JMIR Biomedical Engineering
Engineering for health technologies, medical devices, and innovative medical treatments and procedures.
Editor-in-Chief:
Syed A. A. Rizvi, MD, PhD, MBA, MPH, BSN, Professor, College of Biomedical Sciences, Larkin University, USA
Recent Articles
Cell concentration in body fluid is an important factor for clinical diagnosis. The traditional method involves clinicians manually counting cells under microscopes, which is labor-intensive. Automated cell concentration estimation can be achieved using flow cytometers; however, their high cost limits accessibility. Microfluidic systems, although cheaper than flow cytometers, still require high-speed cameras and syringe pumps to drive the flow and ensure video quality. In this paper, we present SmartFlow, a low-cost solution for cell concentration estimation using smartphone-based computer vision on 3D-printed, pump-free microfluidic platforms.
Numerous studies have explored image processing techniques aimed at enhancing ultrasound images to narrow the performance gap between low-quality portable devices and high-end ultrasound equipment. These investigations often use registered image pairs created by modifying the same image through methods like down sampling or adding noise, rather than using separate images from different machines. Additionally, they rely on organ-specific features, limiting the models’ generalizability across various imaging conditions and devices. The challenge remains to develop a universal framework capable of improving image quality across different devices and conditions, independent of registration or specific organ characteristics.
Long-term unobtrusive monitoring of breathing patterns can potentially give a more realistic insight into the respiratory health of people with asthma or chronic obstructive pulmonary disease than brief tests performed in medical environments. However, it is uncertain whether users would be willing to wear these sensor garments long term.
Attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) are among the most prevalent mental disorders among school-aged youth in South Korea and may play a role in the increasing pressures on teachers and school-based special education programming. A lack of support for special education; tensions between teachers, students, and parents; and limited backup for teacher absences are common complaints among Korean educators. New innovations in technology to screen and treat ADHD and ASD may offer relief to students, parents, and teachers through earlier and efficient diagnosis; access to treatment options; and ultimately, better-managed care and expectations.
Stroke therapy is essential to reduce impairments and improve motor movements by engaging autogenous neuroplasticity. Traditionally, stroke rehabilitation occurs in inpatient and outpatient rehabilitation facilities. However, recent literature increasingly explores moving the recovery process into the home and integrating technology-based interventions. This study advances this goal by promoting in-home, autonomous recovery for patients who experienced a stroke through robotics-assisted rehabilitation and classifying stroke residual severity using machine learning methods.
Determining maximum oxygen uptake (VO2max) is essential for evaluating cardiorespiratory fitness. While laboratory-based testing is considered the gold standard, sports watches or fitness trackers offer a convenient alternative. However, despite the high number of wrist-worn devices, there is a lack of scientific validation for VO2max estimation outside the laboratory setting.
The hand is crucial for carrying out activities of daily living as well as social interaction. Functional use of the upper limb is affected in up to 55% to 75% of stroke survivors 3 to 6 months after stroke. Rehabilitation can help restore function, and several rehabilitation devices have been designed to improve hand function. However, access to these devices is compromised in people with more severe loss of function.
In recent years, researchers have delved into the relationship between the anatomy and biomechanics of sacroiliac joint (SIJ) pain and dysfunction in endurance runners to elucidate the connection between lower back pain and the SIJ. However, the majority of SIJ pain and dysfunction cases are diagnosed and managed through a traditional athlete-clinician arrangement, where the athlete must attend regular in-person clinical appointments with various allied health professionals. Wearable sensors (wearables) are increasingly serving as a clinical diagnostic tool to monitor an athlete’s day-to-day activities remotely, thus eliminating the necessity for in-person appointments. Nevertheless, the extent to which wearables are used in a remote setting to manage SIJ dysfunction in endurance runners remains uncertain.
Vocal biomarkers, derived from acoustic analysis of vocal characteristics, offer noninvasive avenues for medical screening, diagnostics, and monitoring. Previous research demonstrated the feasibility of predicting type 2 diabetes mellitus through acoustic analysis of smartphone-recorded speech. Building upon this work, this study explores the impact of audio data compression on acoustic vocal biomarker development, which is critical for broader applicability in health care.
Preprints Open for Peer-Review
There are no preprints available for open peer-review at this time. Please check back later.