JMIR Biomedical Engineering

Engineering for health technologies, medical devices, and innovative medical treatments and procedures

Editor-in-Chief:

Gunther Eysenbach, MD, MPH, FACMI, Adjunct Professor, School of Health Information Science, University of Victoria (Canada)


JMIR Biomedical Engineering (JBME) is a new sister journal of JMIR (the leading open-access journal in health informatics), focusing on the application of engineering principles, technologies, and medical devices to medicine and biology. 


As an open access journal, we are read by clinicians and patients alike and have (as are all JMIR journals) a focus on readable and applied science reporting the design and evaluation of health innovations and emerging technologies. We publish original research, viewpoints, and reviews (both literature reviews and medical device/technology/app reviews).

JMIR Biomedical Engineering publishes since 2016 and features a rapid and thorough peer-review process. Articles are carefully copyedited and XML-tagged, ready for submission in PubMed Central.

Be a founding author of this new journal and submit your paper today!

 

Recent Articles

Article Thumbnail
Biomedical Engineering Reviews

The term “plasmonic” describes the relationship between electromagnetic fields and metallic nanostructures. Plasmon-based sensors have been used innovatively to accomplish different biomedical tasks, including detection of cancer. Plasmonic sensors also have been used in biochip applications and biosensors and have the potential to be implemented as implantable point-of-care devices. Many devices and methods discussed in the literature are based on surface plasmon resonance (SPR) and localized SPR (LSPR). However, the mathematical background can be overwhelming for researchers at times.

|
Article Thumbnail
Biomedical Engineering Reviews

A majority of employees in the industrial world spend most of their working time in a seated position. Monitoring sitting postures can provide insights into the underlying causes of occupational discomforts such as low back pain.

|
Article Thumbnail
Biomedical Engineering Articles

Maternal serum alpha-fetoprotein (MSAFP) concentration typically increases during pregnancy and is routinely measured during the second trimester as a part of screening for fetal neural tube defects and Down syndrome. However, most pregnancy screening tests are not available in the settings they are needed the most. A mobile device–enabled technology based on MSAFP for screening birth defects could enable the rapid screening and triage of high-risk pregnancies, especially where maternal serum screening and fetal ultrasound scan facilities are not easily accessible. Shifting the approach from clinic- and laboratory-dependent care to a mobile platform based on our point-of-care approach will enable translation to resource-limited settings and the global health care market.

|
Article Thumbnail
Biomedical Engineering Articles

With advances in digital health technologies and proliferation of biomedical data in recent years, applications of machine learning in health care and medicine have gained considerable attention. While inpatient settings are equipped to generate rich clinical data from patients, there is a dearth of actionable information that can be used for pursuing secondary research for specific clinical conditions.

|
Article Thumbnail
Biomedical Engineering Articles

Historically, the evaluation of physical activity has involved a variety of methods such as the use of questionnaires, accelerometers, behavior records, and global positioning systems, each according to the purpose of the evaluation. The use of web-based physical activity evaluation systems has been proposed as an easy method for collecting physical activity data. Voice recognition technology not only eliminates the need for questionnaires during physical activity evaluation but also enables users to record their behavior without physically touching electronic devices. The use of a web-based voice recognition system might be an effective way to record physical activity and behavior.

|
Article Thumbnail
Biomedical Engineering Articles

Due to the COVID-19 pandemic, the demand for remote electrocardiogram (ECG) monitoring has increased drastically in an attempt to prevent the spread of the virus and keep vulnerable individuals with less severe cases out of hospitals. Enabling clinicians to set up remote patient ECG monitoring easily and determining how to classify the ECG signals accurately so relevant alerts are sent in a timely fashion is an urgent problem to be addressed for remote patient monitoring (RPM) to be adopted widely. Hence, a new technique is required to enable routine and widespread use of RPM, as is needed due to COVID-19.

|
Article Thumbnail
Biomedical Engineering Articles

Maturity-onset diabetes of the young (MODY) is a group of dominantly inherited monogenic diabetes, with HNF4A-MODY, GCK-MODY, and HNF1A-MODY as the three most common forms based on the causal genes. Molecular diagnosis of MODY is important for precise treatment. Although a DNA variant causing MODY can be assessed based on the criteria of the American College of Medical Genetics and Genomics (ACMG) guidelines, gene-specific assessment of disease-causing mutations is important to differentiate among MODY subtypes. As the ACMG criteria were not originally designed for machine-learning algorithms, they are not true independent variables.

|
Article Thumbnail
Biomedical Engineering Articles

Physical activity has been shown to decrease cardiovascular mortality and morbidity. Walking, a simple physical activity which is an integral part of daily life, is a feasible and safe activity for patients with heart failure (HF). A step counter, measuring daily walking activity, might be a motivational factor for increased activity.

|
Article Thumbnail
Biomedical Engineering Articles

Rhythm, brain, and body are closely linked. Humans can synchronize their movement to auditory rhythms in ways that can improve the regularity of movement while reducing perceived effort. However, the ability to perform rhythmic movement may be disrupted by various neurological conditions. Many such conditions impair mechanisms that control movement, such as gait, but typically without rhythmic perception being affected. This paper focuses on hemiparetic stroke, a neurological condition that affects one side of the body. Hemiparetic stroke can cause severe asymmetries in gait, leading to numerous physical problems ranging from muscle degeneration to bone fractures. Movement synchronization via entrainment to auditory metronomes is known to improve asymmetry and related gait problems; this paper presents the first systematic study of entrainment for gait rehabilitation via the haptic modality.

|
Article Thumbnail
Biomedical Engineering Articles

Heart rate variability (HRV) is used to assess cardiac health and autonomic nervous system capabilities. With the growing popularity of commercially available wearable technologies, the opportunity to unobtrusively measure HRV via photoplethysmography (PPG) is an attractive alternative to electrocardiogram (ECG), which serves as the gold standard. PPG measures blood flow within the vasculature using color intensity. However, PPG does not directly measure HRV; it measures pulse rate variability (PRV). Previous studies comparing consumer-grade PRV with HRV have demonstrated mixed results in short durations of activity under controlled conditions. Further research is required to determine the efficacy of PRV to estimate HRV under free-living conditions.

|
Article Thumbnail
Biomedical Engineering Articles

Electrogastrography is a noninvasive electrophysiological procedure used to measure gastric myoelectrical activity. EGG methods have been used to investigate the mechanisms of the human digestive system and as a clinical tool. Abnormalities in gastric myoelectrical activity have been observed in subjects with diabetes.

|
Article Thumbnail
Biomedical Engineering Articles

Electroconvulsive therapy (ECT) is one of the oldest, most effective, and potentially life-saving noninvasive brain stimulation treatments for psychiatric illnesses such as severe depression, mania, and catatonia. The decision-making process to use ECT involves well-informed discussion between the clinician and the client. A platform, like an app, which provides this information in an easy-to-understand format may be of benefit to various stakeholders in making an informed decision. Apps developed by clinicians/hospitals taking into consideration user perspectives will filter and provide trustworthy information to the users. In this regard, the ECT app, an app which is freely available for download at the Apple Store, was developed by the Leicestershire Partnership National Health Service (NHS) Trust and Leicestershire Health Informatics Service (LHIS).

|

Preprints Open for Peer-Review

There are no preprints available for open peer-review at this time. Please check back later.

We are working in partnership with