JMIR Publications

JMIR Biomedical Engineering


Recent Articles:

  • Wearable Devices and Smart Watches for Fitness and Hospital Health Tracking. Source:; Copyright: BrotherUK; URL:; License: Creative Commons Attribution (CC-BY).

    Motivations and Key Features for a Wearable Device for Continuous Monitoring of Breathing: A Web-Based Survey


    Background: Analysis of patterns of breathing over time may provide novel information on respiratory function and dysfunction. Devices that continuously record and analyze breathing rates may provide new options for the management of respiratory diseases. However, there is a lack of information about design characteristics that would make such devices user-friendly and suitable for this purpose. Objective: Our aim was to determine key device attributes and user requirements for a wearable device to be used for long-term monitoring of breathing. Methods: An online survey was conducted between June and July 2016. Participants were predominantly recruited via the Woolcock Institute of Medical Research database of volunteers, as well as staff and students. Information regarding the survey, a consent form, and a link to a Web-based questionnaire were sent to participants via email. All participants received an identical survey; those with doctor-diagnosed asthma completed an extra questionnaire on asthma control (Asthma Control Test). Survey responses were examined as a group using descriptive statistics. Responses were compared between those with and without asthma using the chi-square test. Results: The survey was completed by 134 participants (males: 39%, median age group: 50-59 years, asthma: 57%). Of those who completed the Asthma Control Test, 61% (47/77) had suboptimal asthma control. Of the 134 participants, 61.9% (83/134) would be willing to wear a device to monitor their breathing, in contrast to 6.7% (9/134) who would not. The remaining 31.3% (42/134) stated that their willingness depended on specific factors. Participants with asthma most commonly cited their asthma as motivation for using a wearable; the most common motivation for use in those without asthma was curiosity. More than 90% of total participants would use the device during the day, night, or both day and night. Design preferences among all users included a wrist watch (nominated by 92.5% [124/134] for both day and night use, out of four body sites), the ability to synchronize breathing data with a mobile phone or tablet (81.3%, 109/134), overnight power charging (33.6%, 45/134), and a cost of ≤Aus $100 (53.7%, 72/134). Conclusions: We have explored the motivations and likelihood for adopting wearable technologies for the purpose of monitoring breathing and identified user preferences for key design features. We found participants were motivated to adopt a wearable breathing monitor irrespective of health status, though rationale for use differed between those with and without asthma. These findings will help inform the design of a user-acceptable wearable device that will facilitate its eventual uptake in both healthy and asthma populations.

  • CJTF-HOA shares best health practices with Dikhil women. Image Source: Author:Staff Sgt. Christopher Gross. License:PUBLIC DOMAIN.

    A Six-Step Framework on Biomedical Signal Analysis for Tackling Noncommunicable Diseases: Current and Future Perspectives


    Low- and middle-income countries (LMICs) continue to face major challenges in providing high-quality and universally accessible health care. Researchers, policy makers, donors, and program implementers consistently strive to develop and provide innovative approaches to eliminate geographical and financial barriers to health care access. Recently, interest has increased in using mobile health (mHealth) as a potential solution to overcome barriers to improving health care in LMICs. Moreover, with use increasing and cost decreasing for mobile phones and Internet, mHealth solutions are becoming considerably more promising and efficient. As part of mHealth solutions, biomedical signals collection and processing may play a major role in improving global health care. Information extracted from biomedical signals might increase diagnostic precision while augmenting the robustness of health care workers’ clinical decision making. This paper presents a high-level framework using biomedical signal processing (BSP) for tackling diagnosis of noncommunicable diseases, especially in LMICs. Researchers can consider each of these elements during the research and design of BSP-based devices, enabling them to elevate their work to a level that extends beyond the scope of a particular application and use. This paper includes technical examples to emphasize the applicability of the proposed framework, which is relevant to a wide variety of stakeholders, including researchers, policy makers, clinicians, computer scientists, and engineers.

Citing this Article

Right click to copy or hit: ctrl+c (cmd+c on mac)