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Abstract
Background: Adapting physical activity monitors to detect gait events (ie, at initial and final contact) has the potential
to build a more personalized approach to gait rehabilitation after stroke. Meeting laboratory standards for detecting these
events in impaired populations is challenging, without resorting to a multisensor solution. The Teager-Kaiser energy operator
(TKEO) estimates the instantaneous energy of a signal; its enhanced sensitivity has successfully detected gait events from the
acceleration signals of individuals with impaired mobility, but has not been applied to stroke.
Objective: This study aimed to test the criterion validity of TKEO gait event detection (and derived spatiotemporal metrics)
using data from thigh mounted physical activity monitors compared with concurrent 3D motion capture in chronic survivors of
stroke.
Methods: Participants with a history of stroke(n=13, mean age 59, SD 14 years), time since stroke (mean 1.5, SD 0.5 years),
walking speed (mean 0.93ms−1 , SD 0.38 m/s) performed two 10m walks at their comfortable speed, while wearing two
ActivPAL 4+ (AP4) sensors (anterior of both thighs) and LED cluster markers on the pelvis and ankles which were tracked by
a motion capture system. The TKEO signal processing technique was then used to extract gait events (initial and final contact)
and calculate stance durations which were compared with motion capture data.
Results: There was very good agreement between the AP4 and motion capture data for stance duration (AP4 0.85s, motion
capture system 0.88s, 95% CI of difference −0.07 to 0.13, intraclass correlation coefficient [3,1]=0.79).
Conclusions: The TKEO method for gait event detection using AP4 data provides stance time durations that are comparable
with laboratory-based systems in a population with chronic stroke. Providing accurate stance time durations from wearable
sensors could extend gait training out of clinical environments. Limitations include ecological and external validity. Future
work should confirm findings with a larger sample of participants with a history of stroke.
Trial Registration: ClinicalTrials.gov NCT06787768; https://clinicaltrials.gov/study/NCT06787768
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Introduction
Rehabilitation improves recovery after stroke, with better
outcomes when applied intensively and tailored to individual

needs [1-4]. Wearable technology has the potential to support
increased self-managed rehabilitation by providing perform-
ance feedback during everyday activities such as walking in
the community but needs to be accurate [5].
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As an important feature of independent living, the recovery
of walking ability is a major rehabilitation goal [6]. Reduced
walking ability is common after stroke, particularly in
hemiplegic stroke, which causes specific gait impairments
such as reduced stance time duration on the hemiplegic
side [3,7]. Speed is the most widely reported and clinically
accessible metric in stroke rehabilitation, used as a global
measure of mobility recovery [8,9]. Speed alone, however,
does not provide meaningful information on the underly-
ing impairments needed to inform effective rehabilitation
interventions [10]. One metric that could provide this insight
and is clinically relevant and sensitive to change, is stance
duration symmetry [11-13]. Measuring this metric during
everyday rehabilitation is problematic but achievable with
wearable sensors; however, such an approach should consider
measurement burden and potential Hawthorne effects [14].
Integrating these metrics into existing systems, for exam-
ple physical activity monitors, may be a more acceptable
approach.

One well-established wearable device, designed for
measuring free-living physical activity, is the ActivPAL4+
(AP4) activity monitor (PAL technologies), which is a
uniaxial accelerometer attached to the anterior thigh, using
proprietary algorithms to measure physical activity and
posture of a healthy and impaired populations within
free-living environments [15]. This includes standing, sitting,
walking (durations and transitions) and measurements of
stepping cadence, step counts and energy expenditure [16].
The AP4 has good validity for measuring walking bouts at
normal walking speeds, intraclass correlation coefficient [ICC
(2,1)=0.78] when compared to direct observation [15,17-19].

Many algorithms and analysis techniques have been
developed to measure gait parameters from wearable sensors,
from frequency domain metrics to more complex approaches
that calculate joint angular displacements [20,21]. To detect
gait events specifically, most approaches have used peak
detection algorithms and zero crossing techniques, but these
have not been found to be robust [22-24]. Gait event detection
using the Teager Kaiser Energy Operator (TKEO) with AP4
data has been attempted before with Huntington’s disease,
to determine initial (IC) and final contact (FC) events, with
the resulting stance phase calculation consistently underesti-
mated (0.08 s), compared to video analysis [25,26]. While
this technique appears promising from tests in healthy and
impaired participants populations data, there is a need to test
with a hemiplegic population post stroke who stand to benefit
from the enhanced gait rehabilitation, that could be enabled
by the feedback from this approach.

The aim of this study, therefore, was to test the concurrent
validity of a thigh-mounted physical activity sensor (AP4)
for measuring the stance phase duration of hemiplegic gait,
with a 3D motion capture system details acting as the gold
standard measure. The hypothesis was that the AP4 would
have acceptable levels of concurrent validity through an ICC
(3,1) greater than 0.75, and a low (<0.1 s) absolute difference
between the two systems experience.

Methods
Recruitment
The data were collected as part of a larger rehabilitation trial.
Study Design
Concurrent validation of an accelerometer-based system
(AP4, PAL technologies, Glasgow, UK) was performed
against 3D motion capture (Vicon) for measuring stance
phase duration in participants of hemiplegic stroke.
Data Capture
Data from the AP4 and motion capture system were captured
concurrently from participants with hemiplegic chronic stroke
during two 10m walks in a gait laboratory. An AP4 (43
mmx26 mmx5 mm) was attached to the anterior surface of
each thigh (ie, hemiplegic and nonhemiplegic side) with the
acceleration data sampled at 50Hz. Marker clusters (Pul-
sars, Vicon) were attached to participants at three locations
(posterior pelvis, lateral malleoli) using Velcro straps and
tracked with 37 cameras (Viper, Vicon) sampling at 120 HZ.
The 3D trajectory data for the clusters was captured using
commercial software (Evoke, Vicon) and processed with a
customized Python script (version 3.13.2, Python Software
Foundation).
Stance Time Duration Calculation
Stance time durations were calculated from the motion
capture data using a coordinate-based algorithm, modified to
use ankle-placed cluster markers [27]. For the acceleration
data, Teager and Kaiser [28] developed an algorithm that used
the amplitude and frequency of a signal to discern its energy.
This algorithm is defined as:

(1)Ψ x t = ẋ t − x t ẍ t
with Ψ x t  equating the energy of the signal, x, at time,
t. ẋ t  and ẍ t  denoting the first and second derivative
of the signal, x, respectively. The discrete time variant is
required for determining specific gait events. To obtain this,
a 3-sample symmetric difference is calculated, approximating
the first and second derivatives. For a discrete one-dimen-
sional accelerometer signal, xn, the TKEO signal, φn, is
obtained through equation (1):

(2)φn = 2xn2 + xn + 1 − xn − 1 2 − xn xn + 2 − xn − 24Ts2
Flood et al [26] used equation (2) to amplify accelerometer
signal transient features for gait event detection. The TKEO, a
nonlinear energy-tracking operator, is considered effective in
amplifying sudden changes in signal energy. This allows for
identifying gait-related events, such as IC and FC, as seen in
Figure 1.
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Figure 1. Example TKEO output featuring IC and FC locations. Each large peak in anterior-posterior (AP) acceleration corresponds to IC, red
crosses. Processing removed these peaks and calibrated the surrounding regions. After further processing, the largest remaining peaks correspond to
FC, blue circles. AP: ; IC: initial contact; FC: final contact; TKEO: Teager-Kaiser energy operator.

An initial high-pass filter, at 0.5Hz via a 4th-order Butter-
worth filter is used on the anterior-posterior (AP) accelera-
tion signal of the thigh-mounted sensor. Equation (2) is then
applied to obtain φn. Once φn was obtained, the processing of
the signal was conducted in the same fashion as Lozano-Gar-
cía et al [25], but distinguished by using the constraints and
calibration discussed by Flood et al [26].

Applying the TKEO technique meant that the AP4 could
remain in its recommended location on the anterior thigh,
enabling collection of physical activity parameters using the
AP4’s proprietary algorithms [15], as well as collection of
stance duration data.
Data Analysis
A Kolmogorov-Smirnov test was conducted to determine
the normality of the difference between the AP4 and Evoke
cluster marker system (ECMS). A two-sample t test was then
used to determine whether the AP4 was statistically different
from that of the ECMS when measuring stance times. A
Bland-Altman plot and 95% CI of the limits of agreement
(LOA) were used to compare the AP4 to the ECMS. A
two-way mixed-effect, absolute agreement, single-measures
ICC (3,1) was calculated to determine absolute agreement
between the AP4 and ECMS.
Ethical Considerations
This study received ethical approval from Strathclyde
University Ethics Committee (UEC25/23: Kerr) and is
a registered clinical trial (NCT06787768) [29,30]. All
participants of the main trial were invited to take part in this
substudy. All participants provided informed consent before
their involvement in the study. Participants did not receive
compensation, and all data were anonymized.

Results
The Montreal cognitive assessment (MoCA) is a screening
instrument that evaluates general mental capabilities, such
as visuospatial abilities, executive functions, and orientation
to time and space. The MoCA is rated between 1 and 30,
with increasing score dictating better cognitive ability [31].
The functional ambulation category (FAC) evaluates walking
ability in 6 levels, with a score of 0 defining no ability to
walk, or requiring the help of 2 physiotherapist, and a score
of 5 defining full capability to walk independently, includ-
ing stairs [32]. The Rivermead mobility index (RMI) is an
outcome measure used to assess mobility after stroke, rated
between 0 and 15, with increasing score indicating better
mobility [33] (Table 1).

The AP4 (mean stance time=0.85) saw consistent
underestimation in comparison to the ECMS (mean stance
time=0.88). Despite this, both methods had a high agreement
for stance time measurement (T=0.61, P=.54, 95% CI for
difference=−0.07s, 0.13s, ICC [3,1]=0.79). The differences
between the AP4 and ECMS were shown to be within a
standard distribution (D=0.11, P=.10).

The Bland-Altman plot (Figure 2) displays a consistent
spread between the techniques during the performed stroke
gait which ranged between 0.49 and 1.90. This shows close
agreement between the AP4 and ECMS, irrespective of the
value. A bias of 0.03 seconds is reported, suggesting excellent
accuracy of the AP4 in comparison to ECMS. The LOA were
0.28s and −0.22s, which contain the 95% of the recorded
datapoints. This indicates good agreement between the AP4
and ECMS.
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Table 1. Participant characteristics of validation study.
Characteristics Participants (N=13)
Age (years) 30‐78
Aphasia, n 5
Years since stroke, range 1‐13
MoCAa (1-30), range 16‐30
FACb (0‐5), range 1‐5
Walking speed, range (m/s) 0.06‐1.39
RMIc 9‐15

aMoCA: Montreal cognitive assessment.
bFAC: functional ambulation category.
cRMI: Rivermead mobility index.

Figure 2. Bland-Altman plot comparing Evoke motion capture system stance time measurement using the Zeni technique with the AP4 using the
Teager-Kaiser energy operator (TKEO) measurement technique. The X-axis shows the mean of the two measurements and the Y-axis shows the
difference of the two measurements. The central line represents the mean difference with the outer lines representing 95% limits of agreement.

Discussion
This study aimed to test the concurrent validity of detecting
gait events (ie, initial and final foot contact) and the derived
metric—stance phase duration—from thigh acceleration data
analyzed with the TKEO, compared with a gold standard
3D motion capture (Vicon) in chronic survivors of stroke.
The excellent accuracy (bias=0.03 s) were similar to Flood
et al (IC error=0.01s, FC error=0.02 s) [26]and Lozano-Gar-
cía et al (bias=0.08 s) [25] . In the context of a typical
stance duration (nonparetic =1.01 s), the reported difference
of 0.03 s (2 sampling frames) represents a 2.97% differ-
ence, with performance comparable to other commonly used
methods of wearable sensor gait parameter measurement,
collected by Pacini Panebianco [34] et al. The reported bias
of 0.03 seconds could be considered clinically unimportant. A
study by Wang [35] et al denoted stance time averages and
variability from survivors of stroke at different gait speeds.

They noted 0.90 (SD 0.34) seconds and 1.01 (SD 0.41)
seconds for the paretic and nonparetic sides, respectively.
The magnitude of the bias, therefore, will have little effect
on the readings that the AP4 will make by using the TKEO
technique. These findings should be confirmed with a larger
sample that preserves the diverse nature of the current sample
(speed ranged between 0.06‐1.39ms−1 ).

This positive outcome opens opportunity to expand the
output of wearable sensors currently used as physical activity
monitors, to provide feedback on gait parameters (stance
duration, symmetry and weight transference) during the
rehabilitation of patients with hemiplegic stroke, without
increasing measurement burden.

The results should be interpreted in light of the study’s
limitations. The testing took place in a laboratory setting,
reducing the generalizability of results. This controlled
environment may not reflect everyday gait [36,37]. To obtain
ecologically valid gait data, there is a need to capture in
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free-living environments. The sample of participants with a
history of chronic stroke means that only a specific subset
(chronic) of the population with stroke has been validated
for this technique. Future studies are encouraged to include
subacute populations who may have more variable gait
parameters. The study had a small sample size, limiting the
statistical power and potentially not representing the whole
population, although the range of walking ability (walking
speed 0.06‐1.39ms−1 , FAC 1‐5; Table 1) is reassuringly wide.

In conclusion, the AP4 sensor, in conjunction with the
TKEO technique, has been validated against a gold standard

3D Motion Capture system, for stance duration measurement
in participants with chronic stroke. However, this positive
finding is limited by the study’s setting and small sample.
Future work should consider a bigger sample and collect
gait data in free-living environments. The outcomes of this
study could be exploited to enhance the function of wearable
sensors, in order to provide the gait parameters valuable for
self-rehabilitation after stroke, such as symmetry.
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