JMIR Biomedical Engineering

Engineering for health technologies, medical devices, and innovative medical treatments and procedures.

Editor-in-Chief:

Syed A. A. Rizvi, MD, PhD, MBA, MPH, BSN, Professor, College of Biomedical Sciences, Larkin University, USA 


JMIR Biomedical Engineering (JBME) is a peer-reviewed journal that focuses on the application of engineering principles, technologies, and medical devices to medicine and biology. 

As an open access journal, we are read by clinicians and patients alike and have (as are all JMIR journals) a focus on readable and applied science reporting the design and evaluation of health innovations and emerging technologies. We publish original research, viewpoints, and reviews (both literature reviews and medical device/technology/app reviews).

JMIR Biomedical Engineering has been publishing since 2016 and features a rapid and thorough peer-review process. The journal has been approved for indexing in PubMed Central and PubMed and is indexed in DOAJ, Sherpa/Romeo, and EBSCO/EBSCO Essentials.

Submit your paper today!

 

Recent Articles

Article Thumbnail
Biomedical Engineering Viewpoints

In recent years, researchers have delved into the relationship between the anatomy and biomechanics of sacroiliac joint (SIJ) pain and dysfunction in endurance runners to elucidate the connection between lower back pain and the SIJ. However, the majority of SIJ pain and dysfunction cases are diagnosed and managed through a traditional athlete-clinician arrangement, where the athlete must attend regular in-person clinical appointments with various allied health professionals. Wearable sensors (wearables) are increasingly serving as a clinical diagnostic tool to monitor an athlete’s day-to-day activities remotely, thus eliminating the necessity for in-person appointments. Nevertheless, the extent to which wearables are used in a remote setting to manage SIJ dysfunction in endurance runners remains uncertain.

|
Article Thumbnail
Clinical engineering

Now and in the future, airborne diseases such as COVID-19 could become uncontrollable and lead the world into lockdowns. Finding alternatives to lockdowns, which limit individual freedoms and cause enormous economic losses, is critical.

|
Article Thumbnail
Development of Novel Medical Devices and Innovations for Existing Devices

Vocal biomarkers, derived from acoustic analysis of vocal characteristics, offer noninvasive avenues for medical screening, diagnostics, and monitoring. Previous research demonstrated the feasibility of predicting type 2 diabetes mellitus through acoustic analysis of smartphone-recorded speech. Building upon this work, this study explores the impact of audio data compression on acoustic vocal biomarker development, which is critical for broader applicability in health care.

|
Article Thumbnail
Development of Novel Medical Devices and Innovations for Existing Devices

Obstructive sleep apnea/hypopnea syndrome (OSAHS) is a prevalent condition affecting a substantial portion of the global population, with its prevalence increasing over the past 2 decades. OSAHS is characterized by recurrent upper airway (UA) closure during sleep, leading to significant impacts on quality of life and heightened cardiovascular and metabolic morbidity. Despite continuous positive airway pressure (CPAP) being the gold standard treatment, patient adherence remains suboptimal due to various factors, such as discomfort, side effects, and treatment unacceptability.

|
Article Thumbnail
Biomedical Engineering Reviews

Degenerative cervical myelopathy (DCM) is a slow-motion spinal cord injury caused via chronic mechanical loading by spinal degenerative changes. A range of different degenerative changes can occur. Finite element analysis (FEA) can predict the distribution of mechanical stress and strain on the spinal cord to help understand the implications of any mechanical loading. One of the critical assumptions for FEA is the behavior of each anatomical element under loading (ie, its material properties).

|
Article Thumbnail
Development of Novel Medical Devices and Innovations for Existing Devices

Pulse oximeters work within the red-infrared wavelengths. Therefore, these oximeters produce erratic results in dark-skinned subjects and in subjects with cold extremities. Pulse oximetry is routinely performed in patients with fever; however, an elevation in body temperature decreases the affinity of hemoglobin for oxygen, causing a drop in oxygen saturation or oxyhemoglobin concentrations.

|
Article Thumbnail
Development of Novel Medical Devices and Innovations for Existing Devices

The digital era has witnessed an escalating dependence on digital platforms for news and information, coupled with the advent of “deepfake” technology. Deepfakes, leveraging deep learning models on extensive data sets of voice recordings and images, pose substantial threats to media authenticity, potentially leading to unethical misuse such as impersonation and the dissemination of false information.

|
Article Thumbnail
Clinical engineering

The increasing adoption of telehealth Internet of Things (IoT) devices in health care informatics has led to concerns about energy use and data processing efficiency.

|
Article Thumbnail
Clinical engineering

Venovenous extracorporeal membrane oxygenation (VV-ECMO) is a therapy for patients with refractory respiratory failure. The decision to decannulate someone from extracorporeal membrane oxygenation (ECMO) often involves weaning trials and clinical intuition. To date, there are limited prognostication metrics to guide clinical decision–making to determine which patients will be successfully weaned and decannulated.

|
Article Thumbnail
Development of Novel Medical Devices and Innovations for Existing Devices

Clinicians face barriers when assessing lung maturity at birth due to global inequalities. Still, strategies for testing based solely on gestational age to predict the likelihood of respiratory distress syndrome (RDS) do not offer a comprehensive approach to addressing the challenge of uncertain outcomes. We hypothesize that a noninvasive assessment of skin maturity may indicate lung maturity.

|
Article Thumbnail
Development of Novel Medical Devices and Innovations for Existing Devices

Parkinson disease (PD) is the second most common neurodegenerative disease, affecting approximately 1% of the world’s population. Increasing evidence suggests that aerobic physical exercise can be beneficial in mitigating both motor and nonmotor symptoms of the disease. In a recent pilot study of the role of exercise on PD, we sought to confirm exercise intensity by monitoring heart rate (HR). For this purpose, we asked participants to wear a chest strap HR monitor (Polar Electro Oy) and the Fitbit Charge 4 (Fitbit Inc) wrist-worn HR monitor as a potential proxy due to its convenience. Polar H10 has been shown to provide highly accurate R-R interval measurements. Therefore, we treated it as the gold standard in this study. It has been shown that Fitbit Charge 4 has comparable accuracy to Polar H10 in healthy participants. It has yet to be determined if the Fitbit is as accurate as Polar H10 in patients with PD during rest and exercise.

|
Article Thumbnail
Development of Novel Medical Devices and Innovations for Existing Devices

In Japan, individuals with mild COVID-19 illness previously required to be monitored in designated areas and were hospitalized only if their condition worsened to moderate illness or worse. Daily monitoring using a pulse oximeter was a crucial indicator for hospitalization. However, a drastic increase in the number of patients resulted in a shortage of pulse oximeters for monitoring. Therefore, an alternative and cost-effective method for monitoring patients with mild illness was required. Previous studies have shown that voice biomarkers for Parkinson disease or Alzheimer disease are useful for classifying or monitoring symptoms; thus, we tried to adapt voice biomarkers for classifying the severity of COVID-19 using a dynamic time warping (DTW) algorithm where voice wavelets can be treated as 2D features; the differences between wavelet features are calculated as scores.

|

We are working in partnership with