to monitor and adjust updates based on the
patient’s condition. In particular, BCI applications have been
initially designed to help people with disabilities and enhance
neuroplasticity, characterized as the capacity of the brain to
change or adapt its morphology in response to experiences
[16]. The system may also help in rehabilitation for people
with strokes, head trauma, and other disorders [15]. Broadly,
a BCI system consists of 4 standard, sequential components:
signal acquisition, feature extraction, feature translation, and
device output [15]. Within each component, there exist
several methods and techniques that have been reviewed
that effectively execute the goal of detecting and qualifying
features of brain signals. There are many parameters that the
BCI closed-loop system seeks to measure, with the intention
of collecting large and diverse datasets; performance metrics
heavily influence the quality of BCI research, which several
methods of BCI closed-loop systems depend on.

BCIs facilitate direct communication between the brain
and external devices, allowing real-time monitoring of
neural activity and cognitive function. This technology is
particularly valuable for detecting early neurophysiological
changes that precede noticeable cognitive decline, offering
a more objective and continuous assessment than tradi-
tional diagnostic methods [17,18]. By integrating BCIs
with artificial intelligence (AI) and machine learning (ML),
researchers can analyze brain signals to identify patterns
associated with Alzheimer progression, potentially enabling
earlier and more accurate diagnoses. Furthermore, BCIs
hold promise for enhancing cognitive rehabilitation and
assistive communication for patients in later stages of the
disease. As the demand for advanced neurological monitor-
ing grows, BCIs represent a critical step toward personal-
ized and proactive dementia care, bridging the gap between
early intervention and improved patient outcomes [19-21].
Therefore, in the context of neuroscience and AI, the BCI
is a proposed solution for identifying and providing neurore-
habilitation methods through decoding electroencephalogram
(EEG) signals. This can prove to be of great significance for
the detection and diagnosis of several neurological disorders,
such as Alzheimer disease, through exploiting the use of
neuron devices and stimulating biological sensory neurons
[22]. The ultimate motivation is to integrate AI models and
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BCI systems in order to allow for personalized treatment
plans and contribute greatly to breakthroughs in health care.

However, many limitations are associated with BCI-based
closed-loop systems that can hinder the systems’ performance
and efficacy. For instance, BCI applications must recalibrate
the system in order to account for each user/participant due to
the high variability in brain signals [23].

The model must be trained from scratch each time there
is a new subject. This contributes to significant financial
expenses. Furthermore, the limited size of datasets can lead to
overfitting, which occurs when a model fits too closely to its
training data rather than including new data [23]. When using
an EEG to capture brain signals, several limitations exist
with using the method. EEG-based BCI systems measure
the average activity of neurons with electrodes located on
the surface of the brain [23]. These generally produce a low
signal-to-noise ratio (SNR); a low SNR indicates that the
signal is corrupted by noise and therefore makes it diffi-
cult to interpret brain signals. This review analyzes several
solutions to these challenges with the use of machine learning
algorithms and networks that can easily decode complex brain
data. However, this field of research is not limited to current
knowledge and there is still more to explore regarding the
use of machine learning and deep learning in BCI closed-loop
systems.

In the exploration of BCI systems and artificial intelli-
gence algorithms, our research aims to address a range of

critical questions and topics that are integral to advancing this
field, as shown in Figure 1. By investigating the following
research questions, we will gain a comprehensive under-
standing of the real-world applications of BCIs, uncover-
ing insights that could lead to innovative opportunities and
improvements in the monitoring of AD/ADRD patients.

RQ 1. What specific methods and parameters are used in
the BCI closed-loop system?

RQ 2. How effective are the different ML and AI
algorithms used in the BCI closed-loop system?

RQ 3. How can we critically investigate the limitations in
the development and implementation of the BCI closed-loop
system?

RQ 4. How can we design a BCI closed-loop system-
based framework for longitudinal monitoring of AD/ADRD
patients?

The remainder of the paper is organized into 5 key
sections. Section 2 outlines the methodology, comprising
three subsections that detail the scoping criteria, literature
search strategy, and data analysis procedures. Sections 3, 4,
5, and 6 address the 4 research questions in depth. Finally,
Section 7 concludes the literature review, summarizing the
key findings and their implications.

Figure 1. Brain-computer interface closed-loop systems overview in health care and wellness monitoring. AD/ADRD: Alzheimer disease/Alzheimer
disease and related dementias; AI: artificial intelligence; BCI: brain-computer interface; ML: machine learning;

Methods
Overview
Our research approach centered on a comprehensive
evaluation of the literature exploring the integration of AI—
particularly its subset, ML—within BCI closed-loop systems
in health care. The goal was to synthesize current knowledge
on the methodologies, algorithms, outcomes, limitations, and

emerging directions that define this interdisciplinary field.
To achieve this, we developed a targeted search strategy
using relevant keywords and Boolean operators, enabling
us to identify both theoretical advancements and real-world
applications of AI- and ML-enhanced BCIs. This method
allowed for a focused analysis of how these technologies are
transforming neurological monitoring, cognitive rehabilita-
tion, and personalized patient care.
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Scoping Criteria
Our scoping criteria focused on the specific domain of BCI
closed-loop systems integrated with ML and AI in health
care. We prioritized studies published between 2019‐2024
to ensure the relevance and timeliness of our findings. Our
approach included not only technological advancements but
also practical challenges and developments in BCI closed-
loop systems in health care. Specifically, we reviewed studies
that examined the various methods and parameters collected
in BCI closed-loop systems (RQ1), ensuring a comprehen-
sive understanding of data acquisition, preprocessing, and
real-time feedback mechanisms. We also investigated the ML
and AI algorithms used, and the outcomes obtained (RQ2),
identifying the overall effectiveness of these algorithms in
clinical and experimental settings. In addition, we focused on
studies discussing the limitations encountered in current BCI
closed-loop systems and proposed future research directions
(RQ3), aiming to understand the barriers to implementation,
ethical considerations, and technological limitations (RQ4).
Exclusion variables from some papers were added, as through
our search, we filtered out papers that were not relevant to our
goals, any research conducted on animals and not humans,
and a lack of focus on Machine Learning.
Systematic Literature Search
Our systematic approach involved gathering, critical
assessing, integrating, and presenting findings from various
research papers on BCI closed-loop systems integrated with
ML and AI in health care. We followed a detailed proce-
dure to conduct and report systematic literature reviews,
ensuring a rigorous selection process. Initially, we devel-
oped a carefully crafted search query to refine our search
effectively, using terms such as “BCI OR brain computer
interface,” “AND Machine Learning OR AI OR algorithm,”
“AND Alzheimer OR Dementia.” Boolean operators like
“AND” and “OR” were used strategically to narrow our
search. This search spanned 4 major databases: PubMed,
IEEE, ACM (Association for Computing Machinery), and
Scopus. From these databases, we identified a total of 220
papers: 43 from PubMed, 22 from IEEE, 114 from ACM,
and 41 from Scopus. After removing 8 duplicate records, 212
unique records were screened. During the screening phase,
179 records were excluded for reasons such as being out
of context (n=84), not relevant to the research questions
(n=94), or inaccessible (n=1). Subsequently, the titles and
abstracts of the 212 screened records were assessed for
eligibility, resulting in 33 full-text articles being reviewed.
Of these, 15 reports were excluded due to being theses or
books (n=9), report articles (n=4), or of poor quality (n=2).
Ultimately, 18 studies met all inclusion criteria and were
included in the final review. These papers were selected based
on their focus on BCI closed-loop systems in health care,

the integration of ML and AI, and their relevance to our
study. We prioritized papers displaying rigorous methodol-
ogies, including empirical studies, surveys, case studies,
experiments, and systematic literature reviews, showcasing
innovative approaches, novel insights, or significant findings.
In addition to the primary search, we cross-referenced each
article’s citations to identify other pertinent papers, ultimately
including any that fit our criteria.

Results
Study Selection and Characteristics
Our selection process, guided by PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-Analy-
ses) [24,25] guidelines as shown in Figure 2, allowed for a
comprehensive understanding of the current state and future
potential of BCI closed-loop systems in health care. We
evaluated sources based on their methodology, innovation,
significant findings, and overall relevance.

Our data analysis approach used a systematic data
extraction method to rigorously analyze literature focused
on BCI closed-loop systems integrated with ML and AI.
This approach covered essential aspects such as the methods
and parameters used in BCI systems, the ML algorithms
used, challenges encountered, proposed solutions, and future
research directions. Initially, we conducted an extensive
literature review to identify pertinent studies. From this
review, we developed a structured extraction matrix aimed at
comprehensively capturing thematic elements critical to our
study. The matrix included categories such as Title, Methods,
Parameters, Machine Learning Algorithms, Challenges/Limi-
tations, Proposed Solutions, Future Research Directions, and
Title and Abstract Screening Score (0‐3). These scores would
be averaged out among a panel of 3 researchers with a 2
being a “Yes” to our paper list. To validate our methodology,
we conducted several validation steps. First, we pilot-tested
the matrix with a small sample of 10 papers to ensure it
effectively captured relevant information while excluding
irrelevant details. Second, we aligned the matrix variable with
our research questions to ensure clarity in data extraction.
The finalized matrix, formatted in Microsoft Excel, allowed
for a smooth, systematic, and comparative analysis across
selected papers, including Full Text Screening Score (0‐3).
This methodical approach enabled us to extract and synthe-
size data methodically, allowing anomalies and patterns to
naturally emerge. Our synthesis and evaluation of articles
were guided by their direct relevance to our study’s focus
areas. This systematic approach ensured a robust analysis
and provided a solid foundation for our literature review, as
reflected in Table 1.
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Figure 2. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram.

Table 1. Key algorithms and techniques commonly used in brain-computer interfaces.
Algorithm/technique Role in BCIsa Key applications Advantages References
Transfer learning (TL) Feature extraction Data alignment, spatial

filtering
Improves robustness and accuracy Shanechi [26]

SVMb Classification EEGc signal classification High performance in high-dimensional
space

Gu et al [27]

LDAd Classification EEG signal classification Computational simplicity, good
performance

Gu et al [27]

ICAe Preprocessing Artifact removal Isolates artifact components from
neural signals

Tsai et al [28]

CNNf Feature extraction Emotion recognition,
workload estimation

High accuracy in classifying brain
activities

Mughal et al [29]

TSNNg Feature extraction,
classification

Neural activity
classification

Effective in high-dimensional data Shin et al [30]

RBMh Dimensionality reduction Mental state recognition Learns underlying data structures Wang et al [31]
Fuzzy models Classification EEG pattern classification Handles uncertainty and imprecision Wu et al [32]
GANsi Data augmentation Augmented data genera-

tion
Increases data robustness and accuracy Tsai et al [28]

aBCI: brain-computer interface.
bSVM: support vector machine.
cEEG: electroencephalography.
dLDA: linear discriminant analysis.
eICA: independent component analysis.
fCNN: convolutional neural network.
gTSNN: tree-structured neural network.
hRBM: restricted Boltzmann machine.
iGAN: generative adversarial network.
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Methods and Parameters Used in the
BCI Closed Loop System (RQ1)
Many studies have explored BCIs with closed-loop systems,
but a comprehensive survey focusing on the challenges
associated with methods and parameters used in these systems
is still lacking. This section addresses this gap by reviewing
various preprocessing techniques and the parameters used in
BCI closed-loop systems, highlighting their implications for
neural activity monitoring and intervention.

Preprocessing Techniques
The review identifies several effective methods and parame-
ters that have demonstrated significant potential, as sum-
marized in Figure 3. For instance, object detection is the
paradigm for recognizing patterns using convolutional neural
networks (CNN) [31], where it learns from more than a
million images and can classify downstream objects in an
image with high accuracy. This approach improves the ability
to intermittently support real-time detection of nuanced neural
activity and thus intervention. Likewise, Restricted Boltz-
mann Machines (RBMs) have been used to extract features
for large-scale datasets [31]. Recurrent neural network (RNN)
is a class of artificial neural network models that produce
more accurate predictions than preferred direction and other

systems like neuron-level readout methods including Poisson
Process Velocity Tuning or generalized linear models (GLM).
RNN can generate realistic simulations [33]. Support Vector
Machines (SVMs) have been successfully used in small
datasets, but their improvement to a larger accuracy level may
be enhanced with Particle Swarm Optimization, particularly
on the understanding of brain signals by means of EEG. BCI
technology has been further refined by the categorization of
different brain errors with SVMs. Motor Imagery (MI) is a
mental process. MI starts from the thought of the movement
of a body part. This activates different areas of the motor
cortex and is commonly adopted for EEG-based BCIs. MI
tasks performed by the users are sensed as EEG signals. TL
makes use of source domain data to improve calibration in
the target domain, which is a well-established technique used
for improving MI-based BCIs [34]. In addition, offline binary
classification is used to classify trials from target subjects.
Currently, deep brain stimulation (DBS) is established as an
effective treatment for conditions such as tremors, dystonia,
and Parkinson disease. DBS also has shown promise in
treating certain other types of chronic pain and psychiatric
conditions, including neuropsychological tribulations. DBS is
also being looked at as a possible pathway to the infusion
of memory circuits and treatment avenues for dementia and
Alzheimer disease.

Figure 3. Different methods and parameters in the brain-computer interface closed-loop system. CNN: convolutional neural network; DBS: deep
brain stimulation; DoS: denial of service; EEG: electroencephalography; MI: motor imagery; ML: machine learning; RNN: recurrent neural network;
SVM: Support Vector Machine; TL: transfer learning;

Security Challenges
These technologies, hereafter referred to as potential
neuromodulatory treatments for symptoms, have been
demonstrated to be capable of driving neural signals. In fact,
BCIs have a high risk of sniffing attacks, where an attacker
can eavesdrop on network channels and preview unencrypted
data. This vulnerability can be used to affect denial-of-service
attacks, which, in the case of implanted BCIs, target battery
depletion [35]. Poisoning attacks alter the behavior of a BCI
machine learning system by providing it with malicious input.
These inputs are generated to lead the respective outputs of a
system into misleading neural signaling patterns. These types
of attacks have catastrophic consequences, such as failing
to trigger an alarm for a seizure. The resolution of these

security challenges is paramount in ensuring the safe and
efficient roll-out of BCIs. Further research and development
are needed to improve the privacy/security properties of these
systems so people with neurological conditions would be able
to heavily rely on them.
Effectiveness of the ML and AI
Algorithms Used in the BCI Closed-Loop
System (RQ2)
The effectiveness of ML and AI algorithms in BCI closed-
loop systems is crucial for enhancing patient outcomes,
particularly in applications related to neurorehabilitation and
cognitive monitoring. These algorithms play a pivotal role
in accurately interpreting neural signals, enabling real-time
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feedback and adaptive responses tailored to individual user
needs. Their ability to analyze complex patterns in brain
activity allows for improved signal classification and feature
extraction, which are essential for ensuring reliable communi-
cation between the brain and external devices. Furthermore,
the integration of effective ML and AI algorithms facilitates
continuous learning and adaptation, ensuring that the BCI
system evolves alongside the user’s cognitive state. This
adaptability not only enhances the overall user experience but
also promotes better engagement and efficacy in therapeu-
tic interventions, making the technology a powerful tool in
managing neurological disorders.

Figure 4 illustrates the key machine learning techni-
ques used in BCI closed-loop systems. It categorizes these
techniques into preprocessing (eg, Independent Component
Analysis [ICA] for noise reduction), data augmentation
(eg, generative adversarial networks [GANs] for expanding
training data diversity), feature extraction (eg, CNN and

transfer learning [TL] for identifying critical signal pat-
terns), and classification (eg, SSVMs and linear discrimi-
nant analysis [LDA] for categorizing neural signals). These
methods collectively improve the system’s effectiveness by
refining the input data, enhancing model training with more
varied data, extracting meaningful features, and accurately
classifying neural patterns. This multistep approach enables
closed-loop BCIs to achieve reliable real-time monitoring and
intervention, making them more effective for health care and
wellness applications.

In addition, Table 1 outlines the key algorithms and
techniques commonly used in BCI systems, while Table 2
offers a detailed comparative evaluation of these machine
learning approaches in closed-loop frameworks, emphasiz-
ing their applications, adaptability to neurological condi-
tions, performance metrics, and computational complexity,
supported by relevant literature.

Figure 4. Machine learning techniques in brain-computer interface closed-loop systems [27,28,30-35]. BCI: brain-computer interface; LDA: Linear
Discriminant Analysis; SVM: Support Vector Machine; TSNN: tree-structured neural network;

Table 2. Comparative performance of machine learning techniques in brain-computer interface closed-loop systems.
Algorithm/
technique

Key use cases in
BCIa systems

Adaptability to
neurological conditions

Avg accuracy / error
Rate

Processing time /
complexity Reference(s)

SVMb Motor imagery (MI),
emotion recognition,
EEGc classification

Moderate adaptability;
sensitive to intersubject
variability

78%‐90% (low error
in MI classification)

Fast on small datasets;
efficient for real-time
binary tasks

Gu et al, Tsai et al [27,
28]

CNNd Emotion detection,
mental workload,
EEG-fNIRSe hybrid
classification

High adaptability across
subjects/sessions;
handles complex patterns

>90% for workload/
emotion tasks

High processing cost; 
~300‐500 ms latency
unless optimized

Mughal et al, Liang and
Kao [29,33]

TLf MI classification,
cross-session
calibration, cognitive
decline monitoring

Highly adaptable; ideal
for changing patient
conditions (eg, ADg/
ADRDh)

Reduces error up to
15% across domains

Moderate training cost;
speeds up cross-subject
adaptation

Shanechi, Belkacem et
al [26,34]

LDAi Basic EEG
classification,
passive BCI

Suitable for real-time
low-power systems

~75%‐85% in EEG
classification

Very low latency (<100
ms); lightweight

Gu et al [27]

ICAk Noise reduction,
preprocessing EEG/
fNIRS

Improves SNRj, crucial
for low-signal patients
(eg, dementia)

Preprocessing only
(not classifier)

Fast artifact removal;
boosts downstream
model accuracy

Gu et al, Tsai et al [27,
28]
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Algorithm/
technique

Key use cases in
BCIa systems

Adaptability to
neurological conditions

Avg accuracy / error
Rate

Processing time /
complexity Reference(s)

RBMl Mental state
recognition, feature
learning

Good for poorly labeled,
noisy data (common in
AD/ADRD)

~80% in
unsupervised tasks

Medium complexity;
good for dimensionality
reduction

Wang et al, Golshan et
al [31,36]

Fuzzy models EEG pattern
classification, aBCIs

Handles uncertainty
well; ideal for imprecise
EEG from late-stage
dementia

70%‐85% (context
dependent)

Low to medium;
interpretable rule-based
outputs

Wu et al [32]

GANm Data augmentation
for EEG/BCI model
training

Improves performance in
data-scarce or
imbalanced domains

Indirectly improves
downstream model
accuracy

High training time; not
used in real-time
inference

Tsai et al [28]

TSNNn Neurological
disorder detection,
adaptive BCI

Effective in high-
dimensional, complex
datasets

~88%‐92% in neural
activity classification

Moderate-to-high, but
hierarchical structure
improves learning

Shin et al [30]

RNNo Cognitive state
prediction, BCI
simulations

Well-suited for time-
series EEG signal
modeling

~85%‐90% (task
dependent)

Computationally
intensive; not ideal for
all real-time apps

Liang and Kao [33]

aBCI: brain-computer interface.
bSVM: support vector machine.
cEEG: electroencephalography.
dCNN: convolutional neural network.
efNIRS: functional near-infrared spectroscopy.
fTL: transfer learning.
gAD: Alzheimer disease
hADRD: Alzheimer disease and related dementia
iLDA: linear discriminant analysis.
jSNR: signal-to-noise ratio.
kICA: independent component analysis.
lRBM: restricted Boltzmann machine.
mGAN: generative adversarial network.
nTSNN: tree-structured neural network.
oRNN: recurrent neural network.

Different ML Techniques in BCI Closed-
Loop Systems
Machine learning algorithms have significantly enhanced
the performance of BCIs. In that respect, one of the most
influential techniques would be TL, which borrows knowl-
edge from a source domain to perform better in a target
domain. This is of particular importance to BCI, as the
collection of data across sessions and subjects is often
limited or variable [26]. TL has been successfully applied
to data alignment, spatial filtering, feature selection, and
classification tasks, dramatically improving the robustness
and accuracy of BCIs across different conditions and subjects.

Complementing TL, SVMs have turned out to perform
very well in high-dimensional spaces and have performed
both linear and nonlinear classification using the kernel
trick on data transformation [27]. SVMs have found
wide applications in BCI applications, more specifically
in classifying EEG signals. The SVM finds the optimal
hyperplane that allows separation of different classes, thus
always showing good performance in most BCI tasks, such as
motor imagery classification and emotion recognition [28].

On the other side, LDA finds out the best separation
between several classes by maximizing such a separation
by choosing an appropriate linear combination of features.
LDA has a nice balance between computational simplicity
and performance for BCIs [27].

The role of ICA is paramount in preprocessing methods.
ICA is one of the key tools that attempt to separate multi-
variate signals into additive, independent components [27].
Especially with BCIs, it is very good at isolating artifact
components from the neural signals, hence improving the
quality of data used for subsequent classification tasks. This
step in preprocessing appreciably improves the accuracy of a
number of BCI applications.

Moving to more complex models, CNNs have been very
triumphant in visual and spatial data, including EEG and
functional near-infrared spectroscopy (fNIRS) signals. CNNs
are known for their emotional ability to build hybrid brain
images that classify the activities taking place in the brain
in a very accurate manner for the detection and interpreta-
tion of any complex neural pattern [29]. This is critical in
applications like mental workload estimation and emotion
recognition, where a spatial hierarchy in neural data may be
critical for appropriate classification and analysis [33] .

Tree-structured neural networks (TSNN) combine decision
trees and neural networks to provide the possibility of
hierarchical feature extraction and classification. More
importantly, these networks work quite effectively in relation
to data: complex and high-dimensional. TSNNs are there-
fore able to yield promising results on the classification
of neural activities and detecting symptoms of neurological
disorders with a rich set of neural biomarkers [30]. This fills
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a gap in the field by providing an optimal balance between
accuracy and computational efficiency, needed for real-time
BCI applications.

RBMs have made some very great contributions to
unsupervised scenes, where instances of the objective are
to learn underlying structures of data [31]. In this case,
RBMs learn with effective features and reduce dimensionality
to improve the performance of classifiers on mental state
recognition and motor imagery classification tasks [36].

On the other side, fuzzy models represent the uncertainty
and imprecision of EEG data using fuzzy logic. Such models
generate rules that are much closer to those resulting from
human reasoning and hence are very suitable for processing
nonlinear and nonstationary signals. Fuzzy models applied in
BCIs include the so-called fuzzy inference systems (FIS) and
fuzzy neural networks (FNNs) for classifying EEG patterns,
offering both accuracy and interpretability [32].

Another extension to the toolkit of BCIs is GANs. It
consists of two neural networks: a generator and a discrimina-
tor. These networks counteract in a framework, and each has
an opposite goal in a zero-sum game setup. GANs’ applica-
tion in BCIs is in augmented data generation for improving
classifier training, more so when there is not enough data,
as GANs increase the robustness, hence the accuracy, of
BCI systems by bringing forth more training data. Improve-
ments in these machine learning algorithms have increased
the potential of BCIs not only on grounds of performance
but also by opening new avenues for possible clinical and
practical applications [28].

Table 1 outlines key methods used in BCIs, detailing their
roles, applications, and benefits. Techniques like TL, SVM,

LDA, and ICA enhance data preprocessing and classification,
improving signal quality and performance. CNNs and TSNNs
excel in feature extraction and classification of complex
neural data, while RBMs and Fuzzy Models handle dimen-
sionality reduction and uncertainty in EEG signals. GANs
support data augmentation, boosting robustness and accuracy.
These methods collectively optimize the processing of neural
signals in closed-loop BCI systems.

TL, SVM, LDA, ICA, CNN, TSNN, RBMs, fuzzy models,
and GAN techniques have helped in making BCIs effective
and reliable. These algorithms help improve the capability
of BCIs to better handle the user’s requirements, reduce
calibration time, and realize more accurate and robust control
of artificial limbs and other devices.
Limitations in the Development and
Implementation of the BCI Closed-Loop
System (RQ3)
Some of the limitations facing BCIs’ development and
implementation can be summarized as ranging from decoding
algorithms through neural and behavioral measurements to
computational constraints, as shown in Table 3. The table
outlines various challenges associated with BCI technology
and proposes corresponding solutions to address these issues.
It covers aspects like improving neural signal decoding,
enhancing sensor accuracy, and increasing the precision of
behavioral measurements. These limitations show require-
ments for further research in terms of target setting and
orientation of work for increasing effectiveness. Further
explanations about these are as follows:

Table 3. Challenges and solutions in brain-computer interface development.
References Associated problems Proposed solutions
Bryan et al [37] Neural signal decoding Develop sophisticated algorithms
Jiang et al [38] Accurate neural measurements Advanced sensor technologies
Jiang et al [38] Behavioral measurements Improve granularity and precision
Gu et al [27] Computational cost Optimize algorithms and hardware
Gu et al [27] Long calibration sessions Develop efficient calibration methods
Merk et al [39] Electrode design Enhance ergonomic and reliable designs
Yue et al [35] Decoding and encoding algorithm heterogeneity Standardize methodologies
Wu et al [32] Lack of long-term studies Conduct long-term validation studies
Mughal et al [29] Hardware limitations Develop scalable hardware
Golshan et al [36] Model generalization Ensure models generalize to closed-loop

conditions
Xavier et al [40] Privacy and security Implement robust security measures

Neural Signal Decoding
The challenging part of BCIs is the neural signal decoding
into meaningful commands. This is due to the large array
of neural signals requiring high accuracy; this becomes very
challenging, especially in scenarios where they are either
too noisy or highly variable across different cognitive states.
This variability calls for sophisticated algorithms that can
adapt to these changes and guarantee real-time performance

[37]. Successful BCIs require accurate neural measurements;
conventional methods generally have spatial and temporal
resolution that is inadequate.

Behavioral Measurements
Behavioral measurements correlated with specific neural
activities often experience imprecision and lack the fine detail
necessary for comprehensive analysis. This limitation stems
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from the complexity of human behavior and the intricate
relationship between neural processes and external actions.
Standard measurement techniques may fail to capture the
subtleties of these interactions, resulting in a loss of cru-
cial information that could deepen our understanding of
brain-behavior dynamics. Compounding this issue is the
challenge posed by the time scale of behavioral dynamics;
neural activities can change rapidly, often within millisec-
onds, while corresponding behavioral responses may take
longer to manifest. This discrepancy makes it difficult to
capture and analyze real-time correlations, as a sudden
shift in brain activity may not immediately lead to observ-
able changes in behavior, creating potential misalignments
in data interpretation [38]. Consequently, the inability to
accurately synchronize these fast-changing neural activities
with their associated behaviors can hinder our understand-
ing of cognitive processes and impair the effectiveness of
interventions in areas like neurorehabilitation and BCIs.
Addressing these challenges necessitates the development of
advanced measurement techniques and analytical frameworks
capable of capturing the nuances of both neural dynamics and
behavioral responses.
Computational Cost
The high computational cost associated with processing and
analyzing neural data presents a significant challenge in the
development and implementation of brain-computer interface
systems. TL techniques, when integrated with active BCIs,
can incur substantial computational expenses due to the
high-dimensional nature of neural data and the complexity
of the models involved. This complexity poses a considerable
burden on the real-time applicability of BCI systems, limiting
their responsiveness and efficiency in practical scenarios.
Furthermore, the current applications of TL in BCI research
have primarily focused on binary MI classification problems,
which restrict the versatility and scope of TL methods in
broader contexts. As a result, the limitations of TL not only
affect the computational feasibility of BCIs but also hinder
their potential for more complex tasks, such as multi-class
classification or real-time adaptive learning.

Long Calibration Sessions
One significant challenge associated with most MI-based
BCIs is the extensive calibration sessions required before they
can operate effectively. These lengthy calibration processes
diminish the overall usability and practicality of BCIs,
particularly in real-world applications where quick deploy-
ment is essential. To enhance the applicability of TL in
everyday situations, it is crucial to develop more efficient
calibration methods that can streamline the setup process and
reduce the time commitment for users [27].

Electrode Design
An integral aspect of neural signal acquisition in BCIs
is the design and fabrication of electrodes. Current elec-
trode designs face significant challenges related to mechan-
ical and electrical reliability, flexibility, and the speed at
which they can accommodate various configurations. These
issues can hinder the overall performance of BCIs, as

unreliable electrodes may lead to inconsistent signal quality
and compromised data accuracy. In addition, the pressure
exerted by BCI headsets on the user’s head can result in
discomfort during prolonged use, underscoring the need for
improved ergonomic designs. Enhanced ergonomic consid-
erations not only promote user comfort but also facilitate
longer monitoring sessions, which are crucial for effective
neural signal acquisition. By addressing these challenges in
electrode design and headset ergonomics, researchers can
significantly improve the functionality and user experience
of BCIs, ultimately expanding their applications in clinical
settings and enhancing the quality of life for individuals who
rely on this technology [39].

Decoding and Encoding Algorithm
Heterogeneity
The heterogeneity of decoding and encoding algorithms used
in BCIs represents a significant challenge in the field. This
diversity complicates comparisons across different closed-
loop BCIs, as variations in purpose, methodology, and
outcomes hinder the establishment of standardized bench-
marks and best practices. Furthermore, the majority of
existing studies tend to focus narrowly on cognitive neural
features, often neglecting affective aspects of BCIs. This
limited scope underscores the pressing need for larger, more
comprehensive studies that encompass a broader range of
neural activities and scenarios. By addressing the issues
of algorithmic heterogeneity and expanding the research
focus, the BCI community can enhance the comparabil-
ity of findings, foster innovation, and ultimately improve
the effectiveness and applicability of BCIs across various
domains [35]. This will facilitate a deeper understanding
of how different neural signals can be decoded and enco-
ded, paving the way for more nuanced applications in both
cognitive and affective realms.

Lack of Long-Term Studies
The absence of long-term studies significantly undermines
the effectiveness of training BCI systems. Establishing a
robust definition of a reinforcement signal is crucial, yet it
raises ethical concerns, particularly when involving human
participants. To mitigate these ethical dilemmas, it may be
more appropriate to conduct initial experiments in nonhu-
man models, thereby sidestepping potential ethical issues.
In addition, there is no assurance that human participants
will interpret the feedback provided to them as a reward,
complicating the training process further. This variability
in interpretation can lead to inconsistent learning outcomes,
making it challenging to develop reliable and effective
BCI systems. Therefore, conducting comprehensive long-
term studies is essential for refining training protocols,
ensuring ethical compliance, and ultimately enhancing the
overall effectiveness and applicability of BCIs in real-world
scenarios [32].

Hardware Limitations
Hardware limitations pose significant challenges to the
therapeutic effectiveness of BCIs, primarily through the
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need for higher channel counts and improved scalability.
These requirements can result in the loss of critical informa-
tion due to downsampling and channel selection processes,
which may eliminate relevant neural signals necessary for
accurate interpretation. In addition, there is often a consid-
erable disparity between the sampling rate and the num-
ber of channels in EEG and fNIRS data, complicating the
data analysis process. While proposed methodologies to
address these issues aim to enhance data integrity, they
frequently come with high computational costs and complex-
ities that hinder their applicability in real-world settings.
Consequently, overcoming these hardware limitations is
crucial for advancing BCI technology, ensuring that it can
deliver reliable and effective therapeutic outcomes for users
[29].
Model Generalization
Another significant challenge in the development of BCIs is
ensuring that models trained on open-loop data can effec-
tively generalize to closed-loop conditions. The experiments
necessary for this validation are often prohibitively expensive
and time-consuming, which limits their widespread imple-
mentation. This highlights the critical need for real-time
applicability of these models to facilitate the validation
of adaptive deep brain stimulation (aDBS) systems [36].
Without the ability to efficiently transfer knowledge gained
from open-loop scenarios to real-time closed-loop environ-
ments, the effectiveness and reliability of BCIs in practi-
cal applications remain in question. Thus, enhancing model
generalization is essential for advancing BCI technology and
ensuring its successful integration into therapeutic settings.

Privacy and Security
The issues surrounding privacy, security, and ethics are
of paramount importance in the context of BCIs [41-44].
These systems are susceptible to various data breaches and
cyberattacks, including cryptographic attacks, denial-of-serv-
ice attacks, and sniffing attacks, which can compromise
sensitive neural data and user information. Such vulnerabili-
ties underscore the urgent need for robust privacy protection
and comprehensive security measures to safeguard both the
integrity of the data and the users’ personal information. In
addition, ethical considerations surrounding the use of BCIs
are critical, particularly regarding user privacy and informed
consent. It is essential that users are fully aware of how
their data will be used and are able to provide consent
without coercion. Addressing these privacy, security, and
ethical concerns is vital for the responsible development and
deployment of BCI technologies, ensuring that they benefit
users while minimizing potential risks and harms [40].

Ongoing collaborative research efforts are actively
addressing the critical limitations identified in current BCI
closed-loop systems. Among the most promising directions is
the development of more sophisticated decoding algorithms
capable of accommodating the inherent variability in neural
signals across individuals and cognitive states. Improvements
in neural and behavioral measurement precision—through
advanced sensor technologies, multimodal signal integration,

and robust signal processing methods—are also contribu-
ting to more accurate and responsive BCI systems. A key
advancement involves the integration of TL with active BCIs
beyond traditional binary classification, allowing systems to
adapt across sessions and users while minimizing lengthy
calibration times. In parallel, the design of more comfort-
able and reliable electrodes, alongside expanded studies
into cognitive and affective dimensions of brain activity, is
broadening the applicability of BCIs in both clinical and
non-clinical environments. Furthermore, enhancing hardware
scalability and addressing data loss due to downsampling
remain essential for the therapeutic efficacy and wide-
spread deployment of these systems. Ethical implementa-
tion, including user-informed consent and privacy-preserving
frameworks, must be embedded into system design to ensure
trust and adoption.

Recent advancements underscore how these challenges
are being met through innovative and applied research. For
instance, studies using TL and One-Shot Learning demon-
strate that calibration requirements can be drastically reduced
by reusing training data across users and sessions, enabling
more efficient deployment in real-world environments [26,
28]. In addressing cybersecurity concerns, researchers have
proposed advanced encryption protocols and privacy-pre-
serving neural computation strategies to mitigate sniff-
ing, poisoning, and denial-of-service attacks—ensuring the
confidentiality and integrity of neural data [35,40]. Notably,
real-world applications such as Neuralink’s adaptive BCI and
Tsai et al’s [28] secure closed-loop brain-machine interface
exemplify successful responses to these challenges. These
platforms leverage online tuning algorithms, secure data
pipelines, and adaptive feedback systems to maintain robust
performance while safeguarding patient data in both clinical
and home care settings [35,45]. Together, these advancements
highlight the growing maturity of BCI technologies and point
toward a future in which user-friendly, secure, and scalable
BCI systems are a practical reality.

BCI Closed-Loop System-Based
Framework for Longitudinal Monitoring
of AD/ADRD Patients (RQ4)
AD/ADRD is a progressive neurological disorder, and one
of the major causes of death among the older adults [46,
47]. Therefore, it is important to acquire new solutions that
can enhance the quality of life of patients and their care-
givers as the number of people affected increases yearly.
The use of BCI technology is considered one of the most
promising approaches to this challenge, using state-of-the-art
neuroimaging techniques and machine learning algorithms for
continuous monitoring and diagnosis.

The proposed framework shown in Figure 5 overcomes the
complexity of decoding neural activity in AD/ADRD patients,
who often lack the cognitive control normally required by
conventional BCIs. It illustrates a closed-loop BCI framework
for longitudinal monitoring of AD/ADRD patients, beginning
with the acquisition of brain activity through neuroimaging
techniques to capture critical neural signals. The collected
data undergoes preprocessing, where noise is reduced using
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artifact detection and removal algorithms, ensuring high-qual-
ity signals. Ethical and security concerns are addressed by
implementing robust data protection measures to safeguard
sensitive patient information. Machine learning algorithms
classify the neural signals, accurately distinguishing between
various mental states, while feature extraction and domain-
specific calibration improve the system’s precision. Electrode

calibration ensures reliable signal acquisition, enhancing
system performance. Real-time alerts integrate closed-loop
monitoring for continuous observation, enabling timely
interventions. Ultimately, this framework aims to improve
Alzheimer patient care by leveraging Neuralink’s BCI
technology [45] for better monitoring and intervention
strategies. The different stages are further elaborated below:

Figure 5. Closed-loop brain-computer interface framework for longitudinal monitoring of Alzheimer disease and related dementias patients.

Data Acquisition and Processing
The proposed framework is empowered for the cor-
rect interpretation of neural signals through sophisticated
classifiers such as SVMs and LDA; it thus helps in the
achievement of reliable monitoring and communication.
Once brain activity data is collected through neuroimag-
ing techniques like fMRI and EEG, preprocessing steps
are crucial for artifact detection and noise reduction [48].
Advanced algorithms are used to filter out irrelevant data,
ensuring that the subsequent analysis focuses on meaningful
neural patterns.

Classification, Feature Extraction, and
Electrode Calibration
In the classification phase, machine learning algorithms
improve the deciphering of neural signals. In doing so, SVMs
and LDA techniques can be used to classify the different
mental states, giving insights into the patient responses and

cognitive conditions. In this step, it is important to distin-
guish different neural activities and their behaviors. Feature
extraction works on refining the accuracy and reliability of
the classifications. These domain-specific calibration methods
enable the tuning of the analysis so that the system learns
the characteristics of the individual’s needs and variations in
neural activity [48,49]. At this stage, electrode calibration
is crucial for ensuring BCI system reliability. Optimized
placement and configuration of electrodes ensures consistent
data acquisition, reducing errors and thus enhancing the
system’s overall performance.

Real-Time Alert
Real-time alerting of caregivers is another important factor
in the framework. Data from both AD patients can be used
to develop the alert system, ensuring that it can accurately
identify deviations from normal neural activity. For instance,
the classification accuracy reported in [48] indicates that
the system can reliably distinguish between different mental
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states, which is crucial for triggering real-time alerts. Thus,
this feature serves significantly in terms of preventing
accidents or ensuring timely assistance from a medical point
of view. This framework is aimed at enhancing the care of
Alzheimer disease by integrating Neuralink’s BCI technol-
ogy. The framework offers a strong and trustworthy tool for
the betterment of the patient outcome and elongation of time
that patients can spend with their loved ones by addressing
the challenges of neural signal decoding, data security, and
real-time monitoring.
Ethical and Security Concern
After analyzing data, references indicate the most promi-
nent symptoms of AD are severe deficits in communication,
cognitive decline, and behavioral changes. Traditional BCIs
require active participation; hence, they cannot be used with
AD patients. For example, in [48] the authors highlight that
traditional BCIs, requiring active control, are not suitable for
AD patients due to their cognitive impairments. Instead, the
study emphasizes the use of passive BCIs, which leverage
preserved affective responses to facilitate basic communica-
tion and continuous monitoring [48]. This method makes use
of detailed neuroimaging and machine learning components
for cognitive and behavioral changes in order to provide
such monitoring. Such continual assessment allows for early
diagnosis and timely intervention that are crucial in managing
AD progression [49]. In that respect, the BCI systems are

vulnerable to data breaches and ethical misuses. The security
aspects are core parts of the proposed BCI framework,
evident in the position of ethical and security considerations
at the very center of the framework diagram in Figure 5
[50]. This framework would hardwire strong measures for
security against breaches and ethical misuse of information
related to a patient. This involves encryption methods, secure
storage, and tight access control that ensures only authorized
personnel can view sensitive information. Despite techni-
cal possibilities, data protection and ethical guidelines are
argued to exist, whereas BCI systems are weak in crypto-
graphic, denial-of-service, and sniffing cyber-attacks [50].
Therefore, strong protection measures must be implemented.
Implantable BCI devices give real-time data, thereby allowing
caregivers to receive instant alerts on a patient’s condition.
This approach will improve the quality of care and prevent
emergencies.

The envisioned BCI framework addresses the most critical
challenges of caring for the patient experiencing Alzheimer
disease by efficiently combining advanced neuroimaging
techniques with machine learning algorithms as shown in
Table 4. In this regard, this approach is relevant for improv-
ing patient clinical outcomes while assisting caregivers in
handling the complexities of Alzheimer disease management
by enhancing neural signal classification, guaranteeing data
security, and real-time monitoring [50].

Table 4. Mapping of framework components to challenges and supporting literature.
Framework component Challenge addressed Description Supporting literature
Neural Signal Acquisition
(EEGa/fMRIb)

Low signal-to-noise ratio (SNR);
variability across sessions

Uses EEG and fMRI for high-resolution
brain activity monitoring; requires
preprocessing for noise

Gu et al, Liberati et al [27,48]

Preprocessing (eg, ICA) Artifact contamination; real-time
signal distortion

Independent Component Analysis (ICA)
removes artifacts to improve signal clarity

Gu et al, Tsai et al [27,28]

Feature extraction and
classification (SVMc, LDA)d

Inaccurate decoding of mental
states

SVM and LDA used to classify neural
patterns for real-time state detection

Shanechi, Gu et al [26,27]

Transfer learning (TL) Lengthy calibration sessions;
cross-user variability

Reduces setup time by leveraging
previously trained models from similar
domains

Shanechi, Belkacem et al [26,34]

Domain-specific calibration Adaptability to individual neural
profiles

Fine-tunes BCIe parameters to individual
characteristics

Shanechi, Liberati et al [26,48]

Real-time alert system Lack of timely caregiver
intervention

Monitors patient state continuously and
sends alerts to caregivers during
anomalies

Pisarchik et al, Liberati et al [45,
49]

Passive BCI design Limited cognitive engagement in
ADf/ADRDg patients

Enables nonintrusive monitoring based on
implicit neural responses

Liberati et al, Liberati et al [48,
49]

Security and ethical framework Privacy risks; cyber threats;
informed consent

Implements encryption, access control,
and ethical safeguards for neural data

Yue et al, Xavier Fidêncio et al
[35,40]

Scalable hardware integration Usability and long-term
deployment

Incorporates ergonomic, wearable sensors
for home and clinical environments

Mughal et al, Merk et al [29,39]

aEEG: electroencephalography.
bfMRI: functional magnetic resonance imaging.
cSVM: support vector machine.
dLDA: linear discriminant analysis.
eBCI: brain-computer interface.
fAD: Alzheimer disease.
gADRD: Alzheimer disease and related dementia.
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Discussion
Principal Findings
This systematic review synthesized the current evidence from
18 studies on the integration of AI and ML within BCI
closed-loop systems for neurorehabilitation, with a specific
focus on AD/ADRD. The findings indicate that ML techni-
ques such as TL, CNNs, and SVMs significantly enhance the
performance of BCI systems by improving real-time signal
classification, feature extraction, and cross-session adaptabil-
ity. However, the translation of these technological advance-
ments into widespread clinical practice is hampered by
significant challenges, including signal variability, compu-
tational demands, lengthy calibration, and profound pri-
vacy concerns. The proposed framework for longitudinal
AD/ADRD monitoring represents a promising, patient-cen-
tric application that leverages passive BCI paradigms to
circumvent the cognitive demands of traditional systems.
General Interpretation in the Context of
Existing Evidence
Our findings on the efficacy of ML algorithms like CNNs
and TL in BCI systems are strongly supported by the broader
literature on AI in digital health. The high accuracy (>90%)
of CNNs in classifying complex neural patterns for mental
workload and emotion recognition aligns with their proven
success in other pattern recognition domains, such as medical
imaging. Similarly, the utility of TL in reducing calibration
time and improving cross-subject generalization addresses
a well-documented bottleneck in BCI research, echoing its
successful application in other fields where data scarcity and
individual variability are concerns. The review’s identifica-
tion of passive BCIs as a solution for AD/ADRD patients
is particularly insightful. This approach is consistent with a
growing trend in digital biomarkers, which seeks to lev-
erage implicit, continuous data from wearables and other
sensors for early disease detection and monitoring, moving
beyond active user participation. Furthermore, the emphasis
on real-time, closed-loop feedback for neurorehabilitation is
supported by neuroscientific principles of neuroplasticity. The
ability of AI-enhanced BCIs to provide immediate, adap-
tive intervention is theorized to strengthen neural pathways
more effectively than open-loop systems, a hypothesis that
is gaining traction in stroke and spinal cord injury rehabili-
tation. Thus, the results of this review are not isolated but
are part of a convergent evolution across AI, neuroscience,
and clinical medicine toward more adaptive, data-driven
therapeutic interventions.
Limitations of the Included Evidence
While the reviewed studies demonstrate significant prom-
ise, the evidence base has several important limitations that
temper the immediate readiness of these technologies for
clinical deployment. The majority of included studies were
small-scale, laboratory-based demonstrations. They often
involved healthy participants or highly controlled patient
groups, lacking the diversity and complexity of real-world
clinical environments. This limits the generalizability of the

reported high accuracy rates. In addition, as highlighted in
the review, there is a pronounced heterogeneity in decoding
algorithms, performance metrics, and experimental protocols
across studies. The absence of standardized benchmarks
makes it difficult to directly compare the performance of
different ML models or BCI systems, hindering the iden-
tification of optimal approaches. Furthermore, there is a
critical gap in long-term longitudinal studies. It remains
largely unknown how these systems perform over months or
years, how they adapt to disease progression, and whether
improvements in signal classification accuracy translate into
meaningful clinical outcomes, such as slowed cognitive
decline or improved quality of life.
Limitations of the Review Process
This review itself is subject to certain methodological
limitations that should be acknowledged. Limiting the search
to studies published between 2019 and 2024, while ensur-
ing timeliness, may have excluded foundational or highly
relevant older studies. Furthermore, while major databases
were consulted, the exclusion of other potential sources may
have led to the omission of pertinent research. Next, the
review likely reflects a positive publication bias, as studies
with null or negative results are less frequently published.
This may create an over-optimistic picture of the current
capabilities and reliability of AI-driven BCIs.

Despite following PRISMA guidelines and using a panel
of researchers, the processes of screening titles/abstracts and
extracting data into a matrix involve a degree of subjective
judgment, which could have influenced the final selection and
synthesis of the studies.
Implications for Practice, Policy, and
Future Research
The findings of this review have several critical implications
across different domains:

For clinical practice: in the short term, AI-enhanced BCIs
are most likely to find application as sophisticated diagnostic
and monitoring tools in specialized neurology centers, aiding
in the early and objective detection of cognitive impairment.
The proposed framework for AD/ADRD provides a blue-
print for developing caregiver alert systems, which could
significantly reduce burden and improve patient safety in
home-care settings. Clinicians should be aware of these
emerging technologies to guide future patient care and
manage expectations.

For policy and regulation: the security vulnerabilities
and ethical dilemmas identified (eg, data privacy, informed
consent for cognitively impaired users) demand urgent
attention from policymakers and regulatory bodies like the
FDA and EMA. New frameworks are needed to govern the
security of neural data, which is arguably the most personal of
all health information. Policies must be established to ensure
equitable access and prevent misuse, defining clear guidelines
for the ethical development and clinical validation of BCI
technologies.
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For future research: future work must transition from
proof-of-concept to robust, clinically focused research. Key
priorities should include rigorous, long-term trials with
diverse AD/ADRD populations that are essential to validate
efficacy and establish clinical utility. In addition, the BCI
research community should collaborate to establish common
data formats, reporting standards, and performance bench-
marks to enable meaningful comparisons. Moreover, research
must focus on developing more ergonomic, user-friendly, and
low-power hardware that is suitable for prolonged use outside
the lab. Creating interpretable ML models will be crucial for
building trust among clinicians and patients, allowing them
to understand the basis for the system’s classifications and
decisions.
Conclusion
This review systematically explored the role of BCI closed-
loop systems in health care, with a specific focus on
their potential to enhance neurological disorder detection
and management through advanced ML and AI techniques.
Addressing RQ1, we analyzed various methods and param-
eters used in BCI closed-loop systems, including signal
acquisition, feature extraction, classification, and device
output. Key preprocessing techniques such as ICA and TL
were identified as crucial for reducing noise and improving
signal quality. DBS was also highlighted as a promising
intervention for neuropsychological disorders like AD and
ADRD.

In evaluating RQ2, we examined the effectiveness of ML
and AI algorithms in BCI systems. Techniques like Support
SVM, CNN, and RNN demonstrated significant improve-
ments in decoding neural activity, enabling more accurate
classification of cognitive states. TL, in particular, showed
promise in reducing calibration time, making BCI systems
more adaptive to individual users. In addition, BCIs have
expanded beyond disease detection, playing a pivotal role in
cognitive enhancement, neurofeedback training, and assistive
communication.

Despite these advancements, RQ3 highlighted several
challenges in the development and implementation of
BCI closed-loop systems. Key limitations include high
computational costs, long calibration sessions, signal

variability across individuals, and security risks such as
Poisoning Attacks that could compromise neural signal
integrity. Ethical concerns surrounding data privacy and
the potential misuse of BCIs also remain pressing issues.
Addressing these challenges requires advancements in
real-time signal processing, improved sensor technology, and
robust cybersecurity frameworks to protect patient data.

To answer RQ4, we proposed a BCI-based framework for
longitudinal monitoring of AD/ADRD patients, integrating
real-time neural signal acquisition, feature extraction, and
ML-based classification for early cognitive decline detec-
tion. This framework incorporates real-time alert systems to
assist caregivers in proactive intervention, enhancing patient
outcomes. In addition, passive BCIs were identified as a
viable alternative for patients with severe cognitive impair-
ments, enabling continuous monitoring without requiring
active user engagement.

To answer RQ4, we proposed a BCI-based framework for
longitudinal monitoring of AD/ADRD patients, integrating
real-time neural signal acquisition, feature extraction, and
ML-based classification for early cognitive decline detec-
tion. This framework incorporates real-time alert systems to
assist caregivers in proactive intervention, enhancing patient
outcomes. In addition, passive BCIs were identified as a
viable alternative for patients with severe cognitive impair-
ments, enabling continuous monitoring without requiring
active user engagement.

Building on these advancements, future research should
prioritize the refinement of machine learning algorithms
to better support real-time signal processing and adaptive
learning in dynamic environments. Ethical considerations—
such as user consent, data ownership, and secure data
handling—must remain central to system design. Contin-
ued progress in these areas will be essential for creating
scalable, secure, and user-friendly BCI systems that inte-
grate seamlessly into daily life. Ultimately, these innova-
tions will position AI-powered BCIs as transformative tools
in improving care, independence, and quality of life for
individuals with neurological disorders, particularly those
living with AD/ADRD.
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