Published on in Vol 7, No 1 (2022): Jan-Jun

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/33771, first published .
The Classification of Abnormal Hand Movement to Aid in Autism Detection: Machine Learning Study

The Classification of Abnormal Hand Movement to Aid in Autism Detection: Machine Learning Study

The Classification of Abnormal Hand Movement to Aid in Autism Detection: Machine Learning Study

Journals

  1. deLeyer‐Tiarks J, Li M, Levine‐Schmitt M, Andrade B, Bray M, Peters E. Advancing autism technology. Psychology in the Schools 2023;60(2):495 View
  2. Banerjee A, Mutlu O, Kline A, Surabhi S, Washington P, Wall D. Training and Profiling a Pediatric Facial Expression Classifier for Children on Mobile Devices: Machine Learning Study. JMIR Formative Research 2023;7:e39917 View
  3. Putra I, Nurhayati O, Eridani D. Human Action Recognition (HAR) Classification Using MediaPipe and Long Short-Term Memory (LSTM). TEKNIK 2022;43(2):190 View
  4. Uddin M, Shahriar M, Mahamood M, Alnajjar F, Pramanik M, Ahad M. Deep learning with image-based autism spectrum disorder analysis: A systematic review. Engineering Applications of Artificial Intelligence 2024;127:107185 View
  5. Parab S, Boster J, Washington P. Parkinson Disease Recognition Using a Gamified Website: Machine Learning Development and Usability Study. JMIR Formative Research 2023;7:e49898 View
  6. Jaiswal A, Washington P. Using #ActuallyAutistic on Twitter for Precision Diagnosis of Autism Spectrum Disorder: Machine Learning Study. JMIR Formative Research 2024;8:e52660 View
  7. Jaiswal A, Kruiper R, Rasool A, Nandkeolyar A, Wall D, Washington P. Digitally Diagnosing Multiple Developmental Delays Using Crowdsourcing Fused With Machine Learning: Protocol for a Human-in-the-Loop Machine Learning Study. JMIR Research Protocols 2024;13:e52205 View
  8. Washington P. A Perspective on Crowdsourcing and Human-in-the-Loop Workflows in Precision Health. Journal of Medical Internet Research 2024;26:e51138 View
  9. Kargarandehkordi A, Kaisti M, Washington P. Personalization of Affective Models Using Classical Machine Learning: A Feasibility Study. Applied Sciences 2024;14(4):1337 View
  10. Barami T, Manelis-Baram L, Kaiser H, Ilan M, Slobodkin A, Hadashi O, Hadad D, Waissengreen D, Nitzan T, Menashe I, Michaelovsky A, Begin M, Zachor D, Sadaka Y, Koler J, Zagdon D, Meiri G, Azencot O, Sharf A, Dinstein I. Automated Analysis of Stereotypical Movements in Videos of Children With Autism Spectrum Disorder. JAMA Network Open 2024;7(9):e2432851 View
  11. Sá R, Michelassi G, Butrico D, Franco F, Sumiya F, Portolese J, Brentani H, Nunes F, Machado-Lima A. Enhancing ensemble classifiers utilizing gaze tracking data for autism spectrum disorder diagnosis. Computers in Biology and Medicine 2024;182:109184 View
  12. Natraj S, Kojovic N, Maillart T, Schaer M, Varrasi S. Video-audio neural network ensemble for comprehensive screening of autism spectrum disorder in young children. PLOS ONE 2024;19(10):e0308388 View
  13. Wagh V, Scott M, Kraeutner S. Quantifying Similarities Between MediaPipe and a Known Standard to Address Issues in Tracking 2D Upper Limb Trajectories: Proof of Concept Study. JMIR Formative Research 2024;8:e56682 View
  14. Yang Z, Zhang Y, Ning J, Wang X, Wu Z. Early Diagnosis of Autism: A Review of Video-Based Motion Analysis and Deep Learning Techniques. IEEE Access 2025;13:2903 View

Books/Policy Documents

  1. Dundi U, Kanaparthi V, Bandaru R, Umaiorubagam G. Computational Intelligence in Data Science. View
  2. Radha S, Abinaya M, Divya Darshini K, Kamalnath K, Jayanthi P. Soft Computing for Security Applications. View